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ABSTRACT

A problem with using the Gaussian distribution as a prior for a variational autoen-
coder (VAE) is that the set on which Gaussians have high probability density is
small as the latent dimension increases. This is an issue because VAEs aim to
achieve both a high likelihood with respect to a prior distribution and at the same
time, separation between points for better reconstruction. Therefore, a small vol-
ume in the high-density region of the prior is problematic because it restricts the
separation of latent points. To address this, we propose a simple generalization of
the Gaussian distribution, the tilted Gaussian, whose maximum probability density
occurs on a sphere instead of a single point. The tilted Gaussian has exponentially
more volume in high-density regions than the standard Gaussian as a function of
the distribution dimension. We empirically demonstrate that this simple change
in the prior distribution improves VAE performance on the task of detecting un-
supervised out-of-distribution (OOD) samples. We also introduce a new OOD
testing procedure, called the Will-It-Move test, where the tilted Gaussian achieves
remarkable OOD performance.

1 INTRODUCTION

Due to its simplicity, the Gaussian distribution is a common prior for the variational autoencoder
(VAE) (Kingma & Welling, 2014; Rezende et al., 2014). One drawback it has is that the region
of high probability density becomes relatively smaller as the latent dimension increases. To see
why this is an issue, consider the objective of the VAE. It tries to encode points such that they are
close to the prior and can reconstruct points into their original form. Given a limited capacity of an
encoder/decoder model, points in the latent space must be separated to have significant differences
in their reconstructed points. With a sufficiently complex data set, it would be required to have a
large volume in the high density region of the prior distribution to accommodate each of the latent
points, while allowing for sufficient separation.

We argue that the Gaussian distribution’s volume under regions of high probability density is not
large enough to accommodate real data sets. To this end, we show that many of the points encoded
by Gaussian prior VAEs exist in low-density regions, and that the high-density region remains rela-
tively empty. In support, Nalisnick et al. (2019a) report that the latent point at the highest density of
a Gaussian VAE trained on MINST was an all-black image. To deal with these issues, we propose
a simple generalization of the Gaussian distribution called the tilted Gaussian distribution. We cre-
ate this distribution by “exponentially tilting” the ordinary multivariate Gaussian distribution by its
norm. The operation of exponential tilting is a common procedure in such diverse fields as statistical
mechanics, large deviations or importance sampling, but we believe using it for VAEs as we do here
is a novel contribution. The tilted Gaussian has a maximum probability density lying on the surface
of a sphere rather than at a single point. A single parameter corresponds to the sphere’s radius,
allowing for control of the volume under the high-density region of the distribution. We show that
the tilted Gaussian has exponentially more volume that the standard Gaussian as as function of the
latent dimension, allowing for a far greater proportion of points from a dataset to exist in regions of
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Figure 1: A 2D representation of the 10D latent space of the Gaussian VAE vs the tilted VAE with
τ = 25 trained on the Fashion-MNIST dataset, plotted with an isoradial projection that preserves
the radius (i.e. r2D = ∥z10D∥; see Appendix F.1 for details on this isoradial projection). Shaded
regions indicate where the latent probability density is at least 25%, 50% or 75% respectively of its
maximum, Rc := {z | ρ(z) ≥ cmaxw ρ(w)}. The encoded points of the tilted VAE lie almost
entirely in the region of high probability density, while the ordinary Gaussian VAE places points
outside these regions. See also Section 3.5 for more comparisons.

high probability density. We investigate a simpler method of increasing the prior volume by using a
Gaussian with large variance, however the effect on performance was minimal D.2.

To demonstrate the benefits of the tilted Gaussian as a prior for the VAE, we focus on the task of
OOD detection. It has been noted that somewhat surprisingly, VAEs assign high likelihood to OOD
points, despite being optimized on a lower bound of the log-likelihood (Nalisnick et al., 2019a;
Choi et al., 2019). A possible contributing factor to this poor performance is that the high-density
region of the latent space is not densely populated by in-distribution (ID) points due to the volume
considerations previously detailed. We show that VAEs using the tilted Gaussian as a prior (which
we call the tilted VAE), have a far greater percentage of points in high density regions (see Figure 1
for an illustration and Section 3.5 for detailed numbers) and perform significantly better on the OOD
task (See Table 2). While the improvement is a step towards robust OOD detection with VAEs, we
show that a prior distribution alone cannot achieve the desired level of performance on this task.
Thus, we propose a new test, called the Will-It-Move test, for the OOD problem. Combined with
the tilted Gaussian as a prior, it consistently improves the performance of current methods to perform
OOD detection with VAEs. (See Section 4.2 for a description and Table 2 for results)

2 RELATED WORK

2.1 EXTENSIONS OF VARIATIONAL AUTOENCODERS

In this section, we give a non-exhaustive list of extensions proposed for VAEs. The majority of
approaches aim to increase the flexibility of the prior. For example, a mixture of Gaussians can be
used as an alternative (Dilokthanakul et al., 2016) to the standard Gaussian prior. The VampPrior
attempts to improve upon the mixture of Gaussians by using a mixture of variational posteriors
(Tomczak & Welling, 2018). Another proposal for the prior distribution is the hyperspherical VAE
(Davidson et al., 2018), which uses a von-Mises-Fisher (VMF) distribution. In contrast, our tilted
prior is concentrated around the hypersphere as a “soft” constraint, which allows the ordinary normal
distribution instead of the VMF to be used. Other proposed methods use the Dirichlet process
(Nalisnick & Smyth, 2017), the Chinese restaurant process (Goyal et al., 2017), and the Gaussian
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process (Casale et al., 2018). Hierarchical constructions of priors can be used to construct prior
distributions as in Sønderby et al. (2016), Maaløe et al. (2016), and Maaløe et al. (2019), using
various methods to construct the latent variable hierarchy. A different approach is to enforce a lower
bound on the Kullback–Leibler divergence (KLD) term of the VAE, taken by the delta-VAE (Razavi
et al., 2019). A powerful way to achieve greater flexibility is to use normalizing flows, a class of
invertible transformations that can be used to construct more complex posteriors.

2.2 OUT-OF-DISTRIBUTION DETECTION METHODS FOR VARIATIONAL AUTOENCODERS

Arguably the simplest approach to perform OOD detection with VAEs is by using a one-sided test
based on the likelihood that VAEs assign to data points (Bishop, 1994). Given that this method per-
forms surprisingly poorly on the OOD task Nalisnick et al. (2019a), a number of alternative scores
have been provided. Likelihood Ratios (Ren et al., 2019) proposes to use the ratio between two dif-
ferent types of models, one capturing the semantic content of data, the other capturing background
information. Likelihood Regret (Xiao et al., 2020) uses a similar principle, but uses the ratio between
an model that is optimized for the training dataset and another optimized for an individual sample.
ROSE (Choi et al., 2021) uses a method to compute how much a sample would update a model’s
parameters. Input complexity (Serrà et al., 2020) use an estimate of the Kolmogorov complexity as
well as the log-likelihood estimate assigned by the VAE. Density of States Estimation (Morningstar
et al., 2021) uses an approach based on statistical physics and directly measures the typicality of
different model statistics to classify OOD samples. Nalisnick et al. (2019b) uses a typicality test and
Song et al. (2019) uses batch normalization statistics. Ran et al. (2021) takes a different approach
by adding Gaussian noise to images and employs a noise contrastive prior to the VAE architecture.

3 THE TILTED GAUSSIAN DISTRIBUTION AND THE TILTED VAE

3.1 REVIEW OF THE VARIATIONAL BOUND USED FOR TRAINING VAES

Consider a dataset X = {xi}Ni=1 consisting of N i.i.d. samples of some distribution in Rdx . We
model the data by a two-step process: first, an unobserved latent variable z ∈ Rdz is sampled
according to a prior distribution pZ (z); second, a value xi is produced conditionally on the latent z
by a parameterized generator (“decoder”) pθ (x|z) according to some unknown parameter θ = θ∗.
To attempt to recover θ∗, we maximize the marginal log-likelihood of the data

∑N
i=1 log pθ(x

i) =∑N
i=1

∫
Rdz

log pθ(x
i|z)pZ(z)dz. As the integral over the latent variables is often intractable, the

variational lower bound is used to introduce a parameterized inference model (“encoder”) qϕ (z|x)
to approximate the true posterior pθ (z|x). Given an encoder model qϕ, the variational lower bound
of the log-likelihood is

N∑
i=1

log pθ
(
xi
)
≥

N∑
i=1

Eqϕ(z|xi)

[
log pθ

(
xi|z

)]
−

N∑
i=1

DKL(qϕ(z|xi) ∥ pZ(z)), (1)

where DKL (·) is the Kullback-Leibler divergence (KLD). The KLD term in the equation above
can be interpreted as fitting the aggregated posterior qϕ

(
z|xi

)
to the pre-determined prior pZ (z).

Typically, the standard Gaussian distribution pZ(z) ∼ N (0, I) is used as the prior and the encoder
distribution is qϕ(z|x) ∼ N

(
µ(x), diag(σ2(x)

)
) with parameterized functions µ(x), σ2(x) ∈ Rdz

for the encoder mean and variance. In this case, the KLD term appearing in (1) can be evaluated
explicitly as

DKL(N
(
µ, diag(σ2)

)
∥ N (0, I)) =

1

2
∥µ∥2 + 1

2

dz∑
j=1

(
σ2
j − 1− log σ2

j

)
. (2)

this formula makes the lower bound of (1) explicit, and can be optimized using stochastic gradient
descent. Gaussian noise is added to each point during training so that the latent point zi assigned to
the data point xi is zi = µ(xi) + σ(xi)N (0, I), see e.g. (Kingma & Welling, 2014).

3.2 IMPROVING THE VAE

The primary technical contribution of this paper is the proposal of an alternative prior distribution
pZ(z), the exponentially tilted Gaussian prior. As the standard Gaussian prior has maximum density
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at the origin, the KLD term in the log-likelihood bound (2) forces all latent points into the same
location, µi = 0 and σi = 1. This leads to “crowding” around the origin, making it difficult to
differentiate between encoded data samples (Hoffman & Johnson, 2016; Alemi et al., 2018).

Unlike the standard Gaussian, the tilted prior does not have maximum density at a single point.
Instead, the maximum density occurs at all the points on the hyper-sphere of radius τ as illustrated
in Figure 2. This allows the model to spread out latent points while still optimizing the marginal
log-likelihood bound (1).

Additionally, the radii ∥z∥ of points drawn from this distribution are near τ with high probability.1
Therefore, the norm of an encoded point ∥z∥ drawn from z ∼ qϕ(z|x) can form a simple statistic
which is an effective test for OOD points (see (7)). We also obtain a new variational bound, the
analogue of equation 2, for the KLD of the tilted Gaussian distribution. This allows training the
tilted VAE by a simple modification to the standard Gaussian. This new prior can substitute for the
standard Gaussian with minimal changes to existing code. In practice, the only change is replacing
the term 1

2∥µ∥
2 in the KLD from equation (2) to 1

2 (∥µ∥ − ∥µ∗∥)2 where ∥µ∗∥ is a fixed constant
depending on the tilting parameter τ . This corresponds to the KLD of the new tilted model as in
equation (6).

3.3 EXPONENTIALLY TILTED GAUSSIAN DISTRIBUTION AND THE TILTED VAE

Figure 2: Example of ρτ (z) when dz = 2, τ = 3

Definition 3.1. For a tilting parameter τ ≥ 0, the exponentially tilted Gaussian distribution, denoted
Nτ (0, I), is the random variable on Rdz with probability density ρτ (z) defined by:

ρτ (z) :=
eτ∥z∥

Zτ

e−
1
2∥z∥

2

√
2π

dz
=

eτ∥z∥

Zτ
ρ0(z), Zτ := Ez∼N (0,I)[e

τ∥z∥] (3)

Compared to the standard Gaussian, which corresponds to τ = 0, the tilting term eτ∥z∥ pushes
the distribution towards values greater than ∥z∥. By completing the square, one sees the density is
proportional to e−

1
2 (||z||−τ)2 , meaning that the density is radially symmetric and has a maximum

value at ∥z∥ = τ . An illustration is provided in Figure 2.

The tilted VAE uses the tilted Gaussian as the latent prior pZ(z). An important feature of the tilted
VAE is that the encoder distribution (i.e. the distribution assigned in latent space to a single input xi)

1For a standard Gaussian, ∥z∥ is concentrated around
√
d as d → ∞, so the effect of tilting pushing ∥z∥

toward τ will only have an appreciable effect when τ > O(
√
d); see Figure 5 (Right) for an illustration.
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is not exponentially tilted. We take this distribution to be a simple Gaussian of the form z ∼ N (µ, I)
where µ = µ(x) is determined by the encoder parameters. For the sake of simplicity and to reduce
computation we have fixed the covariance matrix Σ = I , whereas for the Gaussian VAE the variance
Σ = diag(σ) is allowed to be chosen by the encoder. We believe that it would be possible to also
allow this extra flexibility for the tilted VAE but we do not do so here.2

Intuitively, the tilted prior allows the encoder distributions to choose µ anywhere on the surface of a
hyper-sphere with a minimum KLD, rather than located at the single point µ = 0, as would be the
case when the prior is an standard Gaussian. Note also that since a Gaussian cannot be perfectly fit
to the distribution Nτ (0, I), there will always be a non-zero minimum KLD between the encoder
and prior distributions, i.e. δ(τ) := infµ∈Rdz DKL(N (µ, I) ∥ Nτ (0, I)) > 0 when τ > 0. This
can be interpreted as the minimum average amount of information in nats that each sample contains
after being encoded. The decoder is then able to use this information to differentiate distributions
in the latent space. This minimum value δ(τ) is referred to as the “committed rate” in Razavi et al.
(2019).

3.4 NORMALIZATION CONSTANT AND THE TILTED KLD BOUND

The calculation of the distribution’s normalization constant Zτ and DKL(N (µ, I) ∥ Nτ (0, I)) is
summarized below with proofs deferred to Appendix A. The normalizing constant Zτ satisfies

Zτ =M

(
dz
2
,
1

2
,
1

2
τ2
)
+ τ

√
2
Γ(dz+1

2 )

Γ(dz

2 )
M

(
dz + 1

2
,
3

2
,
1

2
τ2
)
, (4)

where M is the Kummer confluent hypergeometric function M (a, b, z) =
∑∞

n=0
a(n)zn

b(n)n!
and a(n) is

the rising factorial a(n) = a(a+ 1). . .(a+ n− 1). The KLD can then be written as

DKL(N (µ, I) ∥ Nτ (0, I)). = logZτ − τ

√
π

2
L

dz
2 −1
1
2

(
−∥µ∥2

2

)
+

∥µ∥2

2
, (5)

where L is the generalized Laguerre polynomial, L(α)
n (x) =

(
n+α
n

)
M (−n, α+ 1, x). During train-

ing, instead of computing DKL(N (µ, I) ∥ Nτ (0, I)) exactly (involving the difficult-to-compute
Laguerre polynomial in (5)), we use the following simple quadratic approximation of the KLD,
vastly simplifying the computation while preserving the bound (1):

DKL(N (µ, I) ∥ Nτ (0, I)) ≤
1

2
(∥µ∥ − ∥µ⋆(τ)∥)2 + C∗(τ) (6)

where µ⋆(τ) = argminµDKL(N (µ, I) ∥ Nτ (0, I)) and C∗(τ) = minµDKL(N (µ, I) ∥ Nτ (0, I))

is the minimum such value3. This bound allows easy training of the tilted VAE just as (2) allowed
training of the standard Gaussian VAE. Note that the term C∗(τ) is constant and can therefore be
omitted during training. The proof of (6) is deferred to Appendix A.3. Figure 5 illustrates the
difference between the exact vs approximate KLD in (6) and shows how ∥µ⋆(τ)∥ depends on dz .

3.5 COMPARISON BETWEEN TILTED GAUSSIAN AND REGULAR GAUSSIAN

We now highlight some important differences between the tilted and regular Gaussian distribution
as the dimension of the space grows. First, the volume of the space under regions of high probability
density is much larger for the tilted Gaussian. Second, regions of high probability density have a
much larger contribution to the total probability for the tilted Gaussian over the regular Gaussian.

To demonstrate these facts, consider a given density function ρ(z) and c ∈ [0, 1]. We are interested in
the set of points that have a density at least c times the maximum possible density. This set is denoted
Rc := {z | ρ(z) ≥ cmaxw∈Rdz ρ(w)}. In Appendix B, we show that the volume of Rc for the tilted
Gaussian grows exponentially faster than the regular Gaussian with respect to the dimension of the
space. The contribution to the total probability by the set Rc is given by Pρ[Rc] :=

∫
z∈Rc

ρ(z)dz.

2Note that whenever we use the standard Gaussian VAE in this paper (e.g. to compare to the tilted VAE),
we do allow the variance σ to be chosen as a parameter

3Note that µ⋆(τ) is not unique and all vectors lying on the hyper-sphere with radius ∥µ⋆∥ are valid minima.
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For both the tilted and regular Gaussian distribution, the integral cannot be solved in closed-form.
Appendix B shows a comparison between the distributions when c = 0.5.

Empirically, we observe that when using the tilted VAE, a far greater proportion of latent points are
embedded in regions of high probability density. Figure 1 shows an example of the differences in
latent spaces when using the two different priors.

REGION STANDARD GAUSSIAN TILTED GAUSSIAN (τ = 25)
Rc := {z : ρ(z) > cmaxw ρ(w)} % POINTS PROB. VOL. % POINTS PROB. VOL.

R25% 21.3 % 1.4% 417 99.9% 88.5% 3.4×1014

R50% 6.8% 0.8% 13.1 99.5% 73.5% 2.3×1014

R75% 1.2% 0.01% 0.2 95.2% 52.7% 1.5×1014

Table 1: Numerical comparison of the “size” of high probability regions for the standard Gaus-
sian distribution and tilted Gaussian distribution in 10D. The rows correspond to the regions
R25%, R50%, R75% where the probability density is at least 25%, 50% or 75% of the maximum
probability density, Rc = {z : ρ(z) > cmaxw ρ(w)} as illustrated in Figure 1. Three separate
notions of “size” are compared as follows. “% POINTS”: The fraction of the data set the VAE in
Figure 1 has in the region. “PROB.” : The probability P[z ∈ Rc] when z is chosen according to the
latent distribution, “ VOL.”: The volume of the region.

4 OUT-OF-DISTRIBUTION DETECTION

4.1 USING THE LIKEHOOD AS AN OOD SCORE

We now focus on a particular application of VAEs to demonstrate the advantages of using the tilted
Gaussian as a prior. The task of OOD detection can be described by considering a training distribu-
tion P . Samples that have a high probability density under the training distribution are considered to
be ID, whereas samples that have a low probability density under the training distribution are con-
sidered to be OOD. In practice it is common to use data from a different distribution Q as examples
of OOD data. As we only have access to in-distribution training data, the OOD task we described is
a case of positive unlabelled (PU) learning Jaskie & Spanias (2022) Given that the VAE is optimized
to get a lower bound on the marginal log-likelihood, (1) is a natural statistic to determine if a sample
is OOD. Samples with a higher marginal log-likelihood would be considered to be more likely to
be ID. In this work we assume that the reconstruction or likelihood term of (1) takes the form of a
Gaussian likelihood and we approximate the expectation over a single sample qϕ(z|xi). This allows
the marginal log-likelihood bound to be used as an “OOD score” namely:

SOOD(x) := −∥x− x̂∥2 − 1

2
(∥z∥ − ∥µ⋆(τ)∥)2 . (7)

where z ∼ qϕ(z|x) is a sample of the latent space image of the point x, and x̂ is the reconstructed
data point from the image z, i.e. x̂ ∼ pθ(x|z). We note that value of C⋆(τ) in the KLD approxi-
mation (6) is not required as it is constant for all inputs. In practice, some value of SOOD(x) must
be used as a threshold to determine if a point is OOD or not. By sweeping through all possible
threshold values we obtain the full ROC curve.

We conduct an experiment comparing the tilted Gaussian vs the standard Gaussian as a prior for
the VAE on two OOD detection tasks. To give a quantitative measure of OOD classification, we
examine the Receiver Operating Characteristics (ROC) curve looking at the relationship between
the false positive and true positive rates as the threshold value for (7) changes. The Area Under
the Curve-Receiver Operating Characteristics (AUCROC) (Fawcett, 2006) is used to give a single
number measuring OOD detection performance. Details regarding the full experimental settings can
be found in Appendix C and the results are shown in Figure 34.

4Code is available at https://github.com/anonconfsubaccount/tilted_prior
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Figure 3: A comparison of the ROC of VAEs trained with a standard Gaussian prior and an tilted
prior. The left plot corresponds to models trained on the Fashion-MNIST and CIFAR-10 data sets,
respectively. In both cases, the MNIST data set is used as OOD data. The AUCROC metrics are
shown in the plot legends. In both cases the tilted Gaussian prior leads to a significant increase in
performance of the OOD detection task.

4.2 THE WILL-IT-MOVE TASK FOR OUT-OF-DISTRIBUTION DETECTION

4.2.1 MOTIVATION: ENTROPIC ISSUES WITH VARIATIONAL AUTOENCODER

As detailed in Caterini & Loaiza-Ganem (2022), using the marginal likelihood from the VAE as
an OOD score has fundamental issues for low-entropy data distributions. To describe this issue
theoretically, imagine we are given samples from a “true” distribution P to distinguish from an
“outside” distribution Q. We train a parameterized model pθ to maximize the log-likelihood of
points from P , i.e. we maximize LP (θ) = EX∼P [log pθ(X)] 5. Once pθ is trained, the lower bound
of log pθ(x) is used as an OOD score; points with low log-likelihood are to be labelled from Q rather
than P because one would hope that LP (θ) > LQ(θ) for our choice of parameters.

However, this simple log-likelihood comparison can fail when the entropy of the “outside” distribu-
tion Q is low compared to that of P . One can decompose the log-likelihood into two terms:

LP (θ) = EX∼P [log pθ(X)] = −DKL(P ∥ pθ)−H[P ],

where H[P ] is the entropy of the distribution P . This decomposition shows that comparing the
expected log-likelihood of P to that of Q gives

LP (θ) < LQ(θ) ⇐⇒ H[P ]−H[Q] > DKL(Q ∥ pθ)−DKL(P ∥ pθ).

Even if our model θ is perfectly chosen so that DKL(P ∥ Pθ)) = 0, it is possible to observe a
higher average log-likelihood for points from the “outsider” distribution Q when H[P ] > H[Q] +
DKL(Q ∥ Pθ). This phenomenon means that distributions Q with low entropy, (i.e. H[Q] small) can
sometimes be hard to detect using a VAE model. Indeed, experiments show that detecting a constant
image as out of distribution can counter-intuitively be quite difficult (see “Constant” row in Table
2). To deal with this problem, we propose the Will-It-Move testing procedure.

4.2.2 DESCRIPTION OF THE WILL-IT-MOVE TEST

The Will-It-Move (WIM) test works by fine-tuning the parameters of the VAE to try to “push” OOD
latent points away from the model prior, while keeping known ID points close to their original
prior. Points that are truly OOD should be easily moved, while points from the original training

5Note that in practice, one maximizes the empirical average over a given sample, but here we will focus on
the theoretical average that one gets in the large data limit: limn→∞

1
n

∑n
i=0 log pθ(xi) = EX∼P [log pθ(X)]
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Figure 4: A 2D representation of the 10D latent space of the Tilted Gaussian VAE during the WIM
test with CIFAR-10 as the ID and MNIST as the OOD. Isoradial projection is used (i.e. r2D =
∥z10D∥ see Appendix F.1 for details). Black circles are from the training set, while green x and
purple triangles are unknown points to be classified from either OOD distribution or ID respectively.
(Note that the true identity of the test points is unknown to the algorithm.) Originally, the VAE
trained only on the training point maps all points to the latent distribution well. During parameter
fine-tuning in the WIM test, only the truly OOD points are easily moved away to the alternative
latent distribution (in this case, a standard Gaussian) and can therefore be easily identified.

distribution should be hard to move away from the original prior. In other words, the answer to
“Will-It-Move?” is “Yes” for OOD points and “No” for ID points during the test. After the WIM-
fine-tuning is completed, the same score (7) is then used to label unknown points as either OOD or
ID. By moving points away form the model prior, this allows the KLD term in the likelihood bound
to become very large and overcome the entropy problem previously discussed.

To precisely describe the WIM task, consider a training data set X drawn iid from a distribution
P . We suppose that we have already used X to train a VAE by maximizing the log-likelihood w.r.t.
some given latent distribution ZX . (e.g. using the tilted Gaussian ZX = Nτ (0, I)). The WIM test
fine-tunes the parameters of the VAE to label the identity of points from an “unknown” data set U
that has samples from both the training and the OOD distribution i.e. U = {xi}ni=1∪{x̃i}mj=1 where
xi ∼ P and x̃j ∼ Q. Note that the identity of the points in U is not known apriori.

To do this, we choose a different latent space distribution for the data U , denoted by ZU . In the
WIM test, the model fine-tunes the parameters so that points from X stay close to ZX and points
from U move to ZU in latent space. Specifically, we maximize by gradient descent the objective
function that is the weighted sum of their log-likelihoods for some α ∈ R:

L(ZX , X) + αL(ZU , U) (8)

where L(ZX , X) :=
∑

xi∈X Eqϕ(z|xi)

[
log pθ

(
xi|z

)]
− DKL(qϕ(z|xi) ∥ ZX)) and analogously

L(ZU , U) is the log-likelihood for the data set of unknown points U w.r.t. the alternative latent
distribution ZU .

The first term of (8) is the original training objective of the VAE, and is intended to keep the data set
X in it’s original configuration. The effect of the second term is to push the points of U toward ZU

in latent space. The hope is that OOD points from Q can easily be moved to ZU , whereas points
from P are similar enough to the original data set so that the first term in (8) keeps these points
around ZX despite the pull from the second term. The points that we observe moving during this
fine-tuning are therefore identified as the OOD points (hence the name “Will-It-Move?”).

In practice, we use ZX as a tilted Gaussian and ZU as a standard Gaussian. Implementation details
of the WIM test are discussed in D.1. As an ablation test, we perform the WIM test with both
ZX and ZU as Gaussian distributions with different location parameters and observed significantly
better performance with the tilted Gaussian. Results from this experiment can be found in D.2
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5 RESULTS AND COMPARISON TO OTHER OOD METHODS

Table 2: AUROC comparison between OOD detection methods with Fashion-MNIST and CIFAR-
10 as training distributions for various OOD sets. A larger number is better. Note that when AUROC
< 0.5, (indicated by ∗), then “flipping labels” would improve the classifier; see F.2 for discussion.

DATASET GAUSS IC (PNG) IC (JPEG2000) RATIO REGRET TILT WIM

FASHION-MNIST
MNIST 0.375* 0.993 0.351* 0.965 0.999 0.999 1.0
CIFAR-10 1.0 0.970 1.0 0.914 0.986 0.997 1.0
SVHN 1.0 0.999 1.0 0.761 0.989 0.98 1.0
KMNIST 0.765 0.863 0.769 0.960 0.998 0.999 1.0
NOISE 1.0 0.324* 1.0 1.0 0.998 1.0 1.0
CONSTANT 0.975 1.0 0.984 0.980 0.999 0.798 1.0

CIFAR-10
MNIST 0.0* 0.976 0.0* 0.032* 0.986 0.797 1.0
FASHION-MNIST 0.032* 0.987 0.035* 0.335* 0.976 0.688 1.0
SVHN 0.209* 0.938 0.215* 0.732 0.912 0.143* 0.991
LSUN 0.833 0.348* 0.833 0.508 0.606 0.933 0.941
CELEBA 0.676 0.310* 0.679 0.404* 0.738 0.877 0.997
NOISE 1.0 0.042* 1.0 0.851 0.994 1.0 1.0
CONSTANT 0.015* 1.0 0.269* 0.902 0.974 0.0* 1.0

To further validate the performance of our proposed prior, we compare the tilted prior to a variety of
methods that achieve top performance in OOD detection with VAEs. The methods we consider are
Input complexity (IC (png)), (IC (JPEG2000)) (Serrà et al., 2020), likelihood ratios (Ratio) (Ren
et al., 2019), and likelihood regret (Regret) (Xiao et al., 2020). A VAE with a standard Gaussian
prior and log-likelihood OOD score (Gauss) is also used as a benchmark. The tilted VAE and WIM
test are denoted Tilt and WIM respectively. Table 2 is a summary of the results from this analysis.

From this experiment, we observe that the tilted VAE significantly outperforms the Gaussian VAE
across a variety of datasets. Furthermore, the tilted VAE alone has competitive performance with
the OOD based scores we compare against. When the WIM test is used with the tilted prior we ob-
serve that this method matches or improves upon the compared methods in all tests considered. For
difficult cases such as when CIFAR-10 is the training distribution and the OOD datasets are SVHN,
LSUN and CELEBA the WIM test achieves significant performance increases over all compared
methods. When looking at cases where the OOD dataset is much simpler that the training distribu-
tion, for example the constant dataset, we observe methods that use the log-likelihood estimate as
an OOD score (Gauss and Tilt) perform poorly.

6 CONCLUSION

We propose a generalization of the Gaussian distribution called the tilted Gaussian, and show that
it can be implemented in the same way as the standard Gaussian VAE with a simple change to
the KLD term. It’s use as a prior distribution for the VAE was motivated by showing that when the
standard Guassian is used as a prior, a large percentage of data points are encoded into regions of low
probability density. We then prove that the tilted Gaussian has exponentially more volume in high
probability density regions that the standard Gaussian as a function of the distribution dimension.
Empirically, we show that the tilted VAE encodes a far greater percentage of points on regions of
high-probability density. We introduce a new OOD score for the VAE and empirically demonstrate
that it is a consistent improvement over the performance of recent OOD scores for the VAE. Finally,
we perform an ablation study and show that the WIM test performs better when using the tilted
Gaussian prior over the standard Gaussian prior.

While this work investigated the tilted Gaussian distribution in the context of OOD detection with
VAEs, we believe that there are many applications where the tilted Gaussian is a viable drop-in re-
placement for the standard Gaussian. We encourage researchers to experiment with this distribution
in other situations.
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A FACTS ABOUT THE TILTED GAUSSIAN

A.1 DERIVATION OF THE NORMALIZATION CONSTANT Zτ
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where we have used the moments of the χ(d) distribution and we let M (a, b, z) =
∑∞
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is the Kummer confluent hypergeometric function and a(n) = a(a+ 1) . . . (a+ n− 1) is the rising
factorial.

A.2 EXACT FORMULA FOR THE KLD USED IN THE VAE

Define the shorthand fτ (µ) to be the KLD defined below:

fτ (µ) := DKL(N (µ, I) ∥ Nτ (0, I)) (9)
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Figure 5: Left: Comparison between the exact and quadratic approximation of the KLD
DKL(N (µ, I) ∥ Nτ (0, I)) as in (6) for dz = 10, τ = 15 Right: ∥µ⋆(τ)∥ plotted for a variety
of different latent dimensions dz . The value of ∥µ⋆(τ)∥ was computed numerically using gradient
descent from the explicit formula in (5). Note that there is a critical τ value for which µ∗(τ) be-
comes nonzero. We conjecture that the critical τ ≈

√
d as d → ∞.

A.3 APPROXIMATION OF THE KLD

Let fτ (µ) ∈ R be the KLD as in (9). Note that fτ depends only on the magnitude of µ, not the
direction. With x = ∥µ∥, we can therefore define gτ : R → R by

gτ (x) := fτ (xe⃗1) = ln(Zτ )− τEz∼N (0,I) [∥z + xe⃗1∥] +
1

2
x2 (10)

where e⃗1 is the unit vector e⃗1 = (1, 0, 0, . . . , 0)
T .

Proposition A.1. The function g satisfies

g′′τ (x) = 1− τEz∼N (0,I)

[
z22 + . . .+ z2d
∥z + xe⃗1∥3

]
and in particular for τ > 0,

g′′τ (x) ≤ 1

Proof. The formula for g′′τ goes by taking the derivative of the definition gτ (x) from (10) using
d2

dx2
1
2x

2 = 1 and the elementary fact
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∥z + xe⃗1∥ =
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≥ 0,

Since this is non-negative, it is immediate that g′′τ (x) ≤ 1 as claimed.

Remark A.2. Note that the random variable appearing in the formula for gτ is related to the non-
central Beta distribution
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Corollary A.3. Let µ∗(τ) be the minimum of fτ so that fτ (µ∗(τ)) ≤ fτ (µ) for all µ ∈ Rd and
gτ (∥µ∗(τ)∥) ≤ gτ (x) for all x ∈ R. Then:

gτ (x) ≤
1

2
(x− ∥µ∗(τ)∥)2 + gτ (∥µ∗(τ)∥)

or equivalently:

fτ (µ) ≤
1

2
(∥µ∥ − ∥µ∗(τ)∥)2 + gτ (∥µ∗(τ)∥)

Proof. Since g′′τ (x) ≤ 1 and g is differentiable, by Fermat’s theorem, g′τ (∥µ∗(τ)∥) = 0. We can
now integrate to find that for x > ∥µ∗(τ)∥

g′τ (x) = g′τ (∥µ∗(τ)∥) +
x∫

∥µ∗(τ)∥

g′′τ (w) dw
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x∫
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1 dw
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and finally integrating again gives the desired inequality for x > ∥µ∗(τ)∥:
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The same inequality holds for x < ∥µ∗(τ)∥ by integrating from
∫ ∥µ∗(τ)∥
x

. The final inequality for
f follows by setting x = ∥µ∥.

B REGIONS OF HIGH PROBABILITY DENSITY FOR GAUSSIAN VS TILTED

To compute the “size” of regions where the probability density function is at least c ∈ (0, 1) times
its maximum, Rc = {ρ(z) > cmaxw ρ(w)}, we compute for the standard Gaussian that:
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This shows that this region is always a sphere for the standard Gaussian, Rc = B√
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(0). In
contrast, for the tilted Gaussian we have:
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This shows that the region of high probability is a “shell”, the difference of two spheres Rc =
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V olTilted(Rc) =
πd/2
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τ +
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−
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2 ln(1/c)
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By the “curse/blessing of dimensionality”, the region of high probability density is exponentially
larger for the tilted prior as a function of d. We compute the probability of landing in the region
R50% by numerically integrating the probability density on these regions below.
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Figure 6: The probability P[Nτ (0, I) ∈ R50%] i.e. the contribution of R50% to the total probability.
Note that τ = 0 corresponds to the standard Gaussian.

C EXPERIMENTAL SETTINGS

C.1 MODEL STRUCTURE AND OPTIMIZATION PROCEDURE

The parameters used for the tilted prior are τ = 30 for the Fashion-MNIST test and τ = 25 for the
CIFAR-10 test. The WIM test uses α = 0.1 for all of experiments. For all tests we train the VAE for
250 epochs with a batch size of 64. We use the ADAM optimizer with a learning rate of 10−4 and
clip gradients that are greater than 100. The encoder and decoder of the VAE is based on the work
done by (Choi et al., 2019) and consists of 5 convolutions layers with a fully connected layer for both
µ and σ. The decoder uses 6 deconvolutional layers and ends with a single convolutional layer. The
use of a fully connected encoder layers for the tilted prior is essential as the KLD is a function of ∥µ∥
which is impractical to optimize with a fully convolutional model. We initialize all convolutional
weights from the distribution N (0, 0.2). The model details can be viewing in C.1. On the Fashion-
MNIST test we use latent dimensions dz = 10 and for the CIFAR-10 test we used dz = 100. Both
Likelihood Regret and Likelihood Ratio are intended to be run with categorical cross entropy loss,
thus we employ this as the reconstruction loss function for all comparison models.

C.2 IMPLEMENTING METHODS

For all comparison methods we use IWAE with 200 samples to derive a lower bound on the log-
likelihood. For likelihood regret, we use gradient descent on all model parameters for 100 steps in
each of the tests. We use the ADAM optimizer for this process at a learning rate of 1e-4, same as the
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Table 3: Details of the model architecture where b is the batch size, f is the number of convolutional
filters, and w is the width of the square image. After each layer of the encoder and decoder a leaky
rectified linear unit was used. The filter parameter was set to f = 32 for all experiments.

ENCODER DECODER

INPUT x INPUT z, RESHAPE TO b× nz × 1× 1
5× 5 CONVc×f , STRIDE 1 w/4× w/4 DECONVdz×2f , STRIDE 1
5× 5 CONVf×f , STRIDE 2 5× 5 DECONV2f×2f , STRIDE 1
5× 5 CONVf×2f , STRIDE 1 5× 5 DECONV2f×f , STRIDE 2
5× 5 CONV2f×2f , STRIDE 2 5× 5 DECONVf×f , STRIDE 1

RESHAPE TO b× d′z 5× 5 DECONVf×f , STRIDE 2
LINEAR FROM d′z TO dz FOR µ AND σ 5× 5 CONVf×c , STRIDE 1

training procedure. We train the background model in Likelihood Ratio by setting the perturbation
ratio parameter µ to be 0.2 for all tests. Besides this, the background model is trained in an identical
format to the regular models. For input complexity we use the OpenCV implementations of the
PNG and JP2 compression algorithms.

C.3 DATASETS

The datasets that are used in our experiments are MNIST, Fashion-MNIST, KMNIST, CIFAR-10,
SVHN, CelebA and LSUN. We also use two synthetic datasets that we call Noise and Constant.
Images from the Noise dataset are created by sampling from the uniform distribution in the range
of [0, 255] for each pixel in an image, where the constant dataset is created by sampling from the
uniform distribution in the range of [0, 255] where all pixels in the image have the same value.
All images are resized to shape 32 x 32. Color images are converted to gray-scale for the Fashion-
MNIST test by taking the first channel and discarding the other two. Grayscale images are converted
to color images by taking 3 copies of the first channel. When testing with the CelebA and LSUN
datasets, we use 50000 random samples from each due to the large dataset sizes.

D WILL-IT-MOVE TEST DETAILS

D.1 IMPLEMENTATION DETAILS OF THE WIM TEST

The WIM test was implemented by using batches that had equal parts training data, in-distribution
test data, and OOD data. (We used 256 images of each type.) Our experiments used the full in-
distribution test-set, which was equivalent to approximately 25% of the OOD dataset. We trained 5
epochs on each batch, then tested both datasets for OOD points. This means that the model enjoys
better performance on OOD points that it hasn’t be tuned on, and shows effective generalization.
The gradient of the training data was weighted more strongly by choosing α = 0.1.

In time-sensitive applications, it could be infeasible to run the 5 epoch WIM updates on every data
point given that the backward pass through the model is far slower than a forward pass. Instead, one
could fine tune once only once on some data, and then run the fine tuned model for OOD detection.
In table 4 we compare the relative number of images per second of the methods used in this paper.
For the WIM test we include the time for the model to do 5 epochs of fine tuning with a final forward
pass as well as the time for a single forward pass, which could be performed after the model has
already been fine tuned.

D.2 ABLATION STUDY

We perform an ablation of the WIM test, by replacing the tilted Gaussian prior with a standard
Gaussian prior, meaning that both ZX and ZU are Gaussian distributions. To keep the distributions
separate in the latent space, we set each element of the location parameter for ZU to be 3. We
observe that the tilted prior consistently improves the performance of the WIM test over the standard
Gaussian prior.
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Table 4: Relative runtime comparison between methods on the Fashion-MNIST dataset. A larger
number is better. Experiments were run on an NVIDIA 3090 GPU with a Ryzen 3800X CPU

METHOD IMAGES PER SECOND

WIM - INFERENCE WITH PRE-FINE TUNED MODEL 97.3
WIM - RUNNING 5 EPOCHS OF FINE TUNING PLUS INFERENCE 0.498

IC (PNG) 95.2
IC (JP2) 92.6
RATIO 49.0
REGRET 2.20

Table 5: An ablation study comparing the performance of the WIM test when a VAE is trained with
a Gaussian prior VAE rather than a tilted VAE. The task is OOD detection with Fashion-MNIST and
CIFAR-10 as training datasets. The metric reported is the AUCROC, where larger number is better.

DATASET GAUSSIAN TILTED GAUSSIAN

FASHION-MNIST
MNIST 1.0 1.0
CIFAR-10 0.996 1.0
SVHN 0.997 1.0
KMNIST 0.999 1.0
NOISE 1.0 1.0
CONSTANT 0.998 1.0

CIFAR-10
MNIST 1.0 1.0
FASHION-MNIST 1.0 1.0
SVHN 0.940 0.991
LSUN 0.826 0.941
CELEBA 0.958 0.997
NOISE 1.0 1.0
CONSTANT 1.0 1.0

E COMPARISON TO LARGE VARIANCE GAUSSIAN

We investigate the result of using a standard VAE with a large variance Gaussian prior. The form of
the prior is N (0, aI) where a ∈ R+, and we vary a to understand the effect of on OOD detection.

This larger variance also increases the region of high density, but effectively increases the “scale” of
the latent space. This means separating points by adding N (0, Id) as part of the encoder becomes
less effective (i.e. Increasing the variance of the posterior a is equivalent to decreasing the variance
added to each point during encoding.) It is not surprising therefore that changing the variance does
not improve the ordinary VAE. Results can be found in Table 6.

F OTHER DETAILS

F.1 ISORADIAL PROJECTION

The isoradial projection used in Figure 1 and Figure 4 map 10-dimensional space to 2-dimensional
space, fisoradial : R10 → R2 so that the norms of the vectors in the domain R10 are preserved as the
radius in the range R2, i.e. R = ||fisoradial(z)||2D = ||z||10D for all z ∈ R10. This requirement deter-
mines the radius for every point z, so the only thing left to determine is the angle θ in 2D polar coor-
dinates. In Figure 1 and Figure 4 we chose the angle according to the first two principle components
(PCA) of the given data set. That is we chose θ to be the angle exactly that of the two dimensional
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Table 6: Results comparing a standard VAE with a large variance Gaussian prior. The task is OOD
detection with Fashion-MNIST and CIFAR-10 as training datasets. The metric reported is the AU-
CROC, where larger number is better. Note that when AUROC < 0.5, (indicated by ∗), then “flip-
ping labels” would improve the classifier; see F.2 for discussion.

DATASET a = 1 a = 10 a = 100 a = 1000 TILTED GAUSSIAN

FASHION-MNIST
MNIST 0.0375* 0.992 0.989 0.986 0.999
CIFAR-10 1.0 0.985 0.973 0.977 0.997
SVHN 1.0 1.0 1.0 0.999 0.980
KMNIST 0.765 0.913 0.838 0.883 0.999
NOISE 1.0 0.379* 0.428* 0.488* 1.0
CONSTANT 0.975 1.0 1.0 1.0 0.798

CIFAR-10
MNIST 0.0* 0.005* 0.003* 0.004* 0.797
FASHION-MNIST 0.032* 0.065* 0.056* 0.078* 0.688
SVHN 0.209* 0.417* 0.407* 0.355* 0.143*
LSUN 0.833 0.836 0.823 0.823 0.933
CELEBA 0.676 0.767 0.795 0.760 0.877
NOISE 1.0 1.0 1.0 1.0 1.0
CONSTANT 0.015* 0.006* 0.011* 0.007* 0.0*

vector (zPCA1, zPCA2) of the first two principle components of z, i.e. θ = arctan( zPCA2

zPCA1
) where

zPCA1 is the first component of the PCA and zPCA2 is the second component. These components
are linear combinations of the original components determined from the dataset. The projection f
can hence be written as

fisoradial(z) =
(
R cos(θ), R sin(θ)

)
=

(
||z|| zPCA1√

z2PCA1 + z2PCA2

, ||z|| zPCA2√
z2PCA1 + z2PCA2

)

F.2 DISCUSSION OF CLASSIFIERS WITH AUROC < 0.5

For any classifier with an AUROC < 0.5, a better classifier can be constructed by “flipping” the
classifier (i.e. when the original classifier outputs “OOD”, the new classifier will label this as in-
distribution and vice versa). The AUROC of the new classifier is simply 1− the AUROC of the
original classifier. This is a simple way to “fix” many of the poor classifiers listed in Table 2.

For clarity, we chose to only report the AUROC of the original classifier. This makes interpreting
Table 2 straightforward since the exact same classifier is used in each column (as opposed to a
mixture of flipped/un-flipped classifiers). Additionally, since the choice of whether or not to flip is
evidently very data dependent, in practice one would not know apriori whether flipping improves
the classification score (e.g. if classifying only a single data point, there would be no way to know).
OOD classifiers that consistently output high AUROC scores across many different data sets (such as
the WIM method) are therefore much more useful than classifiers that sometimes have to be flipped.

In the setting of OOD for VAEs, this kind of poor performance leading to AUROC < 0.5 has
been widely reported when the OOD distribution images are much “simpler” than the in-distribution
images, see e.g. Nalisnick et al. (2019a). One possible way to understand this is from an information
theory point of view, which is described in Section 4.2.1.
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