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Abstract

With the proliferation of machine learning applications in the real world, the de-
mand for explaining machine learning predictions continues to grow especially
in high-stakes fields. Recent studies have found that interpretation methods can
be sensitive and unreliable, where the interpretations can be disturbed by per-
turbations or transformations of input data. To address this issue, we propose
to learn robust interpretations through transformation equivariant regularization
in a self-interpretable model. The resulting model is capable of capturing valid
interpretations that are equivariant to geometric transformations. Moreover, since
our model is self-interpretable, it enables faithful interpretations that reflect the
true predictive mechanism. Unlike existing self-interpretable models, which usu-
ally sacrifice expressive power for the sake of interpretation quality, our model
preserves the high expressive capability comparable to the state-of-the-art deep
learning models in complex tasks, while providing visualizable and faithful high-
quality interpretation. We compare with various related methods and validate the
interpretation quality and consistency of our model.

1 Introduction

Deep learning (DL) models have been a great success in various domains of applications, including
object detection, image classification, etc. However, many applications suffer from the overfitting
problem, which is usually due to the lack of various training data. For scenarios with limited data
access, data augmentation is usually applied to alleviate the overfitting problem. As one of the most
simple but effective data augmentation methods, geometric transformation plays an important role in
exploring the intrinsic visual structures of image data [44, 34]. Transformation equivariance refers
to the property that data representations learned from the model capture the intrinsic coordinates
of the entities [15], i.e., transformations on the data will result in the same transformations to the
model representations. Building transformation-equivariant DL models is desired in many kinds of
applications, such as medical image analysis [11], reinforcement learning [27], etc.

Although DL models can exert excellent performance in various tasks, DL models are usually
expressed as black boxes. Therefore, DL models can have great performance in complex tasks but
lack an explanation of the results [12]. In low-risk tasks such as adaptive email filtering, the direct
deployment of black-box models without reasoning might be acceptable. However, for high-risk
decision-making tasks such as disease diagnosis and autonomous vehicles [18], the applied model
needs to be more convincing than a black box. On the one hand, by faithfully explaining the model
behavior, it can ensure the end user intuitively understands and trusts the DL model. On the other
hand, the explanation of black-box models can provide insights into the relationship between input
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and output, thereby improving model design. However, with the rapid growth in computational power,
DL models are designed to be more and more complex to meet the performance [35], and the most
advanced DL models can have billions of trainable parameters [36]. High complexity leads to the
complete black box for human beings, which results in a lack of trust in the model. The demand for
building more reliable and easy-to-understand DL models is growing rapidly.

Depending on the stages where predictions and interpretations are conducted, the methods can be
divided into two opposing categories: self-interpretable models and post-hoc models [30]. Unlike post-
hoc models, which generate interpretations to pre-trained black-box models, self-interpretable models
aim to build models that are intrinsically interpretable themselves. The main difference between
these two categories is that for post-hoc models, the interpretation and prediction are obtained in
two different stages. The interpretation is separately obtained after the black-box models are trained.
Therefore, interpretations obtained from post-hoc models are considered to be more fragile, sensitive,
and less faithful to the predictive mechanism [1, 19, 50]. In contrast, self-interpretable models make
interpretations at the same time as predictions, thus revealing the intrinsic mechanism of the models,
and are thereby preferred by users in high-stakes tasks [40]. Besides, considering how powerful
and common transformation can be in data augmentations, it is reasonable to take the robustness of
interpretation to transformations into consideration when designing and evaluating the interpretations.
Robust interpretation towards transformation implies two requirements: 1) the predictive mechanism
indicated by the interpretation should remain the same after transformation (e.g., the highlighted
region should remain the same despite the transformation); 2) the location of interpretation should
change according to the transformation. These two requirements naturally lead to transformation
equivariance on interpretation. The transformation-equivariance property will enhance robust and
faithful interpretation, where the interpretation is aware of the transformations and preserves the
predictive mechanism. This correspondence between transformation equivariance and faithfulness
suggests that self-interpretable models may perform better than post-hoc models in transformation
awareness given their higher faithfulness. And the experiments also demonstrate this.

Although self-interpretable models surpass post-hoc models in faithfulness and stability, there are
non-negligible challenges in building self-interpretable models. First, the interpretations may need
additional regularization to be in forms that are rational to humans. This process usually involves
prior domain knowledge provided by human experts [21, 39]. Besides, since the interpretability is
intrinsic, specific constraints are required in the models to ensure the interpretability. The prediction
power of such models will be damaged since it is essentially adding constraints to optimization
problems. It is acknowledged that the increase of the interpretation quality is likely to decrease the
performance of prediction results [13, 31]. As a consequence, self-interpretable models are usually
less expressive compared with black-box models, which can be interpreted by post-hoc models.

Our Model: In this paper, we develop a transformation-equivariant self-interpretable model for
classification tasks. As a self-interpretable model, our method makes predictions and generates
interpretations of the predictions at the same stage. In other words, the interpretations are directly
involved in the feed-forward prediction process, and are therefore faithful to the final results. We
name our method as SITE (Self-Interpretable model with Transformation Equivariant Interpretation).
In SITE, we generate data-dependent prototypes for each class and formulate the prediction as the
inner product between each prototype and the extracted features. The interpretations can be easily
visualized by upsampling from the prototype space to the input data space.

Besides, we introduce transformation regularization and reconstruction regularization to the pro-
totypes. The reconstruction regularizer regularizes the interpretations to be meaningful and com-
prehensible for humans, while the transformation regularizer constrains the interpretations to be
transformation equivariant. We validate that SITE presents understandable and faithful interpretations
without requiring additional domain knowledge, and preserves high expressive power in prediction.

We summarize the main contributions through this work as:
• To our best knowledge, we are the first to learn transformation equivariant interpretations.
• We build a self-interpretable model SITE with high-quality faithful and robust interpretation.
• SITE preserves the high expressive power with comparable or better accuracy than related

black-box models.
• We propose self-consistency score, a new quantitative metric for interpretation methods. It

quantifies the robustness of interpretation by measuring the consistency of interpretations to
geometric transformations.
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2 Related Work

Machine learning interpretation can have different goals, such as attribution [24], interpretable
clustering [28], interpretable reinforcement learning [29], disentanglement [43], etc. Our method lies
in the attribution category, thus we mainly review the related interpretation methods for attribution.

Attribution methods target at identifying the contribution of different elements in the prediction.
Based on if the prediction and interpretation are obtained in the same stage, the methods can be
divided into post-hoc interpretation and self-interpretable methods.

For post-hoc interpretation, the prediction results are obtained by a black-box model while the
interpretation is obtained separately to explain the predictive mechanism of the black box. Among
the different post-hoc interpretation techniques, backpropagation methods [60, 41, 52, 45, 37, 4],
trace from the output back to the input to determine how the different elements in the input contribute
to the prediction result. Class Activation Mapping (CAM) [60] visualizes the feature importance in
convolutional neural networks by mapping the weights in the last fully connected layer to the input
layer via upsampling. Score-CAM learns weighting scores for the activation maps by integrating
the increase in confidence for an improved CAM visualization [52]. While for approximation
methods [38], the interpretation is obtained by fitting an interpretable model to the black-box
prediction around the target sample. Deconvolution methods [58] interpret a convolutional neural
network via image deconvolution. For perturbation-based interpretation [32, 14], the methods
interpret the feature importance by imposing perturbation to certain feature and checking the changes
in the output. Moreover, Shapley values [24] have been used to calculate the feature importance due to
the nice properties preserved by Shapley values. For post-hoc interpretation, since the prediction and
interpretation are separated, the prediction can be obtained by a highly expressive black-box model
to handle complex tasks. However, the post-hoc interpretation may not capture the true predictive
mechanism of the black box and is less reliable [1, 19].

Different from post-hoc interpretation, self-interpretable models target at building white boxes that
are intrinsically interpretable, which are able to conduct prediction and interpretation at the same
time. A self-interpretable model preserves faithful interpretation since the model itself is a white box.
However, the self-interpretation constraints can limit the expressive power, thus sacrificing prediction
performance. For example, in order to build an interpretable decision set [22], there is a constraint on
the number of rules for the sake of interpretation, which restricts its application to complex tasks.
Recent models propose to build self-interpretable models with neural network [2, 3, 6, 17, 20, 53, 54]
and kernel methods [7]. FRESH [17] focuses on the interpretability for natural language processing
tasks. SENN [3], Concept Bottleneck Models [20] generate interpretations in high-level spaces
instead of the raw pixel space. ProtoPNet [6] provides interpretations in the pixel space, but it
focuses more on the local patches corresponding to the local areas of the image instead of the global
interpretation. NAM [2] provides the same kind of interpretations as SITE. It combines neural
networks with additive models to facilitate the self-interpretation via component function. But it
decouples all pixels, which results in low expressiveness. Moreover, attention models have been
widely used to build interpretable predictions [26]. However, recent works find that the interpretation
via attention weights can fail to identify the important representations [42].

Different from the related works, our goal is to build a self-interpretable model that learns faithful
interpretation and has high expressive power. Previously the transformation equivariance property has
been studied in prediction via deep neural networks. Many recent studies integrate the transformation
equivariance in object detection, with the goal of building convolutional neural networks that are
equivariant to image translations. The models learn features equivariant to translation and rota-
tion [56, 55, 10], 3D symmetries [51], and build sets with symmetric elements for general equivariant
tasks [25]. Despite transformation equivariance in the prediction, these methods may not guarantee
the transformation equivariance in the interpretation, i.e., the prediction mechanisms of transformed
and untransformed inputs may be inconsistent. We thus introduce the interpretation equivariance
to complement the prediction equivariance. To the best of our knowledge, we are the first to learn
transformation-equivariant interpretations to ensure faithful and robust interpretation.

3 Building Transformation Equivariant Interpretation in SITE

In this section, we introduce the structure of SITE. For notations, all normal lowercase letters
stand for numbers; all bold lowercase letters stand for tensors; all normal uppercase letters stand
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Figure 1: An illustration of our SITE model. SITE can take both original image x and transformed
image T (x) as input. The input is first fed to the feature extractor F1, then SITE generates c
prototypes w1, · · · ,wc through generator G. Finally, both the prediction and interpretation come
from the Hadamard product between the latent representation F1(T (x)) and each prototype. The
interpretation is obtained by upsampling the Hadamard product, and the prediction is obtained
by the element-wise summation of it. SITE ensures transformation equivariant interpretation by
constraining on the interpretations before and after transformation.

for operations (including functions, networks, etc); and all curly uppercase letters denote sets and
families. Additionally, all Greek letters will be explained when they are introduced in context.

3.1 Formulation

For image classification tasks, suppose that x ∈ Rp denotes the input image, one-hot vector y ∈
{0, 1}c denotes the label, and ŷ ∈ [0, 1]c denotes the predicted class probabilities. We clarify that p is
the product of the number of channels, the width, and the height of the image x, while c denotes the
number of classes. Generally, a traditional classifier F : x 7→ ŷ can be decomposed into F = F2 ◦F1

with a feature extractor F1 and a simple classifier F2, where F1 : x 7→ z and F2 : z 7→ ŷ. Here
z ∈ Rd denotes the extracted latent representations of x, and usually has a lower dimension (d < p).
The extractor F1 usually consists of convolutional neural networks or ResNet structures, and F2

consists of fully connected layers. The goal is to minimize the classification loss
min

F=F2◦F1

Ex∈X ,y∈YLce(F (x),y) , (1)

where X ,Y are the input data set and the target set, and Lce denotes the cross-entropy loss function.

Traditional methods in (1) is not intrinsically interpretable w.r.t. the contribution of features in x to
the prediction ŷ. In order to address this, in SITE we build a generative model G = [G1, · · · , Gc]
that maps the latent representation z to c prototypes {wi}ci=1 ⊂ Rd, where wi = Gi(z). Each
prototype corresponds to a specific class. We formulate the final prediction as the inner product of
the latent representation z and each prototype {Gi(z)}ci=1. That is,

ŷ = σ(G(z)>z) = σ
([
G1(z)

>z, G2(z)
>z, . . . , Gc(z)

>z
]>)

, (2)

where σ is softmax activation. The prediction ŷ is the similarity between the latent representation z
and the generated prototype Gi(z). Thus we have the modified classification loss

Lcls = Ex∈X ,y∈YLce
(
σ
(
G(F1(x))

>F1(x)
)
,y
)
. (3)

Note that we formulate the prediction result for class i as ŷi = σ(Gi(z)
>z) = σ(w>i z). According

to our formulation of ŷ in (2), we can explicitly capture the contribution of elements in z to the final
prediction by the Hadamard product between wi and z as ŵi = wi � z. Naturally we take ŵi as
the interpretation of the i-th prediction result, such that the contribution of different elements to
each prediction result is clear from the interpretation. For instance, ŵji , i = 1, · · · , c, j = 1 · · · , d
denotes the contribution of the j-th element of z to the i-th class. Based on our formulation of ŵ, the
interpretation from our model preserves the completeness property. That is, the summation of the
importance scores of all features equals the prediction result. This is introduced as Proposition. 1
in [48], and also known as the local accuracy in [24]. This property assures that the interpretation is
related to the corresponding prediction in the numerical sense.

The interpretation obtained from optimizing Lcls ensures the faithfulness (i.e., which shows the
true predictive mechanism of the model), but may not ensure that the interpretation is human-
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understandable. In order to build high-quality interpretation, we propose to regularize the prototypes
Gi(x), i = 1, · · · , c with the following. For an input image x, we enforce each generated prototype
Gi(F1(x)) to be similar to its corresponding class’s latent representation F1(xi):

L1 =

c∑
i=1

Ex∈X ,xi∈Xi
Lbce (Gi(F1(x)), F1(xi)) , (4)

where Lbce denotes the binary cross-entropy loss, and Xi ⊂ X denotes the set of input data that
belongs to the i-th class.

In addition, we propose to regularize on the transformation equivariance property of interpretation
from our SITE model. Let Tβ denote pre-defined parametric transformations as described in [16]. We
want SITE to learn interpretations that are equivariant to the transformations. Here β ∼ B denotes
the randomly sampled parameters from a pre-defined parameter distribution B. This is because an
affine transformation operator T can be parameterized by an 3× 3 matrix β. During the training
process, we suppose that the random transformation Tβ is known and we can have access to its inverse
T−1β . In the feed-forward process of training, we first transform the input image x by randomly
sampled transformations Tβ(x), β ∼ B, then feed it to the model G ◦ F1. So the prediction result
on the transformed image is G(F1(Tβ(x)))

>F1(Tβ(x)). The prototypes of the transformed input
image G(F1(Tβ(x))) can be transformed back by the inverse transformation T−1β . We build the

reconstruction loss between the transformed prototypes T−1β

(
Gi
(
F1(Tβ(x))

))
, i = 1, · · · , c and

the latent representations of xi ∈ Xi, i = 1, · · · , c, respectively:

L2 =

c∑
i=1

Ex∈XLbce

(
T−1β (Gi(F1(Tβ(x)))), Gi(F1(x))

)
. (5)

By integrating the equivariance property (5) with transformation Tβ , β ∈ B in the interpretation
regularization in (4), we propose the transformation loss as:

Ltrans =

c∑
i=1

Ex∈X ,xi∈Xi
Lbce

(
T−1β (Gi(F1(Tβ(x)))), F1(xi)

)
. (6)

Hence, we propose the objective of SITE with classification loss and transformation loss as follows:

min
G,F1

Eβ∼B
[
Ex∈X ,y∈YLce

(
σ
(
G(F1(Tβ(x)))

>F1(Tβ(x))
)
,y
)
+

λ

c∑
i=1

Ex∈X ,xi∈Xi
Lbce

(
T−1β (Gi(F1(Tβ(x)))), F1(xi)

)]
, (7)

where λ is a hyper-parameter that balances the training paces between the classification loss and the
transformation loss. The first term in objective (7) ensures a transformation-aware classifier, while
the second term ensures transformation-equivariant interpretations. In practice, the expectation over
xi ∈ Xi and the expectation over B can be properly approximated by Monte Carlo sampling.

3.2 Visualization Methods

In the previous subsection, we obtain the self-interpretable model G ◦ F1, and the corresponding
interpretation ŵi for input x. However, since the interpretations ŵi ∈ Rd are not in the original
image space, the direct visualization of ŵi will be less meaningful.

Notice that the interpretations ŵi are approximations of the output space of the feature extractor F1,
it is natural to visualize it by visualizing H(ŵi), where H : Rd → Rp is an approximated inverse of
F1. And since F1 is based on convolutional neural networks, a simple but judicious choice for H
would be the bilinear upsampling function. On the one hand, the output space of F1 will preserve
the relative relationship between features. And on the other hand, the Lipschitz continuity of H can
preserve all the intrinsic properties in ŵi. Finally the interpretation ŵi is visualized in the original
space of the input images by overlaying on the input x as a heatmap.

3.3 Transformation Self-Consistency Scores

In order to measure the transformation equivariance of an interpretation method properly, we propose
a numerical metric, namely the self-consistency score. It measures the self-consistency [49] of
an attribution interpretation method. For a given input data x and a parameterized transformation
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Figure 2: Interpretations of SITE on MNIST dataset. For each digit, the first column shows the
randomly transformed images. The following c = 10 columns are the prototypes {wi}ci=1 (the first
and third rows), and the interpretation heatmaps {wi � x}ci=1 (the second and fourth rows).

Tβ , let I(x) denote the interpretation of x, then the self-consistency score vX (I) is defined as the
cosine similarity between the transformation of the interpretation to x and the interpretation to
the transformed images Tβ(x) as vX (I) = Eβ∼BEx∈XS(Tβ(I(x)), I(Tβ(x))), where S(·, ·) is the
cosine similarity. The expectation on the transformation family TB is approximated by the Monte
Carlo sampling method. However, note that in practice Tβ(I(x)) transforms the interpretation directly
and will introduce zero padding in the corner of interpretation heatmaps. I(Tβ(x)) transforms the
input data before the prediction so that the interpretation is not padded. To eliminate the influence
from the padded area, we introduce a transformation mask mβ ∈ {0, 1}p, where mi

β = 0 for the
padding area of Tβ(x), and mi

β = 1 otherwise. Thus the self-consistency score is calculated by
v̂X (I) = Eβ∼BEx∈XS

(
mβ � Tβ(I(x)),mβ � I(Tβ(x))

)
. (8)

4 Experiments

In this section, we conduct experiments on image classification tasks with and without transformations.
The experiment results demonstrate the high-quality interpretations and the validity of SITE. Please
refer to the Appendix for more details about the experimental setup.

4.1 Experiments on MNIST

First, we implement SITE on MNIST dataset. Since SITE G◦F1 shares the same backbone structure
F1 with the traditional classifier F = F2 ◦ F1, we clarify that SITE does not sacrifice prediction
power for interpretability. Please refer to Sec. 4.3 for more details.

The interpretations of SITE on MNIST are shown in Fig. 2. The Hadamard product decides that
the interpretations are essentially the pixel-wise similarities between the input digit x and prototype
wi. The interpretation to each prototype can be treated as how and where do the prototype wi and x
look similar. Therefore, x will be classified to the class where the prototype is the most similar to the
input data. Besides, we can observe that the interpretations of SITE preserve good transformation
equivariance property thanks to the transformation regularization. The interpretations are transformed
automatically with the input data while preserving the shape of the highlighted region.

4.2 Experiments on CIFAR-10

Interpretations of SITE

For CIFAR-10, input x is fed to the feature extractor F1. Then the generator G takes the latent
representation z as input and generates the c = 10 data-dependent prototypes {wi}ci=1. Then the
visualizable interpretation of the input x is defined byH(wi′�z), whereH is the bilinear upsampling,
and i′ = argmax1≤i≤cw

>
i z is the predicted class for input x.

The interpretation results are of SITE on CIFAR-10 are shown in Fig. 3. Here we sample three
images of a plane, a dog, and a car for demonstrations. Each image is transformed by a constrained
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Figure 3: Interpretations of SITE on CIFAR-10 dataset. The first row shows the original images (odd
columns) and their random affine transformed version (even columns). The second row shows the
interpretation heatmaps overlaid on corresponding images.

affine transformation Tβ ∈ TB that is sampled independently. And in the bottom row, we overlay the
interpretations H(wi′ � z) on corresponding images. It can be found clearly that SITE successfully
highlights the main parts of objects on sampled images in a comprehensible way to humans. For
instance, in the dog image, SITE highlights the silhouette of the dog in both transformed and
untransformed images. And comparing the odd columns and the even columns, it’s clear that the
interpretability of SITE preserves great self-consistency during transformations [49]. This can be
treated as the robustness to transformations. Please refer to the Appendix for more examples. Besides,
we would like to clarify that SITE does not sacrifice expressive power for interpretations. We
take the ResNet-18 classifier as the benchmark since SITE takes the same structure as the feature
extractor. Given the same transformation family TB, SITE and ResNet-18 backbone model achieve
comparable validation accuracy of 89% on randomly transformed images. And on untransformed
images, SITE even demonstrate higher expressiveness. Please refer to Sec. 4.3 for more details.

Comparison with Post-Hoc Methods

We carry out comparison experiments with various attribution methods that interpret feature contribu-
tions to the prediction results. The comparing methods include: back-propagation methods such as
Grad-CAM [41], excitation back-propagation [59], guided back-propagation [47], gradient [46], De-
ConvNet [58], and linear approximation. And also there are perturbation methods such as randomized
input sampling (RISE) [32] and extremal perturbation (EP) [14]. To illustrate the comparison results
consistently, we use heatmaps of the same settings to visualize the interpretations of all methods.
Since the interpretations of different models are obtained in very different ways, the visualizations
of them are performed separately. Hence the heatmaps only demonstrate the relative importance of
pixels within each interpretation itself. The comparison of the interpretation results is shown in Fig.
4, where we present the interpretations to the predictions of the given image, respectively. First, we
clarify that for the sake of consistency, all post-hoc interpretations shown in Fig. 4 are obtained by
applying the post-hoc interpretation models mentioned above to SITE. Since SITE is trained on the
transformed dataset, all post-hoc interpretations are reasonable to the transformed image. However,
their interpretations of the untransformed image are affected by the transformation. SITE does the
best in capturing the main body of the ship in the untransformed image. It also preserves the best
self-consistency. In fact, according to the self-consistency scores v̂X (I) over the whole validation set
of CIFAR-10, SITE outperforms all post-hoc methods, and is thereby more robust to transformations.
The comparison of self-consistency scores is shown in Table 1. Due to the inefficient computation
of perturbation methods, here we omit the calculations of RISE method and extremal perturbation
method. For completeness, We also include the self-consistency scores of the post-hoc methods on
the backbone model (ResNet-18). It is also trained on the transformed training set.

Finally, we carry out the mask-k-pixels experiments [8] to demonstrate the equivariance of SITE as
a self-interpretable model. This experiment is implemented by masking k pixels of the input data
based on the interpretations provided. For each interpretation model, we obtain a series of masked
subset of the original dataset based on the interpretations. Here we sample the first 1000 images
from the validation set of CIFAR-10, and perform the mask-k-pixels experiments on all interpretation
methods mentioned above except for the two perturbation methods. Besides, we also add the case
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(a) Orig. Image (b) SITE (c) Grad-CAM (d) Guided BP (e) Excitation BP

(f) Trans. Image (g) SITE (h) Grad-CAM (i) Guided BP (j) Excitation BP

(k) DeConvNet (l) Lnr. Approx. (m) Gradient (n) RISE (o) EP

(p) DeConvNet (q) Lnr. Approx. (r) Gradient (s) RISE (t) EP

Figure 4: Interpretation comparison on CIFAR-10 dataset. The odd rows show the interpretations on
the original image, while the even rows show the interpretations on the transformed image. Note that
the model is trained on transformed images, thus all interpretations on the transformed images are
relatively reasonable. However, most interpretations are highly disturbed on untransformed image,
while SITE preserves the most transformation equivariant interpretations.

Table 1: Self-consistency scores v̂X (I) ∈ [−1, 1] of interpretation methods. A higher score indicates
better self-consistency. The first row is the scores for SITE, and the second row is the scores for the
backbone model (ResNet-18). Both models are trained on transformed data. Perturbation methods
RISE and EP are omitted in this experiment due to the inefficient computation.

I SITE Grad-CAM Guided BP Excitation BP Gradient Linear Approx. DeConvNet

vX (SITE) 0.8860 0.8817 0.7830 0.1159 0.7174 0.8485 0.8591
vX (backbone) - 0.8416 0.8168 0.2460 0.6926 0.4183 0.7721

where pixels are randomly masked. In order to demonstrate the transformation equivariance, here
we mask the least k important pixels according to the interpretations to untransformed images, and
feed the random transformations of the masked images to the classifier. We present the trend of the
prediction accuracy and the log-odds ratio (LOR) of the predicted logits to the true classes in Fig.
5(a). It is expected that the more slowly a curve drops, the better equivariance the interpretation
possesses. Hence, it can be found that SITE outperforms all other post-hoc interpretation methods.
Besides, we observe that when very few pixels (< 20%) are masked, the decrease of SITE is almost
negligibly faster than some post-hoc methods. We explain this phenomenon by presenting a typical
example in Fig. 5(b). Generally, the least important pixels are located at the corners, therefore,
those masks are eliminated when the corners are hidden after the transformation, as shown in the
top two images in Fig. 5(b). This results in almost no mask at the beginning. As the proportion of
masked pixels increase, this phenomenon is gradually alleviated, as shown in the other four images in
Fig. 5(b). Furthermore, we validate the faithfulness of SITE compared with post-hoc methods on
Benchmarking Attribution Methods (BAM) dataset [57]. Please refer to the Appendix for details.
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(a) Mask-k Experiments (b) Sampled Masked Images

Figure 5: (a) The trend of accuracy (left) and log-odds ratio (right) with various proportions of pixels
masked; (b) Images where 1k (top), 3k (middle) and 11k (bottom) pixels (out of 16.4k pixels) are
masked. The left and right columns are for the original and the transformed images, respectively.

Table 2: Accuracy comparison among self-interpretable models. We implement SITE on different
backbone models and show the performance of the black-box backbone in parenthesis.

Decision Random Logistic XGBoost NAM SITE-CNN SITE-ResNet
Tree Forest Regression (Blackbox CNN) (Blackbox ResNet)

MNIST 0.886 0.970 0.929 0.975 0.935 0.988 (0.981) -
CIFAR-10 0.229 0.396 0.357 0.450 0.370 0.840 (0.828) 0.892 (0.862)

4.3 Expressiveness
Since there is an inevitable trade-off between expressiveness and interpretability, most existing
self-interpretable models have relatively low accuracy on image datasets such as MNIST and CIFAR.
Here we compare the expressiveness of SITE and existing self-interpretable models including
simple models (trained using sklearn) like Decision Tree, Random Forest, Logistic Regression,
and complex models like XGBoost [9] (trained using xgboost), Neural Additive Model (NAM) [2].
The results of XGBoost are reported in [33]. We include SITE with backbones of different levels of
complexity to demonstrate the scalability of SITE. The CNN backbone contains 235k parameters
for MNIST and 1.2m parameters for CIFAR-10, while the ResNet backbone is the ResNet-18
used in all previous experiments. The backbone models share the same structures and the same
(transformed) training data as the corresponding SITE in feature extraction. The test is performed on
the untransformed validation set. As shown in Table 2, SITE outperforms all other self-interpretable
models by a large margin. It has even higher expressiveness than the backbone model. We give this
credit to the regularization to the self-interpretation [5].

5 Conclusions
In this paper, we propose a self-interpretable model SITE with transformation-equivariant inter-
pretations. We focus on the robustness and self-consistency of the interpretations of geometric
transformations. Apart from the transformation equivariance, as a self-interpretable model, SITE has
comparable expressive power as the benchmark black-box classifiers, while being able to present
faithful and robust interpretations with high quality. It is worth noticing that although applied in most
of the CNN visualization methods, the bilinear upsampling approximation is a rough approximation,
which can only provide interpretations in the form of heatmaps (instead of pixel-wise). It remains an
open question whether such interpretations can be direct to the input space (as shown in the MNIST
experiments). Besides, we consider the translation and rotation transformations in our model. In
future work, we will explore the robust interpretations under more complex transformations such as
scaling and distortion. Moreover, we clarify that SITE is not limited to geometric transformation
(that we used in the computer vision domain), and will explore SITE in other domains in future work.
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