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ABSTRACT

We study the online contextual inventory control problem with perishable goods.
In this work, we propose and consider a more realistic—and more challenging—
setting where both the expected demand and the (residual) noise distribution
depend on the observable features. Surprisingly, little is known when the noise is
context-dependent, which captures the heteroskedastic uncertainty in demand that
is important in inventory control. The optimal inventory quantity in this general
setting is no longer a linear function of features (unlike the case when the expected
demand is linear and the noise is i.i.d.), making online gradient descent—the gold
standard therein—inapplicable. We first propose an algorithm that achieves the
near-optimal regret Õ(

√
dT + T

p+1
p+2 ) under linear expected demand and context-

aware noise. Here d is the feature dimension, and p ≤ d is an underlying dimension
that captures the intrinsic complexity of the noise distribution. When the expected
demand is nonlinear, we propose to use neural networks to capture the nonlinearity,
and prove a regret bound Õ(

√
αT + T

p+1
p+2 ) under over-parameterized networks,

where α depends on the nonlinear demand complexity and the network architecture.
Additionally, under mild regularity conditions on the noise, the exponential factor
T

p+1
p+2 in these regret bounds is improved to p

√
T . Finally, we provide a matching

minimax lower bound Ω(
√
dT + T

p+1
p+2 ) under linear expected demand. To our

best knowledge, our results provide the first minimax optimal characterization
for online inventory control with context-dependent noise and the first theoretical
guarantees when the expected demand is nonlinear in features.

1 INTRODUCTION

Inventory control under uncertain demand is a central problem in operations management. In many
real-world systems, a decision-maker (DM) must repeatedly choose inventory levels over a time
horizon, facing random demand and incurring overstocking or understocking costs (Zipkin, 2000). A
widely used modeling approach assumes that the demand at time t takes the form Dt = θ⊤

∗ xt + ϵt,
where θ∗ ∈ Rd is an unknown parameter, xt ∈ Rd the observable context variables, and ϵt an i.i.d.
random noise independent of context (Ban & Rudin, 2019; Ding et al., 2024; Huang et al., 2025).

However, despite its statistical simplicity and interpretability, this linear model can fail in practice. In
many applications, the variability of demand depends strongly on the contextual information. For
example, in e-commerce platforms, demand uncertainty can vary with user types, geographic regions,
or temporal factors such as holidays or promotions. Such heteroskedasticity is well-documented in
the empirical inventory literature (Zhang, 2007; Kanet et al., 2010; Katanyukul et al., 2011), yet this
cannot be captured by the standard homoskedastic model.

To gain more insights on when the heteroskedasticity will occur, consider a natural e-commerce
setting where customer-level purchase decisions are modeled as independent Bernoulli events: at
time t, the demand arises from n independent customers, each purchasing with probability p(xt)
depending on the context xt. Then the aggregate demand Dt follows a Binomial distribution with
mean np(xt) and variance np(xt)(1− p(xt)), both of which are context-dependent. For instance, if
we consider the sales of umbrellas, when there is zero precipitation, p(xt) is close to 0 and the demand
is almost deterministic. When the precipitation level is intermediate, p(xt) can be at a constant
level, leading to an O(n) variance. Nonetheless, this simple example is not captured by the standard
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demand model even if np(xt) is linear in xt, and failing to properly capture the heteroskedasticity
can lead to significant additional loss, as highlighted by the empirical studies above.

In this paper, we study online inventory control with a context-aware demand distribution, in a general
semi-parametric framework. We crucially allow the noise distribution to vary with context through
a potentially lower-dimensional feature zt ∈ Rp. Here zt may be either a transformation of xt,
a subset of it, or simply xt itself; and p ≤ d reflects the intrinsic complexity of the distributional
dependence of noise on the context. Note p = 1 in the Binomial model above. Our contributions are
threefold:

• We formalize the setting of online contextual inventory control with context-aware demand
distributions, and characterize a minimax regret lower bound Ω(

√
dT + T

p+1
p+2 ) for the linear

demand model.
• We propose an algorithm that achieves the near-optimal regret Õ(

√
dT + T

p+1
p+2 ) for the linear

model and Õ(
√
αT + T

p+1
p+2 ) for general nonlinear demand model that the literature has not

addressed. α characterizes the complexity of the nonlinear model.
• Under mild regularity conditions on noise, the regret guarantee is improved to Õ(

√
dT + p

√
T )

and Õ(
√
αT + p

√
T ) respectively.

1.1 LITERATURE REVIEW

When the demand distribution is known, the classic newsvendor model provides a closed-form
solution for the optimal order quantity (Zipkin, 2000). However, this assumption is rarely satisfied in
practice, and the DM must learn the demand structure on the fly. This has led to a surge of interest
in the online learning-while-optimizing paradigm in inventory control (Huh & Rusmevichientong,
2009; Chen & Chao, 2020; Zhang et al., 2020; Davoodi et al., 2022). Many of these works build on
Online Stochastic Gradient Descent (OSGD), exploiting the convexity of the expected loss function
in the inventory level.

These studies, however, often ignore demand-side covariates. More recently, contextual inventory
control has received increasing attention, where the demand depends on observable features such
as weather, product metadata, or customer information; see Ban & Rudin (2019); Xu et al. (2023);
Zhao et al. (2024); Zhang et al. (2024); Qi et al. (2024); Bertsimas & Kallus (2020); Fu et al. (2024).
Most of these works focus on offline learning or distributionally robust optimization, and do not
address the online decision-making setting. To the best of our knowledge, the only work that directly
addresses the online contextual inventory control problem is Ding et al. (2024), which studies the
linear demand model with context-independent noises. Their results crucially rely on that the optimal
context-dependent solution is linear in the context under i.i.d. noise, allowing them to compute
the loss gradient and apply OSGD. In contrast, we study a more general setting where the noise
distribution may depend on the context, rendering gradient-based methods unreliable.

To tackle this problem, we take an estimation-to-decision perspective and draw inspiration from the
linear bandit literature. Linear bandits address the setting where the DM repeatedly chooses from K
actions, each assigned with an action-specific context at every time t, and collects rewards linear in
the chosen action’s context (Li et al., 2010; Zhou et al., 2020). While not directly applicable, this
line of research provides rich algorithmic ideas for estimating underlying linear structures under
complicated dependencies in online learning. These ideas shed light to various other fields of
contextual operations management, including dynamic pricing (Cohen et al., 2020; Tullii et al., 2024)
and online advertising (Badanidiyuru et al., 2023; Wen et al., 2025). Our work leverages some of
these insights and contributes to this broad class of literature.

Notations Denote (x)+ := max{x, 0} for x ∈ R and [N ] = {1, 2, . . . , N} for N ∈ N. Let
∥x∥A :=

√
x⊤Ax for positive semi-definite matrix A. For a cumulative distribution function

(CDF) Q, we use Q−1 to denote the corresponding quantile function. We use the filtration Ft to
denote the available information up to the beginning of time t, and write Et[X] = E[X|Ft] for any
Ft-measurable random variable X . We use the standard notations O,Ω,Θ to denote the asymptotic
behaviors. In addition, we use Õ(·) to hide logarithmic factors and the dependence on parameters
other than d, T , and p (i.e., it hides the parameters b, h,M,L).
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2 PROBLEM SETUP

We consider the online inventory control problem with contextual information. Over a time horizon
t ∈ [T ], the DM observes a context vector xt ∈ Rd and chooses an inventory level ct ∈ [0,M ],
where M ≥ 0 is a known upper bound for the demand. Then a random demand Dt ∈ [0,M ] is
realized, and the DM incurs a loss (conditioned on the observed context xt) defined as follows:

ℓt(ct) = hE
[
(ct −Dt)

+ ∣∣xt

]
+ bE

[
(Dt − ct)

+ ∣∣xt

]
,

where the first part corresponds to overstocking with a holding cost of h per unit, and the second
part corresponds to understocking with a lost-sale opportunity cost of b per unit. At the end of each
period t, the DM observes demand realization Dt, and any amount of overstocking perishes. The
DM’s objective is to minimize the cumulative loss over T periods.

In terms of modeling, we assume that the demand satisfies Dt = f∗(xt)+ϵt, where f∗ : Rd → [0,M ]
is an unknown model characterizing the demand mean, and ϵt is a mean-zero noise. We will cover
both linear and nonlinear f∗ in Section 3.1. Importantly, we allow the distribution of ϵt to be time-
varying: let Qt(·) ≡ Q(·; zt) denote the conditional CDF of ϵt given relevant features zt ∈ Rp,
and the DM only observes ẑt ∈ Rp which may be different from zt. One can consider zt as a
transformation or subset of the context xt. For clarity, throughout this work, we refer to xt as context
and zt as feature. This model is flexible and thereby powerful in the following sense:

Encoding prior The dependence of Q on zt is unrestricted, so the DM has full flexibility in choosing
which features to include in zt and in what form. For instance, if Q depends only on a single temporal
variable within the context xt and the DM knows this, then setting zt to be this temporal factor
with p = 1 suffices. Otherwise, the DM may include a larger subset of xt to capture the potential
dependence, which increases the feature dimension p. In this way, the DM’s prior belief about the
structure of Q is encoded directly through the construction of zt and is reflected in the dimension p.

Learning features We allow the observed features ẑt of the DM to deviate from the true zt, which
models the scenario when the DM adopts features that are themselves learned online. Examples
include (1) the estimated demand mean and/or (2) predictions generated by black-box oracles such as
language models that get updated when new data becomes available.

Throughout this work, we make the following assumption on the CDF:1

Assumption 1 (Lipschitz CDF). The noise CDF Q(u; z) is L-Lipschitz in both u and z.

We also make the following assumption on the contexts xt. In particular, we do not require the lower
bound assumption on the covariance matrix of Fx, i.e. Ex∼Fx [xx

⊤] ⪰ λI for some constant λ > 0,
which is common in the literature of online learning with contexts (Ding et al., 2024; Fan et al., 2024;
Badanidiyuru et al., 2023). This would require the contexts to be distributed “uniformly” over all
directions and can be restrictive.

Additionally, we save the common but strong assumption fz(zt) ≥ c > 0 for constant c in the
non-parametric literature. We bypass both of them by showing convergence only along the directions
of the realized contexts and features. More details are deferred until Lemma 3.3.
Assumption 2 (Stochastic contexts). The contexts xt ∈ X are generated i.i.d. from an underlying
distribution with density fx. For simplicity, we assume X lies in the unit ball, i.e. ∥xt∥2 ≤ 1.
Assumption 3 (Stochastic features). The features zt ∈ Z are i.i.d. with density fz , which is
Lz-Lipschitz and upper bounded by fz . Also, ∥zt∥2 ≤ 1 lies in the unit ball.

Under the above model, the expected loss at period t admits the following form.

ℓt(c) = h

∫ c

0

Q(y − f∗(xt); zt)dy + b

∫ M

c

1−Q(y − f∗(xt); zt)dy. (1)

To formalize the learning objective, we compete against the optimal time-varying oracle that has full
knowledge of f∗, Q, and {zt}t. The dynamic regret is defined as

Reg(π) := E

[
T∑

t=1

ℓt(ct)− ℓt(c
∗
t )

]
,

1Note that it is equivalent to assume a Lipschitz demand CDF and to assume a Lipschitz noise CDF.
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where ct is the inventory decision made by the DM’s policy π, and c∗t := argminc∈[0,M ] ℓt(c) is the
optimal decision.

3 AN ALGORITHM WITH MATCHING UPPER BOUND

In this section, we introduce and analyze our algorithm for contextual inventory control. Our algorithm
builds on two components: (1) an oracle that generates an estimated demand mean conditioned on
the context xt based on historical observations, and (2) a CDF estimator that runs Kernel regression
on the noise realizations, but with both measurement and observation errors. The measurement errors
arise from the fact that we do not directly observe the target quantity—the noise ϵt—and can only
approximate it with the estimated demand mean. The observation errors refer to the deviation of the
DM’s features {ẑt}t from the actual {zt}t, which are taken as input of the noise CDF Q.

The algorithm is relatively simple to implement once given the aforementioned oracle. Behind its
nice and simple form, however, the core challenge lies in deriving theoretical guarantees under the
presence of such measurement errors and the absence of strong assumptions commonly seen in the
non-parametric regression literature, e.g. (Fan et al., 2024, Assumption 4.2) that requires a constant
lower bound of the feature density fz .

3.1 DEMAND MEAN ESTIMATION ORACLE

For notational convenience, we formulate the estimation oracle for the demand mean Et[Dt] as
follows. This estimation oracle serves as a black-box in Algorithm 2. In the remaining section, we
give two examples and show how to derive the corresponding oracle.

Assumption 4 (Mean Estimation Oracle). At each time t, the oracle takes in historical observations
{(xτ , Dτ )}τ<t and context xt and outputs an estimated mean D̂t such that: with probability at least
1− T−2,

|D̂t − Et[Dt]| ≤ ξt for some ξt ≥ 0.

Remark 1. Before proceeding, we remark that our algorithm requires no knowledge of the error
bound ξt. It is only used in a "plug-in" manner in the regret analysis.

3.1.1 LINEAR DEMAND

First, consider the linear demand model Dt = θ⊤
∗ xt + ϵt with ∥θ∗∥2 ≤ 1. Albeit appearing simple,

linear models have drawn wide attention and efforts in online learning literature, such as contextual
bandits (Abbasi-Yadkori et al., 2011; Chu et al., 2011), ridge bandits (Rajaraman et al., 2024), and
online advertising (Badanidiyuru et al., 2023; Wen et al., 2025). The recent work (Ding et al., 2024)
in inventory control also focused on this linear demand model.

An oracle is given by a Ridge regression on the data {(xτ , Dτ )}τ<t. The closed-form solution is

θ̂t = A−1
t bt (2)

where At = I +
∑

τ<t xτx
⊤
τ ∈ Rd×d and bt =

∑
τ<t Dτxτ ∈ Rd. Thanks to existing results

in linear contextual bandits, the estimation error conditioned on the new context xt is bounded as
follows:

Lemma 3.1. Let β =
√
log(2T ) + 1. With probability at least 1− T−2, it holds that

|θ̂⊤
t xt − θ⊤

∗ xt| ≤ β∥xt∥A−1
t
.

Moreover, for any t′ ∈ [T ], it holds that
∑t′

t=1 ∥xt∥2A−1
t

≤ 2d log(t′).

The error bound β∥xt∥A−1
t

at time t depends on how well θ̂t learns along the direction of xt,
captured by the interaction between xt and At. While it is not monotone, fortunately, the sum of
these errors can be bounded by an elliptical potential lemma; see e.g. Abbasi-Yadkori et al. (2011);
Chu et al. (2011). We give more details in Appendix B for completeness.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1: Training Routine for Neural Network
1 Input: Epochs J , data {(xτ , Dτ )}τ<t, regularization λ > 0, step size η > 0.
2 Initialize: Set initial parameter θ̂(0)

t according to Appendix C.
3 Define loss L(θ) := 1

2

∑
τ<t(Dτ − f(xτ ;θ))

2
+ λw

2 ∥θ∥2.
4 for j = 1, 2, . . . , J do
5 Update θ̂

(j)
t ← θ̂

(j−1)
t − η∇L(θ̂(j−1)

t ).
6 Return θ̂t ← θ̂

(J)
t .

3.1.2 NONLINEAR DEMAND VIA NEURAL NETWORKS

Now we address a more general demand Dt = f∗(xt) + ϵt where f∗ : Rd → R is an arbitrary
nonlinear function. To the best of our knowledge, such a general nonlinear formulation has not
been explored in the online inventory literature. This section proposes to learn f∗ through an over-
parametrized neural network and takes inspiration from NeuralUCB (Zhou et al., 2020) to develop
an error bound. Specifically, a network with width w > 0 and depth K > 0 is defined as2

f(x;θ) =
√
wWKσ(WK−1σ(· · ·σ(W1x) · · ·)) (3)

where σ denotes the element-wise ReLU function, weight matrices W1 ∈ Rw×d, WK ∈ R1×w, and
Wk ∈ Rw×w for k = 2, . . . ,K − 1.

Due to space limit, we defer the details of the neural analysis to Appendix C. At a high level, the
following high-probability error bound relies on the idea of Neural Tangent Kernel (NTK) that when
w is sufficiently large, i.e. when the network is over-parametrized, it becomes approximately linear
in the parameter space (Jacot et al., 2018). While it remains a central challenge to derive analogous
results for smaller networks in current deep learning theory, we will empirically validate in Section 5
that small networks are typically sufficient for capturing demand mean and yielding a vanishing
regret in practice.

Lemma 3.2 (Informal). Let θ̂t be trained using Algorithm 1 at time t. When we use sufficiently
large epochs J = Ω̃(TK/λ), width w = Ω̃(poly(T,K, λ−1)), and small step size η = Õ((wTK +
wλ)−1), with probability at least 1− T−2, we have

|f(xt; θ̂t)− f∗(xt)| ≤ ξt

for some ξt ≥ 0 that satisfies: For any t′ ∈ [T ], it holds that
∑t′

t=1 ξ
2
t = Õ(d̃ log(t′)) where the

factor d̃ depends on a function norm of the ground truth f∗ and the effective dimension of the NTK
matrix of f(·;θ); see Appendix C.3 for details.

3.2 ALGORITHM

Before going into the details of the more involved non-parametric estimation, we present our algorithm
to give the readers an idea of how the mean estimation oracles are used and how their error complicates
the non-parametric regression. At each time t, Algorithm 2 computes an estimated demand mean
using a given oracle that satisfies Assumption 4 and an estimated noise CDF Q̃t that will be discussed
in the next section. Then the algorithm computes a surrogate loss

ℓ̂t(c) = h

∫ c

0

Q̃t(y − D̂t)dy + b

∫ M

c

[
1− Q̃t(y − D̂t)

]
dy (4)

and simply orders the inventory level up to the maximizer with respect to ℓ̂t.

Nonetheless, classical non-parametric regression builds on the precise observations of the covariates
{zτ}τ<t and the variable realizations {ϵτ}τ<t, none of which is available in our case. This introduces
the core challenge in the next section.

2Note that if the input x is concatenated with a constant entry 1, this formulation subsumes the neural
networks with biases, so their representation power remains the same when trained near-optimally.
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Algorithm 2: Contextual online inventory control
1 Input: Time horizon T , choice space C = [0,M ], unit costs b, h > 0, Lipschitz constant L > 0,

a mean estimation oracle O.
2 for t = 1, 2, . . . , T do
3 Observe the context vector xt ∈ Rd and the transformed features ẑt ∈ Rp.
4 Generate estimated demand mean D̂t ← O({(xτ , Dτ )}τ<t;xt).
5 Estimate Q̃t from {(ϵ̂τ , ẑτ )}τ<t and ẑt via the NW estimator in equation 6.
6 for inventory choice c ∈ C do
7 Compute the loss estimator ℓ̂t(c) as in equation 4.
8 Order the inventory quantity ct ← argmaxc∈C ℓ̂t(c).
9 Observe the realized demand Dt.

10 Compute the estimated noise term ϵ̂t ← Dt − D̂t.

3.3 NON-PARAMETRIC REGRESSION WITH ERRORS

For the purpose of demonstration, imagine that the DM has access to the precise features {zτ}τ≤t

at each time t. For each u ∈ C and zt ∈ Z , consider the Nadaraya-Watson (NW) kernel regression
method:

Q̂t(u) ≡ Q̂(u; zt) :=

t−1∑
τ=1

K
(

zτ−zt

at

)
1[ϵ̂τ ≤ u]∑

τ<t K
(

zτ−zt

at

) (5)

where K is a smoothing kernel (e.g. Gaussian kernel) and at > 0 the bandwidth parameter. As
previously discussed, we still face the following technical difficulties: (1) only an approximation ϵ̂τ
is available for the target quantity ϵτ , and (2) without imposing a constant lower bound on fz , it is
impossible to guarantee a uniform convergence for every new zt.

Let fat
(z) = 1

t−1

∑
τ∈[t−1] Kat

(zτ − z) be the kernel-smoothed estimator for fz(z) with the
rescaled kernel Kat

. The following result provides a point-wise error bound that depends on the
performance of the mean estimation oracle, i.e., on its estimation error appearing in |ϵ̂τ − ϵτ |. The
proof is deferred to Appendix D.1.
Lemma 3.3. Suppose Assumptions 1–3 hold, t > 1, and |ϵ̂τ − ϵτ | ≤ ξτ for every τ ∈ [t− 1]. Then
with probability at least 1− T−2,∣∣∣Q̂(u; z)−Q(u; z)

∣∣∣ ≤ C0

√
log(T )

fat
(z)

(
L
ξt
t
+ t−

1
p+2

)
for every u ∈ C and z ∈ Z , with the constant C0 depends on K and fz . Here the bandwidth is set to
at = t−

1
p+2 p

2
p+2 and ξt :=

∑
τ<t ξτ .

To avoid the strong and often unrealistic assumptions on the density fz commonly imposed in
the literature, it is essential to develop bounds that adapt to how well the distribution has been
learned around zt at time t. This adaptation is reflected in Lemma 3.3, where the term fat(z)
serves to approximate fz(z). When the upcoming feature zt lies in a low-probability region, the
approximation fat(zt) may deviate significantly from fz(zt), potentially yielding loose or even
vacuous error bounds. When fz(zt) is large, the bound remains uniform in t. The key insight is that
problematic bounds can only occur with small probability at each round, so the cumulative regret is
ultimately governed by the learning performance in the high-probability regions.

Now we revisit the setting where the DM only observes approximate features {ẑτ}τ≤t. Denote
∥ẑτ − zτ∥2 ≤ δτ for some error bound δτ that is Fτ -measurable. Consider the following surrogate
of equation 5:

Q̃t(u) ≡ Q̃(u; ẑt) :=

t−1∑
τ=1

K
(

ẑτ−ẑt

at

)
1[ϵ̂τ ≤ u]∑

τ<t K
(

ẑτ−ẑt

at

) (6)

To understand the performance of this estimator, we build on Lemma 3.3 and bound the error
introduced by the observation errors δτ . The proof can be found in Appendix D.3.
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Lemma 3.4. Suppose Assumptions 1–3 hold, t > 1, |ϵ̂τ − ϵτ | ≤ ξτ , and ∥ẑτ − zτ∥2 ≤ δτ for every
τ ∈ [t− 1]. Then with probability at least 1− 4T−2,∣∣∣Q̃(u; ẑ)− Q̂t(u; z)

∣∣∣ ≤ C1

√
log(T )

fat(z)

(
1

t− 1

∑
τ<t

(1 + ξτ )(δτ + δt) + t−
1

p+2

)
for every u ∈ C, z ∈ Z , and ∥ẑ − z∥2 ≤ δt. The constant C1 > 0 depends on the kernel K, L, Lz ,
and fz . Here the bandwidth is set to at = t−

1
p+2 p

2
p+2 .

3.4 REGRET UPPER BOUND ANALYSIS

The following theorem establishes the regret upper bound of Algorithm 2. For the sole purpose
of readability, we impose an extra assumption on the convergence rate of the mean oracle and the
observation errors ∥ẑτ − zτ∥2. Note this assumption is satisfied by both examples in Section 3.1: (1)
in the linear model, α = Õ(d); (2) in the nonlinear model α = Õ(d̃) that depends on the truth f∗ and
the NTK matrix. Our results can be easily extended to general {ξt} and {ẑt}.

Theorem 1. Suppose the DM has an oracle satisfying Assumption 4 such that
∑t

τ=1 ξ
2
τ ≤ α log(t)

for every t ∈ [T ] for some α = o(t). Also suppose
∑t

τ=1 ∥ẑτ − zτ∥22 ≤ α log(t) for every t ∈ [T ].
Under Assumptions 1–3 and setting bandwidth at = t−

1
p+2 p

2
p+2 , we have

Reg(Alg 2) = O
(
(b+ h)M(L+ 1) log(T )

(√
αT + T

p+1
p+2

))
= Õ

(√
αT + T

p+1
p+2

)
.

The rest of this section is devoted to the proof of Theorem 1. Without loss of generality (WLOG), we
assume the high-probability events in Assumption 4 (e.g., by Lemma 3.1 or 3.2), in Lemma 3.3, and
in Lemma 3.4 hold. By Cauchy-Schwartz inequality,

∑t
τ=1 ξτ ≤

√
αt log(t). Then at each time t,

by Lemma 3.3 and 3.4 and our assumptions, it holds that∣∣∣ℓ̂t(c)− ℓt(c)
∣∣∣ ≤ (b+ h)M

(
Lξt + 2max

u∈C

∣∣∣Q̃t(u)−Qt(u)
∣∣∣)

= O

(
(b+ h)ML

(
ξt +

√
log(T )

fat
(zt)

(
t−

1
p+2 +

√
α

t
+ ∥ẑt − zt∥2

)))
=: ωt

where we introduce the notation ωt to compactly write the error bound for the loss estimator.
Consequently, the instantaneous regret of selecting the greedy maximizer at time t is bounded by

max
c∈C

ℓt(c) = ℓt(c
∗
t ) ≤ ℓ̂t(c

∗
t ) + ωt ≤ max

c∈C
ℓ̂t(c) + ωt ≤ ℓt(ct) + 2ωt.

The regret is then bounded as the sum of the instantaneous errors

Reg(Alg 2) = E

[
T∑

t=1

ℓt(ct)− ℓt(c
∗
t )

]
≤ 2E

[
T∑

t=1

min{(b+ h)M,ωt}

]
. (7)

To handle the term fat
(zt)

−1, by Lemma D.2, Lemma D.3, and bandwidth choice at = t−
1

p+2 p
2

p+2

in as in Lemma 3.4, we have fat(zt) ≥ 1
2fz(zt) when fz(zt) ≥ 2C0 log(T )t

− 1
p+2 , where C0 is

the constant in the lemmas that depend on the kernel K. By Assumption 3, zt are i.i.d.. Define an
event indicator It = 1[fz(zt) ≥ 2C0 log(T )t

− 1
p+2 ]. Then for any value v ∈ [0,M ], the following

decomposition holds:

Et

[
min

{
(b+ h)M,

v

fat
(zt)

}]
≤ Et

[
It

v

fat
(zt)

]
+ (b+ h)MP(It = 0)

≤ Et

[
2v

fz(zt)

]
+ 2(b+ h)MC0 log(T )t

− 1
p+2 |Z|

= O
(
v + (b+ h)M log(T )t−

1
p+2

)

7
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where the last line uses Et[1/fz(zt)] =
∫
Z d(zt) = |Z| = O(1). Combining this with equation 7

leads to the desired bound with some constant C ′ > 0:

Reg(Alg 2) ≤ C ′(b+ h)M(L+ 1)

T∑
t=1

(
ξt +

√
log(T )

(
t−

1
p+2 +

√
α

t
+ ∥ẑt − zt∥2

))
= O

(
(b+ h)M(L+ 1) log(T )

(√
αT + T

p+1
p+2

))
where we apply the elementary inequalities

∑T
t=1

1√
t
= O(

√
T ) and

∑T
t=1 t

− 1
p+2 = O(T

p+1
p+2 ).

3.5 BREAKING THE CURSE OF DIMENSIONALITY UNDER BENIGN DISTRIBUTIONS

The term T
p+1
p+2 showcases the inherent difficulty in non-parametric regression and is generally not

improvable without additional regularity conditions. In this section, we provide an arguably mild
regularity condition on fz , under which we achieve Õ(

√
αT + p

√
T ) regret.

Assumption 5. There exist constants cFT , CFT , ω > 0 such that for every v ∈ Rp and u ∈ C,
max{|T [Q(u; ·)fz(·)](v)|, |T [fz](v)|} ≤ CFT exp(−cFT ∥v∥ω2 )

where T [f ](v) =
∫
Rp f(z)e

−iv⊤zdz denotes the Fourier Transform of f .

Assumption 5 asks the Fourier coefficients of the feature density fz(z) and the unconditional
probability (for fixed u ∈ [0,M ]) Q(u; z)fz(z) to decay at a fast rate, which is typically stronger
than infinite smoothness. Then with an infinitely smooth kernel (that does not depend on the constants
in Assumption 5; see equation 19), we can guarantee an improved bound for the NW estimator in
equation 6:
Lemma 3.5. Under same assumptions as Lemma 3.4 and Assumption 5, there exists a kernel K such
that: with probability at least 1− 4T−2,∣∣∣Q̃(u; z)−Q(u; z)

∣∣∣ ≤ γ′

fat
(z)

(
L

∑
τ<t ξτ

t
+

1

t− 1

∑
τ<t

(1 + ξτ )(δτ + δt) +
p√
t

)
for every u ∈ C and z ∈ Z , with γ′ = O

(
log(T )

p
ω log log(T )

1
2

)
.

The proof is deferred to Appendix D.2. Consequently, we arrive at the following improved regret
guarantee for Algorithm 2. The proof is the same as Section 3.4, except for replacing Lemma 3.3 and
3.4 by Lemma 3.5, and hence is omitted.
Theorem 2. Under same assumptions as Theorem 1 and additionally Assumption 5, it holds that
Reg(Alg 2) = Õ

(√
αT + p

√
T
)

.

4 MINIMAX REGRET LOWER BOUND

To complement our upper bound result in Theorem 1, we provide a minimax lower bound when the
underlying environment admits the linear model in Section 3.1.1. Note the lower bound in Theorem 3
holds for any policy π, regardless of whether the DM uses a linear oracle or a (over-complicated)
nonlinear one in the learning algorithm. The proof is left to Appendix A.
Theorem 3 (Lower bound). Suppose the DM perfectly observes zt at time t. When T ≥ d2, we have

inf
π

sup
θ∗,Q,fz,fx

Reg(π) = Ω
(
(b+ h)M

(√
dT + T

p+1
p+2

))
,

where inf is taken over all possible policies, and sup is taken over the problem parameters that satisfy
∥θ∗∥2 ≤ 1 and Assumptions 1–3.

Recall that when the noise CDF Qt ≡ Q is time-invariant, the regret is Õ(
√
T ), given by the OSGD

algorithm (Hazan et al., 2016; Ding et al., 2024). Thus, as soon as the shape of the demand distribution
is not time-invariant, the online inventory control problem becomes fundamentally harder.3

3When Qt is invariant, the optimal solution c∗t is linear in xt, so the DM can compute its gradient and learn
simultaneously in d directions. In the more general case, however, this convenient structure breaks down.

8
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5 EXPERIMENTS

We conclude the paper with a series of numerical experiments, where we test our algorithm on both
synthetic datasets and real-world datasets against the benchmark OSGD in online inventory control.

Synthetic Datasets We first compare the Algorithm 2 to that of the OSGD. Due to space limits, we
leave all the setup details and results to Appendix E.1, which highlights the superior performance of
our algorithm compared to OSGD under various synthetic settings, including heteroskedastic noise
and nonlinear expected demand.

Real-world Dataset We evaluate our algorithm on real-world datasets from the M5 Forecasting-
Accuracy dataset (Howard et al., 2020), which includes the sales and feature data of more than
30,000 items during 1,941 days. We compare the OSGD to our Algorithm 2 with the ridge regression
(assuming linear demand) and neural network estimators (assuming nonlinear demand). Details about
data description and algorithm parameters are left to Appendix E.2. In Figure (a) below, we consider
40 items with the most nonzero selling periods (all of which happen to be food) and present the
statistics of the cumulative loss of the three algorithms. To gain more insights, Figure (b) and (c) plot
the growth of the cumulative regret for each of the three algorithms for two distinct items.

(a) Box plot of total costs

(b) Pattern of cumulative cost for item 1 (c) Pattern of cumulative cost for item 2

Our Algorithm consistently outperforms OSGD on the tested items. Due to the complex heteroskedas-
ticity in real data, OSGD does not converge within the given time horizon in most cases. In terms of
the two demand mean estimators we used in Algorithm 2, the linear model using ridge regression
achieves a relatively lower average cumulative cost over the 40 items of interest, yet exhibits a larger
variance. This indicates that the complexity of real-world sales is beyond the linear model, even
after heteroskedasticity is addressed. In turn, it highlights the need for nonlinear treatment in online
contextual inventory control as is done in our work, which has been largely overlooked in the existing
(in particular, theory-focused) literature. In contrast, despite the simple two-layer architecture, neural
networks have demonstrated robust and consistent performance.

9
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A PROOFS FOR LOWER BOUND IN SECTION 4

To clarify the inherent statistical complexity of the problem, specifically, where do Ω(
√
dT ) and

Ω(T
p+1
p+2 ) come from, we introduce the following two lemmas.

Lemma A.1. Consider p = 1. Let zt = β⊤xt with a simple β = [ 1d ,
2
d , . . . , 1]

⊤ for every time t,
and let fx be uniform over the canonical basis {e1, . . . , ed}. When T ≥ d2:

inf
π

sup
θ∗,Q

Reg(π) = Ω((b+ h)M
√
dT ).

Lemma A.2. WLOG, consider d = p and zt = xt. Assume that θ∗ is perfectly known. The following
lower bound holds:

inf
π

sup
θ∗,Q

Reg(π) = Ω
(
(b+ h)MT

p+1
p+2

)
.

Note for p < d, it is straightforward to apply the analysis of Lemma A.2 by having d− p entries of
the context x to be zero.

A.1 PROOF OF Ω(
√
dT )

The lower bound of regret Ω(
√
dT ) comes from jointly estimating θ∗ and Qt when the true noise

distribution Qt is also allowed to depend on xt (even in a quite simple way and p = 1). This
dependence structure leads to the extra complexity of

√
d term.

Proof of Lemma A.1. We construct the space of linear coefficient vectors θ∗ ∈ Θ, with
Θ = Unif

(
{−∆,∆}d

)
for some small ∆ > 0 that will be determined later. Let xj :=

(0, · · · , 0, 1, 0, · · · , 0) = ej , where all except the j-th element are 0, and xt is uniformly sam-
pled from {x1,x2, · · · ,xd}. Write θ⊤

∗ xt =: µt ∈ {±∆} for simplicity. The noise distribution Qt

is constructed as follows:

Qt(y) =



(
4ρ

M
+

4µt

M

)
· (y + µt), for − µt ≤ y < −µt +

M

4
,

ρ+ µt, for − µt +
M

4
≤ y < −µt +

3M

4
,(

4(1− β)

M
− 4µt

M

)
·
(
y + µt −

3M

4

)
+ ρ+ µt, for − µt +

3M

4
≤ y < −µt +M,

1, for y = −µt +M.

Note given the structure of zt = β⊤xt ∈ { 1d , . . . , 1}, Qt is effectively observing xt, and hence is
allowed to depend on µt as above. It can be easily verified that such a construction satisfies our
Assumptions 1-3, except for the zero-mean property of ϵt which can be achieved through scaling
(e.g., through tuning the first component of θ∗ and xt). We do not present it and still use Qt for
simplicity. Now the conditional demand CDF (where our observations are sampled from, and we
slightly abuse the notation Q also to denote the demand distribution as it is only a shift of the noise
distribution) can be written as:

Gt(y) =



(
4ρ

M
+

4θ⊤
∗ xt

M

)
· y, for 0 ≤ y <

M

4
,

ρ+ θ⊤
∗ xt, for

M

4
≤ y <

3M

4
,(

4(1− β)

M
− 4θ⊤

∗ xt

M

)
·
(
y − 3M

4

)
+ ρ+ θ⊤

∗ xt, for
3M

4
≤ y < M,

1, for y = M.

Conditioned on any xt, there are two possible demand distributions in total: when θ⊤
∗ xt = ∆, we

denote the corresponding noise CDF as Q∆(y), and we have the optimal solution c∗Q∆
∈ (0,M/4);

12
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when θ⊤
∗ xt = −∆, we denote the corresponding CDF as Q−∆(y), and we have the optimal solution

c∗Q−∆
∈ (3M/4,M). Now we can lower bound the regret as follows:

sup
θ∗,Q

Reg(π) ≥ 1

2

{
T∑

t=1

Eπ,Q∆ [ℓt(ct)− ℓt(c
∗
Q∆

)] +

T∑
t=1

Eπ,Q−∆ [ℓt(ct)− ℓt(c
∗
Q−∆

)]

}

(i)
=

1

2d


d∑

j=1

[
T∑

t=1

Eπ,Q∆ [ℓt(ct)− ℓt(c
∗
Q∆

)|xt = xj ] +

T∑
t=1

Eπ,Q−∆ [ℓt(ct)− ℓt(c
∗
Q−∆

)|xt = xj ]

]
(ii)
=

1

2d


d∑

j=1

[
T∑

t=1

Eπ,Q{θj=∆} [ℓt(ct)− ℓt(c
∗
Q∆

)|xt = xj ] +

T∑
t=1

Eπ,Q{θj=−∆} [ℓt(ct)− ℓt(c
∗
Q−∆

)|xt = xj ]

]
(iii)

≥ ∆M(h+ b)

8d
·

d∑
j=1

T∑
t=1

Eπ[Q{θj=∆}(ct > M/2) +Q{θj=−∆}(ct ≤M/2)|xt = xj ]

(iv)

≥ ∆M(h+ b)

8d
·

d∑
j=1

T∑
t=1

Eπ[exp(−t ·DKL(Q{θj=∆}∥Q{θj=−∆}))|xt = xj ]

(v)
=

∆M(h+ b)

8
·

d∑
j=1

Eπ,x

Tj∑
t=1

exp(−t ·DKL(Q{θj=∆}∥Q{θj=−∆})),

where (i) comes from the tower property of conditional expectation; (ii) is because conditional on
xt = xj , we must have θj = ∆ and θj = −∆ for Q∆ and Q−∆, respectively, where we use θj to
denote the j-th element of θ∗, and we use Q{θj=∆} and Q{θj=−∆} to represent the corresponding
demand distribution; (iii) directly follows from the analysis in (Zhang et al., 2020, Proposition 1); (iv)
comes from the Bretagnolle-Huber Inequality; (v) uses the fact that Tj :=

∑T
t=1 1(xt = xj) and

the sub-problems of learning θj with observations xt = xj are independent, and that only the Tj

observations will contribute to the total KL divergence according to our construction on θ∗ and xt.

For the KL divergence of DKL(Q{θj=∆}∥Q{θj=−∆}), we have:

DKL(Q{θj=∆}∥Q{θj=−∆}) = (ρ+∆) · log ρ+∆

ρ−∆
+ (1− ρ−∆) · log 1− ρ−∆

1− ρ+∆

≤ (2ρ−1 + (1− ρ)−1 + ρ−2) ·∆2,

see e.g. analysis of (Besbes & Muharremoglu, 2013, Lemma 4). Let c0 := 2ρ−1 + (1− ρ)−1 + ρ−2

and taking the result back to the previous inequalities, we have:

sup
θ∗,Q,Fx

Reg(π) ≥ ∆M(h+ b)

8
·

d∑
j=1

Eπ,x

Tj∑
t=1

exp(−t ·DKL(Q{θj=∆}∥Q{θj=−∆}))

≥ ∆M(h+ b)

8
·

d∑
j=1

Eπ,x

Tj∑
t=1

exp(−c0t ·∆2))

≥ ∆M(h+ b)

8
·

d∑
j=1

Eπ,x

min{Tj ,∆
−2}∑

t=1

exp(−c0)

(i)

≥ ∆M(h+ b) exp(−c0)
8

·
d∑

j=1

min{E[Tj ],∆
−2},

where (i) comes from Emin{Tj ,∆
−2} ≥ min{E[Tj ],∆

−2}. Since E[Tj ] =
T
d , by setting ∆ :=√

d
T and T ≥ d2 (so that ∥θ∗∥2 ≤ 1), we conclude that

sup
θ∗,Q,Fx

Reg(π) ≥ exp(−c0)
8

·M(b+ h)
√
dT = Ω((b+ h)M

√
dT ).
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A.2 PROOF OF Ω(T
p+1
p+2 )

The lower bound of regret Ω(T
p+1
p+2 ) comes from the difficulty in learning a p-dimensional non-

parametric estimation problem.

Proof of Lemma A.2. Assume that the parameter θ∗ is known to the learner and will be specified
later. As zt lies in the p-dimensional unit ball, we can construct G to be any 1/N -packing of the
p-dimensional unit ball. By the packing number bound of ℓ2 ball, there exists a constant c1 > 0

such that |G| = c1N
p. We let N = ⌊T

1
p+2 ⌋ and zt is uniformly sampled from the packing set

G := {z1, z2, · · · , zc1N
p}4.

Thus, for each vector zj in G (which we index by j = 1, 2, · · · , c1Np), consider the following two
CDF candidates as similarly defined before in the proof of Lemma A.1:

Q(0)(y) =



(
4ρ

M
+

4

NM

)
· y, for 0 ≤ y <

M

4
,

ρ+
1

N
, for

M

4
≤ y <

3M

4
,(

4(1− ρ)

M
− 4

NM

)
·
(
y − 3M

4

)
+ ρ+

1

N
, for

3M

4
≤ y < M,

1, for y = M.

and

Q(1)(y) =



(
4ρ

M
− 4

NM

)
· y, for 0 ≤ y <

M

4
,

ρ− 1

N
, for

M

4
≤ y <

3M

4
,(

4(1− ρ)

M
+

4

NM

)
·
(
y − 3M

4

)
+ ρ− 1

N
, for

3M

4
≤ y < M,

1, for y = M,

Let the underlying noise CDF be Q(·; zt = zj) = Q(ui)(·) for i.i.d. ui ∼ Bern( 12 ). It is easy to verify
that the construction satisfies our model assumptions, except the zero-mean. Now we can guarantee
zero-mean through choosing θ∗, which is known to the DM. Note that the noise distributions are
independent for different zj ∈ G.

4We let c1Np to be an integer for notation simplicity, otherwise we can take ⌊c1Np⌋ instead.
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Similar to the proof of Lemma A.1, we have:

sup
θ∗,Q

Reg(π) ≥ 1

2

{
T∑

t=1

Eπ,Q(0) [ℓt(ct)− ℓt(c
∗
Q(0))] +

T∑
t=1

Eπ,Q(1) [ℓt(ct)− ℓt(c
∗
Q(1))]

}

=
1

2c1Np


c1N

p∑
j=1

[
T∑

t=1

Eπ,Q(0) [ℓt(ct)− ℓt(c
∗
Q(0))|zt = zj ] +

T∑
t=1

Eπ,Q(1) [ℓt(ct)− ℓt(c
∗
Q(1))|zt = zj ]

]
=

1

2c1Np


c1N

p∑
j=1

[
T∑

t=1

Eπ,Q(0) [ℓt(ct)− ℓt(c
∗
Q(0))|zt = zj ] +

T∑
t=1

Eπ,Q(1) [ℓt(ct)− ℓt(c
∗
Q(1))|zt = zj ]

]
≥ M(h+ b)

N

1

c1Np

c1N
p∑

j=1

T∑
t=1

Eπ[Q
(0)(ct > M/2) +Q(1)(ct ≤M/2)|zt = zj ]

≥ M(h+ b)

N

1

c1Np

c1N
p∑

j=1

T∑
t=1

Eπ[exp(−t ·DKL(Q
(0)∥Q(1)))|zt = zj ]

=
M(h+ b)

N
·
c1N

p∑
j=1

Eπ,z

Tj∑
t=1

exp(−t ·DKL(Q
(0)∥Q(1)))

≥ M(h+ b) exp(−c0)
8N

·
c1N

p∑
j=1

min{E[Tj ], N
2},

where c0 = 2ρ−1+(1− ρ)−1+ ρ−2, Tj :=
∑T

t=1 1(zt = zj) is defined similarly as in the previous
proof, and E[Tj ] =

T
c1Np ≥ 1

c1
T

2
p+2 . We conclude that

sup
θ∗,Q,Fx

Reg(π) ≥ exp(−c0)
8

· (b+ h)MT
p+1
p+2 = Ω

(
(b+ h)MT

p+1
p+2

)
.

B LINEAR DEMAND ESTIMATION ORACLE

For the sake of completeness, we present the proof for Lemma 3.1 here.

Lemma B.1 (Restatement of Lemma 3.1). Follow the notations in Section 3.1.1. With probability at
least 1− T−2, it holds that∣∣∣θ̂⊤

t xt − θ⊤
∗ xt

∣∣∣ ≤ (
√
log(2T ) + 1)∥xt∥A−1

t
.

Proof. Denote Ut = [xτ ]τ<t ∈ Rd×(t−1) and Vt = [Dτ ]τ<t ∈ R1×(t−1). Recall the definition

At = I +UtU
⊤
t , bt = UtV

⊤
t .

Then we have

θ̂⊤
t xt − θ⊤

∗ xt = x⊤
t A

−1
t bt − x⊤

t A
−1
t

(
I +UtU

⊤
t

)
θ∗

= x⊤
t A

−1
t Ut

(
V⊤

t −U⊤
t θ∗

)
− x⊤

t A
−1
t θ∗.

Given ∥θ∗∥2 ≤ 1, it follows that∣∣∣θ̂⊤
t xt − θ⊤

∗ xt

∣∣∣ ≤ ∣∣x⊤
t A

−1
t Ut

(
V⊤

t −U⊤
t θ∗

)∣∣+ ∥x⊤
t A

−1
t ∥2. (8)
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Since (Dτ )τ<t are conditionally independent, we have E
[
V⊤

t,1|(xτ )τ<t

]
= U⊤

t,1θ∗. Thus by Azuma-
Hoeffding’s inequality (Azuma, 1967; Alon & Spencer, 2016),

P
(∣∣x⊤

t A
−1
t Ut

(
Vt −U⊤

t θ∗
)∣∣ ≥√log(2T )∥xt∥A−1

t

)
≤ 2 exp

(
−
2 log(2T )∥xt∥2A−1

t

∥x⊤
t A

−1
t Ut∥22

)
≤ 2 exp(−2 log(2T ))

≤ 1

T 2
.

The second inequality follows from At = I + UtU
⊤
t ⪰ UtU

⊤
t . Similarly, we can bound the

second term in equation 8 as ∥x⊤
t A

−1
t ∥2 =

√
x⊤
t A

−1
t IA−1

t xt ≤ ∥xt∥A−1
t

. Plugging them back in
equation 8 yields ∣∣∣θ̂⊤

t xt − θ⊤
∗ xt

∣∣∣ ≤ (
√
log(2T ) + 1)∥xt∥A−1

t
.

The second part of Lemma 3.1 follows from the elliptical potential lemma that is standard in the
bandit literature (Abbasi-Yadkori et al., 2011; Wen et al., 2025):
Lemma B.2. For any given vectors {xτ}t−1

τ=1 in Rd with ∥xτ∥2 ≤ 1, let the Gram matrix be
As = I +

∑
τ<s xτx

⊤
τ for every 1 ≤ s ≤ t. It holds that∑

τ<t

∥xτ∥2A−1
τ
≤ 2d log

(
1 +

t− 1

d

)
≤ 2d log(t).

C NONLINEAR DEMAND ESTIMATION VIA OVER-PARAMETERIZATION

As promised in Section 3.1.2, we build on the idea of NTK (Jacot et al., 2018) and NeuralUCB
Zhou et al. (2020) to handle nonlinear demand mean using over-parameterized neural networks. For
the ease of analysis, we impose a symmetry assumption on the context. Note that for any context xt

with ∥xt∥2 ≤ 1, we can apply the transformation xt 7→ [x⊤
t , x

⊤
t ]

⊤/
√
2 to satisfy Assumption 6 and

incur only an extra constant in the regret.
Assumption 6. The dimension d is even. For any time t ∈ [T ] and any j ∈ [d/2], it holds that
xt,j = xt,j+d/2.

Initialization Then we set the network initialization as follows. For each layer k ∈ [K − 1], the

weight matrix is set to Wk =

[
Wk,0 0
0 Wk,0

]
where each entry of the initial matrix Wk,0 is drawn

i.i.d. from the Gaussian distribution N (0, 4/w). The last layer is WK = [W⊤
K,0,−W⊤

K,0]
⊤ where

each entry of WK,0 is drawn i.i.d. from N (0, 2/w). The initial parameter is denoted by θ̂0 ∈ Rn

with dimension n = (K−2)w2+w(d+1). By Assumption 6, we always have f(x; θ̂0) = 0 for any
possible context x, which facilitates the convergence analysis. Notably, we sample the initialization
θ̂0 only once and pass this same initialization to the training routine Algorithm 1 every time for the
ease of analysis (so our local expansion of f(x; θ̂t) can be around the same initialization θ̂0 for every
t). This needs not be the case in practice.

The NTK matrix is recursively defined as:
Definition 1 ((Zhou et al., 2020; Jacot et al., 2018)). Let {xt}t∈[T ] be the contexts. Define recursively

H̃
(1)
i,j = Σ

(1)
i,j = ⟨xi,xj⟩, A

(k)
i,j =

(
Σ

(k)
i,i Σ

(k)
i,j

Σ
(k)
i,j Σ

(k)
j,j

)
Σ

(k+1)
i,j = 2E

(u,v)∼N (0,A
(k)
i,j )

[⟨σ(u), σ(v)⟩]

H̃
(k+1)
i,j = 2H̃

(k)
i,j 2E(u,v)∼N (0,A

(k)
i,j )

[⟨σ′(u), σ′(v)⟩] +Σ
(k+1)
i,j

Finally, denote the NTK matrix by H = 1
2

(
H̃(K) +Σ(K)

)
∈ RT×T .
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Assumption 7 (Non-singular NTK). Let context {xt}t∈[T ] be drawn from the density fx. With
probability at least 1− T−1, H ⪰ λhI for some λh > 0.

Assumption 7 requires the NTK matrix to be (with high probability under the stochastic context)
non-singular. It is a common assumption in the literature on the performance of over-parameterized
neural networks in the NTK regime Arora et al. (2019); Cao & Gu (2019); Zhou et al. (2020). If no
two contexts lie in parallel, indeed H is full rank and non-singular. As we will see shortly, this lower
bound λh scales inversely with the number of parameters needed to derive our results.
Definition 2 (Effective dimension). Let λ > 0 be the regularization parameter used in the training
routine Algorithm 1. Define the effective dimension of H to be

dH =
log(det(I +H/λ))

log(1 + T/λ)
.

At a high level, the effective dimension dH captures the intrinsic complexity of the NTK matrix H ,
i.e. the neural network model. Now let f = [f∗(x1), . . . , f∗(xT )]

⊤ ∈ RT denote the vector of the
true demand mean.

C.1 RESULTS ON APPROXIMATION AND NEAR-INITIALIZATION PROPERTIES

The following lemma shows that, for over-parametrized networks (recall definition in equation 3), the
true demand mean f∗ can be seen as a linear approximation in terms of the network gradient:
Lemma C.1 (Lemma 5.1 in Zhou et al. (2020)). There is a constant C0 > 0 such that for any
w ≥ C0T

4K6 log(T 2K/δ)/λ4
h, with probability at least 1− δ, we have:

f∗(xt) = ⟨∇2f(xt; θ̂0),θ∗ − θ̂0⟩,
√
w∥θ∗ − θ̂0∥2 ≤ 2∥f∥H−1 ,

for some θ∗ ∈ Rn for every t ∈ [T ]. Here ∇2 denotes the gradient taken with respect to the
parameters.

The proof of this lemma, and those of some of the following lemmas, follows verbatim the proof
in Zhou et al. (2020), except that the approximation bound only concerns T contexts instead of
T ·#{arms} contexts in the bandit setting. Therefore, we refer the readers to the original proof and
only present proofs for where there is a notable difference.

Next, we have a few auxiliary lemmas that concern the local properties of the network in the parameter
space around initialization. Let the initialization θ0 ∈ Rn be generated as above and given.
Lemma C.2 (Lemma 4.1 in Cao & Gu (2019)). There exists constants C1, C2, C3 > 0 such that for
any δ ∈ (0, 1), if τ satisfies

C1w
− 3

2K− 3
2 log(TK2/δ)

3
2 ≤ τ ≤ C2K

−6 log(w)−
3
2 ,

then with probability at least 1− δ, for any θ,θ′ satisfying ∥θ − θ̂0∥2 ≤ τ and ∥θ′ − θ̂0∥2 ≤ τ , we
have

|f(xt;θ)− f(xt;θ
′)− ⟨∇2f(xt;θ

′),θ − θ′⟩| ≤ C3τ
4
3K3

√
w log(w)

for every t ∈ [T ].
Lemma C.3 (Lemma B.3 in Cao & Gu (2019)). There exists constants C1, C2, C3 > 0 such that for
any δ ∈ (0, 1), if τ satisfies

C1w
− 3

2K− 3
2 log(TK2/δ)

3
2 ≤ τ ≤ C2K

−6 log(w)−
3
2 ,

then with probability at least 1− δ, for any θ satisfying ∥θ − θ̂0∥2 ≤ τ , we have

∥∇2f(xt; θ̂0)∥F ≤ C3

√
Kw

for every t ∈ [T ].
Lemma C.4 (Theorem 5 in Allen-Zhu et al. (2019)). There exists constants C1, C2, C3 > 0 such
that for any δ ∈ (0, 1), if τ satisfies

C1w
− 3

2K− 3
2 max{log(T ) 3

2 , log(w)
3
2 } ≤ τ ≤ C2K

− 9
2 log(w)−3,

then with probability at least 1− δ, for any θ satisfying ∥θ − θ̂0∥2 ≤ τ , we have

∥∇2f(xt;θ)−∇2f(xt; θ̂0)∥2 ≤ C3

√
log(w)τ

1
3K3∥∇2f(xt; θ̂0)∥2

for every t ∈ [T ].
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C.2 CONTROLLING POST-TRAINING PARAMETERS

Recall that we used the routine Algorithm 1 to obtain the parameter θ̂t at each time t. While there is
a bound for general training epochs J , for readability and to derive the desired theoretical guarantees,
we only consider J sufficiently large in this work.

Lemma C.5 (Lemma 5.2 in Zhou et al. (2020)). Suppose J = Ω̃(TK/λ), w =

Ω̃(max
{
K24T 10λ−1,K21T 10λ−10

}
), and η = O(1/(TKw + wλ)). Then with probability at

least 1 − T−2/2, we have ∥θ̂t − θ̂0∥2 ≤ 2
√

t
wλ and ∥θ∗ − θ̂t∥At

≤ γt√
w

for every t ∈ [T ]. Here
the normalized Gram matrix of the gradients is defined as

At =
1

w

∑
τ<t

∇2f(xτ ; θ̂τ )∇2f(xτ ; θ̂τ )
⊤

and the width coefficients satisfy γt = Õ(M
√
dH +

√
λ∥f∥H−1).

Lemma C.6. Under the same assumptions as in Lemma C.5, we have

T∑
t=1

min

{
1,

1

w
∥∇2f(xt; θ̂t)∥2A−1

t

}
= Õ(dH).

While not identical, the proof of Lemma C.6 shares the same lines in that of Lemma 5.4 in Zhou
et al. (2020). The dependencies other than dH are negligible under the assumptions that w and J are
sufficiently large. For readers familiar with linear contextual bandits, this resembles the elliptical
potential lemma (Lemma B.2) in the linear case, as in the NTK regime we have represented our
over-parameterized network by a linear form.

We remark that the exponents in the range of the width w have not been optimized, since the theoretical
guarantees only serve the purpose of understanding the learning complexity in the NTK regime. In
practice, small-scale networks that do not fall into the NTK regime also perform incredibly well, as
demonstrated in our experiments in Section 5. This other regime remains much more unexplored in
the current deep learning theory.

C.3 ERROR BOUND FOR ESTIMATION ORACLE

Finally, we give the (formal) restatement of Lemma 3.2 and its proof in this section. In particular, we
have the quantity d̃ = 1+d2H +dH∥f∥2H−1 in Lemma 3.2, with the quantities defined in Definition 1
and Definition 2.

Lemma C.7 (Restatement of Lemma 3.2). Suppose J = Ω̃(TK/λ), η = O(1/(TKw + wλ)), and
w = Ω̃(max

{
K24T 10λ−1,K21T 10λ−10, T 4K6λ−4

h

}
). Then with probability at least 1− T−2, we

have∣∣∣f(xt; θ̂t)− f∗(xt)
∣∣∣ ≤ 2M

(
1 +

√
dH +

√
λ∥f∥H−1

)
min

{
1, w− 1

2 ∥∇2f(xt; θ̂t)∥A−1
t

}
=: ξt.

Moreover,
∑T

t=1 ξ
2
t = Õ(1 + d2H + dH∥f∥2H−1).

Proof. WLOG, suppose the high-probability events in Lemma C.1–C.5 hold. For each t ∈ [T ], the
estimation error is bounded as∣∣∣f(xt; θ̂t)− f∗(xt)

∣∣∣
(a)
=
∣∣∣f(xt; θ̂t)− ⟨∇2f(xt; θ̂0),θ∗ − θ̂0⟩

∣∣∣
=
∣∣∣f(xt; θ̂t)− ⟨∇2f(xt; θ̂t), θ̂t − θ̂0⟩+ ⟨∇2f(xt; θ̂t), θ̂t − θ̂0⟩ − ⟨∇2f(xt; θ̂0),θ∗ − θ̂0⟩

∣∣∣
≤
∣∣∣f(xt; θ̂t)− ⟨∇2f(xt; θ̂t), θ̂t − θ̂0⟩

∣∣∣︸ ︷︷ ︸
(♠)

+
∣∣∣⟨∇2f(xt; θ̂t), θ̂t − θ̂0⟩ − ⟨∇2f(xt; θ̂0),θ∗ − θ̂0⟩

∣∣∣︸ ︷︷ ︸
(♢)
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where (a) applies Lemma C.1. We proceed with term (♠) first. By Lemma C.5, ∥θ̂t − θ̂0∥2 ≤
2
√
t/(wλ). For large enough width w as in the assumption, ∥θ̂t − θ̂0∥2 satisfies the assumption in

Lemma C.2. Applying Lemma C.2 and the initialization that f(x; θ̂0) = 0, we have

(♠) =
∣∣∣f(xt; θ̂t)− f(x; θ̂0)− ⟨∇2f(xt; θ̂t), θ̂t − θ̂0⟩

∣∣∣ ≤ Ct
2
3K3w− 1

6

√
log(w) (9)

for some constant C > 0. To handle term (♢), observe that by adding and subtracting
∇2f(xt; θ̂t)

⊤θ∗, we have

(♢) =
∣∣∣⟨∇2f(xt; θ̂t),θ∗ − θ̂0⟩ − ⟨∇2f(xt; θ̂0),θ∗ − θ̂0⟩+ ⟨∇2f(xt; θ̂t), θ̂t − θ∗⟩

∣∣∣
≤
∣∣∣⟨∇2f(xt; θ̂t),θ∗ − θ̂0⟩ − ⟨∇2f(xt; θ̂0),θ∗ − θ̂0⟩

∣∣∣︸ ︷︷ ︸
(♡)

+
∣∣∣⟨∇2f(xt; θ̂t), θ̂t − θ∗⟩

∣∣∣︸ ︷︷ ︸
(♣)

.

We handle the first term by Cauchy-Schwartz inequality.

(♡) =
∣∣∣⟨∇2f(xt; θ̂t)−∇2f(xt; θ̂0),θ∗ − θ̂0⟩

∣∣∣
≤ ∥∇2f(xt; θ̂t)−∇2f(xt; θ̂0)∥2∥θ∗ − θ̂0∥2
(b)
≤ 2∥f∥H−1w− 1

2 ∥∇2f(xt; θ̂t)−∇2f(xt; θ̂0)∥2
(c)
≤ 4∥f∥H−1w− 2

3

√
log(w)K3t

1
6λ− 1

6 ∥∇2f(xt; θ̂0)∥2
(d)
≤ C ′∥f∥H−1w− 1

6

√
log(w)K

7
2 t

1
6λ− 1

6 (10)

where (b) applies Lemma C.1, (c) applies Lemma C.4, and (d) applies Lemma C.3 and gets some
constant C ′ > 0. Finally, the last term characterizes the difficulty in learning and does not vanish
with w (because the size of the gradient∇2f also depends on w).

(♣) ≤ ∥∇2f(xt; θ̂t)∥A−1
t
∥θ̂t − θ∗∥A

(e)
≤ γtw

− 1
2 ∥∇2f(xt; θ̂t)∥A−1

t

where (e) follows from Lemma C.5. Note naively ∥f∥H−1 ≤MT/λh. So for the large width w we
have in the statement, the other terms in equation 9 and 10 are second-order. We end up with∣∣∣f(xt; θ̂t)− f∗(xt)

∣∣∣ ≤ 2min
{
M,γtw

− 1
2 ∥∇2f(xt; θ̂t)∥A−1

t

}
≤ 2M

(
1 +

√
dH +

√
λ∥f∥H−1

)
min

{
1, w− 1

2 ∥∇2f(xt; θ̂t)∥A−1
t

}
as desired. The last part of the claim follows from Lemma C.6.

D LEMMAS ON KERNEL REGRESSION

This section provides proofs for the results in Section 3.3. We will first present results to bound the
estimation error when the DM knows zt precisely. Then in the last section we present results to
bound the bias introduced by replacing zt with ẑt.

D.1 KERNEL REGRESSION WITHOUT OBSERVATION ERRORS

Lemma D.1 (Restatement of Lemma 3.3). Let the bandwidth be at = t−
1

p+2 p
2

p+2 . Suppose
Assumptions 1–3 hold, t > 1, and |ϵ̂τ − ϵτ | ≤ ξτ for every τ ∈ [t − 1]. The NW estimator in
equation 5 satisfies: with probability at least 1− T−2,∣∣∣Q̂(u; z)−Q(u; z)

∣∣∣ ≤ C0

√
log(T )

fat(z)

(
L
ξ

t
+ t−

1
p+2

)
for every u ∈ C and z ∈ Z , with the constant C0 depending on K and fz . And ξ =

∑
τ<t ξτ .
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Proof. Let us write h(u; z) = Q(u; z)fz(z) for the unconditional CDF. We write the NW estimator
as Q̂(u; z) =

hat (u;z)

fat (z)
with

hat
(u; z) =

1

t− 1

∑
τ∈[t−1]

K

(
zτ − z

at

)
1

[
Dτ − D̂τ ≤ u

]
(11)

and

fat(z) =
1

t− 1

∑
τ∈[t−1]

K

(
zτ − z

at

)
. (12)

Recall that D̂τ is the oracle-output demand mean estimation, and ϵ̂τ = Dτ−D̂τ as set in Algorithm 2.
By Lemma D.2 and D.3, we have for every u ∈ 1

T [T ] and z ∈ Z ,

max{|hat
(u; z)− h(u; z)|, |fat

(z)− fz(z)|}

≤ C(K, fz)

(
at + Lξ/t+

√
(log(T ) + log(at))p2/(ta

p
t )

)
for a constant C(K, fz) that depends on the kernel K and the bound fz . Then we choose at ≍
t−

1
p+2 p

2
p+2 and get

max{|hat(u; z)− h(u; z)|, |fat(z)− fz(z)|} ≤ C(K, fz)
√
log(T )

(
Lξ/t+ 2t−

1
p+2 p

2
p+2

)
≤ 8C(K, fz)

√
log(T )

(
Lξ/t+ t−

1
p+2

)
where the last inequality follows from that n

1
n ≤ 2 for any n > 0. Now since

Q̂(u; z)−Q(u; z) =
hat

(u; z)

fat(z)
− h(u; z)

fz(z)

=
hat(u; z)− h(u; z)

fat
(z)

+ h(u; z)

(
1

fat
(z)
− 1

fz(z)

)
, (13)

we can obtain the error bound as∣∣∣Q̂(u; z)−Q(u; z)
∣∣∣ ≤ |hat

(u; z)− h(u; z)|
fat

(z)
+

h(u; z)

fz(z)
· |fat

(z)− fz(z)|
fat

(z)

=
|hat(u; z)− h(u; z)|

fat
(z)

+Q(u; z) · |fat(z)− fz(z)|
fat

(z)

=

√
log(T )

fat
(z)

O
(
Lξ/t+ t−

1
p+2

)
.

Recall that we write Q̂(u; z) =
hat (u;z)

fat (z)
to approximate Q(u; z) = h(u;z)

fz(z)
, as defined in equation 11

and equation 12. In the following, we prove the high-probability error bound for hat
and fat

respectively.

Lemma D.2 (Bias of the estimators). Suppose Assumptions 1–3 hold, t > 1, and |ϵ̂τ − ϵτ | ≤ ξτ for
every τ ∈ [t− 1]. For every u ∈ C and z ∈ Z , we have

|E[hat
(u; z)]− h(u; z)| ≤ 2L(1 + fz)C(K)at + 2fzLξ/t

and
|E[fat

(z)]− fz(z)| ≤ C(K)Lzat

where the kernel-dependent constant is C(K) =
∫
Rp K(y)∥y∥dy.
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Proof. By straightforward expansion,

E[hat
(u; z)] = E

 1

t− 1

∑
τ∈[t−1]

Kat
(zτ − z)1[ϵ̂τ ≤ u|zτ ]


= E

 1

t− 1

∑
τ∈[t−1]

Kat
(zτ − z)Q(u+ ϵτ − ϵ̂τ ; zτ )


≤ 1

t− 1

∑
τ∈[t−1]

Ezτ∼fz [Kat(zτ − z)(Q(u; zτ ) + L|ϵτ − ϵ̂τ |)]

= Ez′∼fz [Kat
(z′ − z)Q(u; z′)] +

L

t− 1

∑
τ∈[t−1]

ξτ · Ezτ∼fz [Kat
(zτ − z)]

(a)
≤ Ez′∼fz [Kat

(z′ − z)Q(u; z′)] +
fzL

t− 1
ξ

=

∫
Rp

Kat
(z′ − z)Q(u; z′)fz(z

′)dz′ +
fzL

t− 1
ξ

=

∫
Rp

Kat
(z′ − z)h(u; z′)dz′ +

fzL

t− 1
ξ

=

∫
Rp

K(y)h(u; z + aty)dy +
fzL

t− 1
ξ

(b)
≤
∫
Rp

K(y)h(u; z)dy + 2Lmax{1, fz}C(K)at +
fzL

t− 1
ξ

= h(u; z) + 2Lmax{1, fz}C(K)at +
fzL

t− 1
ξ

where (a) applies Ez′ [Kat
(z′ − z)] =

∫
Kat

(z′ − z)fz(z
′)dz′ ≤ fz , and (b) uses Assumptions 1

and 3 with constant being C(K) =
∫
Rp K(y)∥y∥dy. The other direction follows similarly. We use

t > 1 to write 1
t ≤

1
t−1 ≤

2
t in a more convenient way. For the other term,

E[fat
(z)] = Ez′∼fz [Kat

(z′ − z)] =

∫
Rp

Kat
(z′ − z)fz(z

′)dz′

=

∫
Rp

K(y)fz(z + aty)dy

≤ fz(z) + atLzC(K).

Lemma D.3 (Deviations of the estimators). Suppose the bandwidth satisfies tapt ≤ T . Under
Assumptions 1–3 and for t > 1, with probability at least 1− T−2, we have that

|hat
(u; z)− E[hat

(u; z)]| ≤ C2

√
p2 log(a−1

t ) + log(4T )

tapt

and

|fat(z)− E[fat(z)]| ≤ C ′
2

√
p2 log(a−1

t ) + log(4T )

tapt

for every u ∈ C and z ∈ Z , where C2 and C ′
2 are constants that only depend on K and fz .

Proof. First, thanks to Assumption 1 and that Q̂t is monotone in u, it suffices to prove a concentration
bound that holds over the fine-enough discretization u ∈ 1

T [T ]. For u /∈ 1
T [T ], by Lipschitzness of

Qt and monotonicity of Q̂t, the bound holds with an additional term O(T−1) which is subsumed by
the dominating terms (as long as tapt ≤ T ).
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In the following, we will present the proof for hat
(u; z), since the same argument applies

to fat
(z). For any fixed u ∈ 1

T [T ] and z ∈ Z , consider |hat
(u; z)− E[hat

(u; z)]| =
max{hat

(u; z)− E[hat
(u; z)],E[hat

(u; z)]− hat
(u; z)}. We will now bound the first term, and

note that the second term can be bounded in the same way.

Let S(i) be ϵi-cover of Z for thresholds ϵi = 2−i. For any z, let zi ∈ S(i) be the covering element
of z. Denote Z(u; z) = hat

(u; z)− E[hat
(u; z)]. Then for any J ∈ N,

Z(u; z) = Z(u, zJ) +

∞∑
i=J

(
Z(u; zi+1)− Z(u; zi)

)
. (14)

We have the following observations. First,

Z(u; z) =
1

(t− 1)a−p
t

∑
τ∈[t−1]

(
K

(
zτ − z

at

)
1[ϵ̂τ ≤ u]− Eτ

[
K

(
zτ − z

at

)
1[ϵ̂τ ≤ u]

])
=:

1

(t− 1)a−p
t

∑
τ∈[t−1]

Aτ

where each summand satisfies Eτ [Aτ ] = 0 and |Aτ | ≤ ∥K∥∞. Second, its variance satisfies

Var(Aτ ) ≤ Eτ

[
K

(
zτ − z

at

)2
]
=

∫
Rp

K

(
z′ − z

at

)2

fz(z
′)dz′

= apt

∫
Rp

K(y)2fz(z + aty)dy

≤ apt fz

∫
Rp

K(y)2dy = apt fz∥K∥2L2
.

Since Aτ form a Martingale difference sequence, by Freedman’s inequality (Freedman, 1975), we
have

P(|Z(u; z)| ≥ ϵ) = P

∣∣∣∣∣∣
∑

τ∈[t−1]

Aτ

∣∣∣∣∣∣ ≥ (t− 1)apt ϵ

 ≤ 2 exp

(
− (t− 1)2a2pt ϵ2

2fz∥K∥2L2
(t− 1)apt +

2
3∥K∥∞(t− 1)apt ϵ

)

≤ 2 exp

(
−2C1

(t− 1)apt ϵ
2

1 + ϵ

)
≤ 2 exp

(
−C1(t− 1)apt ϵ

2
)

for constant C1 = 8
max{2fz∥K∥2

L2
, 23∥K∥∞,1} , where the last step holds when ϵ ≤ 1. By a union bound

over S(J),

P
(
sup
z

Z(u; zJ) ≥ ϵ

)
≤
∣∣∣S(J)

∣∣∣2 exp(−C1(t− 1)apt ϵ
2
)
≤ 2 exp

(
2p log

(
ϵ−1
J

)
− C1(t− 1)apt ϵ

2
)

where we use that the log-covering number of p-dimensional unit ball is bounded as log
∣∣S(J)

∣∣ ≤
2p log

(
ϵ−1
J

)
. Let

ϵ =

√
2p log

(
ϵ−1
J

)
+ 3 log(4T )

C1(t− 1)apt
≍
√

p

(t− 1)apt
.

It holds that

P

sup
z

Z(u; zJ) ≥

√
2p log

(
ϵ−1
J

)
+ 3 log(4T )

C1(t− 1)apt

 ≤ 1

8T 3
. (15)

Now, we proceed to handle the differences in the sum in equation 14. For different z1 and z2, we
consider

Z(u; z1)− Z(u; z2) =
1

(t− 1)apt

∑
τ∈[t−1]

Bτ (u; z1, z2)

:=
1

(t− 1)apt

∑
τ∈[t−1]

K

(
zτ − z1

at

)
1[ϵ̂τ ≤ u]−K

(
zτ − z2

at

)
1[ϵ̂τ ≤ u]

− E
[
K

(
zτ − z1

at

)
1[ϵ̂τ ≤ u]

]
+ E

[
K

(
zτ − z2

at

)
1[ϵ̂τ ≤ u]

]
.
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Note each term E[Bτ (u; z1, z2)] = 0. Also, let LK denote the Lipschitz constant of the kernel K,
and we have

|Bτ (u; z1, z2)| ≤ 2

∣∣∣∣1[ϵ̂τ ≤ u]

(
K

(
zτ − z1

at

)
−K

(
zτ − z2

at

))∣∣∣∣
≤ 2

∣∣∣∣K(zτ − z1
at

)
−K

(
zτ − z2

at

)∣∣∣∣
≤ 2LK

∥z1 − z2∥2
at

.

By Azuma-Hoeffding’s inequality (Azuma, 1967; Alon & Spencer, 2016), we have

P(|Z(u; z1)− Z(u; z2)| ≥ ϵ) = P

∣∣∣∣∣∣
∑

τ∈[t−1]

Bτ (u; z1, z2)

∣∣∣∣∣∣ ≥ (t− 1)apt ϵ


≤ 2 exp

(
− 2(t− 1)2a2pt ϵ2

2(t− 1)LK∥z1 − z2∥22/a2t

)

= 2 exp

(
− (t− 1)a

2(p+1)
t ϵ2

LK∥z1 − z2∥22

)

Then for zi and zi+1, we have ∥zi − zi+1∥2 ≤ ϵi+1 + ϵi = 3ϵi. Then

P
(∣∣Z(u; zi)− Z(u; zi+1)

∣∣ ≥ ϵ
)
≤ 2 exp

(
− (t− 1)a

2(p+1)
t ϵ2

9LKϵ2i

)
.

Again, by union bound over S(i) and S(i+1),

P
(
sup
z

∣∣Z(u; zi)− Z(u; zi+1)
∣∣ ≥ ϵ

)
≤ 2
∣∣∣S(i)

∣∣∣ · ∣∣∣S(i+1)
∣∣∣ exp(− (t− 1)a

2(p+1)
t ϵ2

9LKϵ2i

)

= 2 exp

(
2p log

1

ϵi
+ 2p log

2

ϵi
− (t− 1)a

2(p+1)
t ϵ2

9LKϵ2i

)

≤ 2 exp

(
6pi log 2− (t− 1)a

2(p+1)
t ϵ2

9LKϵ2i

)
.

Define a target threshold for each level i ≥ J :

ϵ(i) =
3
√
LKϵi√

t− 1ap+1
t

√
7pi log 2 + 3 log(4T ) =

3
√
LK2−i

√
t− 1ap+1

t

√
7pi log 2 + 3 log(4T ).

We first note that

∞∑
i=J

ϵ(i) =
3
√
LK√

t− 1ap+1
t

∞∑
i=J

√
7pi+ 3 log(4T )

2i
≤ 3

√
LK√

t− 1ap+1
t

∞∑
i=J

(
i

2i

√
7p

J
+

√
3 log(4T )

2i

)

≤ 3
√
LK√

t− 1ap+1
t

(√
7Jp+

√
3 log(4T )

2J−2

)
.
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Then

P

(
sup
z

∣∣Z(u; z)− Z(u; zJ)
∣∣ ≥ 3

√
LK√

t− 1ap+1
t

(√
7Jp+

√
3 log(4T )

2J−2

))

≤ P

(
sup
z

∣∣Z(u; z)− Z(u; zJ)
∣∣ ≥ ∞∑

i=J

ϵ(i)

)

≤ P

( ∞∑
i=J

sup
z

∣∣Z(u; zi+1)− Z(u; zi)
∣∣ ≥ ∞∑

i=M

ϵ(i)

)

≤
∞∑
i=J

P
(
sup
z

∣∣Z(u; zi+1)− Z(u; zi)
∣∣ ≥ ϵ(i)

)

≤
∞∑
i=J

2−pi 1

8T 3
≤ 1

8T 3

∞∑
i=J

2−i ≤ 1

8T 3
. (16)

Combining equation 16 and equation 15, we have

1

4T 3
≥ P

(
sup
z

∣∣Z(u; z)− Z(u; zJ)
∣∣ ≥ 3

√
LK√

t− 1ap+1
t

(√
7Jp+

√
3 log(4T )

2J−2

))

+ P

sup
z

Z(u; zJ) ≥

√
2p log

(
ϵ−1
J

)
+ 3 log(4T )

C1(t− 1)apt


≥ P

sup
z

Z(u; z) ≥

√
2p log

(
ϵ−1
J

)
+ 3 log(4T )

C1(t− 1)apt
+

3
√
LK√

t− 1ap+1
t

(√
7Jp+

√
3 log(4T )

2J−2

)
≥ P

(
sup
z

Z(u; z) ≥

√
2pJ + 3 log(4T )

C1(t− 1)apt
+

3
√
LK√

t− 1ap+1
t

(√
7Jp+

√
3 log(4T )

2J−2

))
.

To balance the terms, we choose J = log
(
a
− p+2

2
t

)
= p+2

2 log
(
a−1
t

)
. Then there is another constant

C2 that depends on LK , fz , ∥K∥∞, and ∥K∥2L2
, such that

1

4T 3
≥ P

sup
z

Z(u; z) ≥ C2

√
p2 log(a−1

t ) + log(4T )

(t− 1)apt

. (17)

Note here we have also used
√
a+ b ≤

√
a+
√
b ≤ 2

√
a+ b for a, b > 0. By the same argument,

we also bound

1

4T 3
≥ P

sup
z
−Z(u; z) ≥ C2

√
p2 log(a−1

t ) + log(4T )

(t− 1)apt

. (18)

Taking a union bound over u ∈ 1
T [T ] and equation 17 and equation 18 yields the desired bound

for |hat(u; z) − E[hat(u; z)]|. The second part of the claim follows the same proof. Finally, note
t− 1 ≥ t

2 for t ≥ 2.

D.2 KERNEL REGRESSION UNDER BENIGN NOISE

The following lemma bounds the error
∣∣∣Q̂(u; z)−Q(u; z)

∣∣∣ at each time t, which proves Lemma 3.5
when the DM observes the precise features zt. To obtain Lemma 3.5 with general observation errors,
one simply apply Lemma D.4 and Lemma D.6 in the next section with the chosen bandwidth.
Lemma D.4 (Lemma 3.5 with precise features). Suppose Assumptions 1–3 and 5 holds, t > 1, and

|ϵ̂τ − ϵτ | ≤ ξτ for every τ ∈ [t − 1]. Let the bandwidth be at = cκ

(
cFT

log(T )

) 1
ω

. Then there exists
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a kernel K, defined as in equation 19, such that the NW estimator in equation 5 satisfies: with
probability at least 1− T−2,

∣∣∣Q̂(u; z)−Q(u; z)
∣∣∣ ≤ γ′

fat
(z)

(
L
ξ

t
+

p√
t

)

for every u ∈ C and z ∈ Z , with γ′ = O
(
log(T )

p
ω log log(T )

1
2

)
.

Proof. The proof is the same as that of Lemma D.1, except for replacing Lemma D.2 by D.5.

The next result improves on Lemma D.2 under the additional regularity condition in Assumption 5.
In particular, we consider a kernel defined as follows (Fan et al., 2024):

K(y) = T −1[κ](y) =
1

(2π)p

∫
Rp

κ(z) exp
(
iy⊤z

)
dz (19)

which is the inverse Fourier Transform of some regular function κ : Rp → R that satisfies

κ(z) =

{
1, ∥z∥2 ≤ cκ,

gκ(∥z∥2), ∥z∥2 > cκ

for some constant cκ > 0 and function gκ ∈ C0 ∪ L2 with ∥gκ∥∞ ≤ gκ and gκ(cκ) = 1 (to make it
continuous).

Lemma D.5. Suppose Assumptions 1–3 and 5 hold, t > 1, and |ϵ̂τ − ϵτ | ≤ ξτ for every τ ∈ [t− 1].
Recall we denote ξ =

∑
τ<t ξτ . For every u ∈ C and z ∈ Z , we have

|E[hat
(z)]− h(u; z)| ≤ CFT√

T
+ 2fzLξ/t

and

|E[fat(z)]− fz(z)| ≤
CFT√

T

with bandwidth at = cκ

(
cFT

log(T )

) 1
ω

, where the constant is

CFT =
gκ + 1

(2π)p

∫
Rp

CFT exp(−cFT ∥y∥ω2 )dy.

Proof. We will prove this argument for fz , and the proof for h(u; z) follows similarly as in
Lemma D.2. Let us denote ϕ = T [fz]. Recall from Lemma D.2 that we have

E[fat(z)]− fz(z) =

∫
Rp

Kat(z
′ − z)fz(z

′)dz′ − fz(z)

(a)
= T −1 ◦ (T [fz(·)]T [Kat(−·)]− T [fz(·)])(z)
= T −1[ϕ(·)(κ(−at·)− 1)](z)

=
1

(2π)p

∫
Rp

ϕ(y)(κ(−aty)− 1) exp
(
iz⊤y

)
dy
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where (a) uses the convolution theorem. Then by our choice of κ, we have

|E[fat(z)]− fz(z)| ≤
1

(2π)p

∫
Rp

∣∣ϕ(y)(κ(−aty)− 1) exp
(
iz⊤y

)∣∣dy
≤ 1

(2π)p

∫
Rp

|ϕ(y)||κ(−aty)− 1|dy

=
1

(2π)p

∫
y:∥y∥2>

cκ
at

|ϕ(y)||κ(−aty)− 1|dy

≤ gκ + 1

(2π)p

∫
y:∥y∥2>

cκ
at

|ϕ(y)|dy

(b)
≤ gκ + 1

(2π)p

∫
y:∥y∥2>

cκ
at

CFT exp(−cFT ∥y∥ω2 )dy

≤ gκ + 1

(2π)p

∫
Rp

CFT exp

(
−cFT

(
∥y∥2 +

cκ
at

)ω)
dy

≤ gκ + 1

(2π)p

∫
Rp

CFT exp

(
−cFT

(
∥y∥ω2 +

(
cκ
at

)ω))
dy

where (b) is from Assumption 5. Choose at = cκ

(
cFT

log(T )

) 1
ω

and we arrive at

|E[fat
(z)]− fz(z)| ≤

CFT√
T

with constant CFT = gκ+1
(2π)p

∫
Rp CFT exp(−cFT ∥y∥ω2 )dy.

D.3 KERNEL REGRESSION WITH FEATURE ERRORS

Recall that the DM applies kernel regression to the potentially inaccurate features {ẑτ}τ<t and target
ẑ, with the guarantee that ∥ẑτ − zτ∥2 ≤ δτ and ∥ẑ − z∥2 ≤ δt. Also recall that δτ is assumed to be
Fτ -measurable. And the NW estimator in equation 6 is built as

Q̃t(u; ẑ) =
1

t−1

∑t−1
τ=1 Kat(ẑτ − ẑ)1[ϵ̂τ ≤ u]

1
t−1

∑t−1
τ=1 Kat

(ẑτ − ẑ)
=:

h̃at
(u; z)

f̃at
(z)

.

Note the functions h̃at
and f̃at

depend on z through the erroneous observation ẑ. It now suffices
to bound the difference

∣∣∣Q̃t(u; ẑ)− Q̂t(u; z)
∣∣∣, given Lemma 3.3. Towards this goal and similar to

equation 13, observe that

Q̃t(u; ẑ)− Q̂t(u; z) =
h̃at

(u; z)

f̃at
(z)

− hat
(u; z)

fat(z)

=
h̃at

(u; z)− hat
(u; z)

fat(z)
+ h̃at(u; z)

(
1

f̃at
(z)
− 1

fat(z)

)

=
h̃at

(u; z)− hat
(u; z)

fat
(z)

+
h̃at

(u; z)

f̃at(z)
· fat

(z)− f̃at
(z)

fat
(z)

=
h̃at(u; z)− hat(u; z)

fat
(z)

+ Q̃t(u; ẑ)
fat(z)− f̃at(z)

fat
(z)

.

Since Q̃t(u; ẑ) ∈ [0, 1], we have

∣∣∣Q̃t(u; ẑ)− Q̂t(u; z)
∣∣∣ ≤

∣∣∣h̃at
(u; z)− hat

(u; z)
∣∣∣+ ∣∣∣f̃at

(z)− fat
(z)
∣∣∣

fat
(z)

. (20)
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Let us first consider the term
∣∣∣h̃at

(u; z)− hat
(u; z)

∣∣∣. It holds that

∣∣∣h̃at(u; z)− hat(u; z)
∣∣∣ ≤ ∣∣∣E[h̃at(u; z)− hat(u; z)

]∣∣∣+ ∣∣∣h̃at(u; z)− E
[
h̃at(u; z)

]∣∣∣
+ |hat(u; z)− E[hat(u; z)]| (21)

where the last term is readily handled by Lemma D.3. We remark that the deviation term∣∣∣h̃at
(u; z)− E

[
h̃at

(u; z)
]∣∣∣ can be bounded following almost the same lines of the proof of

Lemma D.3, and is hence omitted. This holds thanks to the fact that the errors δτ is Fτ -measurable
and thus the source of the variance in h̃at is the same as that in hat . Then the difference in expectation
is as follows:

∣∣∣E[h̃at
(u; z)− hat

(u; z)
]∣∣∣

≤ 1

t− 1

∑
τ<t

|Eτ [(Kat
(ẑτ − ẑ)−Kat

(zτ − z))Q(u+ ϵτ − ϵ̂τ ; zτ )]|

=
1

t− 1

∑
τ<t

∣∣∣∣∫
Rp

(Kat
(ẑτ − ẑ)−Kat

(zτ − z))Q(u+ ϵτ − ϵ̂τ ; zτ )fz(zτ )dzτ

∣∣∣∣
=

1

t− 1

∑
τ<t

∣∣∣∣∫
Rp

(Kat
(ẑτ − ẑ)−Kat

(zτ − z))Q(u+ ϵτ − ϵ̂τ ; zτ )fz(zτ )dzτ

∣∣∣∣. (22)

By Assumption 1, Q(u+ ϵτ − ϵ̂τ ; zτ ) ≤ Q(u; zτ ) +L · |ϵτ − ϵ̂τ | ≤ Q(u; zτ ) +Lξτ contributes an
error that depends on the estimation of θ∗. Then

∫
Rp

(Kat
(ẑτ − ẑ)−Kat

(zτ − z))Q(u+ ϵτ − ϵ̂τ ; zτ )fz(zτ )dzτ

≤
∫
Rp

(Kat(ẑτ − ẑ)−Kat(zτ − z))Q(u; zτ )fz(zτ )dzτ

+ Lξτ

∫
Rp

(Kat
(ẑτ − ẑ)−Kat

(zτ − z))fz(zτ )dzτ

=

∫
Rp

(Kat
(ẑτ − ẑ)−Kat

(zτ − z))h(u; zτ )dzτ

+ Lξτ

∫
Rp

(Kat(ẑτ − ẑ)−Kat(zτ − z))fz(zτ )dzτ

=

∫
Rp

(
K

(
y +

(ẑτ − zτ ) + (ẑ − z)

at

)
−K(y)

)
h(u; zτ + aty)dy︸ ︷︷ ︸

(A)

+ Lξτ

∫
Rp

(
K

(
y +

(ẑτ − zτ ) + (ẑ − z)

at

)
−K(y)

)
fz(zτ + aty)dy︸ ︷︷ ︸

(B)

.
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Let vτ := (ẑτ−zτ )+(ẑ−z)
at

marks the offset for the ease of notation. The first term (A) proceeds as
follows:

(A) =

∫
Rp

(K(y + vτ )−K(y))h(u; zτ + aty)dy

(a)
≤
∫
Rp

(K(y + vτ )−K(y))h(u; zτ )dy︸ ︷︷ ︸
=0 as h(u; zτ ) is irrelevant to y

+apt fzL

∫
Rp

(K(y + vτ )−K(y))∥y∥2dy

= apt fzL

(∫
Rp

K(y + vτ )∥y∥2dy −
∫
Rp

K(y)∥y∥dy
)

(b)
≤ apt fzL

(∫
Rp

K(y′)∥y′∥2dy′ +

∫
Rp

K(y′)∥vτ∥2dy′ −
∫
Rp

K(y)∥y∥2dy
)

= apt fzL∥vτ∥2
≤ fzL(∥ẑτ − zτ∥2 + ∥ẑ − z∥2) ≤ fzL(δτ + δt) (23)

where (a) uses the Lipschitz constant fzL of the conditional probability h(u; z) = Q(u; z)fz(z)
from Assumption 1 and 3, and (b) applies a change of variable y′ = y + vτ .

Similarly, the other term is
(B) ≤ LzLξτ (δτ + δt). (24)

Combining equation 23, 24, and equation 22, we obtain∣∣∣E[h̃at
(u; z)− hat

(u; z)
]∣∣∣ ≤ L

t− 1

∑
τ<t

(
fz + Lzξτ

)
(δτ + δt).

Substituting this back in equation 21 and applying Lemma D.3 on the deviation terms leads to, with
probability at least 1− 2T−2,

∣∣∣h̃at(u; z)− hat(u; z)
∣∣∣ ≤ C̃2

t− 1

∑
τ<t

(1 + ξτ )(δτ + δt) + 2C2

√
p2 log(a−1

t ) + log(4T )

tapt
(25)

where C̃2 = Lmax{fz, Lz} depends on the Lipschitz constants and density bound, and C2 is the
constant in Lemma D.3 that depends on both K and fz .

Applying the same argument to f̃at
gives the bound with probability at least 1− 2T−2,

∣∣∣f̃at(z)− fat(z)
∣∣∣ ≤ LzL

t− 1

∑
τ<t

(1 + ξτ )(δτ + δt) + 2C ′
2

√
p2 log(a−1

t ) + log(4T )

tapt
. (26)

Plugging equation 25 and 26 back into equation 20 gives the final error bound:

Lemma D.6 (Restatement of Lemma 3.4). Suppose Assumptions 1–3 hold, t > 1, and |ϵτ − ϵ̂τ | ≤ ξτ
for every τ ∈ [t− 1]. Let the NW estimators Q̂t and Q̃t be defined as in equation 5 and 6 respectively.
Then with probability at least 1− 4T−2, for every u ∈ C and z ∈ Z , we have

∣∣∣Q̃t(u; ẑ)− Q̂t(u; z)
∣∣∣ ≤ 1

fat
(z)

(
c1

t− 1

∑
τ<t

(1 + ξτ )(δτ + δt) + c2

√
p2 log(4T )

tapt

)
.

The constant c1 = 2Lmax{fz, Lz} and the constant c2 depends on both K and fz .

Note we get Lemma 3.4 by plugging in the chosen bandwidth at = t−
1

p+2 p
2

p+2 . Combin-
ing Lemma 3.4 with Lemma D.4 and the chosen bandwidth at = cκ(cFT / log(T ))

1/ω, we get
Lemma 3.5.
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E OMITTED EXPERIMENT RESULTS AND DETAILS IN SECTION 5

E.1 SYNTHETIC DATASETS

We consider the following two demand mean models:

(A) Linear demand mean: f∗(xt) = θ⊤
∗ xt, which is widely used in various literature.

(B) Nonlinear demand mean f∗(xt) = sin(2 · θ⊤
∗ xt) + 2 exp(−16 · (θ⊤

∗ xt)
2), which has been

studied in high-dimensional quantile regression (Zhu et al., 2012) and offline robust newsvendor
inventory control (Zhang et al., 2024).

For the noise models, we focus on the following three setups, where ηt is sampled i.i.d. from standard
normal distribution and truncated at [−1, 1]:
(1) Linear Heteroskedastic Noise (LH): ϵt = (β⊤xt) · ηt, which models scenarios where noise

scales linearly with features. such as customer volume or promotion intensity.
(2) Nonlinear Heteroskedastic Noise (NLH): ϵt =

√
|β⊤xt| · (1− |β⊤xt|)·ηt. This model captures

situations where uncertainty is highest at intermediate levels of a contextual factor and decreases
near the extremes, reflecting saturation effects or boundary constraints.

(3) Sinusoidal Heteroskedastic Noise (SH): ϵt = sin(10 · β⊤xt) · ηt. This model reflects settings
with periodic or seasonal variation in uncertainty, where the randomness in demand oscillates
with some latent or cyclical signal.

In all settings, θ∗ and β ∈ Rd are fixed, sampled from the standard multivariate Gaussian distribution
and normalized to have ℓ2-norm bounded by 1 as well. The context vector xt ∈ Rd is also drawn
i.i.d. from the standard multivariate Gaussian distribution and normalized to have ∥xt∥2 ≤ 1. We
assume that the low-dimensional feature zt := β⊤xt is known to the DM, but the dependence of
the noise remains unknown. The intrinsic dimension in our numerical studies is thereby p = 1. The
cost parameters in equation 1 are set to be h = 0.05 and b = 0.95. All experiments were conducted
locally on a laptop with Apple M2 chip, 8-core ARM64 CPU, 8 GB memory.

First, for the linear demand mean model (A): we fix the time horizon T = 3000 and context dimension
d ∈ {5, 10, 20}. We only present the comparison between OSGD in Ding et al. (2024), in which they
conduct gradient descent directly over the d-dimensional linear coefficients, and our Algorithm 2
with ridge regression estimator in the following Figure 1. As the performance of OSGD does not
significantly change with d both theoretically and empirically, we only include its performance with
d = 10 for clarity. We repeat each of the settings 20 times and plot the average cumulative regrets as
well as their 95% confidence region.

(a) LH Model (b) NLH Model (c) SH Model

Figure 1: Regret under different noise models for linear demand mean

In the LH model, the optimal solution remains as a linear function, and hence OSGD is still theoret-
ically optimal with Õ(

√
T ) regret. Yet in Figure 1(a), OSGD’s performance empirically degrades

under this mild heteroskedasticity. The models in Figure 1(b) and (c) are more involved and represent
nonlinear and oscillatory noise structures. These are the scenarios where OSGD fails both theoret-
ically and practically. In contrast, our algorithm consistently achieves lower regret and sublinear
growth across all demand models. These numerical results highlight the significance of accounting
for heteroskedasticity in practice.

For the nonlinear demand mean model (B): we fix the time horizon T = 20000 and context dimension
d ∈ {10, 50}. Now we only compare the performance of OSGD and Algorithm 2 with neural network
estimator. We implement a two-layer neural network with hidden dimensions 128 and 64. The
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network is trained using the AdamW optimizer with learning rate 0.002 and weight decay parameter
10−5. During training, the number of epochs and batch size are dynamically adjusted according to
the current horizon: for a larger t, we will apply a smaller number of training epochs J with a larger
batch, so that we can make full use of the samples when t is small and avoid a large model training
time when t is large. All inputs and outputs are standardized before training, and predictions are
transformed back to the original scale. We repeat each of the settings 5 times (each requires a running
time of around 120 minutes) and plot the average cumulative regrets as well as their 95% confidence
region. The result is shown in the following figure:

(a) LH Model (b) NLH Model (c) SH Model

Figure 2: Regret under different noise models for nonlinear demand mean

As can be seen from Figure 2: under the highly nonlinear and oscillatory mean demand models,
Algorithm 2 with the neural network estimator significantly outperforms OSGD as well. While
OSGD suffers from persistent model misspecification, our approach adapts flexibly to the nonlinear
structure and achieves sublinear growth of regret, which demonstrates the robustness of our algorithm
against complex demand patterns. Besides, the performance of Algorithm 2 with neural networks
does not necessarily degenerate as the dimension d increases.

E.2 REAL-WORLD DATASETS

We use the M5 Forecasting–Accuracy dataset from Kaggle, which is widely used for evaluating
forecasting and inventory management algorithms. The dataset contains daily sales records of more
than 30,000 Walmart products across three U.S. states (California, Texas, and Wisconsin), covering
a time horizon of 1,941 days. In addition to sales quantities, it provides rich feature information
such as item attributes (category, department), store/location information, calendar variables (events,
holidays), and price data (including temporary promotions). See Howard et al. (2020) for a detailed
illustration of feature information.

Among all the products, we select 40 items that have the most nonzero selling periods. Specifically,
for all these items, they have selling records of more than 1,900 days. The items are all under the food
category, and the average sales count is 35.2 units per day. Before observing the demand realization,
the DM can observe a d = 24 dimensional feature vector that helps her make an inventory order
decision.

To see that the context-aware noise is indeed an issue in the real-world dataset, we first present a box
plot on how the demand mean and variance varies with different values of feature. We consider two
features: (1) "Is Weekend", where 1 denotes the weekend and 0 denotes the weekday; (2) "Sell Price",
where we have 3 different prices in total.

We can see from Figure 3 that: (1) for Is Weekend, both the demand mean and variance of de-
mand differ significantly between weekdays and weekends, indicating that sales behavior changes
systematically across these contexts; (2) for different Sell Price, while the mean demand across
the three price does not differ substantially, at the highest price (1.68), the variance of demand is
significantly larger. These results clearly indicate that the variance of demand depends on certain
contextual features. As we argued earlier, models with context-independent noise cannot capture
such heteroskedastic patterns. This highlights the practical importance of studying our proposed
formulation with context-aware noise.

For the details of implementing Algorithm 2 in this real-world dataset: Note that we do not know
exactly the true low-dimensional feature zt (e.g. as a function of the context xt). Instead, we will
use the estimated demand mean ẑt := f̂t(xt) at each period t as a hopefully good approximation of
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Figure 3: Context-aware heteroskedasticity in real-world dataset

zt, with p = 1. The details of ridge regression and neural networks are the same as in the synthetic
datasets in Appendix E.1.
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