
A Graphical Model-Based Representation for Classical AI Plans using Category
Theory

Angeline Aguinaldo1, 2, William Regli
1University of Maryland, Dept. of Computer Science,

2Johns Hopkins University Applied Physics Laboratory,
aaguinal@umd.edu, regli@umd.edu

Abstract
Classical AI planners provide solutions to planning problems
in the form of long and opaque text outputs. To aid in the gen-
eralization of planning solutions, it is necessary to have a rich
and comprehensible representation for both human and com-
puters beyond the current line-by-line text notation. In par-
ticular, it is desirable to encode the trace of literals through-
out the plan to capture the dependencies between actions se-
lected. The approach of this paper is to view the actions as
maps between literals and the selected plan as a composition
of those maps. The mathematical theory, called category the-
ory, provides the relevant structures for capturing maps, their
compositions, and maps between compositions. We employ
this theory to propose an algorithm agnostic, model-based
representation for domains, problems, and plans expressed in
the commonly used planning description language, PDDL.
This category theoretic representation is accompanied by a
graphical syntax in addition to a linear notation, similar to al-
gebraic expressions, that can be used to infer literals used at
every step of the plan. This provides the appropriate construc-
tive abstraction and facilitates comprehension for human op-
erators. In this paper, we demonstrate this on a plan with the
Blocksworld domain.

Introduction
Plans generated by automated planners for real-world prob-
lems are often long and opaque. They are multi-line text
files, where every line describes the action and the associ-
ated parameters for a given step. This is a simple and inter-
pretable form for computers, but not very intuitive for hu-
mans to understand. It is often difficult to understand why
the planner chose that sequence of actions without looking
deeper into the domain description file and interpreting ev-
ery action’s cause and effect. And often the domain files can
consist of tens or possibly hundreds of defined actions, mak-
ing it incredibly difficult to parse.

One approach to improving comprehension is to make the
domain description more intuitive. This can be done by us-
ing syntax highlighting or graph-based representations of ac-
tion relationships. However, this requires that the user take
the plan, compare it against the domain representation, and
make effortful inferences about why the actions were se-
lected. Another approach would be to look into the planner

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and provide a representation about the search path and state
space. This is useful for intuiting the efficiency of the plan-
ning algorithm; however, may not be relevant to an end user
trying to understand why the plan was chosen. This moti-
vates the cause for a representation of the plan in the context
of its domain, and one that specifically highlights the prove-
nance of literals from initial to goal state.

The widely-used convention for encoding artificial intelli-
gence (AI) planning problems is the Problem Domain Defi-
nition Language (PDDL) (Ghallab et al. 1998). At the back-
bone of PDDL reasoning are logical propositions, or literals.
These literals describe the preconditions and effects of an
action. Provided a sequence of actions in a plan, it is likely
that not all of an action’s effects map to the next action’s
preconditions. This makes it difficult to understand which
literals are informing each action because they may have
been introduced many steps prior. This may lead the user
to inquire about the purpose each action has in achieving the
goal. Towards an explainable plan, it is appealing to have
a graphical representation that traces the literals as they are
used and generated by actions. This paper proposes using a
representation, called string diagrams, that is based on the
branch of mathematics called category theory. Category the-
ory is an algebraic system that is attentive to functions and
how they compose. This is a good representation for PDDL
plans because they are compositions of actions in an ordered
sequence. Validating compositionality between within and
between plans is exactly the property to leverage when eval-
uating the transferability of skills to other plans.

In this paper, we provide introductions to PDDL, cate-
gory theory, and string diagrams and discuss related repre-
sentations for PDDL domains and plans. We then present an
example visualization for the Blocksworld domain file and
then describe how we encoded PDDL domains, problems,
and plans into the string diagram representation. Lastly, we
discuss notable observations and how this representation can
be extended to support explainable planning.

Background
Planning Domain Definition Language (PDDL)
The prevalent classical planning language for describing do-
mains and problems is the Problem Domain Definition Lan-
guage (PDDL) (Ghallab et al. 1998). The schema adopted



by PDDL at inception was based on the language used by
the Stanford Research Institute Problem Solver (STRIPS)
(Fikes and Nilsson 1971). This requires a set of proposi-
tions, F , a set of operators with preconditions and effects,
O, an initial state, I , and a goal state, G, and operates under
the closed world assumption—all absent information is neg-
ative information. In other words, a STRIPS-based PDDL
planning model can be defined as P =< F,O, I,G >.
State models, S(P ), is a set of states, s ∈ S(P ), such that
its elements are propositions. A is the ground set of actions
obtained from O. A transition function, f : A × S → S,
maps between states according to the action applied. A cor-
responding cost is computed using a cost function, σ :
A × S → R. A plan, π =< ai, ai+1, ...an >, ai ∈ A, is
the sequence of actions that transition from the initial state,
s0 = I , to the goal state, sG = G, according to the transition
function, f(a, s) and cost, c(π) =

∑n
j=i σ(aj , sj) (Geffner

and Bonet 2013). There have been a number of solver heuris-
tics and search algorithms developed that design cost func-
tions according to soundness and optimality in order to iden-
tify plans efficiently (Ghallab, Nau, and Traverso 2004).

Model-based Representations for PDDL
Explainable artificial intelligence (AI) planning (XAIP) is a
subarea of research within the field of explainable AI (XAI)
(Gunning 2017) whose goal is to relay to the user how and
why a sequence of actions have been selected as a plan or
policy (Fox, Long, and Magazzeni 2017). One approach to
XAIP explanations is to use a representation that considers a
plan in the context of the original domain model, i.e. model-
based representation. A model-based representation for AI
plans is one that relies only on the solution, domain, and
problem model provided by the user which means it is ag-
nostic to the method used to produce the plan and is typ-
ically more relevant to the end user than algorithm-based
or planning-based representations (Chakraborti, Sreedharan,
and Kambhampati 2020).

A common investigatory question that is asked of a
model-based representation is ”Why is this action in the
plan?”. A good explanation for this query is one that shows
how the goal depends on the chosen actions of the plan
(Chakraborti, Sreedharan, and Kambhampati 2020). There
are few model-based representations that provide such ex-
planations for PDDL plans. A prominent contender is Dove-
tail (Magnaguagno, Pereira, and Meneguzzi 2016). Dove-
tail is a 2D graphical representation that uses jigsaw puzzle
shapes an analogs for literal preconditions and effects. Every
literal in the plan is assigned a vertical position, or row, in the
visualization and every action in the plan is given a column.
As a result, consecutive action pieces can fit together if their
literals are compatible. This metaphor is intended to commu-
nicate the naturalness of the selected chain of actions. This
is a creative view of the plan, however, it lacks the formal
structure that would be used to provide information without
visual inspection.

An example of mathematical model-based representations
for PDDL are directed graphs. GIPO, Graphical Interface for
Planning with Objects, (Simpson, Kitchin, and McCluskey
2007) and VisPlan (Glinský 2011) propose the use of di-

rected graphs to model PDDL plans. Graph representations
are useful for encoding relationships between actions ac-
cording to their ingoing and outgoing literals, but their math-
ematical structures do not inherently capture the order in
which actions are executed which is necessary for explain-
ing causal dependency of actions.

String Diagrams and Category Theory
Eilenberg and MacLane (Eilenberg and MacLane 1945) in-
troduced the concepts of category theory in their study of
algebraic topology as a way to transfer theorems between
algebra and topology. In doing so, they provided a math-
ematical language that lifts many mathematical and non-
mathematical concepts to this notion of maps between en-
tities and compositions of those maps. This abstraction has
found its usefulness in modeling natural language (Co-
ecke, Sadrzadeh, and Clark 2010), manufacturing processes
(Breiner, Jones, and Subrahmanian 2019), database schema
integration (Shinavier and Wisnesky 2019), biological pro-
tein structures (Spivak et al. 2011), and many other domains
that require observing the interactions between entities, as
opposed to the entities themselves. Likewise, these concepts
provide a useful presentation of AI planning domains and
plans because the resulting plans can be thought of as serial
and parallel composition of maps between states.

To formally specify this representation, a mathematical
structure must be defined. In category theory, the mathemat-
ical structure used is called a category. To define a category,
C, it must have a set of objects {A,B,C, . . . } and a set of
morphisms {f, g, . . . } that map between objects. The map
for a given morphism can be written as f : A → B. The
source object is called the domain and the target object is
called the codomain (Spivak 2014). These objects and mor-
phisms satisfy the following (MacLane 1971):
• For every object, there exists an identity morphism.

∀A ∈ C, idA : A→ A (1)

• The composition operation, ◦, acts on morphisms. Mor-
phisms are composable when the codomain of a mor-
phism exactly equals the domain of another morphism.

f : A→ B, g : B → C

g ◦ f : A→ C (2)
• The composition of morphisms is associative.

f : A→ B, g : B → C, h : C → D

(h ◦ g) ◦ f = h ◦ (g ◦ f) (3)
• Identity morphisms act as a left and right unitor of com-

position.
idB ◦ f = f = f ◦ idA (4)

These properties enforce consistent behavior for when
more morphisms are composed together.

To model more complex maps, it is necessary that
the structure support multiple objects in the domain and
codomain. Additional mathematical structure (tensor prod-
uct⊗) can be added to the definition of a category to support
this. This enhanced category definition is known as a sym-
metric monoidal category (Joyal and Street 1991), M, and
has the following additional properties:



A

B

f

C

g

(a) Conventional syntax

A

C

f

g

B

(b) String diagram syntax

Figure 1: Two graphical representations for the composition
of morphisms f : A → B and g : B → C. In the case
of (b), the lines can be called strings and these strings sym-
bolize identity morphisms, i.e. idA. A common shorthand,
however, is to simply label the string according to the object
as shown in (b).

BX,Y

αY,X,Z

ρ

X Y Z I

Z
X

Y

Y X Z

(a) Explicit

αY,X,Z

X Y Z

Y X Z

(b) Shorthand

Figure 2: A string diagram representation of the symmet-
ric monoidal category properties shown in Equations 5-7. It
is typical convention in string diagrams to replace rectan-
gles symbolizing braids, such as BX,Y in (a), with crossing
strings as seen in (b); and a tensor product with identity ob-
jects as just the non-identity objects.

• A unit object, I ∈M
• A map, called the tensor product ⊗, which is the product

of M with itself, ⊗ : M×M→M.
• This tensor product is associative,

aX,Y,Z : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z) (5)

• has left and right unitor isomorphisms,

ρl : I ⊗X → X ρr : X ⊗ I → X (6)

• and has a braiding isomorphism that is symmetric (Joyal
and Street 1991)

BX,Y : X ⊗ Y → Y ⊗X (7)

These properties allow for both parallel and serial com-
position of processes. This also enables partial composition,
where only a subset of domain strings of a morphism match
the codomain strings of another morphism.

In addition to this structure, category theory provides a
graphical syntax for illustrating maps and their composi-
tions. Figure 1, shows the composition of g ◦ f : A → C
from Equation 2 in conventional syntax and a Poincare dual
syntax. The Poincare dual syntax shows the morphisms f
and g as rectangles and A,B,C objects as lines. Figure 1b
can be extended to support the symmetric monoidal category

A

C

f

B

D

g

=

A

C

f

B

D

g

Figure 3: An example of deformation invariance in string
diagrams. This feature allows the sliding of rectangles along
strings in a planar fashion in accordance with the composi-
tion operator.

structure as seen in Figure 2, where multiple lines can pass
through each rectangle. These diagrams are known as string
diagrams.

In this syntax, horizontally adjacent strings represent the
tensor product of those objects, i.e. X ⊗ Y , which is an-
other object in M. The identity morphism of that object, i.e.
idX⊗Y , can be used when composing, ◦, with other mor-
phisms. An expression that describes the composition, ◦, and
tensor product, ⊗, of morphisms is the linear notation that
encodes its graphical representation. For example, the linear
notation for Figure 2a can be seen in Equation 8.

(idX ⊗ idY ⊗ idZ ⊗ idI)◦
(BX,Y ⊗ ρ)◦

(idY ⊗ idX ⊗ idZ)◦
(αY,X,Z)◦

(idY ⊗ idX ⊗ idZ)

(8)

The morphisms and the order in which they are composed
can be seen clearly from this notation.

A noteworthy consequence of the tensor product and its
properties is the equivalence between strings diagrams un-
der planar deformation (Selinger 2010). For example, we
can consider the equivalence found in Equation 9 and its cor-
responding graphical syntax shown in Figure 3:

(idC ⊗ g) ◦ (f ⊗ idB) = (f ⊗ idD) ◦ (idA ⊗ g) (9)

This gives the appearance of sliding rectangles past each
other along strings which may be useful when seeking dif-
ferent sequences of compositions.

String Diagram Notation for PDDL
In this section, we describe how we have chosen to translate
key elements of PDDL domain, problem, and plan descrip-
tions to mathematical structures from category theory. We
assume that all morphisms and objects introduced belong to
the same category. Table 1 summarizes this correspondence.
Currently, this notation only supports the STRIPS require-
ment of PDDL 1.2 (Ghallab et al. 1998). Terms provided by
other extensions such as typing, equality, conditional-effects
are not handled.



Domain File
The domain file provides the domain and codomain signa-
tures for morphisms in our category. STRIPS-based domain
files consists of the domain name, predicates, and actions.

Actions Actions are operator data models that describe the
parameters, preconditions, and effects of the given action,
denoted by the :action token. Preconditions and effects
values are conjunctions (∧) of logical predicates. A con-
junction is distinguished by a pair of parentheses and the
term and. The term not can prefix a predicate. When stor-
ing this negation, the parser prefixes the predicate name with
the negation symbol, ¬. In the string diagram representation,
actions are identified as morphisms, where each predicate in
the precondition is a domain string and each predicate in the
effect is a codomain string.

Predicates Predicates are terms that serve as placehold-
ers for data with logical states. Predicates are referenced in
an action’s preconditions and effects. They typically refer to
aspects of the domain whose status will influence planning
decisions. Some example predicates from the Blocksworld
domain file include (on ?x ?y), (holding ?x), (handempty).
Predicates can be identified as strings when representing ac-
tions in the domain file as string diagrams. Provided a prob-
lem file and plan, parameters in the predicate signatures can
be replaced with PDDL objects.

Parameters Parameters for both the predicates and ac-
tions are prefixed with ?. When parameters are used in pred-
icate definitions, the characters following each ? is used to
distinguish that parameter from other parameters associated
with that predicate. For example, in the predicate (on ?x ?y),
the characters x and y are not required symbols when using
the predicate in the action conditions. In effect, these pa-
rameters are used solely to specify the arity of the predicate.
These parameters will be substituted with objects specified
by a PDDL plan. Parameters do not directly map to a struc-
ture in the string diagram representation.

Problem File
The problem file informs the initial and goal strings in the
string diagram. STRIPS-based problem files consist of the
problem name, domain name, objects, an initial state, and a
goal state.

Objects Objects are symbols that are used to populate pa-
rameters, denoted by the :objects token. Objects do not
directly map to a structure in the string diagram representa-
tion.

Literals When predicate parameters are populated, ac-
cording to a PDDL solver, they become literals, and are used
as data for preconditions and effects in actions. In a string
diagram representation, every uniquely parameterized pred-
icate is treated as a string. For example, if two predicates
(ontable A) and (ontable B) are constructed according to a

PDDL File Description Category Theory

Domain
Actions Morphisms

Predicates Objects

Parameters –

Problem

Objects –

Literals Objects

Initial State Morphism

Goal State Morphism

Table 1: Correspondence between category theory structures
and description components found in PDDL domain and
problem files

PDDL plan, they are unique strings. Notice that this also
implies that negated versions of literals are considered dis-
tinct from their positive selves. For example, (ontable A) and
(not (ontable A)) are distinct strings and their relationship by
logical negation is not encoded.

Initial State The initial state, denoted by the :init to-
ken in the problem file, is a conjunction of literal assump-
tions that are true at the beginning of the planning problem.
All literals in the initial state are represented by their own
strings. These strings are tensored, ⊗, together and serve as
the first morphism in the chain of compositions. In a later
step, additional literals may be tensored with the initial state.
This happens when an action in the plan makes an assump-
tion about the initial state that is not explicitly stated in the
problem definition.

Goal State The goal state, denoted by the :goal token,
is a list of literals that must be true at the end of the planning
problem. All literals in the goal state are represented by their
own strings. These strings are ⊗ together and serve as the
last morphism in the chain of compositions. In a later step,
additional literals may be tensored with the goal state if an
action in the plan has an effect that is not explicitly required
by the goal definition.

Plan
After the sequence of parameterized actions have been con-
verted into morphisms, we chain, or compose, these mor-
phisms to generate a fully connected diagram. A naive
chaining algorithm was implemented to infer valid tensor
products and compositions in scenarios where morphisms
can only partially compose. The primary goal of this al-
gorithm is to enforce the compatibility of domains and
codomains of preceding and subsequent morphisms during
composition.

In this algorithm, there exists a notion of horizontal slices
where each slice is a list of morphisms, including identities
and braids, that will be tensored together from left to right. It
is essential that the domain and codomain of the slices match
in order to permit a valid composition.



There are four main steps to the algorithm:

1. Backward pass to weave input strings of each morphism,
from goal state to initial state (bottom-up).

2. Forward pass to weave output strings of each morphism,
from initial state to goal state (top-down).

3. Add braids to add braids, or string swaps, in case the order
of the tensor product is not compatible for composition.

4. Compose to chain the blocks from top-down. This con-
structs the string diagram.

A byproduct of this chaining algorithm is the propagation
of literals upstream and downstream which exposes those
literals that are implicitly instantiated according to the plan.

Example
A program written in the Julia programming language1

was developed in order to automatically generate string
diagrams. This program parses the PDDL domain, prob-
lem, and solution files and encodes its elements into the
symmetric monoidal category constructs, which are JSON-
serializable. Catlab2, a Julia-based category theory library,
was leveraged for its constructors. Currently, this program
only supports PDDL files formatted using the STRIPS re-
quirements.

Blocksworld domain
The Blocksworld3 domain describes a scenario where there
are cube-shaped objects, called blocks, on a table, denoted
by the predicate (ontable ?x). The objective is to stack the
blocks according to the stacking configuration described by
the goal. Only one block can fit on top of another block, (on
?x ?y), which implies a block cannot be stacked on more
than one block simulataneously. If a block is not underneath
another block, it is considered clear, (clear ?x). A hand is
used to manipulate the configuration of the blocks, and can
be empty (handempty) or holding a block (holding ?x).

The domain consists of four actions: pick up, put down,
stack, unstack.
• pick-up: This action expects that a given block is clear,

on the table, and the hand is empty. This action changes
the state of the world such that the block is not on the
table, the block is not clear, the hand is not empty, and the
hand is holding the block.

• put-down: This action expects that the hand is holding
a block. This action changes the state of the world such
that the hand is not holding the block, the hand is empty,
the block is clear, and the block is on the table.

• stack: This action expects that the hand is holding a
block (?x) and that the other block (?y) is clear. This
action changes the state of the world such that the hand
is not holding the block (?x), the other block (?y) is not
clear, the hand is empty, and the block (?x) is on top of
the other block (?y).
1https://julialang.org/
2https://github.com/epatters/Catlab.jl
3https://github.com/pellierd/pddl4j/tree/master/pddl/blocksworld

• unstack: This action expects that the block (?x) is on
top of another block (?y), that the block (?x) is clear,
and the hand is empty. This action changes the state of the
world such that the hand is holding the block (?x), the
other block (?y) is clear, the block (?x) is not clear, the
hand is not empty, and the block (?x) is not on top of the
other block (?y).

The problem in this example initialized three blocks as ob-
jects, (a, b, c), and stated that all the blocks are clear and on
the table, and that the hand is empty. The goal was to have
block c on top of b, and block b on top of a.

(define (problem BLOCKS-3-0)
(:domain BLOCKS)
(:objects a b c)
(:init (clear c) (clear a)

(clear b) (ontable c)
(ontable a) (ontable b)
(handempty))

(:goal (AND (on c b) (on b a))))

The PDDL4J toolkit4 (Pellier and Fiorino 2018) was ex-
ecuted to determine the actions and parameters needed to
transition the world from the initial state to the goal state.
The planner output was parsed to extract the plan and ignore
other outputs, such as cost and runtime. The parsed plan for
this example can be seen below.

pick-up b
stack b a
pick-up c
stack c b

The individual steps in the plan can be understood as mor-
phisms, and likewise can be represented as individual string
diagrams. An example is shown in Figure 5. The diagram-
matic description clearly depicts how the parameters popu-
late the preconditions and effects to form literals; therefore,
intuitively conveying the requirements of each action in the
context of the problem. The fully-composed string diagram
containing all the steps of the Blocksworld plan can be seen
in Figure 7. The top of the diagram shows strings represent-
ing the literals of the initial state and assumptions about the
world that were introduced by the plan. The bottom of the
diagram shows strings representing the literals of the goal
state as well as the literals produced from the plan. The dia-
gram is read from top to bottom and the actions of the plan
appear as labeled rectangles. Table 2 shows a summary of
all the satisfied literals at every step in the plan. This infor-
mation can be derived from the linear notation that encodes
the graphical representation.

Discussion
In this paper, we presented a model-based representation
that describes a PDDL plan in the context of the domain
description. From the string diagram depiction of the plan,
we can clearly see what predicates were initialized, how they

4The default configurations of PDDL4J toolkit uses the heuris-
tic search planner (HSP) (Bonet and Geffner 2001) and the FF
heuristic (Hoffmann and Nebel 2001).



pick-up

clear b ontable b handempty

holding b ¬ ontable b ¬ clear b ¬ handempty

(a) First step

stack

holding b clear a

clear b handempty on b a ¬ holding b ¬ clear a

(b) Second step

pick-up

clear c ontable c handempty

holding c ¬ ontable c ¬ clear c ¬ handempty

(c) Third step

stack

holding c clear b

clear c handempty on c b ¬ holding c ¬ clear b

(d) Fourth step

Figure 4: These are the morphisms corresponding to steps proposed by a PDDL solver for the Blocksworld domain and problem
described in the Examples section. The diagrammatic description of the steps clearly depicts how the parameters populate the
pre- and post-conditions to form literals; therefore, intuitively conveying the requirements of each action in the context of the
problem.

State Satisfied Literals Action
Initial clear c, ontable c, clear b, ontable b, handempty, clear a, ontable a
Step 1 clear c, ontable c, clear b, ontable b, handempty, clear a, ontable a pick-up

Step 2 clear c, ontable c, holding b, clear a, ¬ontable b,¬clear b, ¬handempty, ontable a stack

Step 3 clear b, clear c, ontable c, handempty, on b a, ¬holding b, ¬clear a, ¬ontable b, ¬clear b, ¬handempty,
ontable a pick-up

Step 4 holding c, clear b, ¬ontable c, ¬clear c, ¬handempty, on b a, ¬holding b, ¬clear a, ¬ontable b,
¬clear b, ¬handempty, ontable a stack

Goal clear c, handempty, on c b, ¬holding c, ¬clear b, ¬ontable c¬clear c, ¬handempty, on b a, ¬holding b,
¬clear a, ¬ontable b, ¬clear b, ¬handempty, ontable a

Table 2: The satisfied literals at every step of the plan can be concluded from the linear notation that encodes the string diagram
representation shown in Figure 7. You can check this by reading the diagram from left to right at varying horizontal positions
and noting the strings you encounter. The explicitly required literals are highlighted in bold text. The effects for each action
are included as Satisfied Literals in the next row.

pick-up

clear b ontable b handempty

holding b ¬ ontable b ¬ clear b ¬ handempty

Figure 5: This an example morphism corresponding to the
first action chosen by a PDDL solver for the Blocksworld
domain. The linear notation for this action is pick up :
(id(clear b) ⊗ id(ontable b) ⊗ id(handempty)) → (id(holding b) ⊗
id¬(ontable b) ⊗ id¬(clear b) ⊗ id¬(handempty)).

were used, and what predicates are present at any given point
in the plan. Some notable observations that explicitly answer
the question of ”Why is this action in the plan?” or provide
feedback to the domain designer are listed here:

• Following Figure 7 from top to bottom, we can observe
that the first stack relies on (holding b) which is an effect
from pick-up. This implies that stack depends on pick-up
in order to execute.

• Additionally, we can observe when each literal in the ini-
tial state is used to inform the action. For example, the

(ontable boxB) ¬(ontable boxA) (ontable boxA)

Figure 6: Strings for literals from the Blocksworld domain.
The linear notation for the tensor product of these strings is
id(ontable boxB) ⊗ id¬(ontable boxA) ⊗ id(ontable boxA).

(clear c) and (ontable c) literals do not get referenced un-
til the second pick-up action is called.

• From the Initial row of Table 2, we can see that no new
literals were introduced as implicit assumptions accord-
ing to the given plan. This is evidenced by the lack of
unbolded literals.

• Additionally, we notice the initialized literal (ontable a)
was never used as a precondition to the actions of the
plan. This may prompt the user to consider whether that
particular assumption was necessary or whether this was
expected behavior.
This representation shows the implicit changes occurring

in the world that are not clearly evidenced by the simple line-
by-line description of the plan. This also exposes the unan-
ticipated literals that could result in errors when operating
under the closed world assumption.



pick-up

clear c ontable c

pick-up

clear b ontable b handempty

stack

clear a

ontable a

¬ ontable b ¬ clear b ¬ handempty

holding b

on b a ¬ holding b ¬ clear a

handempty

stack

clear b

¬ ontable c ¬ clear c ¬ handempty

holding c

clear c handempty on c b ¬ holding c ¬ clear b

Figure 7: String diagram for the Blocksworld domain and problem. The diagram is read top-down. The curved lines in the
illustration, i.e. strings, represent literals that are initialized or constructed according to the PDDL plan. The rectangles represent
the actions from the domain that are referenced in the plan. The order in which the actions appear in the plan can be seen by
following the strings from the top to the bottom and noting the order of the rectangles you encounter along the way. The entire
diagram represents a map from initial state to goal state.

Limitations
The current encoding scheme presents some limitations.
As aforementioned, the PDDL extensions supported are re-
stricted. We currently do not have a way to visualize no-
tation such as quantifiers, equalities, and other extensions.
We are also unable to encode relationships between positive
and negated version of the same literal, which are currently
treated as independent information under the closed world
assumption. Lastly, the visualization does not scale effec-
tively to long plans with many actions. To handle this, it may
be possible to design a heuristic to detect repeated patterns
in actions so that the plan can be grouped into subtasks.

Benefits of category theory structure
Recall that this representation hinges on structures defined in
category theory, such as morphisms and objects. Morphisms
are made by the actions described in PDDL domain files.
These morphisms can be seen as unit string diagrams that
can be composed, as shown in Figure 5. This representa-
tion also provides the user with additional context for the
actions, such as how the parameters populate the precondi-
tions and effects. For example, in Figure 5, the step pick-up
b is clearly depicted as having (clear b), (ontable b), (han-
dempty) as pre-conditions and (holding b), (not (ontable b)),
(not (clear b)), (not (handempty)) as effects, which is not
easily inferred by the text description of the plan.

We also introduced that fact that these morphisms can be
vertically, ◦, and horizontally, ⊗, composed together. The
linear expression translates to the layout of the rectangles
and strings in the string diagrams. Evidently, the layout is
particularly useful for conveying a sense of order and time
in the plan. Another key aspect of this is that the string
diagram representation is deformation invariant (Selinger
2010), which means that sliding rectangles along strings is
similar to rearranging terms of an algebraic equation. This
implies that alternate but valid plans can be observed by re-
ordering actions, i.e. rectangles. Notably, this structure is not
limited to PDDL, but can be applied to any declarative do-
main language adhering to a functional paradigm.

Future Work
The graphical representation and formal linear notation pro-
vide opportunities for explanatory insights and intuitive vi-
sualizations of PDDL plans. For visualization, it is easy to
imagine interactions such as highlighting the strings of a par-
ticular literal in order to witness its path through the plan,
or sliding rectangles along strings to view alternative plans.
In addition, it may be interesting to scale the length of the
strings or the height of the rectangles according to some
solver metadata, such as cost, or a real-world parameter,
such as time to execute. This notation has the potential of be-
ing incorporated in Web Planner (Magnaguagno et al. 2020)
or PDDL Editor (Muise 2016) alongside Dovetail (Mag-
naguagno, Pereira, and Meneguzzi 2016) to provide another
perspective to the PDDL plan.

Conclusion
This representation has the primary benefit of providing a
causal explanation of a PDDL plan with rigorous mathe-
matical structure within the context of the domain and the
problem. In particular, the diagrammatic syntax identifies
rectangles as actions and curvy lines, or strings, as literals.
The placement of the rectangles and strings relay a tempo-
ral progression, read from top to bottom, which allows user
to sense the use of literals as the plan progresses. This can
lead to insights about action dependencies and domain de-
sign improvements. Extensions of this work include adding
interactivity to the graphical representation and manipulat-
ing layout and shapes in the diagram according solver meta-
data.

References
Bonet, B.; and Geffner, H. 2001. Heuristic Search Planner
2.0. AI Magazine 22(3): 77. doi:10.1609/aimag.v22i3.1576.
URL https://ojs.aaai.org/index.php/aimagazine/article/view/
1576.

Breiner, S.; Jones, A.; and Subrahmanian, E. 2019. Cate-



gorical models for process planning. Computers in industry
112.

Chakraborti, T.; Sreedharan, S.; and Kambhampati, S. 2020.
The Emerging Landscape of Explainable Automated Plan-
ning Decision Making. In Proceedings of the Twenty-
Ninth International Joint Conference on Artificial Intelli-
gence, IJCAI-20. International Joint Conferences on Artifi-
cial Intelligence Organization.

Coecke, B.; Sadrzadeh, M.; and Clark, S. 2010. Mathemat-
ical Foundations for a Compositional Distributional Model
of Meaning. Lambek Festschrift Linguistic Analysis 36.

Eilenberg, S.; and MacLane, S. 1945. General theory of nat-
ural equivalences. Transactions of the American Mathemat-
ical Society 58: 231–294.

Fikes, R.; and Nilsson, N. 1971. STRIPS: A New Approach
to the Application of Theorem Proving to Problem Solving.
In IJCAI.

Fox, M.; Long, D.; and Magazzeni, D. 2017. Explainable
Planning .

Geffner, H.; and Bonet, B. 2013. A Concise Introduction
to Models and Methods for Automated Planning: Synthe-
sis Lectures on Artificial Intelligence and Machine Learn-
ing. Morgan & Claypool Publishers, 1st edition. ISBN
1608459691.

Ghallab, M.; Knoblock, C.; Wilkins, D.; Barrett, A.; Chris-
tianson, D.; Friedman, M.; Kwok, C.; Golden, K.; Pen-
berthy, S.; Smith, D.; Sun, Y.; and Weld, D. 1998. PDDL
- The Planning Domain Definition Language.

Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
planning. Theory & practice. ISBN 978-1-55860-856-6.

Glinský, R. 2011. Visualization and Verification of Plans.
Master’s thesis, Charles University in Prague.

Gunning, D. 2017. DARPA’s explainable artificial intelli-
gence (XAI) program. ii–ii. ISBN 978-1-4503-6272-6. doi:
10.1145/3301275.3308446.

Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. J. Artif. In-
tell. Res. 14: 253–302.

Joyal, A.; and Street, R. 1991. The geometry of ten-
sor calculus, I. Advances in Mathematics 88(1): 55 –
112. ISSN 0001-8708. doi:https://doi.org/10.1016/0001-
8708(91)90003-P. URL http://www.sciencedirect.com/
science/article/pii/000187089190003P.

MacLane, S. 1971. Categories for the Working Mathemati-
cian. Springer Science & Business Media.

Magnaguagno, M.; Pereira, R.; Móre, M.; and Meneguzzi,
F. 2020. Web Planner: A Tool to Develop, Visualize, and
Test Classical Planning Domains, 209–227. ISBN 978-3-
030-38560-6. doi:10.1007/978-3-030-38561-3 11.

Magnaguagno, M. C.; Pereira, R.; and Meneguzzi, F. 2016.
DOVETAIL - An Abstraction for Classical Planning Using
a Visual Metaphor. In FLAIRS Conference.

Muise, C. 2016. Planning.Domains. In The 26th Interna-
tional Conference on Automated Planning and Scheduling -
Demonstrations. URL http://www.haz.ca/papers/planning-
domains-icaps16.pdf.
Pellier, D.; and Fiorino, H. 2018. PDDL4J: a planning do-
main description library for java. Journal of Experimental
& Theoretical Artificial Intelligence 30(1): 143–176. doi:
10.1080/0952813X.2017.1409278. URL https://doi.org/10.
1080/0952813X.2017.1409278.
Selinger, P. 2010. A Survey of Graphical Languages for
Monoidal Categories. arXiv: Category Theory 289–355.
Shinavier, J.; and Wisnesky, R. 2019. Algebraic Property
Graphs. ArXiv abs/1909.04881.
Simpson, R.; Kitchin, D.; and McCluskey, T. 2007. Planning
domain definition using GIPO. Knowl. Eng. Rev. 22: 117–
134.
Spivak, D. I. 2014. Category Theory for the Sciences. The
MIT Press.
Spivak, D. I.; Giesa, T.; Wood, E.; and Buehler, M. J.
2011. Category Theoretic Analysis of Hierarchical Protein
Materials and Social Networks. PLOS ONE 6(9): 1–15.
doi:10.1371/journal.pone.0023911. URL https://doi.org/10.
1371/journal.pone.0023911.


