
Under review as a conference paper at ICLR 2023

PRUNING WITH OUTPUT ERROR MINIMIZATION FOR
PRODUCING EFFICIENT NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep Neural Networks (DNNs) are dominant in the field of machine learning.
However, because DNN models have large computational complexity, implemen-
tation with resource-limited equipment is challenging. Therefore, techniques of
compressing DNN models without degrading their accuracy is desired. Pruning is
one such technique to remove redundant neurons (or channels). In this paper, we
present Pruning with Output Error Minimization (POEM), a method that performs
not only pruning but also reconstruction to compensate the error caused by prun-
ing. The strength of POEM lies in its reconstruction to minimize the output error
of the activation function, while the previous methods minimize the error of the
value before applying the activation function. The experiments with well-known
DNN models (VGG-16, ResNet-18, MobileNet) and image recognition datasets
(ImageNet, CUB-200-2011) were conducted. The results show that POEM sig-
nificantly outperformed the previous methods in maintaining the accuracy of the
compressed models.

1 INTRODUCTION

Nowadays, Deep Neural Networks (DNNs) are dominant in the field of machine learning. The
demand for DNNs is increasing in various applications. However, DNNs are known to be over-
parameterized and require large computational cost. This makes them computationally slow, power-
consuming, and difficult to be implemented in resource-limited equipment.

Therefore, there is a need for the techniques to create efficient DNN models by compressing large
models while maintaining the accuracy. Pruning is one such technique to remove redundant weights
from trained DNN models. Pruning methods can be divided into two groups: unstructured pruning
and structured pruning. The former removes weight parameters in order to make the weight tensor
sparse. Since the shape of the weight tensor remains the same, the compressed model should be
implemented using hardware and libraries that can perform calculations only on non-zero weights.
The latter removes neurons (or channels) in order to make the shape of the weight tensor smaller.
Therefore, the effect of compression can be achieved by implementing the compressed model using
general hardware and libraries. In this paper, we focus on structured pruning.

How well a pruned model maintains its accuracy depends on two factors. The first is compression
ratio optimization, in other words, how many neurons are reduced in each layer. The other is layer-
wise optimization, in other words, which neurons to be preserved in each layer.

In recent years, there is a growing awareness that the value of pruning lies in the search for an
efficient sub-architecture out of a large redundant architecture. This is due to the research results
showing that a DNN model with the pruned architecture trained from scratch can achieve at least
as good accuracy as the pruned and fine-tuned model (Liu et al., 2019). For this reason, the recent
trend is to focus on compression ratio optimization problem.

However, does it mean that the layer-wise optimization is no more important? It is reasonable to
claim that combining a compression ratio optimization method with a better layer-wise optimization
method should result in more effective pruning. Therefore, layer-wise optimization is still important
and worth investigating.

In this paper, we propose a pruning method named Pruning with Output Error Minimization (POEM)
that performs layer-wise optimization. The strength of POEM lies in its reconstruction using the

1

Under review as a conference paper at ICLR 2023

Weighted Least Squares (WLS) method so as to minimize the output error of the activation function,
while the previous methods (Luo et al., 2017; He et al., 2017; Dong et al., 2017; Kamma & Wada,
2021) minimize the error of the value before applying the activation function. For example, since
the ReLU function rounds a negative value to zero, the error on a negative element need not be
compensated (unless it turns positive due to the error). POEM can perform reconstruction only for
the positive elements, while the previous methods perform reconstruction for all elements includ-
ing negative ones. For this reason, POEM is superior to the previous methods in maintaining the
accuracy of the pruned model. To the best of our knowledge, POEM is the first method to perform
reconstruction based on the output error of the activation function.

For verifying POEM, we conducted experiments on ImageNet (Deng et al., 2009), a large-scale
image classification dataset, and well-known DNN models for image classification, such as VGG-
16 (Simonyan & Zisserman, 2015), ResNet-18 (He et al., 2016), and MobileNet (Howard et al.,
2017). The results show that POEM can prevent the output error of the activation function better
than the previous methods (He et al., 2017; Kamma & Wada, 2021), and improve the accuracy both
before and after fine-tuning. We also confirmed that the accuracy of the compressed model can be
further improved by combining POEM and the compression ratio optimization methods (He et al.,
2018b; Kamma et al., 2022; Li et al., 2022).

The rest of this paper is structured as follows. In Sec. 2, we introduce related works. In Sec. 3, we
explain our proposed method. In Sec. 4, we show experimental results to verify the effectiveness of
POEM. In Sec. 5, we conclude discussions in this paper.

2 RELATED WORKS

DNN compression methods can be divided into four groups: structured pruning, unstructured prun-
ing (or sparsification), tensor decomposition, and quantization. Structured pruning is to make the
shape of the weight tensor smaller by removing redundant neurons (or channels) (Molchanov et al.,
2017; He et al., 2018a; 2017; Luo et al., 2017; Kamma & Wada, 2021; Jiang et al., 2018). The ad-
vantage of these methods is that the effect of compression can be obtained without special hardware
or libraries. Unstructured pruning is to make the weight tensor sparse without changing its shape
(LeCun et al., 1990; Liu et al., 2015; Han et al., 2016; Lee et al., 2019). The effect of unstructured
pruning can be obtained by implementing the compressed model using hardware or libraries that can
perform computation only for the non-zero elements of the weight tensor. The methods based on
tensor decomposition replace a large weight tensor by the product of multiple smaller weight tensors
(Xue et al., 2013; Kim et al., 2019; Denton et al., 2014). These methods can effectively reduce the
number of parameters and the computational complexity, although the compressed model gets extra
layers incurring an additional computational overhead. Quantization is to reduce the memory and
complexity requirements of a model by discretizing the weights (Courbariaux et al., 2015; Liu et al.,
2022; Li et al., 2021; Wei et al., 2022). A quantized model needs to be implemented on low-bit
computation equipment.

In this paper, we focus on structured pruning because of the following benefits: the structured prun-
ing methods can compress the model without incurring computational overhead; the compressed
model can be implemented without special hardware or libraries.

For developing an effective pruning method, 2 problems should be addressed. One is the problem
of compression ratio optimization, and the other is layer-wise optimization. Some pruning methods
address both of these problems in a single framework, while others handle each problem separately.

The compression ratio optimization is to configure the number of pruned neurons in each layer.
AutoML Model Compression (AMC) uses reinforcement learning to tune compression ratios so that
the accuracy of the model is maximized posing a constraint on FLOPs (the number of floating point
multiplications), or the FLOPs are minimized posing a constraint on accuracy (He et al., 2018b).
Pruning Ratio Optimizer (PRO) tunes compression ratios by alternately performing layer selection
and pruning based on the output error of the final layer (Kamma et al., 2022). RandomPruning
performs random search in the search space of compression ratios (Li et al., 2022). These methods
can be combined with any layer-wise optimization methods.

The layer-wise optimization is to select which neurons to be preserved in each layer. A lot of
neuron selection criteria have been investigated, such as the ones based on the norm of outgoing

2

Under review as a conference paper at ICLR 2023

weights (He et al., 2014), the derivative information of the loss function (Molchanov et al., 2017),
the geometric median of incoming weights (He et al., 2019), the output difference of final layer of
the model (Yu et al., 2018; Luo & Wu, 2020), and so on. It is known that performing reconstruction
to tune the remaining weights is effective for compensating the error caused by pruning. Channel
Pruning (CP) (He et al., 2017), ThiNet (Luo et al., 2017), and Reconstruction Error Aware Pruning
(REAP) (Kamma & Wada, 2021) use the Least Squares (LS) method for reconstruction. Layer-wise
Optimal Brain Surgeon (LWOBS) (Dong et al., 2017) performs reconstruction based on the second
order derivative information of the layer-wise Mean Squared Error (MSE). With these methods, a
high compression ratio can be achieved even without fine-tuning.

The compression ratio optimization and the layer-wise optimization can be performed simultane-
ously in a single pruning framework. For example, the gradient information of a loss function is
used to compare the importance of neurons in the whole model (Molchanov et al., 2017). Some
methods perform fine-tuning with regularization terms to achieve compression (Liu et al., 2017;
Ding et al., 2019; Guo et al., 2021). Although these methods have an advantage in maintaining
accuracy while performing pruning, the pruning process itself is time-consuming.

The proposed method in this paper, POEM, is to perform layer-wise optimization. The strength
of POEM lies in its strategy for neuron selection and reconstruction based on the output error of
the activation function (rather than the error before applying the activation function). It should be
noted that Jiang et al. (2018) proposed a pruning method that performs reconstruction based on the
activation function outputs, however, their neuron selection is based on heuristic criteria, whereas
we purposively select the neurons to minimize the output error based on sound formalization.

3 PRUNING WITH OUTPUT ERROR MINIMIZATION

In this section, we introduce the proposed method POEM. POEM is characterized by its neuron
(channel) selection and reconstruction strategies based on the output error of the activation function.
We define notations in Sec. 3.1, explain the reconstruction strategy of the previous methods (Luo
et al., 2017; He et al., 2017; Kamma & Wada, 2021) and that of POEM in Sec. 3.2, our neuron selec-
tion strategy in Sec. 3.3, and the algorithm for efficient reconstruction in Sec. 3.4. Although POEM
can be applied to both fully connected layers and convolutional layers, we make an explanation
using a fully connected layer for simplicity.

3.1 PREPARATIONS

Let n be the number of input samples (e.g. images), a and c be the numbers of neurons in the
current and the following layers, XALL ∈ Rn×a be the outputs in the current layer, W ALL ∈ Ra×c

be the weight matrix, f be the activation function (e.g. ReLU), and f ′ be its first derivative. The
outputs in the following layer can be obtained by calculating f(Y), where Y = XALLW ALL. By
applying pruning, we remove the columns of XALL and the rows of W ALL corresponding to the
pruned neurons, and get X ∈ Rn×b and W ∈ Rb×c, where b denotes the number of preserved
neurons.

For a matrix M and an index i, M:,i and Mi,: denote the i-th column and the i-th row of M , M:,−i

denotes a matrix composed of all but the i-th columns of M , and M−i,: denotes a matrix composed
of all but the i-th rows of M . For a set of indices A, M:,A and MA,: denote matrices that have the
columns and the rows of M corresponding to A. For a vector v, vi denotes its i-th element and vA
denotes its elements corresponding to A.

We also define the operators: ← denotes the assignment, \ denotes the set difference, ◦ denotes
Hadamard product, and ∥ · ∥F denotes Frobenius norm. For a vector v, diag(v) denotes a diagonal
matrix having the elements of v on the diagonal entries. For a matrix M , M2 = M ◦M .

3.2 OUTPUT ERROR MINIMIZATION WITH THE WEIGHTED LEAST SQUARES METHOD

The previous pruning methods perform reconstruction so as to minimize the error of Y . This can be
formalized as a typical LS problem:

W ∗ = argmin
W

∥Y −XW ∥2F . (1)

3

Under review as a conference paper at ICLR 2023

Figure 1: Illustrations of activation functions (left: ReLU, right: Sigmoid). In flat zones of these
functions, the errors are suppressed. Therefore, it is more important to perform fitting to the elements
in non-flat zones.

However, this does not minimize the output error of the activation function. For example, since a
ReLU function rounds a negative value to zero, the error of a negative element of Y is canceled
by ReLU, unless that element turns positive due to the error. Therefore, it is better to perform
reconstruction so as to minimize the error only for the positive elements of Y . To generalize, as
illustrated in Figure 1, the error of an element is suppressed if that element is in a flat zone of the
activation function. On the other hand, the error of an element in a non-flat zone is not suppressed.
For minimizing the output error of the activation function, it is more important to reduce the error
for the elements in non-flat zones.

This idea can be formalized as a WLS problem. Our reconstruction strategy is to minimize the
output error of the activation function:

W ∗ = argmin
W

∥f(Y)− f(XW)∥2F . (2)

Because it is difficult to solve Eq. (2) directly, we perform relaxation. By performing Taylor expan-
sion for each element of f(Y), we get

f(Y + δY) = f(Y) + f ′(Y) ◦ δY + g(Y , δY), (3)

where g(Y , δY) denotes the second and the higher order terms. The reconstruction error for Y can
be written as XW − Y . We substitute δY = XW − Y and omit g:

f(XW) ≃ f(Y)− f ′(Y) ◦ (Y −XW). (4)

By using this approximation, Eq. (2) can be replaced by a WLS problem:

W ∗ = argmin
W

∥f ′(Y) ◦ (Y −XW)∥2F . (5)

For each element of Y , the error is weighted by the corresponding element of f ′(Y). Therefore,
the error is suppressed for the elements in flat zones of f .

3.3 NEURON SELECTION CRITERIA

When we conduct DNN compression with POEM, we first select and prune the neurons, and then
perform reconstruction. We already explained how to perform reconstruction in Sec. 3.2. In this
subsection, we explain how to select the neurons to be pruned.

Let A ∈ {1, · · · , a} be a subset of column indices of XALL corresponding to the preserved neurons.
Since we perform reconstruction by solving Eq. (5), we should optimize A so as to minimize the
reconstruction error:

A∗ = argmin
A

(
min
W ALL

A,:

∥∥f ′(Y) ◦
(
Y −XALL

:,A W ALL
A,:
)∥∥2

F

)
subject to 1− |A|

a
≥ p, (6)

where p denotes the target compression ratio. Since Eq. (6) is a difficult problem, we solve it in a
greedy fashion. Assume that we have already pruned several neurons and got X out of XALL. Then,
we should select the neuron to be pruned next. This is, in other words, to select the k-th column of
X so as to minimize the error:

k∗ = argmin
k

(
min
W−k,:

∥f ′(Y) ◦ (Y −X:,−kW−k,:)∥
2

F

)
. (7)

4

Under review as a conference paper at ICLR 2023

Algorithm 1 Memory-efficient algorithm for a WLS problem
Input: X , Y , f ′, number of sampled columns s, number of iterations M
Output: W

1: Initialize the weight: W ← argminW ∥Y −XW ∥2F
2: for m = 1, · · · ,M do
3: Sample Bm (the column subset of X) so that |Bm| ≤ s holds
4: for j = 1, · · · , c do
5: Perform regression: w∗ ← argminw ∥f ′(Y:,j) ◦ ((Y:,j −XW:,j)−X:,Bmw)∥2
6: Update the weight: WBm,j ←WBm,j +w∗

7: end for
8: end for

In order to solve Eq. (7), we should solve the following problem for all k.

W ∗
−k,: = argmin

W−k,:

∥f ′(Y) ◦ (Y −X:,−kW−k,:)∥
2

F . (8)

Since solving Eq. (8) for all k is time-consuming, we once omit f ′(Y) in order to apply an efficient
algorithm (Kamma & Wada, 2021). Then, we have

W ∗
−k,: = argmin

W−k,:

∥Y −X:,−kW−k,:∥2F . (9)

Now, we can solve Eq. (7) by using W ∗
−k,:.

k∗ = argmin
k

∥∥f ′(Y) ◦
(
Y −X:,−kW

∗
−k,:

)∥∥2
F
. (10)

We prune the k∗-th neuron, and continue pruning with the remaining neurons until the target com-
pression ratio is achieved.

3.4 AN EFFICIENT ALGORITHM FOR THE WEIGHTED LEAST SQUARES PROBLEM

In this subsection, we show how to implement the solution for a WLS problem. We show an algo-
rithm to solve it efficiently, while we explain its details in Appendix B.3.

For a LS problem Eq. (1), we have an one-shot solution:

W ∗ = (X⊤X)−1X⊤Y . (11)

On the other hand, we do not have such an one-shot solution for a WLS problem. In order to solve
Eq. (5), regression should be performed for each column of Y separately:

W ∗
:,j = argmin

W:,j

∥f ′(Y:,j) ◦ (Y:,j −XW:,j)∥
2
. (12)

Let Gj = diag(f ′(Y:,j)). The solution of Eq. (12) is given by

W ∗
:,j = (X⊤Gj2X)−1X⊤Gj2Y:,j . (13)

We parallelize this for each j to obtain the solution efficiently. Although, implementing Eq. (13) as
is would require a large memory space for computing (X⊤Gj2X)−1.

Algorithm 1 describes the solution for Eq. (12) with a limited memory space. This algorithm is to
approach the solution asymptotically by updating some of the elements of W in turn. To do this,
we sample some columns from X and use them for regression. See Appendix B.3 for more details.

3.5 LIMITATION

POEM is supposed to be used for layers with fixed weights, i.e. convolutional layers and fully
connected layers. Therefore, layers with dynamic weights, such as (Ramachandran et al., 2019), are
not supported.

5

Under review as a conference paper at ICLR 2023

Table 1: Benchmarking channel selection methods and reconstruction methods. We pruned 32
channels out of 64 channels in “Conv1-1” layer of VGG-16, and compared the MSEs in the follow-
ing layer. Each cell contains the MSE of the outputs of the activation function (after f) or of the
values before applying the activation function (before f).

Select.\Rec. a) No rec. b) LS c) WLS (ours)
after f before f after f before f after f before f

1) L1 0.2731 0.8614 0.0379 0.0953 0.0244 0.1750
2) L2 0.2183 0.7685 0.0141 0.0341 0.0116 0.0660
3) Lasso 0.1711 0.5537 0.0117 0.0251 0.0095 0.0460
4) GM 0.2749 0.9114 0.0550 0.1443 0.0432 0.4143
5) Error (LS) 0.2110 0.6582 0.0067 0.0143 0.0060 0.0215
6) Error (WLS) 0.2277 0.7226 0.0062 0.0136 0.0055 0.0200

4 EXPERIMENTS

In this section, we show the experiment setups and results. We conducted experiments with VGG-
16 (Simonyan & Zisserman, 2015), ResNet-18 (He et al., 2016), and MobileNet (Howard et al.,
2017). We mainly used ImageNet (Deng et al., 2009) dataset for evaluation, while a fine-grained
classification dataset CUB-200-2011 (Wah et al., 2011) was also used.

4.1 DATASET AND AUGMENTATION

ImageNet dataset contains 1.28M training images and 50K validation images (Deng et al., 2009).
Since POEM is a data-dependent method, we randomly sampled 5K training images for pruning.
For all images, we resized so as to make the shorter side be 256. For training images, we applied
224 × 224 random crop and random horizontal flip. For validation images, we applied 224 × 224
center crop. CUB-200-2011 dataset contains 6K training images and 5.7K test images. For pruning
with POEM, we used all training images. The augmentation settings were the same with those for
ImageNet dataset.

4.2 PRUNING SETUPS

We performed pruning in convolutional layers of VGG-16, ResNet-18, and MobileNet. Since POEM
performs only layer-wise optimization, the compression ratio optimization should be performed ex-
ternally. We conducted experiments in two scenarios: with and without compression ratio optimiza-
tion. For configurating compression ratios, we used three methods, AutoML Model Compression
(AMC) (He et al., 2018b), Pruning Ratio Optimizer (PRO) (Kamma et al., 2022), and RandomPrun-
ing (Li et al., 2022). For AMC, we used the official source code published by the authors of (He
et al., 2018b). We implemented the other 2 methods on our own.

4.3 TRAINING SETUPS

In the experiments with ImageNet dataset, we fine-tuned VGG-16 and ResNet-18 for 25 epochs,
and MobileNet for 150 epochs after pruning, with Stochastic Gradient Descent (SGD) optimizer.
For VGG-16, the mini-batch size was set to 128, the learning rate was set to 0.0005, and the weight
decay was set to 0.0001. For ResNet-18, the mini-batch size was set to 256, the learning rate was set
to 0.001, and the weight decay was set to 0.0001. For MobileNet, the mini-batch size was set to 256,
the learning rate was set to 0.0005, and the weight decay was set to 0.00004. For only MobileNet,
we applied cosine annealing. The momentum was set to 0.9 for all models.

In the experiments with CUB-200-2011 dataset, we first applied domain adaptation to the pre-trained
ResNet-18 model. We initialized the fully connected layer of the ResNet-18 model and conducted
training for 100 epochs with SGD optimizer. The learning rate was set to 0.01, and divide it by 10 at
50 epoch. The mini-batch size was set to 64, the weight decay was set to 0.001, and the momentum
was set to 0.9. After pruning, we fine-tuned the pruned model using the same settings.

6

Under review as a conference paper at ICLR 2023

Table 2: The results of pruning with uniform compression ratios. The baseline accuracy of VGG-
16 was 0.70272 (top-1) and 0.8946 (top-5) and the accuracy of ResNet-18 was 0.69758 (top-1) and
0.89076 (top-5).

Model Method FLOPs Acc. w/o fine-tune Acc. fine-tuned
Top-1 Top-5 Top-1 Top-5

VGG-16

CP-A -75.8% 17.33 35.042 65.754 86.868
REAP-A -75.8% 27.926 50.688 66.642 87.466
POEM-A -75.8% 51.492 77.472 67.268 87.68

CP-B -75.7% 39.254 70.212 67.938 88.182
REAP-B -75.7% 52.368 77.452 68.844 88.716
POEM-B -75.7% 59.412 82.446 69.044 88.892

ResNet-18
CP -50.4% 27.136 52.894 62.0 84.182

REAP -50.4% 32.186 58.326 62.59 84.694
POEM -50.4% 42.376 69.546 62.812 84.8

4.4 LAYER-WISE ANALYSIS

We performed pruning on “Conv1-1” layer of VGG-16, and calculated the MSEs of the outputs of
the activation function and the MSEs of the values before applying the activation function. Note that
we can decouple and combine the channel selection methods and the reconstruction methods. For
example, we could select channels based on L1 norm of the output weights (He et al., 2014) and
perform POEM’s reconstruction. We used various combinations of channel selection methods and
reconstruction methods. For channel selection, we used the ones based on 1) L1 norm of outgoing
weights (He et al., 2014), 2) L2 norm of outgoing weights, 3) Lasso regression (He et al., 2017),
4) Geometric Median (GM) of incoming weights (He et al., 2019), 5) LS error (Kamma & Wada,
2021), and 6) WLS error (ours). For reconstruction, we used a) no reconstruction, b) LS (He et al.,
2017; Kamma & Wada, 2021), and c) WLS (ours).

Table 1 shows the results. Comparing b) and c), we see that our reconstruction method was better
than the previous method in preventing the output error of the activation function. Comparing the
row of 6) and the other rows, we can see that our channel selection method also outperformed the
other channel selection methods except for the case of not performing reconstruction. These results
show the superiority of POEM in both channel selection and reconstruction.

An interesting observation is that the output error of the activation function was the lowest when we
used our WLS-based reconstruction, while we suffered relatively large errors of the values before
applying the activation function. By performing WLS, we can reduce the errors of the output ele-
ments in non-flat zones of the activation function, which increases the errors of the elements in flat
zones. However, as already mentioned, the error in a flat zone is suppressed and thus is not harmful.

It is worth noting that the error can be significantly reduced even with the previous reconstruction
method, compared to the case of not performing reconstruction. This indicates that reconstruction
is crucial for pruning. No matter which channel selection method is chosen, we should perform
reconstruction.

4.5 PRUNING WITH FIXED COMPRESSION RATIOS

We conducted experiments with VGG-16 and ResNet-18. We performed pruning to compress their
convolutional layers with uniform compression ratios, and then conducted fine-tuning. In this sec-
tion, we compare POEM with two previous methods, CP (He et al., 2017) and REAP (Kamma &
Wada, 2021). Both CP and REAP are the pruning methods performing reconstruction but based on
the error before applying the activation function. For VGG-16, it is known that the last two convo-
lutional layers are not redundant, and these layers are often excluded from the compression targets
(Luo et al., 2017; He et al., 2017). We performed compression in two cases. One is to compress all
convolutional layers (Case A), and the other is to compress all but those two layers (Case B).

The results are shown in Table 2. We can see that POEM outperformed the other methods con-
sistently. The performance difference was significant especially before fine-tuning. For example,

7

Under review as a conference paper at ICLR 2023

Table 3: The results of pruning using AMC. The baseline accuracy of MobileNet was 0.71144 (top-
1) and 0.89842 (top-5). The baseline accuracy of VGG-16 was 0.70272 (top-1) and 0.8946 (top-5)
and that of ResNet-18 was 0.69758 (top-1) and 0.89076 (top-5).

Comp. ratio Model Method FLOPs Acc. w/o fine-tune Acc. fine-tuned
Top-1 Top-5 Top-1 Top-5

AMC MobileNet

L1&LS -50.0% 43.686 69.13 70.382 89.398
POEM -50.0% 51.984 76.648 70.488 89.492
L1&LS -70.0% 3.146 11.12 67.57 87.772
POEM -70.0% 17.476 38.74 68.104 87.992

PRO

VGG-16
L1&LS -75.7% 28.356 51.396 67.134 87.804
REAP -75.4% 57.196 80.846 69.09 88.95
POEM -75.7% 61.956 84.18 69.484 89.02

ResNet-18
L1&LS -50.3% 42.86 70.372 64.544 86.124
REAP -50.4% 47.648 73.964 64.874 86.33
POEM -50.0% 52.306 77.428 65.316 86.218

RandomPruning

VGG-16
L1&LS -75.7% - - 67.438 87.854
REAP -75.6% - - 68.78 88.614
POEM -74.6% - - 69.296 88.92

ResNet-18
L1&LS -50.5% - - 63.606 85.386
REAP -50.7% - - 63.738 85.43
POEM -49.2% - - 64.286 85.686

in Case A of VGG-16, POEM outperformed REAP by more than 23% margin in top-1 accuracy.
Although fine-tuning reduced the accuracy gaps, the model compressed with POEM was still better
than the ones compressed with the previous methods.

For VGG-16, the performance gap of POEM and the other methods was more significant in Case
A than in Case B. In Case A, we performed pruning on non-redundant layers, while those layers
were excluded from compression targets in Case B. This indicates the relative advantage of POEM
is greater when we conduct compression for less redundant layers.

4.6 PRUNING WITH COMPRESSION RATIO OPTIMIZATION METHODS

We evaluated performance of POEM combined with three compression ratio optimization methods,
AMC (He et al., 2018b), PRO (Kamma et al., 2022), and RandomPruning (Li et al., 2022). For AMC,
L1 norm-based channel selection and LS-based reconstruction are used as default. We refer this
default setting as “L1&LS”. We evaluated the pruning performance with L1&LS and with POEM.
For PRO and RandomPruning, we used REAP as well.

Table 3 shows the results. With AMC, POEM outperformed L1&LS by 14.3% in top-1 and 27.6%
in top-5 accuracy at 70% FLOPs reduction. After fine-tuning, POEM still outperforms L1&LS by
0.5% and 0.2% in top-1 and top-5 accuracy.

With PRO, POEM outperformed the other two methods by a considerable margin before fine-tuning.
After fine-tuning, although REAP was better than POEM marginally only in top-5 accuracy of
ResNet-18, POEM was the best for the rest.

For RandomPruning, we show only the accuracy after fine-tuning, since fine-tuning is already con-
ducted in the process of compression ratio optimization. For both VGG-16 and ResNet-18, POEM
outperformed the second best method REAP by the margin of 0.5% and 0.2% in top-1 and top-5
accuracy.

The difference of POEM and L1&LS for MobileNet was larger at higher compression ratio. After
a significant amount of fine-tuning (150 epochs), we can still see clear accuracy gap. This indicates
that the performance superiority of POEM becomes more significant at higher compression ratio.

Another remarkable observation is that the pruning performance was poor when we used L1&LS
and PRO. The result for VGG-16 was worse than even some results with the fixed compression
ratios. This is most likely because PRO is a type of method that narrows down the search space

8

Under review as a conference paper at ICLR 2023

Table 4: The results with CUB-200-2011 dataset. The baseline accuracy of ResNet-18 was 0.7571
(top-1) and 0.9283 (top-5).

Model Method FLOPs Acc. w/o fine-tune Acc. fine-tuned
Top-1 Top-5 Top-1 Top-5

ResNet-18

CP -50.4% 62.35 85.57 70.84 90.24
REAP -50.4% 64.70 86.71 71.91 90.54
POEM -50.4% 69.58 89.86 72.33 90.81
Scratch -50.4% - - 62.94 84.84

CP -75.3% 20.27 43.66 65.82 88.09
REAP -75.3% 21.67 45.65 66.79 88.64
POEM -75.3% 47.91 76.38 68.08 89.21
Scratch -75.3% - - 58.14 83.12

of compression ratios sequentially. Once the model accuracy is severely damaged, it is no more
possible to find a good solution. On the other hand, we could find much better solutions for both
VGG-16 and ResNet-18 when we used POEM and PRO. Thus, combining a compression ratio
optimization method with a better layer-wise optimization method results in more effective pruning.

4.7 EXPERIMENTS WITH A FINE-GRAINED CLASSIFICATION DATASET

We conducted experiments with ResNet-18 model and CUB-200-2011 dataset. We first fine-tuned
the pre-trained model using CUB-200-2011 dataset, then performed pruning with the uniform com-
pression ratios in all convolutional layers. We also evaluated the performance of the models with the
pruned architectures but trained from scratch. For the “trained-from-scratch” models, we conducted
training for 400 epochs. The learning rate was set to 0.1, and was divided by 10 at 200 and 300
epochs.

The results are shown in Table. 4. We can see that POEM was better than the other methods
consistently. At 75% FLOPs reduction ratio, POEM outperformed REAP by 26.2% and by 30.7%
in top-1 and top-5 accuracy, respectively. After fine-tuning, POEM still outperformed REAP by
approximately 1.2% and 0.5% in top-1 and top-5 accuracy.

It is worth noting that the performance of trained-from-scratch models were much worse than the
pruned and fine-tuned models. In the case of training them from scratch, it is difficult to generalize
for such a small dataset. These results let us rethink the value of pruning. Nowadays, it is believed
that the value of pruning lies in the search for efficient architecture rather than the weight parameters
obtained by pruning (and fine-tuning), based on the research results in (Liu et al., 2019). Although
this is true for the large scale datasets, such as ImageNet, CIFAR-10 (Krizhevsky et al.), and so on,
it is not the case with small scale datasets with which training from scratch easily falls into bad local
minima. In many real scenarios, the model needs to be trained with limited amount of data due
to poor availability of the data, annotation cost, and other reasons. In such cases, it is an effective
approach to use the pruned and fine-tuned models, rather than the trained-from-scratch models.

5 CONCLUSION

In this paper, we presented Pruning with Output Error Minimization (POEM), the method to conduct
pruning and perform reconstruction to minimize the output error of the activation function rather
than the error of the value before applying the activation function. In experiments using well-known
DNN models for image recognition, VGG-16, ResNet-18, and MobileNet, we confirmed that the
proposed method can perform compression with smaller errors than the previous methods. We also
confirmed that the proposed method, combined with the compression ratio optimization methods,
enables more effective compression. In Appendices, we show additional information for experiment
reproducibility and implementation.

9

Under review as a conference paper at ICLR 2023

REFERENCES

M. Courbariaux, Y. Bengio, and J. David. Binaryconnect: Training deep neural networks with binary
weights during propagations. In Proceedings of Conference on Neural Information Processing
Systems (NIPS), pp. 3123–3131, 2015.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Exploiting linear
structure within convolutional networks for efficient evaluation. In Z. Ghahramani, M. Welling,
C. Cortes, N. Lawrence, and K.Q. Weinberger (eds.), Advances in Neural Information Processing
Systems, volume 27. Curran Associates, Inc., 2014.

Xiaohan Ding, Guiguang Ding, Yuchen Guo, and Jungong Han. Centripetal sgd for pruning very
deep convolutional networks with complicated structure. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), June 2019.

Xin Dong, Shangyu Chen, and Sinno Pan. Learning to prune deep neural networks via layer-wise
optimal brain surgeon. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017.

Yi Guo, Huan Yuan, Jianchao Tan, Zhangyang Wang, Sen Yang, and Ji Liu. Gdp: Stabilized neural
network pruning via gates with differentiable polarization. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 5239–5250, October 2021.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. International Conference on Learning
Representations (ICLR), 2016.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.

T. He, Y. Fan, Y. Qian, T. Tan, and K. Yu. Reshaping deep neural network for fast decoding by
node-pruning. In Proceedings of IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 245–249, 2014.

Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft filter pruning for accelerating
deep convolutional neural networks. In Proceedings of the 27th International Joint Conference
on Artificial Intelligence, IJCAI’18, pp. 2234–2240. AAAI Press, 2018a. ISBN 9780999241127.

Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median for
deep convolutional neural networks acceleration. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June 2019.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural net-
works. In The IEEE International Conference on Computer Vision (ICCV), Oct 2017.

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for model
compression and acceleration on mobile devices. In Proceedings of the European Conference on
Computer Vision (ECCV), September 2018b.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications, 2017. URL https://arxiv.org/abs/1704.04861.

Chunhui Jiang, Guiying Li, Chao Qian, and Ke Tang. Efficient dnn neuron pruning by minimizing
layer-wise nonlinear reconstruction error. In Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI-18, pp. 2298–2304. International Joint Con-
ferences on Artificial Intelligence Organization, 7 2018. doi: 10.24963/ijcai.2018/318. URL
https://doi.org/10.24963/ijcai.2018/318.

10

https://arxiv.org/abs/1704.04861
https://doi.org/10.24963/ijcai.2018/318

Under review as a conference paper at ICLR 2023

Koji Kamma and Toshikazu Wada. Reap: A method for pruning convolutional neural networks with
performance preservation. IEICE Transactions on Information and Systems, E104.D:194–202,
01 2021. doi: 10.1587/transinf.2020EDP7049.

Koji Kamma, Sarimu Inoue, and Toshikazu Wada. Pruning ratio optimization with layer-wise prun-
ing method for accelerating convolutional neural networks. IEICE Transactions on Information
and Systems, E105.D:161–169, 01 2022. doi: 10.1587/transinf.2021EDP7096.

Hyeji Kim, Muhammad Umar Karim Khan, and Chong-Min Kyung. Efficient neural network com-
pression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2019.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced re-
search). URL http://www.cs.toronto.edu/˜kriz/cifar.html.

Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain damage. In Proceedings of Conference on
Neural Information Processing Systems (NIPS), pp. 598–605, 1990.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. SNIP: SINGLE-SHOT NETWORK
PRUNING BASED ON CONNECTION SENSITIVITY. In International Conference on Learn-
ing Representations, 2019. URL https://openreview.net/forum?id=B1VZqjAcYX.

Yawei Li, Kamil Adamczewski, Wen Li, Shuhang Gu, Radu Timofte, and Luc Van Gool. Revisit-
ing random channel pruning for neural network compression. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 191–201, June 2022.

Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and
Shi Gu. {BRECQ}: Pushing the limit of post-training quantization by block reconstruction. In
International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=POWv6hDd9XH.

Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen, and Marianna Pensky. Sparse convolu-
tional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2015.

Zechun Liu, Kwang-Ting Cheng, Dong Huang, Eric P. Xing, and Zhiqiang Shen. Nonuniform-
to-uniform quantization: Towards accurate quantization via generalized straight-through estima-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 4942–4952, June 2022.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learn-
ing efficient convolutional networks through network slimming. In ICCV, 2017.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of
network pruning. In ICLR, 2019.

Jian-Hao Luo and Jianxin Wu. Neural network pruning with residual-connections and limited-data.
In The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1458–
1467, June 2020.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural
network compression. In The IEEE International Conference on Computer Vision (ICCV), pp.
5068–5076, 10 2017. doi: 10.1109/ICCV.2017.541.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. In International Conference on Learning Repre-
sentations, 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems 32, pp.

11

http://www.cs.toronto.edu/~kriz/cifar.html
https://openreview.net/forum?id=B1VZqjAcYX
https://openreview.net/forum?id=POWv6hDd9XH
https://openreview.net/forum?id=POWv6hDd9XH

Under review as a conference paper at ICLR 2023

8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan Bello, Anselm Levskaya, and Jon Shlens.
Stand-alone self-attention in vision models. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Sys-
tems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.
cc/paper/2019/file/3416a75f4cea9109507cacd8e2f2aefc-Paper.pdf.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In Yoshua Bengio and Yann LeCun (eds.), ICLR, 2015. URL http://dblp.
uni-trier.de/db/conf/iclr/iclr2015.html#SimonyanZ14a.

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The caltech-ucsd birds-200-2011
dataset. Technical Report CNS-TR-2011-001, California Institute of Technology, 2011.

Xiuying Wei, Ruihao Gong, Yuhang Li, Xianglong Liu, and Fengwei Yu. QDrop: Randomly
dropping quantization for extremely low-bit post-training quantization. In International Confer-
ence on Learning Representations, 2022. URL https://openreview.net/forum?id=
ySQH0oDyp7.

J. Xue, J. Li, and Y. Gong. Restructuring of deep neural network acoustic models with singular
value decomposition. In Proceedings of the Annual Conference of the International Speech Com-
munication Association, INTERSPEECH, pp. 2365–2369, 2013.

Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I. Morariu, Xintong Han, Mingfei Gao,
Ching-Yung Lin, and Larry S. Davis. Nisp: Pruning networks using neuron importance score
propagation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2018.

12

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://proceedings.neurips.cc/paper/2019/file/3416a75f4cea9109507cacd8e2f2aefc-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/3416a75f4cea9109507cacd8e2f2aefc-Paper.pdf
http://dblp.uni-trier.de/db/conf/iclr/iclr2015.html#SimonyanZ14a
http://dblp.uni-trier.de/db/conf/iclr/iclr2015.html#SimonyanZ14a
https://openreview.net/forum?id=ySQH0oDyp7
https://openreview.net/forum?id=ySQH0oDyp7

Under review as a conference paper at ICLR 2023

A ADDITIONAL INFORMATION FOR EXPERIMENT REPRODUCIBILITY

A.1 WHERE WE GOT THE PRE-TRAINED MODELS

In the experiments, we used off-the-shelf models. The trained weights for VGG-16, ResNet-18, and
MobileNet can be downloaded via the following URLs.

• http://www.robots.ox.ac.uk/˜vgg/software/very_deep/caffe/
VGG_ILSVRC_16_layers.caffemodel

• https://download.pytorch.org/models/resnet18-5c106cde.pth

• https://hanlab.mit.edu/projects/amc/external/mobilenet_
imagenet.pth.tar

A.2 PRUNING FOR BRANCHED PATHS OF RESNET

For the layers having skip connections of the ResNet model, we cannot perform pruning as is,
because the number of channels should be the same in the both ends of skip connections. We have
several ways to avoid this problem. The first is to perform pruning only for the layers without skip
connections. The second is to add a layer that only samples the channels to be preserved (He et al.,
2017), as shown in Fig. 2. The third is to conduct pruning at the both ends of the skip connection
(Luo & Wu, 2020). We took the the second one.

Figure 2: Instead of removing the channels in the fist layer, we sample b channels to be preserved.

B ADDITIONAL INFORMATION ON IMPLEMENTATION OF POEM

B.1 HOW TO EXTEND TO CONVOLUTIONAL LAYERS

In most major DNN frameworks, such as Pytorch, a feature map in the convolutional layer is ex-
panded to be a matrix by using “im2col” function (Paszke et al., 2019). With the expanded matrices,
the convolutional operation can be replaced by a simple dot product, such that Y = XW . There-
fore, POEM can be applied to the convolutional layers in the similar with to the fully connected
layers. The only difference is that with the expanded feature map, each channel corresponds to sev-
eral columns of the matrix. Thus, for convolutional layers, we need to remove several columns of
X at each time.

B.2 PRUNING FOR WHOLE MODEL

Once we conduct pruning on a layer, the outputs in the subsequent layers are more or less affected.
Assume that we have conducted pruning in a previous layer and are now pruning in the current
layer. The original outputs in the current layer, X , has become X ′ ̸= X . We use the new outputs
X ′, whereas we still use the original Y for neuron selection and reconstruction so that the original
performance of the model can be the best preserved.

13

http://www.robots.ox.ac.uk/~vgg/software/very_deep/caffe/VGG_ILSVRC_16_layers.caffemodel
http://www.robots.ox.ac.uk/~vgg/software/very_deep/caffe/VGG_ILSVRC_16_layers.caffemodel
https://download.pytorch.org/models/resnet18-5c106cde.pth
https://hanlab.mit.edu/projects/amc/external/mobilenet_imagenet.pth.tar
https://hanlab.mit.edu/projects/amc/external/mobilenet_imagenet.pth.tar

Under review as a conference paper at ICLR 2023

Figure 3: The concept of Algorithm 1.

B.3 DETAILS OF ALGORITHM 1

Algorithm 1 aims to solve Eq. (12) with a limited memory space. Let us simplify the notations:
S = GjX , t = GjY:,j , and u = W:,j . Then, Eq. (12) can be rewritten as a typical LS problem:

u∗ = argmin
u

∥t− Su∥2 . (14)

The solution is given by

u∗ =
(
S⊤S

)−1
S⊤t. (15)

However, Eq. (15) would require a large memory space for computing
(
S⊤S

)−1
.

To solve Eq. (14) with a limited memory space, we sample a small number of columns from S
to perform regression, as shown in Fig. 3. Let S1,S2, · · · be the matrices having a few columns
sampled from S. We first perform regression with S1 and t:

w∗
1 = argmin

w1

∥t− S1w1∥2 . (16)

The error for t is given by t− S1w
∗
1 . Next, we perform regression so as to fill this error using S2:

w∗
2 = argmin

w2

∥(t− S1w
∗
1)− S2w2∥2 . (17)

In this way, we continue to perform regression so as to fill the error for t:

w∗
m = argmin

wm

∥∥∥∥∥∥
t−

∑
i=1,··· ,m−1

Siw
∗
i

− Smwm

∥∥∥∥∥∥
2

. (18)

Once we finish all of the S-s, we continue from S1 again. After enough cycles, the error for t will
be minimized. The approximate solution for Eq. (14) can be calculated from the w∗-s.

This algorithm is memory-efficient. The solution of Eq. (18) is given by

w∗
m =

(
S⊤
mSm

)−1
S⊤
m

t−
∑

i=1,··· ,m−1

Siw
∗
i

 . (19)

Since
(
S⊤
mSm

)−1
is a small matrix, calculating it does not require large memory. Therefore, this

algorithm is suitable for parallel calculation.

In Algorithm 1, we have two hyper parameters: s is the number of sampled columns, and M is how
many times we perform column sampling and regression. In our experiments, we set s = 9, and
M = 5b, where b is the number of preserved channels.

14

Under review as a conference paper at ICLR 2023

Table 5: Benchmarking channel selection methods and reconstruction methods. We pruned 50% of
channels in “Conv2-1”, “Conv3-1”, “Conv4-1” layers of VGG-16, and compared the MSEs in the
following layer. Each cell contains the output error of f(Y), and the value in parenthesis is the error
of Y (the error before applying the activation function).

Conv2-1

Select.\Rec. a) No rec. b) LS c) WLS (ours)
after f before f after f before f after f before f

1) L1 1.2695 5.8902 0.2700 0.8461 0.2570 1.0567
2) L2 1.2433 5.9156 0.2651 0.8305 0.2516 1.0331
3) Lasso 1.3555 4.8980 0.2670 0.8175 0.2519 1.0692
4) GM 1.2001 5.7369 0.2538 0.7958 0.2422 0.9789
5) Error (LS) 1.2060 5.2416 0.2242 0.7000 0.2143 0.8743
6) Error (WLS) 1.1688 5.4151 0.2168 0.6827 0.2048 0.8634

Conv3-1

Select.\Rec. a) No rec. b) LS c) WLS (ours)
after f before f after f before f after f before f

1) L1 4.0288 21.332 1.0621 3.6876 0.9978 4.5270
2) L2 4.0986 21.388 1.0588 3.6779 0.9959 4.5660
3) Lasso 4.5589 18.946 1.1959 4.1310 1.0997 5.1430
4) GM 4.1844 21.933 1.0842 3.7897 1.0179 4.7850
5) Error (LS) 3.9163 21.916 0.9818 3.4051 0.9260 4.1682
6) Error (WLS) 3.7945 21.145 0.9688 3.3444 0.9094 4.1231

Conv4-1

Select.\Rec. a) No rec. b) LS c) WLS (ours)
after f before f after f before f after f before f

1) L1 3.3865 38.488 1.2485 7.6413 1.1966 13.866
2) L2 3.4854 40.214 1.2656 7.7990 1.2154 14.327
3) Lasso 3.5152 34.330 1.3719 8.2762 1.3325 14.780
4) GM 3.3631 43.098 1.2504 7.7296 1.1997 13.040
5) Error (LS) 2.9017 35.803 1.1540 6.8973 1.0948 11.518
6) Error (WLS) 2.9430 36.686 1.1132 6.7026 1.0527 10.885

B.4 AN EFFICIENT ALGORITHM FOR SOLVING EQ. (9)

We implemented the algorithm proposed in (Kamma & Wada, 2021) to solve Eq. (9) for all k
efficiently. Here, we define additional notations: norm(v) denotes the L2 norm operator for a vector
v, and M+ denotes a Moore-Penrose pseudo inverse of a matrix M .

We assume X = XALL and W = W ALL for simplicity. The motivation for solving Eq. (9) is to
obtain the following Zk for all k.

Zk = Y −X:,−kW
∗
−k,:. (20)

We can compute Zk directly without actually computing W ∗
−k,:. To do so, we first compute the

following.

X̄ = (X+)⊤. (21)

Let D = diag(d), where di = norm(X̄:,i). We calculate the following.

R = X̄D−2. (22)

Then, Zk can be computed as

Zk = R:,kWk,:. (23)

15

Under review as a conference paper at ICLR 2023

Table 6: The MSEs in Conv2-1, Conv3-1, Conv4-1 after pruning 50% of the chennels in Conv1-1.

Conv2-1

Select.\Rec. a) No rec. b) LS c) WLS (ours)
after f before f after f before f after f before f

1) L1 0.7564 2.4049 0.1624 0.4946 0.1041 0.3181
2) L2 0.7395 2.4725 0.0593 0.1789 0.0444 0.1350
3) Lasso 0.6858 2.2340 0.0586 0.1959 0.0382 0.1201
4) GM 0.7189 2.2748 0.2121 0.6496 0.1555 0.4798
5) Error (LS) 0.7177 2.4643 0.0374 0.1167 0.0293 0.0904
6) Error (WLS) 0.8078 2.9315 0.0338 0.1022 0.0279 0.0845

Conv3-1

Select.\Rec. a) No rec. b) LS c) WLS (ours)
after f before f after f before f after f before f

1) L1 1.9539 8.0325 0.3933 1.4787 0.2551 0.8983
2) L2 1.9751 8.3912 0.1518 0.5384 0.1141 0.3973
3) Lasso 1.9891 8.2181 0.1649 0.6534 0.1071 0.3892
4) GM 1.8400 8.0139 0.5241 1.9235 0.3897 1.3814
5) Error (LS) 1.9232 8.5490 0.0987 0.3580 0.0777 0.2733
6) Error (WLS) 2.1078 10.0640 0.0850 0.2967 0.0704 0.2430

Conv4-1

Select.\Rec. a) No rec. b) LS c) WLS (ours)
after f before f after f before f after f before f

1) L1 1.5469 10.8463 0.2801 1.8480 0.1752 1.1079
2) L2 1.4809 11.1189 0.1097 0.6932 0.0811 0.5015
3) Lasso 1.5120 11.8430 0.1208 0.8532 0.0790 0.5054
4) GM 1.4223 10.7641 0.3933 2.5382 0.2857 1.7862
5) Error (LS) 1.3722 11.2451 0.0680 0.4377 0.0540 0.3383
6) Error (WLS) 1.5128 15.2813 0.0564 0.3459 0.0468 0.2847

C EXTRA RESULTS

C.1 EXTRA LAYER-WISE ANALYSIS

We conducted layer-wise analyses on several layers other than Conv1-1 layer. Table 5 shows the
results. Similarly with Table 1, our WLS-based reconstruction and neuron selection was better than
the other approaches.

C.2 IMPACT OF PRUNING IN A LAYER ON THE SUBSEQUENT LAYERS

We pruned 50% of the channels in Conv1-1 (the first convolutional layer) of VGG-16, and calculated
the MSEs in several subsequent layers (Conv2-1, Conv3-1, Conv4-1). Table 6 shows the results. We
can see that the proposed channel selection method and the reconstruction method are better than
the others. This trend is consistent with Table 5. The trend is that the smaller the error in Conv1-1
(where pruning was performed) was, the smaller the errors in the subsequent layers were.

C.3 IMPORTANCE OF CHANNEL SELECTION

We performed pruning in all convolutional layers of VGG-16 to benchmark the channel selection
criteria. For channel selection, we used all 6 criteria that are listed in Table 1 (L1, L2, Lasso,
GM, Error (LS), Error (WLS)); we combined these channel selection options with our WLS-based
reconstruction. The compression ratios were set to 50% in all target layers.

Table 7 shows the results. The accuracy after pruning without fine-tuning is reported. With our
channel selection criteria (Error (WLS)), the accuracy was the best preserved. These results show
the importance of our channel selection criteria as well as our reconstruction.

16

Under review as a conference paper at ICLR 2023

Table 7: The comparison of channel selection criteria combined with our WLS-based reconstruc-
tion. We conducted pruning with fixed compression ratios (50% in one case, 60% in another case)
in all layers. The accuracy before fine-tuning is reported in this table. The baseline accuracy of
VGG-16 was 0.70272 (top-1) and 0.8946 (top-5).

Model Select criteria FLOPs w/o fine-tune
Top-1 Top-5

VGG-16

L1 -73.5% 41.31 68.85
L2 -73.5% 45.62 72.62

Lasso -73.5% 43.35 70.82
GM -73.5% 48.38 74.75

Error (LS) -73.5% 50.19 76.38
Error (WLS) -73.5% 51.20 77.04

L1 -82.6% 23.68 48.24
L2 -82.6% 29.05 55.92

Lasso -82.6% 27.03 52.63
GM -82.6% 25.36 50.77

Error (LS) -82.6% 37.63 64.77
Error (WLS) -82.6% 39.13 66.82

Table 8: The results of pruning with uniform compression ratios. The accuracy after 100 epochs
of fine-tuning is reported in this table. The baseline accuracy of VGG-16 was 0.70272 (top-1) and
0.8946 (top-5) and the accuracy of ResNet-18 was 0.69758 (top-1) and 0.89076 (top-5).

Model Method FLOPs Acc. fine-tuned
Top-1 Top-5

VGG-16

CP-A -75.8% 68.89 89.08
REAP-A -75.8% 0.6945 0.8928
POEM-A -75.8% 0.6998 0.8941

CP-B -75.7% 70.47 89.59
REAP-B -75.7% 70.68 89.85
POEM-B -75.7% 71.01 89.96

ResNet-18
CP -50.4% 64.15 85.66

REAP -50.4% 64.46 85.89
POEM -50.4% 64.77 85.97

C.4 EXTRA FINE-TUNING ON VGG-16 AND RESNET-18

We conducted longer fine-tuning (100 epochs) for the pruned VGG-16 and ResNet-18 models. The
results are shown in Table 8 (with uniform compression ratios) and Table 9 (with compression ratio
optimization). Except for the top-5 error of ResNet-18 with RandomPruning, POEM outperformed
the previous methods. These results show the trend: the higher the accuracy was preserved during
the pruning procedure, the higher the accuracy becomes after fine-tuning.

C.5 RESULTS WITH RESNET-50 (WITH FIXED PRUNING RATIOS)

We evaluated POEM with a larger model ResNet-50. We conducted pruning in 32 layers that do not
have skip connections. The pruning ratios were set uniformly over all target layers and were tuned
so as to make the FLOPs reduction ratio approximately 50%.

The results are shown in Table 10. Before fine-tuning, POEM outperformed the second best method
REAP significantly: the top-1 accuracy was 59.75% (POEM) and 44.60% (REAP). After fine-
tuning, POEM still outperformed REAP in top-1 accuracy, although the top-5 accuracy of CP was
slightly better than POEM slightly. To confirm the winner for ResNet-50, more experiments are
necessary with higher pruning ratios, and with pruning ratio optimizations.

17

Under review as a conference paper at ICLR 2023

Table 9: The results of pruning with pruning ratio optimization. The accuracy after 100 epochs
of fine-tuning is reported in this table. The baseline accuracy of VGG-16 was 0.70272 (top-1) and
0.8946 (top-5) and that of ResNet-18 was 0.69758 (top-1) and 0.89076 (top-5).

Comp. ratio Model Method FLOPs Acc. fine-tuned
Top-1 Top-5

PRO

VGG-16
L1&LS -75.7% 70.01 89.46
REAP -75.4% 70.95 89.97
POEM -75.7% 71.19 90.00

ResNet-18
L1&LS -50.3% 66.00 86.89
REAP -50.4% 65.81 86.90
POEM -50.0% 66.27 87.08

RandomPruning

VGG-16
L1&LS -75.7% 70.00 89.37
REAP -75.6% 70.58 89.73
POEM -74.6% 70.99 89.94

ResNet-18
L1&LS -50.5% 65.44 86.77
REAP -50.7% 65.47 86.51
POEM -49.2% 65.68 86.62

Table 10: The results of pruning for ResNet-50 with uniform compression ratios. The baseline
accuracy of ResNet-50 was 76.12 (top-1) and 92.86 (top-5).

Model Method FLOPs Acc. w/o fine-tune Acc. fine-tuned
Top-1 Top-5 Top-1 Top-5

ResNet-50
CP -49.9% 42.74 68.55 73.31 91.61

REAP -49.9% 44.60 70.55 73.50 91.42
POEM -49.9% 59.75 83.68 73.73 91.58

18

	Introduction
	Related works
	Pruning with Output Error Minimization
	Preparations
	Output error minimization with the weighted least squares method
	Neuron selection criteria
	An efficient algorithm for the weighted least squares problem
	Limitation

	Experiments
	Dataset and augmentation
	Pruning setups
	Training setups
	Layer-wise analysis
	Pruning with fixed compression ratios
	Pruning with compression ratio optimization methods
	Experiments with a fine-grained classification dataset

	Conclusion
	Additional information for experiment reproducibility
	Where we got the pre-trained models
	Pruning for branched paths of ResNet

	Additional information on implementation of POEM
	How to extend to convolutional layers
	Pruning for whole model
	Details of Algorithm 1
	An efficient algorithm for solving Eq. (9)

	Extra results
	Extra layer-wise analysis
	Impact of pruning in a layer on the subsequent layers
	Importance of channel selection
	Extra fine-tuning on VGG-16 and ResNet-18
	Results with ResNet-50 (with fixed pruning ratios)

