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ABSTRACT

We study the online contextual inventory control problem with perishable goods.
In this work, we propose and consider a more realistic—and more challenging—
setting where both the expected demand and the (residual) noise distribution
depend on the observable features. Surprisingly, little is known when the noise is
context-dependent, which captures the heteroskedastic uncertainty in demand that
is important in inventory control. The optimal inventory quantity in this general
setting is no longer a linear function of features (unlike the case when the expected
demand is linear and the noise is i.i.d.), making online gradient descent—the gold
standard therein—inapplicable. We first propose an algorithm that achieves the

near-optimal regret O(\/diT +T %) under linear expected demand and context-
aware noise. Here d is the feature dimension, and p < d is an underlying dimension
that captures the intrinsic complexity of the noise distribution. When the expected
demand is nonlinear, we propose to use neural networks to capture the nonlinearity,

~ p+1 .
and prove a regret bound O(v a1 + Tﬁ) under over-parameterized networks,
where o depends on the nonlinear demand complexity and the network architecture.
Additionally, under mild regularity conditions on the noise, the exponential factor

T2 in these regret bounds is improved to pv/T. Finally, we provide a matching

minimax lower bound Q(vdT + T 5%) under linear expected demand. To our
best knowledge, our results provide the first minimax optimal characterization
for online inventory control with context-dependent noise and the first theoretical
guarantees when the expected demand is nonlinear in features.

1 INTRODUCTION

Inventory control under uncertain demand is a central problem in operations management. In many
real-world systems, a decision-maker (DM) must repeatedly choose inventory levels over a time
horizon, facing random demand and incurring overstocking or understocking costs (Zipkin, 2000). A
widely used modeling approach assumes that the demand at time ¢ takes the form D; = 0, ; + ¢;,
where 0, € R? is an unknown parameter, x; € R< the observable context variables, and €; an i.i.d.
random noise independent of context (Ban & Rudin, |2019; |Ding et al.,|2024; [Huang et al.| 2025)).

However, despite its statistical simplicity and interpretability, this linear model can fail in practice. In
many applications, the variability of demand depends strongly on the contextual information. For
example, in e-commerce platforms, demand uncertainty can vary with user types, geographic regions,
or temporal factors such as holidays or promotions. Such heteroskedasticity is well-documented in
the empirical inventory literature (Zhang| |[2007} [Kanet et al., [2010j Katanyukul et al., 2011), yet this
cannot be captured by the standard homoskedastic model.

To gain more insights on when the heteroskedasticity will occur, consider a natural e-commerce
setting where customer-level purchase decisions are modeled as independent Bernoulli events: at
time ¢, the demand arises from n independent customers, each purchasing with probability p(x;)
depending on the context ;. Then the aggregate demand D, follows a Binomial distribution with
mean np(x,) and variance np(x)(1 — p(x;)), both of which are context-dependent. For instance, if
we consider the sales of umbrellas, when there is zero precipitation, p(x;) is close to 0 and the demand
is almost deterministic. When the precipitation level is intermediate, p(x;) can be at a constant
level, leading to an O(n) variance. Nonetheless, this simple example is not captured by the standard
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demand model even if np(x;) is linear in @, and failing to properly capture the heteroskedasticity
can lead to significant additional loss, as highlighted by the empirical studies above.

In this paper, we study online inventory control with a confext-aware demand distribution, in a general
semi-parametric framework. We crucially allow the noise distribution to vary with context through
a potentially lower-dimensional feature z; € RP. Here z; may be either a transformation of x;,
a subset of it, or simply x;, itself; and p < d reflects the intrinsic complexity of the distributional
dependence of noise on the context. Note p = 1 in the Binomial model above. Our contributions are
threefold:

* We formalize the setting of online contextual inventory control with context-aware demand

distributions, and characterize a minimax regret lower bound Q(vdT + Tz%é) for the linear
demand model.

* We propose an algorithm that achieves the near-optimal regret 9] (vdT + T%) for the linear

model and 6(\/ ol + T%) for general nonlinear demand model that the literature has not
addressed. « characterizes the complexity of the nonlinear model.

» Under mild regularity conditions on noise, the regret guarantee is improved to 9} (vdT + p\/T)
and O(v/aT + pV/T) respectively.

1.1 LITERATURE REVIEW

When the demand distribution is known, the classic newsvendor model provides a closed-form
solution for the optimal order quantity (Zipkin, [2000). However, this assumption is rarely satisfied in
practice, and the DM must learn the demand structure on the fly. This has led to a surge of interest
in the online learning-while-optimizing paradigm in inventory control (Huh & Rusmevichientong,
2009; |Chen & Chaol |2020; |[Zhang et al.}|2020; [Davoodi et al.,2022). Many of these works build on
Online Stochastic Gradient Descent (OSGD), exploiting the convexity of the expected loss function
in the inventory level.

These studies, however, often ignore demand-side covariates. More recently, contextual inventory
control has received increasing attention, where the demand depends on observable features such
as weather, product metadata, or customer information; see [Ban & Rudin|(2019); Xu et al.|(2023);
Zhao et al.| (2024)); Zhang et al.| (2024)); Q1 et al.| (2024)); Bertsimas & Kallus|(2020); Fu et al.| (2024).
Most of these works focus on offline learning or distributionally robust optimization, and do not
address the online decision-making setting. To the best of our knowledge, the only work that directly
addresses the online contextual inventory control problem is|Ding et al.|(2024), which studies the
linear demand model with context-independent noises. Their results crucially rely on that the optimal
context-dependent solution is linear in the context under i.i.d. noise, allowing them to compute
the loss gradient and apply OSGD. In contrast, we study a more general setting where the noise
distribution may depend on the context, rendering gradient-based methods unreliable.

To tackle this problem, we take an estimation-to-decision perspective and draw inspiration from the
linear bandit literature. Linear bandits address the setting where the DM repeatedly chooses from K
actions, each assigned with an action-specific context at every time ¢, and collects rewards linear in
the chosen action’s context (L1 et al., 2010; |Zhou et al., |2020). While not directly applicable, this
line of research provides rich algorithmic ideas for estimating underlying linear structures under
complicated dependencies in online learning. These ideas shed light to various other fields of
contextual operations management, including dynamic pricing (Cohen et al., | 2020; Tulli1 et al.| [2024)
and online advertising (Badanidiyuru et al.| 2023; Wen et al.,[2025). Our work leverages some of
these insights and contributes to this broad class of literature.

Notations Denote ()" := max{z,0} for x € R and [N] = {1,2,...,N} for N € N. Let
lz]|a := Va&T Az for positive semi-definite matrix A. For a cumulative distribution function
(CDF) @, we use Q! to denote the corresponding quantile function. We use the filtration F; to
denote the available information up to the beginning of time ¢, and write E,[X] = E[X|F;] for any
Fi-measurable random variable X. We use the standard notations O, {2, © to denote the asymptotic
behaviors. In addition, we use O(+) to hide logarithmic factors and the dependence on parameters
other than d, T', and p (i.e., it hides the parameters b, h, M, L).
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2 PROBLEM SETUP

We consider the online inventory control problem with contextual information. Over a time horizon
t € [T)], the DM observes a context vector ; € R? and chooses an inventory level ¢; € [0, M],
where M > 0 is a known upper bound for the demand. Then a random demand D; € [0, M] is
realized, and the DM incurs a loss (conditioned on the observed context x;) defined as follows:

ilee) = hIE[(ct D" |mt] + bE[(Dt —e)t |mt},

where the first part corresponds to overstocking with a holding cost of & per unit, and the second
part corresponds to understocking with a lost-sale opportunity cost of b per unit. At the end of each
period ¢, the DM observes demand realization D;, and any amount of overstocking perishes. The
DM’s objective is to minimize the cumulative loss over 1" periods.

In terms of modeling, we assume that the demand satisfies D; = f,(x;)+¢;, where f. : RY — [0, M]
is an unknown model characterizing the demand mean, and ¢, is a mean-zero noise. We will cover
both linear and nonlinear f, in Section Importantly, we allow the distribution of ¢; to be time-
varying: let Q;(-) = Q(+; z¢) denote the conditional CDF of ¢, given relevant features z; € RP,
and the DM only observes z; € RP which may be different from z,. One can consider z; as a
transformation or subset of the context x;. For clarity, throughout this work, we refer to x; as context
and z; as feature. This model is flexible and thereby powerful in the following sense:

Encoding prior The dependence of (Q on z; is unrestricted, so the DM has full flexibility in choosing
which features to include in z; and in what form. For instance, if () depends only on a single temporal
variable within the context x; and the DM knows this, then setting z; to be this temporal factor
with p = 1 suffices. Otherwise, the DM may include a larger subset of x; to capture the potential
dependence, which increases the feature dimension p. In this way, the DM’s prior belief about the
structure of () is encoded directly through the construction of z; and is reflected in the dimension p.

Learning features We allow the observed features Z; of the DM to deviate from the true z;, which
models the scenario when the DM adopts features that are themselves learned online. Examples
include (1) the estimated demand mean and/or (2) predictions generated by black-box oracles such as
language models that get updated when new data becomes available.

Throughout this work, we make the following assumption on the CDF
Assumption 1 (Lipschitz CDF). The noise CDF Q(u; z) is L-Lipschitz in both u and z.

We also make the following assumption on the contexts x;. In particular, we do not require the lower
bound assumption on the covariance matrix of Fy, i.e. Exp, [wa:T] > M for some constant A > 0,
which is common in the literature of online learning with contexts (Ding et al.,[2024} [Fan et al.| [2024;
Badanidiyuru et al., [2023). This would require the contexts to be distributed “uniformly” over all
directions and can be restrictive.

Additionally, we save the common but strong assumption f,(z:) > ¢ > 0 for constant ¢ in the
non-parametric literature. We bypass both of them by showing convergence only along the directions
of the realized contexts and features. More details are deferred until Lemma[3.3]

Assumption 2 (Stochastic contexts). The contexts x; € X are generated i.i.d. from an underlying
distribution with density fz. For simplicity, we assume X lies in the unit ball, i.e. ||x¢||2 < 1.
Assumption 3 (Stochastic features). The features z, € Z are i.i.d. with density f,, which is
L .-Lipschitz and upper bounded by f . Also, ||z¢||2 < 1 lies in the unit ball.

Under the above model, the expected loss at period ¢ admits the following form.

c M
t(c) = h /0 QU — fu(@): z)dy + b / 1= Qy — ful@e): z)dy. )

To formalize the learning objective, we compete against the optimal time-varying oracle that has full
knowledge of f., @, and {z;}+. The dynamic regret is defined as

T
Reg(m) =E [Z l(er) — 4y (Cr)] )

"Note that it is equivalent to assume a Lipschitz demand CDF and to assume a Lipschitz noise CDF.
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where ¢; is the inventory decision made by the DM’s policy m, and ¢; := arg min (o a7 ¢¢(c) is the
optimal decision.

3 AN ALGORITHM WITH MATCHING UPPER BOUND

In this section, we introduce and analyze our algorithm for contextual inventory control. Our algorithm
builds on two components: (1) an oracle that generates an estimated demand mean conditioned on
the context x; based on historical observations, and (2) a CDF estimator that runs Kernel regression
on the noise realizations, but with both measurement and observation errors. The measurement errors
arise from the fact that we do not directly observe the target quantity—the noise e;—and can only
approximate it with the estimated demand mean. The observation errors refer to the deviation of the
DM’s features {Zz; }; from the actual {z;};, which are taken as input of the noise CDF Q.

The algorithm is relatively simple to implement once given the aforementioned oracle. Behind its
nice and simple form, however, the core challenge lies in deriving theoretical guarantees under the
presence of such measurement errors and the absence of strong assumptions commonly seen in the
non-parametric regression literature, e.g. (Fan et al.| 2024, Assumption 4.2) that requires a constant
lower bound of the feature density f.

3.1 DEMAND MEAN ESTIMATION ORACLE

For notational convenience, we formulate the estimation oracle for the demand mean E;[D;] as
follows. This estimation oracle serves as a black-box in Algorithm[2] In the remaining section, we
give two examples and show how to derive the corresponding oracle.
Assumption 4 (Mean Estimation Oracle). At each time t, the oracle takes in historical observations
{(+, D;)}r<: and context x; and outputs an estimated mean Dy such that: with probability at least
1-7T72

|Dt — Et [Dt]l S Et for some §t 2 0.

Remark 1. Before proceeding, we remark that our algorithm requires no knowledge of the error
bound &;. It is only used in a "plug-in" manner in the regret analysis.

3.1.1 LINEAR DEMAND

First, consider the linear demand model D; = 6, z; + ¢; with ||0,||» < 1. Albeit appearing simple,
linear models have drawn wide attention and efforts in online learning literature, such as contextual
bandits (Abbasi- Yadkori et al., 2011} |Chu et al., 2011}, ridge bandits (Rajaraman et al., [2024), and
online advertising (Badanidiyuru et al.,[2023; Wen et al., 2025). The recent work (Ding et al., 2024)
in inventory control also focused on this linear demand model.

An oracle is given by a Ridge regression on the data {(x,, D)}, <¢. The closed-form solution is
é\t == A;lbt (2)

where A; =T+ __, x,x] € R4 and b, = YDz € R?. Thanks to existing results
in linear contextual bandits, the estimation error conditioned on the new context x; is bounded as
follows:

Lemma 3.1. Let 3 = \/log(2T) + 1. With probability at least 1 — T2, it holds that
16 @, — 02| < Blla]| 41

Moreover, for any t' € [T, it holds that Zf:l ||:1:,g||?4,1 < 2dlog(t).

The error bound S||x:|| A at time ¢ depends on how well 8, learns along the direction of x,
captured by the interaction between x; and A;. While it is not monotone, fortunately, the sum of
these errors can be bounded by an elliptical potential lemma; see e.g. |Abbasi-Yadkori et al.| (2011));
Chu et al.| (2011)). We give more details in Appendix |B|for completeness.
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Algorithm 1: Training Routine for Neural Network

Input: Epochs J, data {(x,, D;)},<:, regularization A > 0, step size > 0.
Initialize: Set initial parameter §(0) according to Appendix
Define loss £(8) = 1 3> _ (D, — f(z,;0))> + A2[|0)]2.
forj=1,2,...,Jdo

Update §t(j) — 877D v,
Return ét — @5‘7).

3.1.2 NONLINEAR DEMAND VIA NEURAL NETWORKS

Now we address a more general demand D; = f.(x;) + ¢; where f, : R — R is an arbitrary
nonlinear function. To the best of our knowledge, such a general nonlinear formulation has not
been explored in the online inventory literature. This section proposes to learn f, through an over-
parametrized neural network and takes inspiration from NeuralUCB (Zhou et al.,|2020)) to develop
an error bound. Specifically, a network with width w > 0 and depth K > 0 is defined aﬂ

f(x;0) = VuWgo(Wg _10(---a(Wizx)---)) 3)

where o denotes the element-wise ReLU function, weight matrices W; € R**?¢ Wy € R*% and
WieR"*%fork=2,...,K—1.

Due to space limit, we defer the details of the neural analysis to Appendix [C] At a high level, the
following high-probability error bound relies on the idea of Neural Tangent Kernel (NTK) that when
w is sufficiently large, i.e. when the network is over-parametrized, it becomes approximately linear
in the parameter space (Jacot et al.,|2018). While it remains a central challenge to derive analogous
results for smaller networks in current deep learning theory, we will empirically validate in Section 3]
that small networks are typically sufficient for capturing demand mean and yielding a vanishing
regret in practice.

Lemma 3.2 (Informal). Let 0t be trained using Algorlthm I at time t. When we use sufficiently

large epochs J = QTK/N), widthw = Q(poly(T, K, A\™1)), and small step size n = O((wTK +
w\) ™), with probability at least 1 — T2, we have

|f (24 0;) — fel@m)| <&

for some & > 0 that satisfies: For any t' € [T, it holds that Zt &= (d log(t")) where the

factor d depends on a function norm of the ground truth f, and the effective dimension of the NTK
matrix of f(+;0); see Appendix|C.3|for details.

3.2 ALGORITHM

Before going into the details of the more involved non-parametric estimation, we present our algorithm
to give the readers an idea of how the mean estimation oracles are used and how their error complicates
the non-parametric regression. At each time ¢, Algorithm 2] computes an estimated demand mean
usmg a given oracle that satisfies Assumption |4 I and an estimated noise CDF Qt that will be discussed
in the next section. Then the algorithm computes a surrogate loss

li(c) = h/(JC@t(y—ﬁt)dy+b/cM {1 —Qvt(y—ﬁt)} dy )

and simply orders the inventory level up to the maximizer with respect to ZAt

Nonetheless, classical non-parametric regression builds on the precise observations of the covariates
{z; }+<: and the variable realizations {¢; } <, none of which is available in our case. This introduces
the core challenge in the next section.

Note that if the input x is concatenated with a constant entry 1, this formulation subsumes the neural
networks with biases, so their representation power remains the same when trained near-optimally.
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Algorithm 2: Contextual online inventory control

Input: Time horizon T, choice space C = [0, M], unit costs b, h > 0, Lipschitz constant L > 0,
a mean estimation oracle O.

fort=1,2,...,7Tdo

Observe the context vector z; € R? and the transformed features 2z, € RP.

Generate estimated demand mean D; < O({(x+, D;)}r<t; Tt).

Estimate @Q; from { (€., Z;-)}-<: and Z; via the NW estimator in equation@

for inventory choice c € C do
‘ Compute the loss estimator ¢;(c) as in equation

Order the inventory quantity ¢; < argmax, . 4¢(c).
Observe the realized demand D;.

Compute the estimated noise term ¢; < Dy — D;.

3.3 NON-PARAMETRIC REGRESSION WITH ERRORS

For the purpose of demonstration, imagine that the DM has access to the precise features {z, },<;
at each time ¢. For each u € C and z; € Z, consider the Nadaraya-Watson (NW) kernel regression
method:

t—1 K(ﬁ)]]_[a_ <

at -

~

Qi(u) = @\(u;zt) = Z Z K(ZT_Z’)
T=1 T<t Tar

where K is a smoothing kernel (e.g. Gaussian kernel) and a; > 0 the bandwidth parameter. As
previously discussed, we still face the following technical difficulties: (1) only an approximation €
is available for the target quantity €., and (2) without imposing a constant lower bound on f,, it is
impossible to guarantee a uniform convergence for every new z;.

&)

Let fo,(2) = 27 2 e_1 Ka, (27 — 2) be the kernel-smoothed estimator for f.(z) with the
rescaled kernel K,,. The following result provides a point-wise error bound that depends on the

performance of the mean estimation oracle, i.e., on its estimation error appearing in [€; — €, |. The
proof is deferred to Appendix

Lemma 3.3. Suppose Assumptions[I{3|hold, t > 1, and [€; — e.| < & for every T € [t — 1]. Then
with probability at least 1 — T2,

Y . Co log(T) gt -
‘Q(uvz)_Q(u’z)’ <W<Lt+t )

foreveryu € C and z € Z, with the constant Cyy depends on K and f . Here the bandwidth is set to
at = tiﬁpp% and Et = Z‘r<t 57"

To avoid the strong and often unrealistic assumptions on the density f, commonly imposed in
the literature, it is essential to develop bounds that adapt to how well the distribution has been
learned around z; at time ¢. This adaptation is reflected in Lemma where the term f,, (2)
serves to approximate f,(z). When the upcoming feature z; lies in a low-probability region, the
approximation f,, (z¢) may deviate significantly from f,(z;), potentially yielding loose or even
vacuous error bounds. When f, (z;) is large, the bound remains uniform in ¢. The key insight is that
problematic bounds can only occur with small probability at each round, so the cumulative regret is
ultimately governed by the learning performance in the high-probability regions.

Now we revisit the setting where the DM only observes approximate features {2, }r<;. Denote
IZ- — z+||2 < 0, for some error bound §, that is F,-measurable. Consider the following surrogate
of equation[5}

B B t—1 K(Eijgf)IL[ET <

Qi(u) = Q(u; 2¢) = Z - P (6)
T=1 Z‘r<t K (TTf)

To understand the performance of this estimator, we build on Lemma @] and bound the error
introduced by the observation errors §.. The proof can be found in Appendix
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Lemma 3.4. Suppose Assumptions|[IH3|hold, t > 1, |€r — & | <& and ||Zr — 2|2 < & for every
T € [t — 1]. Then with probability at least 1 — 4T 2,

lealﬁng) (t i 1 S (&6 +6) + t@)

T<t
foreveryu e C, z € Z, and ||Z — z||2 < 4:. The constant C1 > 0 depends on the kernel K, L, L,
and f ,. Here the bandwidth is setto a; =t~ P+2pp+2

Qui2) - Qiluiz)| <

3.4 REGRET UPPER BOUND ANALYSIS

The following theorem establishes the regret upper bound of Algorithm [2] For the sole purpose
of readability, we impose an extra assumption on the convergence rate of the mean oracle and the
observation errors ||z, — Zr |l2- Note this assumption is satisfied by both examples in SCCUOHE (1)

in the linear model, @ = O(d); (2) in the nonlinear model & = O(d) that depends on the truth f, and
the NTK matrix. Our results can be easily extended to general {&;} and {Z;}.

Theorem 1. Suppose the DM has an oracle satisfying Assumptionsuch that Zi:l €2 < alog(t)
forevery t € [T for some oo = o(t). Also suppose 23:1 |Z: — z-||3 < alog(t) for every t € [T].
Under Assumptionsand setting bandwidth a; = e pﬁ, we have

Reg Alg' ((b+ ML +1)10g(T) (VaT + T3 ) ) = O(VaT + T53).

The rest of this section is devoted to the proof of Theorem|[I} Without loss of generality (WLOG), we

assume the high-probability events in Assumption[d](e.g., by Lemma[3.1]or[3.2), in Lemma[3.3] and
in Lemma|[3.4/hold. By Cauchy-Schwartz inequality, Zizl & < y/atlog(t). Then at each time ¢,
by Lemma [3.3]and [3.4] and our assumptions, it holds that

o~

)~ (0] < (4 01 (261 + 2max{Bu(0) — Q1))

— M 7$ g 2—2 = W
_O<(b+h)ML<§t+ 2 <t +\/?+t tllz>>> Cwy

where we introduce the notation w; to compactly write the error bound for the loss estimator.
Consequently, the instantaneous regret of selecting the greedy maximizer at time ¢ is bounded by

meacxft(c) = 0(c}) < Uy(c) + wy < méic)(Zg(C) + wr < li(er) + 2wy,

The regret is then bounded as the sum of the instantaneous errors

Reg( Alg

To handle the term f,, (2;) %, by Lemma Lemma | and bandwidth choice a; =t~ o pﬁ

in as in Lemma L we have f,,(z:) > 2fz(zt) when f,(z¢) > 2Cylog(T)t™ ﬁ where Cj is
the constant in the Temmas that depend on the kernel K. By Assumption[3] z; are i.i. d Define an

event indicator I; = 1[f,(z:) > 2Cylog(T)t™ p+2]. Then for any value v € [0, M], the following
decomposition holds:

E, [min{(b—l— h)M, fl(’zt)H E, {Itfat( )] + (b+ h)MP(I, = 0)
<E, {fj(” )] +2(b+ h)MCy log(T)t~ 72 | Z|

T
Zet ) — (e ] <2E [Zmin{(b+h)M7wt}]. (7)

t=1

- o(u + (bt h)Mlog(T)fﬁ)
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where the last line uses E[1/f.(2)] = [ d = |Z| = O(1). Combining this with equation
leads to the desired bound with some constant C’ > 0:

T
Reg(Algl) < C'(b+h)M(L +1) Z(gt + /log(T) (t‘ph + \/§+ Iz: — zt||2)>

_ O((b +R)M(L + 1) IT>g(T) (VTT+T$>)

where we apply the elementary inequalities Ethl % = O(V/T) and ZtT:l T = o(r 22 ).

3.5 BREAKING THE CURSE OF DIMENSIONALITY UNDER BENIGN DISTRIBUTIONS

+1
The term T'»+2 showcases the inherent difficulty in non-parametric regression and is generally not
improvable without additional regularity conditions. In this section, we provide an arguably mild

regularity condition on f,, under which we achieve 5(\/ oT + pV/T) regret.
Assumption 5. There exist constants cpr, Cpr,w > 0 such that for every v € RP and u € C,

maX{IT[ (u; ) fzON@)L [T ()]} < Crr exp(=crr|v]3)

i
where T|f fRP e~ 2dz denotes the Fourier Transform of f.

Assumption [5| asks the Fourier coefficients of the feature density f,(z) and the unconditional
probability (for fixed u € [0, M]) Q(u; z) f-(z) to decay at a fast rate, which is typically stronger
than infinite smoothness. Then with an infinitely smooth kernel (that does not depend on the constants
in Assumption[5} see equation[I9), we can guarantee an improved bound for the NW estimator in
equation [6}

Lemma 3.5. Under same assumptions as Lemma[3.4|and Assumption[5] there exists a kernel K such
that: with probability at least 1 — 4T 72,

(0ie . 7/ Z‘r<t§7' 1 p
QG 2) Q) < 575 (L : +t_1;<1+sf><67+6t>+ﬁ>

Joreveryu € Cand z € Z, withy' = O(log(T)g log log(T)%).

The proof is deferred to Appendix [D.2} Consequently, we arrive at the following improved regret
guarantee for Algorithm 2} The proof is the same as Section 3.4} except for replacing Lemma [3.3]and
[3.4]by Lemma3.5] and hence is omitted.

Theorem 2. Under same assumptions as Theorem[I|and additionally Assumption[3 it holds that

Reg(AlglZ) = O(VaT +pvT).

4 MINIMAX REGRET LOWER BOUND

To complement our upper bound result in Theorem I} we provide a minimax lower bound when the
underlying environment admits the /inear model in Section[3.1.1] Note the lower bound in Theorem 3|
holds for any policy 7, regardless of whether the DM uses a linear oracle or a (over-complicated)
nonlinear one in the learning algorithm. The proof is left to Appendix [A]

Theorem 3 (Lower bound). Suppose the DM perfectly observes z; at time t. When T > d?, we have
inf sup Reg(n) =0 ((b Y R)M (\/dT + T%)) ,
T 0.,Q.fz f2

where inf is taken over all possible policies, and sup is taken over the problem parameters that satisfy
10«2 < 1 and Assumptions|l|

Recall that when the noise CDF ; = () is time-invariant, the regret is 6( VT ), given by the OSGD
algorithm (Hazan et al., 2016; Ding et al.,[2024). Thus, as soon as the shape of the demand distribution
is not time-invariant, the online inventory control problem becomes fundamentally harderE]

3When Q: is invariant, the optimal solution c; is linear in @, so the DM can compute its gradient and learn
simultaneously in d directions. In the more general case, however, this convenient structure breaks down.
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5 EXPERIMENTS

We conclude the paper with a series of numerical experiments, where we test our algorithm on both
synthetic datasets and real-world datasets against the benchmark OSGD in online inventory control.

Synthetic Datasets We first compare the Algorithm 2]to that of the OSGD. Due to space limits, we
leave all the setup details and results to Appendix [E.1] which highlights the superior performance of
our algorithm compared to OSGD under various synthetic settings, including heteroskedastic noise
and nonlinear expected demand.

Real-world Dataset We evaluate our algorithm on real-world datasets from the M5 Forecasting-
Accuracy dataset (Howard et al.| 2020), which includes the sales and feature data of more than
30,000 items during 1,941 days. We compare the OSGD to our Algorithm [2] with the ridge regression
(assuming linear demand) and neural network estimators (assuming nonlinear demand). Details about
data description and algorithm parameters are left to Appendix [E.2] In Figure (a) below, we consider
40 items with the most nonzero selling periods (all of which happen to be food) and present the
statistics of the cumulative loss of the three algorithms. To gain more insights, Figure (b) and (c) plot
the growth of the cumulative regret for each of the three algorithms for two distinct items.
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Our Algorithm consistently outperforms OSGD on the tested items. Due to the complex heteroskedas-
ticity in real data, OSGD does not converge within the given time horizon in most cases. In terms of
the two demand mean estimators we used in Algorithm [2] the linear model using ridge regression
achieves a relatively lower average cumulative cost over the 40 items of interest, yet exhibits a larger
variance. This indicates that the complexity of real-world sales is beyond the linear model, even
after heteroskedasticity is addressed. In turn, it highlights the need for nonlinear treatment in online
contextual inventory control as is done in our work, which has been largely overlooked in the existing
(in particular, theory-focused) literature. In contrast, despite the simple two-layer architecture, neural
networks have demonstrated robust and consistent performance.
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A PROOFS FOR LOWER BOUND IN SECTION [4]

To clarify the inherent statistical complexity of the problem, specifically, where do Q(v/dT') and
p+1

Q(Tri?) come from, we introduce the following two lemmas.

Lemma A.1. Consider p = 1. Let z; = 3" x; with a simple 3 = [é, %, .., 1T for every time t,

and let fq be uniform over the canonical basis {e1, ... ,eq}. When T > d?:

inf sup Reg(w) = Q((b + h)MVdT).
T 6.,Q

Lemma A.2. WLOG, consider d = p and z; = x;. Assume that 0, is perfectly known. The following
lower bound holds: »
inf sup Reg(m) = Q ((b + h)MTzﬁ) .
T 6.,Q

Note for p < d, it is straightforward to apply the analysis of Lemma[A.2]by having d — p entries of
the context x to be zero.

A.1 PROOF OF Q(VdT)

The lower bound of regret £2(v/dT") comes from jointly estimating .. and (); when the true noise
distribution @) is also allowed to depend on x; (even in a quite simple way and p = 1). This

dependence structure leads to the extra complexity of v/d term.

Proof of LemmalA.l] We construct the space of linear coefficient vectors 6, € ©, with
© = Unif ({—A,A}¢) for some small A > 0 that will be determined later. Let @/ :=
0,---,0,1,0,--- ,0) = e;, where all except the j-th element are 0, and @; is uniformly sam-
pled from {x!, 22, .-  x}. Write 8, z; = p; € {+A} for simplicity. The noise distribution Q;
is constructed as follows:

4 4 M
(Zé%—]\/}t)-(y-kut), for —p <y <—pe+
A ] LMo s
or — — —p+ —
Quly) = P+ e, e r =Y Mt ik
A(1—8) 4 3M 3M
((]\4)—]&;)-<y+ut—4>+p+un for—ut+7§y<—ut+M,
17 fory:—ut—l—M.

Note given the structure of z; = ﬁTa:t S {57 ..., 1}, Q is effectively observing x;, and hence is
allowed to depend on p; as above. It can be easily verified that such a construction satisfies our
Assumptions [T}f3] except for the zero-mean property of €; which can be achieved through scaling
(e.g., through tuning the first component of 6, and x;). We do not present it and still use Q; for
simplicity. Now the conditional demand CDF (where our observations are sampled from, and we
slightly abuse the notation () also to denote the demand distribution as it is only a shift of the noise
distribution) can be written as:

4p 40T33t M
il * . for 0 < —
(M+ i Y, or) <y< 1
M 3M
0, for — < =
Gily) = p+0, x, or = <y<-—-,
4(1 — 40 x 3M 3M
((MB)— Mt)-<y—4>+,0+9;r$t, forT§y<M,
1, fory = M.

Conditioned on any x;, there are two possible demand distributions in total: when 03 x; = A, we
denote the corresponding noise CDF as Qa (y), and we have the optimal solution cf,, € (0, M/4);

12
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when 0] x; = — A, we denote the corresponding CDF as Q_ a (), and we have the optimal solution
cH_, € (3M /4, M). Now we can lower bound the regret as follows:

sup Reg(7 {Z]E” Qalle(cr) = Gi(chH )] + ZEW,Q,A [Ce(ct) — ft(CaA)i}

0..Q =
4 d T
3

= % > [Z Erqalli(cr) = (e )l = 2]+ Exq_allilcr) = lilch )| = wj]]

j=1 Lt=1 t=1

—
=

@) 1

T T
2d Y ErQuueny lle(c) = ()l = @)+ Y Erqq - a,[lilc) = blch_ )l = w]ii

t=1 t=1

(R

j=1
G AM( h+ 4
> Z Er[Qo,=a}(ce > M/2) + Qqo,——ay(ce < M/2)|@y = x]

M=

&

=1
d

o
Il

1

<.

W) AM h+b

[M]=

Er[exp(—t - DkL(Qqo,=a} | Q1o,=—a})) @ = 7]
1t

7 1

d T;
W EMOED S B> exp(—t D Qoo Qs —a).
j=1 t=1

where (i) comes from the tower property of conditional expectation; (ii) is because conditional on
x; = x/, we must have 0; = Aand §; = —A for Qa and QQ_a, respectively, where we use ¢; to
denote the j-th element of 6., and we use Q9,—a} and Qg,— A to represent the corresponding
demand distribution; (iii) directly follows from the analysis in (Zhang et al., 2020, Proposition 1); (iv)
comes from the Bretagnolle-Huber Inequality; (v) uses the fact that 7); := Zthl 1(x; = x7) and
the sub-problems of learning 6; with observations x; = @/ are independent, and that only the 7
observations will contribute to the total KL divergence according to our construction on 8, and x;.

For the KL divergence of Dxr,(Qs,-a}|@(s,=—a} ), we have:

=

p+A 1—p—A
D _ __ = A)-1 1—p—A)-log———
KL(Qo,=a11Qf6,=—ay) = (p+ A) Y +(1-=p—A4A) Rk ——7y
<@t HA-p) T p7?) A2
see e.g. analysis of (Besbes & Muharremoglul 2013, Lemma 4). Let cp := 2p~1 + (1 — p) =1 + p~2
and taking the result back to the previous inequalities we have:

d
AM(h+)
SgpF Reg(m) > (7 ZE”Zexp —t - Dkn(Qo,=1}|Q0,=—a}))
0., x j=1 t=1
d T;
h b) '
> MR HD) S g S exp(—cot - A2)
j=1 t=1
d min{T;,A™%}
h+b
> ZE Z exp(—cop)
Jj=1 t=1
@) d
2 AM (h+b exp(—co) me{E A-2),

j=1
where (i) comes from Emin{7}, A=?} > min{E[T}], A=2}. Since E[T}] = %, by setting A :=

\/g and T > d? (so that ||, ||2 < 1), we conclude that

sup Reg(r) > w - M(b+ h)VdT = Q((b+ h)MVdT).
0..,Q,Fy
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A.2 PROOF OF Q(T#7)

The lower bound of regret Q(T ﬁ%) comes from the difficulty in learning a p-dimensional non-
parametric estimation problem.

Proof of LemmalA.2] Assume that the parameter 6, is known to the learner and will be specified
later. As z; lies in the p-dimensional unit ball, we can construct G to be any 1/N-packing of the
p-dimensional unit ball. By the packing number bound of /5 ball, there exists a constant ¢; > 0
such that |G| = ¢;NP. We let N = LTﬁj and z; is uniformly sampled from the packing set
G:={z',22 - ,zcle

Thus, for each vector 27 in G (which we index by j = 1,2, - -, ¢; NP), consider the following two
CDF candidates as similarly defined before in the proof of Lemmal[A.T}

4p 4 M
Ly 2. for0 < y < -
(M+NM) v A
1 M 3M
Q(O)(y): p+N, forzéy<77
1(1-p) 4 3M 1 3M
_ oy = 222 — o <
( i NM) <y 4)+p+N, for 1 <y< M,
1, fory = M.
and
4 4 M
- _ _ ). 1 < —
(M NM) Y or0sy <o
1 M 3M
QW (y) = PN f0rZ§y<T7
A1-p) 4 3M 1 3M
e S AU I VR et St <y<M
( M +NM) <y 4)+p N T sYsAnh
1, fory = M,

Let the underlying noise CDF be Q(+; 2, = 27) = Q(“)(-) fori.i.d. u; ~ Bern(3). Itis easy to verify
that the construction satisfies our model assumptions, except the zero-mean. Now we can guarantee
zero-mean through choosing 6., which is known to the DM. Note that the noise distributions are
independent for different z7 € G.

*We let ¢, N? to be an integer for notation simplicity, otherwise we can take |c1 NP | instead.
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Similar to the proof of Lemma[A.T] we have:

—_

T T
sup Reg(m) > = {Z Erqo[li(ct) — Li(cho)] + ZEW o [Ce(cr) — £( Q(l))]}

6.,Q =1 =1

1 EL _ T |
= 2¢1 NP Z ZEﬂ',Q(O) [l(ct) — Et(C*Q<o))|Zt =27+ ZEWQ“) [l(ct) — gt(cau)ﬂzt = 2]
j=1 Lt=1 —
1 EL _ T |
T 2 NP Z ZE’T’Q(O) [€e(ce) = b))z = 27] + ZEW,QH) [Ce(ce) — belcpa)ze = zj]]
g=1 L= t=1
Mh+t) 1 KL
2 (N )clNP ZZEW O)(Ct>M/2)+Q(1 (Ct<M/2)‘zt—zJ]
j=1 t=1
citNP? T
M(h+b) 1 - ,
> oy 2o 2 Belexn(—t- D (@ QM) [z = 2
N Cle j=1 t=1

ClN

h+b
ZE”ZGXP —t- D (QV Q™))

ClN

M(h + b eXp Z min{E[7}], N?},

where cg = 2p7 1 + (1 —p)~1 +p*2 b= 301 1(2; = 27) is defined similarly as in the previous
proof, and E[T}] = L7 > - Tp+2 We conclude that

exp(—co

sup Reg(m) > ). (b+ h)MTﬁ% =Q ((b + h)MTi%) )

0.,Q,Fx 8

B LINEAR DEMAND ESTIMATION ORACLE

For the sake of completeness, we present the proof for Lemma [3.1] here.

Lemma B.1 (Restatement of Lemma[3.1). Follow the notations in Section[3.1.1} With probability at
least 1 — T2, it holds that

‘éjxt — O*T:Bt‘ < (V1og(2T) + 1)||93tHA;1'

Proof. Denote U; = [x,],«; € R*~D and V; = [D,], o, € R (1), Recall the definition
A, =T1+UU], b =UV/.
Then we have

0,z — 0]z, =x] A6, —x] A7 (I +U,U) )6,
=z, A7'U(V] -U/0.) —z] A]'6..

Given ||0.]|2 < 1, it follows that

0,z — 0]z, < |z, AT'U(V] —U[0.)| + [lz] A7 |2 ®)

15



Under review as a conference paper at ICLR 2026

Since (D)< are conditionally independent, we have E [V, |(x+),<;] = U/, 6.,. Thus by Azuma-
Hoeffding’s inequality (Azumal [1967; Alon & Spencer, [2016)),
2105 27 7. )

P(|] A710 (Vi - U] 0,)| = Viog@2T) il o+ ) < 26”’( o] A; U, |2
t t 2

< 2exp(—2log(27))
1
< Tz
The second inequality follows from A; = I + U, U/ = U,U/. Similarly, we can bound the

second term in equationas |le] A7 e = /2] A7 TA ', < ||mt||A;1. Plugging them back in
equation [§] yields
< (V1og(2T) + 1) [|ae]] 41

é:rwt—ejwt

O

The second part of Lemma [3.1] follows from the elliptical potential lemma that is standard in the
bandit literature (Abbasi-Yadkori et al.,[2011;|Wen et al., [2025):

Lemma B.2. For any given vectors {x,}'_} in R? with ||z, |2 < 1, let the Gram matrix be
A =1+ _, x.x] for every 1 < s < t. It holds that

t—1
Dol < 2dlog(1 + d) < 2dlog(t).

T<t
C NONLINEAR DEMAND ESTIMATION VIA OVER-PARAMETERIZATION

As promised in Section@ we build on the idea of NTK (Jacot et al., 2018) and NeuralUCB
Zhou et al.| (2020) to handle nonlinear demand mean using over-parameterized neural networks. For
the ease of analysis, we impose a symmetry assumption on the context. Note that for any context x;
with [|2z¢|]2 < 1, we can apply the transformation z; — [z, ,2]T /v/2 to satisfy Assumption 6]and
incur only an extra constant in the regret.

Assumption 6. The dimension d is even. For any time t € [T| and any j € [d/2], it holds that
Lt = Tt j+d/2-

Initialization Then we set the network initialization as follows. For each layer k € [K — 1], the

weight matrix is set to Wy, = {Wg@o W, 0] where each entry of the initial matrix Wy, o is drawn

i.i.d. from the Gaussian distribution A/ (0, 4/w). The last layer is Wx = [WI;O, fWI—(r,O]T where
each entry of Wi ¢ is drawn i.i.d. from N(0,2/w). The initial parameter is denoted by 50 e R"
with dimension n = (K —2)w? +w(d+1). By Assumption@ we always have f(x; 50) = 0 for any
possible context &, which facilitates the convergence analysis. Notably, we sample the initialization
50 only once and pass this same initialization to the training routine Algorithm |l|every time for the
ease of analysis (so our local expansion of f(x; (9;) can be around the same initialization 50 for every
t). This needs not be the case in practice.

The NTK matrix is recursively defined as:

Definition 1 ((Zhou et al., 2020; Jacot et al.,2018))). Let {a:t}tem be the contexts. Define recursively

__ nk) k)
O — 50 = (z2), A@:( o

] ] Y] (k) 5 (k)
) Y
k+1
Ez(‘,j )= QE(u,v)NN(o,Ag?)KU(U)aU(V)ﬂ

Tr(k+1 7k k+1
H5 = 2H9E )i a0 0/ (@), o' (V)] + 257

Finally, denote the NTK matrix by H = %(ﬁ(K) + Z(K)) € RTxT,
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Assumption 7 (Non-singular NTK). Let context {x;},c[r) be drawn from the density fq. With
probability at least 1 — T, H = A\, I for some Ay, > 0.

Assumption [7|requires the NTK matrix to be (with high probability under the stochastic context)
non-singular. It is a common assumption in the literature on the performance of over-parameterized
neural networks in the NTK regime|Arora et al.|(2019);|Cao & Gul|(2019);|Zhou et al.|(2020). If no
two contexts lie in parallel, indeed H is full rank and non-singular. As we will see shortly, this lower
bound )y, scales inversely with the number of parameters needed to derive our results.

Definition 2 (Effective dimension). Let A > 0 be the regularization parameter used in the training
routine Algorithm[I] Define the effective dimension of H to be

dor — log(det(I + H /X))

H = log(l+ T/0)
At a high level, the effective dimension dg captures the intrinsic complexity of the NTK matrix H,

i.e. the neural network model. Now let f = [f.(x1),..., f«(z7)]" € R denote the vector of the
true demand mean.

C.1 RESULTS ON APPROXIMATION AND NEAR-INITIALIZATION PROPERTIES

The following lemma shows that, for over-parametrized networks (recall definition in equation 3, the
true demand mean f, can be seen as a linear approximation in terms of the network gradient:

Lemma C.1 (Lemma 5.1 in [Zhou et al.| (2020)). There is a constant Cy > 0 such that for any
w > CoT*KS log(T?K/8)/\}, with probability at least 1 — 6, we have:
Je(me) = (Vaf(x::600), 0. — 6),

V|0, — 6ollz < 2] £l -1,
for some 0, € R™ for every t € [T). Here Vy denotes the gradient taken with respect to the
parameters.

The proof of this lemma, and those of some of the following lemmas, follows verbatim the proof
in [Zhou et al.| (2020), except that the approximation bound only concerns 7' contexts instead of
T - #{arms} contexts in the bandit setting. Therefore, we refer the readers to the original proof and
only present proofs for where there is a notable difference.

Next, we have a few auxiliary lemmas that concern the local properties of the network in the parameter
space around initialization. Let the initialization 8y € R™ be generated as above and given.

Lemma C.2 (Lemma 4.1 in|Cao & Gu|(2019)). There exists constants C1, Cy, Cs > 0 such that for
any ¢ € (0,1), if T satisfies

Crw 2 K3 10g(TK?/8)? <7< CyK Slog(w) ™2,
then with probability at least 1 — 6, for any 0,0’ satisfying |0 — §o||2 <Tand|0 — §0||2 <7, we

have
|f(24;0) — f(24;0") — (Vaf(x;0),0 — 0')] < CST%KS\/ wlog(w)
foreveryt € [T].
Lemma C.3 (Lemma B.3 in|Cao & Gu|(2019)). There exists constants Cy,Co, C3 > 0 such that for
any ¢ € (0,1), if T satisfies
Clw 2 K~3 log(TKQ/d)% <7< CgK‘ﬁlog(w)_%,
then with probability at least 1 — 6, for any 0 satisfying |0 — §0H2 < 7, we have
[Vaf(xe;00)lr < C3vVKw
foreveryt € [T].
Lemma C.4 (Theorem 5 in|Allen-Zhu et al.| (2019)). There exists constants C'y, Cy, C3 > 0 such
that for any § € (0, 1), if T satisfies
Crw 2 K™% max{log(T)%,log(w)%} <T<C,K? log(w) ™3,
then with probability at least 1 — 0, for any 0 satisfying ||0 — §0H2 < 1, we have
IVaf(24:0) — Vaf (z::00)2 < Cs\/log(w)77 K*||Va (15 00)]2
foreveryt € [T].
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C.2 CONTROLLING POST-TRAINING PARAMETERS

Recall that we used the routine Algorithm [1{to obtain the parameter ét at each time ¢. While there is
a bound for general training epochs J, for readability and to derive the desired theoretical guarantees,
we only consider J sufficiently large in this work.

Lemma C.5 (Lemma 5.2 in [Zhou et al| (2020)). Suppose J = SQTK/N), w =

Q(max{ KT\ K2 TON100) and 1) = O(1/(TKw + w))). Then with probability at
least 1 — T=2/2, we have ||8; — 8|2 < 24/ -5 and ||6, — 6,4, < %for everyt € [T]. Here

the normalized Gram matrix of the gradients is defined as

1 ~ ~
A, = — . . T
b= > Vaf(xr56,)Vaf(,:6;)
T<t
and the width coefficients satisfy v, = 5(M\/dH + VA FllE-1)-
Lemma C.6. Under the same assumptions as in Lemma|C.3} we have

T
Zmin{L ;nvzf(mt;ét)@l} = O(dp).

t=1

While not identical, the proof of Lemma [C.6|shares the same lines in that of Lemma 5.4 in Zhou
et al|(2020). The dependencies other than dgr are negligible under the assumptions that w and .J are
sufficiently large. For readers familiar with linear contextual bandits, this resembles the elliptical
potential lemma (Lemma in the linear case, as in the NTK regime we have represented our
over-parameterized network by a linear form.

We remark that the exponents in the range of the width w have not been optimized, since the theoretical
guarantees only serve the purpose of understanding the learning complexity in the NTK regime. In
practice, small-scale networks that do not fall into the NTK regime also perform incredibly well, as
demonstrated in our experiments in Section 5] This other regime remains much more unexplored in
the current deep learning theory.

C.3 ERROR BOUND FOR ESTIMATION ORACLE

Finally, we give the (formal) restatement of Lernma its proof in this section. In particular, we

have the quantity d = 1+d3; +dg || f||3;-: in Lemma|3.2| with the quantities defined in Deﬁnition
and Definition 2]

Lemma C.7 (Restatement of Lemma. Suppose J = QUTK/N), n = O(1/(TKw +w\)), and
w = Q(max{ KT\, KATION10, T4K6/\,;4}). Then with probability at least 1 — T2, we
have

| F(@6:0) = fulao)| < 20 (14 Vg + VI F s ) min{ 1w~ | Vaf (@8 40 | = &

Moreover, Z?:l & =00+d}+dulfl3-)

Proof. WLOG, suppose the high-probability events in Lemma hold. For each t € [T, the
estimation error is bounded as

F(@i38) — f(a)

D f(@i:0) — (Vo (2:00), 0. — Bo)

= ‘f(wt; 6,) — (Vof(x:;0y), 0, — 00) + (Vaf(mi:0,),0, — o) — (Vo f(xy;00),0, — §0>‘
< | F@i:8) — (V27 (206,880 + |(Vaf (@0:8), 8, — Bo) — (Vaf (@ B0). 6. — )

() (¢)

18
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where (a) applies Lemma E We proceed with term (&) first. By Lemmau ||0t §0||2 <
24/t/(w). For large enough width w as in the assumption, ||0t 00 ||2 satisfies the assumption in
Lemrna Applying Lemma and the initialization that f(; 00) = 0, we have

- ’f(mt;ét) ~ f(@:00) — (Vaf(z::0,),0, — 80)| < CtEK3w 3 \/log(w) (9

for some constant C' > 0. To handle term (<), observe that by adding and subtracting
Vaf (x; Ot)TH*, we have

)= (Vo (@100),6. ~ B0) ~ (V2f (@1300), 6. — B0) + (V2f (2:0,),0, — 6.)

< |(Vaf (213 0,), 6. — 80) — (Vaf (@1:00), 6. — 60)| + |(V2f (2::0),0, - 6.)|.

(@) ()
We handle the first term by Cauchy-Schwartz inequality.
(©) = |(V2f (@ 81) = VoS (@::60). 6. — B0)
< |IVaf(xs;0;) — Vaf(x::00)]|2]10. — 6ol
290 fllgrw Vo f (@i 6,) — Vaf (i Bo)o
24 F -0 log () K345 AE V2 (180

(d
SC'HfHH—lw—%\/MK%t%)\_% o

where (b) applies Lemma|[C.1] (c) applies Lemma[C.4] and (d) applies Lemma|C.3|and gets some
constant C’ > 0. Finally, the last term characterizes the difficulty in learning and does not vanish
with w (because the size of the gradient V5 f also depends on w).

~ ~ (e) 1 ~
(%) < [IVaf(@e;00) g1 110 — Oulla < yw ™2 [[Vaf (2 6)] 4

where (e) follows from Lemma|C.5] Note naively || f|| gr—1 < MT/A,. So for the large width w we
have in the statement, the other terms in equation [9]and [I0]are second-order. We end up with

f(zs; §t) — fu(zt)

< 2min{M, %w_%Hng(:ct;at)HAt_l}
< 2M (14 gz + VA fllr-+ ) min{ 1,0 3| Vo f @00 |
as desired. The last part of the claim follows from Lemma [C.6] O

D LEMMAS ON KERNEL REGRESSION

This section provides proofs for the results in Section [3.3] We will first present results to bound the
estimation error when the DM knows z; precisely. Then in the last section we present results to
bound the bias introduced by replacing z; with ;.

D.1 KERNEL REGRESSION WITHOUT OBSERVATION ERRORS

Lemma D.1 (Restatement of Lemma . Let the bandwidth be a; t_ﬁpﬁ. Suppose
Assumptions [IH3| hold, t > 1, and |e. — eT| < ¢ for every T € [t — 1] The NW estimator in
equatlonlsansﬁes with probability at least 1 — T2,

‘@(U;Z) - Q(u,z)‘ < W(Lf —i—t;aiz)

for everyu € C and z € Z, with the constant Cy depending on K and f . And & = Dorctbr
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Proof. Let us write h(u; z) = Q(u; z) f(z) for the unconditional CDF. We write the NW estimator

as Q(u; z) = h;;t(?s) with

e, (13 2) = —— ¥ K(ZT_Z>1[DT—1A)T§u} (11)

and

fal®) == > K(zT_ ) (12)

TGt 1]

Recall that D is the oracle- output demand mean estlmatlon ande, = D, D as set in Algorlthml
By Lemmaand . we have for every u € [T] and z € Z,

smax{ g, (u: 2) — b3 2)| |fo, () — £2(2)]}
< O ) (an + TE/t 4 (on(T) + ogan)p? ) )

for a constant C(K, f,) that depends on the kernel K and the bound f,. Then we choose a; <
tre pﬁ and get

max{|ha, (u; ) — h(u; 2| |far (2) = f2(2)[} < C(K, F.) /1o (T) (LE/t + 2t~ 72p7t2 )
< 8C(K, T.)\/log(T) (LE/t + 1777

where the last inequality follows from that nw < 2 for any n > 0. Now since

2 oy o ha(uz) b 2)
fa(2)  [a(2)

_ ha,(u;2) — h(u; 2) e 11
SRl e (- ) 0
we can obtain the error bound as
St e O] < hac(2) =B 2)|  h(wi2) |fu(2) = f2(2)]
Qi) -~ Q)| < R 4 SRS e
_hawz) —hG)] o fal2)~ fa(2)

fat(z)

o).

fat(z)

O

Recall that we write Q(u; z) = h;#?z’;) to approximate Q(u; z) = }}(“(f)), as defined in equation

and equation [I2] In the following, we prove the high-probability error bound for h,, and
respectively.

Lemma D.2 (Bias of the estimators). Suppose Assumptions[I{3|hold, t > 1, and [€; — €| < & for
every T € [t — 1]. Foreveryu € C and z € Z, we have

Elha, (u; 2)] = h(u; 2)| < 2L(1 + f.)C(K)ay + 2f . LE/t

and
[E[fa.(2)] = f2(2)] < C(K)Lzat

where the kernel-dependent constant is C(K) = [, K(y)|y|ldy.
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Proof. By straightforward expansion,

Elha, (u; 2)] = E t—% S K (2 — 2)1[E < ulz]

TE[t—1]
1 o~
=E tf Z Kat (Z,,. - Z)Q(u+ €r — ET;zT)
L TE[t—1]
Sio1 Y Eenr[Ka(zr — 2)(Qus z7) + Ller — &)
TEt—1]
= Ez/Nfz [K‘lt (Z/ - Z)Q(u; Z Z & Z-r""fz K., (ZT - Z)}
re[t 1]
(a) , fz
< Eorg, [Ko, (2" = 2)Q(u; 2'))] + — 15
= | Ko (z' = 2)Qu; 2) f2()d=" + L. ¢
RP
= / Ko, (2" — 2)h(u; 2")d2’ fol 7
RP t—1
o
= | K(y)h(w;z + ary) e -
RP _

2 [ K()h(u; z)dy + 2L max{1, T, }C(K) t?iLi

RP 1
i sz ra
= h(u; z) + 2L max{1, f,}C(K)a, o]
where (a) applies E,/[K,, (2' — z = Kat 2’ — 2)f.(2')dz’ < f_, and (b) uses Assumptionsl
andlw1th constant being C(K) = [, K(y)|y|dy. The other direction follows similarly. We use

t > 1 to write + § %1 S 2 in a more convenlent way. For the other term,

Elfa,(2)] = Bznp [Ko (2 = 2)] = | Ko (' = 2)f2(2)d2’

RP

= | K(y)f:(z+ay)dy

RP

< fz(z) + athO(K)'

Lemma D.3 (Dev1at10ns of the estimators). Suppose the bandwzdth satisfies tal < T. Under
Assumpnonsand fort > 1, with probability at least 1 — T~2, we have that

p?log(ay ! ) + log(4T)
tal

|ha, (u; 2) = Elha, (u; 2)]] < 02\/

and

p? log(a;l) + log(4T)
tal

fa.(2) = Elfa,(2)]] < Cé\/

for everyu € C and z € Z, where Cy and C are constants that only depend on K and f .

Proof. First, thanks to Assurnpt10nland that Qt is monotone inw, it sufﬁces to prove a concentration
bound that holds over the fine-enough discretization u € +[T']. For u ¢ + [T, by Lipschitzness of

2+ and monotonicity of Q.. the bound holds with an additional term O(T~1) which is subsumed by
the dominating terms (as long as tat <7T).
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In the following, we will present the proof for h,,(u;z), since the same argument applies
to fa,(z). For any fixed u € =#[T] and z € Z, consider |hg,(u;2) — E[hg, (u;2)]| =
max{hq, (u; 2) — E[hg, (u; 2)], Elhq, (u; 2)] — hq, (u; 2)}. We will now bound the first term, and
note that the second term can be bounded in the same way.

Let S be ¢;-cover of Z for thresholds ¢; = 27*. For any z, let z* € S(?) be the covering element
of z. Denote Z(u; z) = hq, (u; 2) — E[hq, (u; 2)]. Then for any J € N,
Z(u,z”

Z(u; z) = )+ Z 21— Z(u; 2Y). (14)
‘We have the following observations. First,
1 Zr— Z Zr—Z
Z(u;2) = ————= Y <K< u 1[€T<u]—ET{K< T )11[€T<u]D
s = <

(t—1)a, el ay ay

1

= Ar

(t o 1)at 8 76[21]

where each summand satisfies E;[A,;] = 0 and |A,| < || K||c. Second, its variance satisfies

2, —2\? 2 —2\?
K( z ) = / K( ) f=(2")d2’
ag Rp ag
=ay ; K(y)*fz(z + ary)dy
Sa??z R K(y)2 _atfz||K||L2

Since A, form a Martingale difference sequence, by Freedman’s inequality (Freedman, [1975)), we
have

Var(4,) <E,

Z (t _ 1)2 2p €2
P(|Z(u;2)| > €) =P Al > (t—1)ale | <2exp| ——
2 t ST LRI, (£~ Daf + 21Kt — Dafe
1a? 2
< 2exp (—201(13%6> < 2exp(—Cy(t — 1)ale?)

8
max{2f [|K|7,, 3 1Kle,1}’

for constant C; =
over S(4),

P(sup Z(u;z7) > e) < ‘S(J)‘2exp(—01(t — 1)a}e®) < 2exp(2plog(e;') — Ci(t — 1)a

where the last step holds when € < 1. By a union bound

where we use that the log-covering number of p-dimensional unit ball is bounded as 10g|S < )| <
2p log(eJ ) Let

2plog (ejl) + 3log(4T) D
€= =, | ——.
Ci(t —1)a? (t—1)a¥
It holds that

2plog (e}l) + 3log(4T) 1
Cl (t - 1)0,? - 8T3 '

P sup Z(u;z”) > \/ (15)
Now, we proceed to handle the differences in the sum in equation [E For different z; and z5, we

consider
1

Z(u;zl)—Z(u;zg):m Z B (u; 21, 22)
torelt—1]
—_— K(ZT ) [eTgu]K(ZTZQ)]l[ETgu]
TEt 1] o

_E[K( Ta_tzl)]l[a <u]] +E[K<ZTC;ZQ>IL[€T <u]}
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Note each term E[B (u; z1, z2)] = 0. Also, let Lx denote the Lipschitz constant of the kernel K,

and we have
| B (u; 21, 22)| < 2‘]1[?7 < u](K(zT —z1> —K(ZT —z2)>’
Q¢ a;

(22 +(25%)
at a
|21 — 222

Q¢ ’

<2Lg

By Azuma-Hoeffding’s inequality (Azuma, 1967} Alon & Spencer, [2016), we have

P(|Z(u;21) — Z(u;22)] > €) =P | D Br(ujz1,2)| > (t— 1)afe

TE[t—1]

2(t — 1)2a;Pe
<2 —
= e’“’( 2(t = 1)Lllz1 — =[3/a7

. 2(p+1) 2
:26Xp< (t—1)a’ e>

Lkllz1 — 223
Then for z° and z*1, we have ||2? — 2"1||3 < ;41 + €; = 3¢;. Then

i ; t — 12t 2
P(|Z(u; 2') = Z(u; 21)| > €) < 2exp _()“—t26 .
9LK6i

Again, by union bound over S(*) and S(+1),

2(p+1) 2
. ‘S(H—l)’exp _(t=1ay i €
9LK5i

(t— 1>af(17+1)€2
9LK€?

(t— 1)a?(;0+1)€2
9[1[(622 '

P(sup’Z(u;zi) — Z(u; zi+1)| > e) <
z
1 2
= 2exp<2plog — +2plog — —
€; €;
< 2exp <6pi log2 —

Define a target threshold for each level © > J:

3vLke;

3V LKQ_i

e(i) = ﬁ S —T7,PTL

‘We first note that

i 3vLk

V/Tpilog2 + 3log(4T) =

T V/Tpilog2 + 31og(4T).
V t

ft =1 p+1
i=J la Gt i=J

i \/Tpi + 3log(4T) - 3VIk — 7p V3 log (4T)
21 — /71 p+1 27,
- 3vIk ,/7J + /3log(4T)
= Vi1 1af+1 9J—2
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Then
IEJ’(Stzlp|Z(U;z) - Z(u;27)| > \/:’LEH (\/m+2j_3210g(4T)>>
< P<s3p|z(u; 2) — Z(u;2”)| > ‘OOJE(Z-)>
<Z sup|Z(u; 2) — Z(u; 2')| 2 Zj{di))

< ZP(Sup|Z 2N = Z(u; 2')| > E(i)>

: o1
< 277”— < — 27 < ——. 16
= ZJ 8T3 — 8T3 ZJ = 813 (16)

Combining equation[I6]and equation[T5] we have

1 . » 3VIk  (VTTp+ /31og(aT)
ﬁ > P(Slzlp‘Z(U,Z) - Z(’LL,Z )| 2 maf+1 ( 9J-2

2plog (e}l) + 3log(4T)
P Z(u;z”?) >
+ sgp (u;2z7) > \/ Crli — D)l

>P Z(u;z) >
=Few (“’z>—\/ GRS W 277

2pJ +3log(47) | 8VLx [ VTTp+/3log(dT)
Cl (t — 1)af \t— 1af+1 2J—2 '

2plog(e;") + 3log(4T) 3VIk <\/m + 3log(4T)>

> P(sup Z(u;z) >
z

_pt2
To balance the terms, we choose J = log (at 2 ) = p—'f log (at_ 1). Then there is another constant

C that depends on L, f,, || K|, and || K[|3_, such that

2log(a; ') + log(4T
b sup 200 2) > € \/p og(zzt ) -+ log(4T)

t—1)ar {17

4T3

Note here we have also used v/a + b < /a + Vb < 2v/a + b for a,b > 0. By the same argument,
we also bound

1 p?log(a; ') + log(4T)
s 2 >P sup Z(u;z) > Cg\/ (tt— T)a? . (18)

Taking a union bound over u € % [T] and equation |17|and equation |18|yields the desired bound
for |hg, (u; 2) — E[hg, (u; 2)]|. The second part of the claim follows the same proof. Finally, note
t—lz%fortZZ. O

D.2 KERNEL REGRESSION UNDER BENIGN NOISE

The following lemma bounds the error ’@ (u; 2) — Q(u; z)’ at each time ¢, which proves Lemma

when the DM observes the precise features z;. To obtain Lemma [3.3] with general observation errors,
one simply apply Lemma[D.4Jand Lemma [D.6]in the next section with the chosen bandwidth.

Lemma D.4 (Lemma [3.5| with precise features). Suppose Assumptions[IH3|and[5|holds, t > 1, and
[€: — €| < & for every T € [t — 1]. Let the bandwidth be a; = ¢, (%) “ . Then there exists
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a kernel K, defined as in equatlon [79) such that the NW estimator in equation [3] satisfies: with
probability at least 1 — T2,

’@(u;z)fQ(u;z)‘< v (Ler\%)

foreveryu € Cand z € Z, with' = O <log(T)£ log log(T)%)
Proof. The proof is the same as that of Lemma|[D.T] except for replacing Lemma[D.2]by[D.3] [

The next result improves on Lemma[D.2]under the additional regularity condition in Assumption 3}
In particular, we consider a kernel defined as follows (Fan et al., 2024):

1

K(y) =T '[s](y) = @np

/ k(z) exp(inz)dz (19)
RP

which is the inverse Fourier Transform of some regular function x : RP — R that satisfies

<
IQ(Z) _ {11 HZ”Q = Gk,

gu(llzll2): izl > cx

for some constant ¢, > 0 and function g,, € C° U Ly with ||gx||cc < g, and g.(c,) = 1 (to make it
continuous).

Lemma D.5. Suppose Assumptions[IH3|and[3|hold, t > 1, and [€; — €| < & for every T € [t —1].
Recall we denote { =) __, &;. Foreveryu € C and z € Z, we have

o)< 9P o7 pE
|E[hat(z)]_h(u7 )| S \/T +2sz§/t

and

@!

FT

‘E[fat(z)} - fz(z)l <

5

1
with bandwidth a; = c, (1 CgF(TTZ)) ' where the constant is
J.t1

Crr = (2m)P

]/ Crrexp(—cpr||y]$)dy
R

Proof. We will prove this argument for f,, and the proof for h(u;z) follows similarly as in
Lemma[D.2] Let us denote ¢ = T [f.]. Recall from LemmaD.2]that we have

Elf., (2) Ag@ fo(2)d2' — fo(2)

@T—on[o1[m<n—ﬂﬁoma
1mxm )= 1D(z)

5 o(y)(k(—ary) — 1) exp(iz ' y)dy
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where (a) uses the convolution theorem. Then by our choice of x, we have

[Elfo,(2)] — £-(2)] < 5 [ [6w)(x(—arw) — D exp(iz" )y
< Gy L 0w)lx(-ay) - 1y
=:@;plgwM%;¢@nmeﬂw>—1dy
g 1
Ssgik‘LJMb>xhﬂy”dy
S s S E
< g(;;pl /Rp Crrexp (_CFT <||y||2 + Z:)w)dy
< g(,;;—)pl /Rp Crrexp <CFT <||y||‘2d + (Z:)w))dy
where (b) is from Assumption Choose a; = ¢, (lgglw(TT ) ) “ and we arrive at
Blfo (2)] - £o(2)] < <%
with constant C' pr = % Jgo Crr exp(—crrllylls)dy. O

D.3 KERNEL REGRESSION WITH FEATURE ERRORS

Recall that the DM applies kernel regression to the potentially inaccurate features {Z }.<; and target
z, with the guarantee that |2, — z;||2 < J, and ||Z — z||2 < J;. Also recall that 4, is assumed to be
Fr-measurable. And the NW estimator in equation [6]is built as

1 t—1 -~ ~ -~ ~
~ — 1 Ko, (Zr —2)1[e: <u o, (W
Gz = B Ko B = 9N Sl (i)

1 t—1 =~ = = Tz :
=1 2or—1 Ka (Zr — 2) fai(2)
Note the functions Eat and fat depend on z through the erroneous observation z. It now suffices

to bound the difference ‘@t(u; z) — @t(u; z)|, given Lemma Towards this goal and similar to
equation [I3] observe that

5w 2 O (ags ) — P (WZ) Do, (u2)

Q) =) = T )
_ﬁat(u;z)—hm(u;z) 7w s 1 B 1
A )<ﬁt<z) fat<z>>
_ ’ﬁat(u;z) B hat (U;Z) + Eat(u; Z) . ftlt (Z) B .];:lt (Z)

fa,(2) ﬁt(Z) fa,(2)

o %at(u;z) B hat(u;z) A - faf,(z) 7}:”(2")
B fat(z) +Qf( ’ ) fat(z) .

Since Q;(u; ) € [0, 1], we have

ha, (u; 2) — ha, (u; z)‘ "
fat (Z>

J?;lt (Z) - fat (Z)

Qu(us2) = Qulwi2)| < 0)
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Let us first consider the term |hg, (u; 2) — hq, (u; 2) ‘ It holds that

ha, (u; 2) — hq, (u; z)‘ < ‘EFLM (u; 2) — hq, (u; z)] ’ + ?Lat (u; z) — E[?Lat (u; z)] ’
+ |ha, (u; 2) — Elhg, (u; 2)]] 21

where the last term is readily handled by Lemma We remark that the deviation term
T, (u;2) — E[%at (u,z)” can be bounded following almost the same lines of the proof of

Lemma|D.3| and is hence omitted. Tllis holds thanks to the fact that the errors d, is F,-measurable

and thus the source of the variance in h,, is the same as that in h,,. Then the difference in expectation
is as follows:

t 1 1 / (Ko, (Z2r = 2) — Ko, (2r — 2))Q(u+ € — €5 21) f2(2,)d2z,
r<t!/RP

t 1 1 / (Ko, (Zr — 2) — Ku, (20 — 2))Q(u + €7 — &5 20) f2(27)d2,|. (22)
r<t!/RP

By Assumption Quter —er;2:) <Qu;27) + L |er — €] < Q(u; z) + LE, contributes an
error that depends on the estimation of .. Then

/IRP (Ko, (Z2r — 2) = Ko, (27 — 2))Q(u + € — €5 2,) f2 (27 )d2,
< [ (B~ 2 Ko = 2)Qui 20 a2z,
RP
+ L&~ /Rp(Kaf, (Z2r — 2) — Ko, (27 — 2)) f2(27)d2,
= /RP(KM (z; — 2) — Ko, (2r — 2))h(u; 2;)dz,
+ L&- /RP(KM (2r — 2) — Ko, (27 — 2)) f2(27)d2,

= /R <K<y LBz z)> - K(y)>h(u;zr + ary)dy

(4)
vie [ (5(v+ EEEEEEE) k) et iy,

(B)
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Letv, = (Br=20)4(222) marks the offset for the ease of notation. The first term (A) proceeds as

at
follows:

(4) = | (K(+v.) = Kl + )y

2 [ Ky t+on) - Kt =)y +af L [ (K +00) ~ K ) lulady
Rp R

=0 as h(u; z,) is irrelevant to y

.t ( [ Koty - [ K)lyl)
< a7, L(/ K@)y lady’ + / K()|lvs 2dy’ — / K(y ||y||2dy)

= at f.L||v |2

< L2 = 2 ll2 + 12 = 2[l2) < FLL(0- + 01) (23)
where (a) uses the Lipschitz constant f, L of the conditional probability h(u; z) = Q(u; 2) f~(2)
from Assumption and and (b) applies a change of variable y' = y + v..
Similarly, the other term is
Combining equation and equation [22] we obtain

~ L _
’E[hat (4 2) — ha, (15 z)] < STl L) (6, + 60).

t_1T<t

Substituting this back in equatlon [2T]and applying Lemma[D.3]on the deviation terms leads to, with
probability at least 1 — 272,

ha, (u; 2) — hq, (u; z)‘ <

-1
ST +E)@ +8) + 202\/ piosla ) sl o)

P
a
T<t t

2
-1

where Cy = L max , L.} depends on the Lipschitz constants and density bound, and Cs is the
constant in Lemma that depends on both K and f .

Applying the same argument to fa , gives the bound with probability at least 1 — 272,

1
Ful®) — fu(2)| < ZZE S0 606+ 00+ 205\/ plosta, ) - logtT)

26
t—1 a; (26)
T<t

Plugging equation [25]and [26|back into equation 20| gives the final error bound:

Lemma D.6 (Restatement of Lemma3.4). Suppose Assumpttonshold t>1, and le, —€r] <&

forevery T € [t — 1]. Let the NW esttmators Qt and Qt be defined as in equatzon and E] respectively.
Then with probability at least 1 — 4T 2, for every v € C and z € Z, we have

’@t(u;f) - @t(u z (tc_ll Z(l +&)(0r +6:) + 2 leog(4T)>

ta?
T<t t

)| < —
- fat (Z)
The constant ¢, = 2L max{f,, L.} and the constant cy depends on both K and f ,.

Note we get Lemma by plugging in the chosen bandwidth a;, = fﬁpﬁi’. Combin-
ing Lemma [3.4| with Lemma and the chosen bandwidth a; = c,(cpr/log(T))Y/*, we get
Lemma[3.3]
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E OMITTED EXPERIMENT RESULTS AND DETAILS IN SECTION [3]

E.1 SYNTHETIC DATASETS

We consider the following two demand mean models:

(A) Linear demand mean: f,(x;) = GI x;, which is widely used in various literature.

(B) Nonlinear demand mean f.(x;) = sin(2 - 0] ;) + 2exp(—16 - (8, x;)?), which has been
studied in high-dimensional quantile regression (Zhu et al.,|[2012) and offline robust newsvendor
inventory control (Zhang et al.| [2024)).

For the noise models, we focus on the following three setups, where 7, is sampled i.i.d. from standard
normal distribution and truncated at [—1, 1]:

(1) Linear Heteroskedastic Noise (LH): ¢, = (ﬁTmt) - 1¢, which models scenarios where noise
scales linearly with features. such as customer volume or promotion intensity.

(2) Nonlinear Heteroskedastic Noise (NLH): ¢, = /|37 x| - (1 — | BT @;[)-n;. This model captures
situations where uncertainty is highest at intermediate levels of a contextual factor and decreases
near the extremes, reflecting saturation effects or boundary constraints.

(3) Sinusoidal Heteroskedastic Noise (SH): ¢; = sin(10 - ,Bth) - 1;. This model reflects settings
with periodic or seasonal variation in uncertainty, where the randomness in demand oscillates
with some latent or cyclical signal.

In all settings, 6, and 3 € R4 are fixed, sampled from the standard multivariate Gaussian distribution
and normalized to have ¢5-norm bounded by 1 as well. The context vector ; € R4 is also drawn
i.i.d. from the standard multivariate Gaussian distribution and normalized to have ||x|2 < 1. We
assume that the low-dimensional feature z; := ,BT:ct is known to the DM, but the dependence of
the noise remains unknown. The intrinsic dimension in our numerical studies is thereby p = 1. The
cost parameters in equation [Tare set to be h = 0.05 and b = 0.95. All experiments were conducted
locally on a laptop with Apple M2 chip, 8-core ARM64 CPU, 8 GB memory.

First, for the linear demand mean model (A): we fix the time horizon T" = 3000 and context dimension
d € {5,10,20}. We only present the comparison between OSGD in Ding et al.|(2024), in which they
conduct gradient descent directly over the d-dimensional linear coefficients, and our Algorithm [2]
with ridge regression estimator in the following Figure|ll As the performance of OSGD does not
significantly change with d both theoretically and empirically, we only include its performance with
d = 10 for clarity. We repeat each of the settings 20 times and plot the average cumulative regrets as
well as their 95% confidence region.

(a) LH Model (b) NLH Model (c) SH Model

0 — o 0 —

0 500 1000 2000 2500 3000 0 500 1000 2000 2500 3000 0 500 1000 2000 2500 3000

1500 1500 1500
Time Period Time Period Time Period

Figure 1: Regret under different noise models for linear demand mean

In the LH model, the optimal solution remains as a linear function, and hence OSGD is still theoret-
ically optimal with O(\/T ) regret. Yet in Figure a), OSGD’s performance empirically degrades
under this mild heteroskedasticity. The models in Figure[I|b) and (c) are more involved and represent
nonlinear and oscillatory noise structures. These are the scenarios where OSGD fails both theoret-
ically and practically. In contrast, our algorithm consistently achieves lower regret and sublinear
growth across all demand models. These numerical results highlight the significance of accounting
for heteroskedasticity in practice.

For the nonlinear demand mean model (B): we fix the time horizon 7" = 20000 and context dimension
d € {10,50}. Now we only compare the performance of OSGD and Algorithm 2] with neural network
estimator. We implement a two-layer neural network with hidden dimensions 128 and 64. The
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network is trained using the AdamW optimizer with learning rate 0.002 and weight decay parameter
10~°. During training, the number of epochs and batch size are dynamically adjusted according to
the current horizon: for a larger ¢, we will apply a smaller number of training epochs J with a larger
batch, so that we can make full use of the samples when ¢ is small and avoid a large model training
time when ¢ is large. All inputs and outputs are standardized before training, and predictions are
transformed back to the original scale. We repeat each of the settings 5 times (each requires a running
time of around 120 minutes) and plot the average cumulative regrets as well as their 95% confidence
region. The result is shown in the following figure:

(a) LH Model (b) NLH Model (c) SH Model

0 250 5000 7500 10000 12500 15000 0 250 5000 7500 10000 12500 15000 17
Time Period Time Period

Figure 2: Regret under different noise models for nonlinear demand mean

As can be seen from Figure 2} under the highly nonlinear and oscillatory mean demand models,
Algorithm [2] with the neural network estimator significantly outperforms OSGD as well. While
OSGD suffers from persistent model misspecification, our approach adapts flexibly to the nonlinear
structure and achieves sublinear growth of regret, which demonstrates the robustness of our algorithm
against complex demand patterns. Besides, the performance of Algorithm [2| with neural networks
does not necessarily degenerate as the dimension d increases.

E.2 REAL-WORLD DATASETS

We use the M5 Forecasting—Accuracy dataset from Kaggle, which is widely used for evaluating
forecasting and inventory management algorithms. The dataset contains daily sales records of more
than 30,000 Walmart products across three U.S. states (California, Texas, and Wisconsin), covering
a time horizon of 1,941 days. In addition to sales quantities, it provides rich feature information
such as item attributes (category, department), store/location information, calendar variables (events,
holidays), and price data (including temporary promotions). See [Howard et al.| (2020)) for a detailed
illustration of feature information.

Among all the products, we select 40 items that have the most nonzero selling periods. Specifically,
for all these items, they have selling records of more than 1,900 days. The items are all under the food
category, and the average sales count is 35.2 units per day. Before observing the demand realization,
the DM can observe a d = 24 dimensional feature vector that helps her make an inventory order
decision.

To see that the context-aware noise is indeed an issue in the real-world dataset, we first present a box
plot on how the demand mean and variance varies with different values of feature. We consider two
features: (1) "Is Weekend", where 1 denotes the weekend and 0 denotes the weekday; (2) "Sell Price",
where we have 3 different prices in total.

We can see from Figure [3| that: (1) for Is Weekend, both the demand mean and variance of de-
mand differ significantly between weekdays and weekends, indicating that sales behavior changes
systematically across these contexts; (2) for different Sell Price, while the mean demand across
the three price does not differ substantially, at the highest price (1.68), the variance of demand is
significantly larger. These results clearly indicate that the variance of demand depends on certain
contextual features. As we argued earlier, models with context-independent noise cannot capture
such heteroskedastic patterns. This highlights the practical importance of studying our proposed
formulation with context-aware noise.

For the details of implementing Algorithm [2]in this real-world dataset: Note that we do not know
exactly the true low-dimensional feature z; (e.g. as a function of the context x,). Instead, we will

use the estimated demand mean 2z; := ft(mt) at each period ¢ as a hopefully good approximation of
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Figure 3: Context-aware heteroskedasticity in real-world dataset

z¢, with p = 1. The details of ridge regression and neural networks are the same as in the synthetic
datasets in Appendix [E.T]
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