
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FEASIBLE POLICY OPTIMIZATION FOR SAFE REIN-
FORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Policy gradient methods serve as a cornerstone of reinforcement learning (RL), yet
their extension to safe RL, where policies must strictly satisfy safety constraints,
remains challenging. While existing methods enforce constraints in every pol-
icy update, we demonstrate that this is unnecessarily conservative. Instead, each
update only needs to progressively expand the feasible region while improving
the value function. Our proposed algorithm, namely feasible policy optimization
(FPO), simultaneously achieves both objectives by solving a region-wise policy
optimization problem. Specifically, FPO maximizes the value function inside
the feasible region and minimizes the feasibility function outside it. We prove
that these two sub-problems share a common optimal solution, which is obtained
based on a tight bound we derive on the constraint decay function. Extensive ex-
periments on the Safety-Gymnasium benchmark show that FPO achieves excellent
constraint satisfaction while maintaining competitive task performance, striking a
favorable balance between safety and return compared to state-of-the-art safe RL
algorithms.

1 INTRODUCTION

Reinforcement learning (RL) has demonstrated remarkable success in domains ranging from board
games (Schrittwieser et al., 2020) and racing simulations (Wurman et al., 2022) to recent break-
throughs in large language models (Guo et al., 2025). Despite these successes, a fundamental
challenge persists: current methods primarily excel in simulated environments where unsafe be-
haviors carry no real cost, while in safety-critical applications, policy failures could lead to severe
consequences. Addresses this challenge requires considering a constrained optimal control prob-
lem, where policies must strictly satisfy safety constraints at all times, also known as state-wise
constraints (Zhao et al., 2023b), while maximizing expected returns (Yang et al., 2024).

Policy gradient (PG) is a foundational method in RL (Li, 2023), which formulates RL as an opti-
mization problem and applies gradient-based methods to solve it. This framework has given rise
to powerful modern deep RL algorithms such as proximal policy gradient (PPO) (Schulman et al.,
2017) and group relative policy optimization (GRPO) (Shao et al., 2024). However, a critical lim-
itation of standard PG methods is that they are not directly applicable to safe RL because of their
unconstrained problem formulation. Despite many well-established constrained optimization tech-
niques (Boyd & Vandenberghe, 2004), integrating them with PG while maintaining high training
efficiency remains an open challenge.

Existing safe RL methods fall into two categories. A prominent class is called iterative unconstrained
RL, which reformulates safe RL as a sequence of unconstrained optimization problems, typically via
the method of Lagrange multipliers, and solves them using standard RL algorithms (Paternain et al.,
2019). While theoretically sound, these methods suffer from slow convergence and training insta-
bility. Slow convergence arises from the need to solve an RL problem in each iteration, resulting in
convergence rates approximately an order of magnitude slower than standard RL algorithms. Train-
ing instability stems from the characteristic of the Lagrange multiplier, manifesting as persistent
oscillations in return and constraint violation throughout training (Stooke et al., 2020).

Another class of methods, called constrained policy optimization, aligns more closely with PG, or
more generally, policy optimization, which employs more advanced optimization techniques than

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

pure gradient ascent. These methods impose the safety constraint on the sub-problem in each itera-
tion, requiring every intermediate policy to be strictly safe. While more efficient than unconstrained
iterative RL, these methods suffer from the infeasibility issue: they often fail to find a constraint-
satisfying solution to the sub-problems, especially during early training stages. This is because the
constraint is too stringent for policies that have not been sufficiently trained after random initial-
ization. In such cases, these methods must resort to pure constraint minimization without reward
optimization (Achiam et al., 2017), resulting in overly conservative updates and inefficient training.

In this paper, we challenge the conventional practice of enforcing the original constraint in every
iteration of policy optimization. Instead, we demonstrate that each iteration only needs to progres-
sively expand the feasible region while improving the value function. This insight is theoretically
grounded in feasible policy iteration (FPI) (Yang et al., 2023c), which proves that such updates
guarantee convergence to the maximum feasible region and the optimal value function. Our ap-
proach replaces the stringent constraint that every policy must be strictly safe with a milder one:
each policy only needs to be safer than the previous one in the sense that its feasible region is
expanded. Building on this foundation, we propose feasible policy optimization (FPO), which max-
imizes the value function inside the feasible region and minimizes the feasibility function outside it.
We prove that these two objectives, originally expressed by two separate optimization problems, can
be simultaneously achieved with a shared optimal solution. We further derive a tight bound on the
constraint decay function (CDF), enabling more accurate feasible region estimation compared to the
conventional cost value function (CVF). Extensive evaluation on the Safety-Gymnasium benchmark
demonstrates FPO’s excellent balance between safety and return.

2 RELATED WORK

Iterative unconstrained RL Most iterative unconstrained RL methods use the method of La-
grange multipliers and solve the dual problem using dual ascent, where the minimization step solves
an unconstrained RL problem (Paternain et al., 2019). For example, Chow et al. (2018) constrain
the conditional value-at-risk of the CVF in a constrained Markov decision process (Altman, 2021),
forming a probabilistic constraint. Tessler et al. (2018) incorporate the cost signal into the reward
function, treating the integrated discounted sum as a new value function. The Lagrange multiplier
framework is also adaptable to other kinds of feasibility functions, including Hamilton-Jacobi reach-
ability (Yu et al., 2022; 2023), control barrier function (Yang et al., 2023a;b), and safety index (Ma
et al., 2022). As a special case, when the multiplier is fixed as a constant, the algorithm reduces to a
penalty function method (Thomas et al., 2021).

Constrained policy optimization The most representative example of this class is the constrained
policy optimization (CPO) algorithm (Achiam et al., 2017), which builds on the trust region policy
optimization (TRPO) (Schulman et al., 2015) and further adds a linearized safety constraint. To
avoid the computationally expensive line search in CPO, Yang et al. (2020) propose to first perform
a reward improvement update and then project the policy back onto the constrained set. Zhang et al.
(2020) propose to first solve for the optimal policy in a non-parameterized policy space and then
project it back into the parametric space. Following the projection method, Yang et al. (2022) pro-
pose generalized advantage estimation (GAE) for the surrogate function to further improve perfor-
mance. Inspired by techniques from constrained optimization, the interior-point method (Liu et al.,
2020) and the augmented Lagrange method (Dai et al., 2023) are also explored to solve the policy
optimization problem in each iteration. For finite-horizon problems, Zhao et al. (2023a) and Zhao
et al. (2024) convert state-wise constraints to cumulative constraints through cost reconstruction and
bound the worst-case violation.

3 PRELIMINARIES

3.1 PROBLEM STATEMENT

Safe RL addresses control problems in which an agent aims to maximize long-term rewards while
strictly adhering to safety constraints at every step. We consider a Markov decision process (MDP)
(X ,U , dinit, P, r, γ), whereX ⊆ Rn is the state space, U ⊆ Rm is the action space, dinit ∈ ∆X is the
initial state distribution, P : X ×U → ∆X is the transition probability, r : X ×U → R is the reward

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

function, and 0 < γ < 1 is the discount factor. We consider a stochastic policy π : X → ∆U , whose
value function is defined as:

V π(x) = Ext+1∼P (·|xt,ut),ut∼π(·|xt)

[∞∑
t=0

γtr(xt, ut)
∣∣∣x0 = x

]
. (1)

Safety is specified through a state constraint expressed as an inequality h(x) < 0, where h : X → R
is the constraint function. We aim to find a policy that maximizes the expected value function while
satisfying the state constraint at every step over an infinite horizon:

max
π

Ex∼dinit [V
π(x)]

s.t. h(xt) ≤ 0,∀t ≥ 0, x0 ∈ Xinit,
(2)

where Xinit = {x ∈ X |dinit(x) > 0} is the support of the initial state distribution.

3.2 FEASIBLE REGION AND FEASIBILITY FUNCTION

The constrained optimal control problem (2) is intractable because it has infinitely many constraints.
A common solution is to aggregate these constraints into a single one through a feasibility function.
To formally describe the concept of feasibility, we first define the reachable set.
Definition 1 (Reachable set). The reachable set of a policy π from a state x ∈ X , denoted Rπ(x),
is the set of states that can be reached with non-zero probability under π in finite time:

Rπ(x) = {x′ ∈ X |∃t ≥ 0, s.t. P (xt = x′|x, π) > 0}, (3)

where P (xt = x′|x, π) is the probability of reaching x′ at time t starting from x and following π.

We call a state feasible under a policy if all its future states satisfy the safety constraint, and the set
of all feasible states under a policy is the feasible region of the policy.
Definition 2 (Feasible region). The feasible region of a policy π, denoted Xπ , is the set of states
from which every reachable set under π satisfies the safety constraint:

Xπ = {x ∈ X |∀x′ ∈ Rπ(x), h(x′) ≤ 0}. (4)

The feasible region enables us to describe the long-term safety requirement compactly: the feasi-
ble region must include all possible initial states. This requirement can be expressed as a single
constraint by the feasibility function.
Definition 3 (Feasibility function). Function Fπ : X → R is a feasibility function of π if and only
if its zero-sublevel set equals the feasible region of π, i.e., {x ∈ X |Fπ(x) ≤ 0} = Xπ .

An example of a feasibility function is the CDF (Yang et al., 2023b).
Definition 4 (Constraint decay function). The CDF of a policy π is defined as

Fπ(x) = Eτ∼π

[
γN(τ)

∣∣x0 = x
]
, (5)

where γ ∈ (0, 1) is the discount factor, τ = {x0, u0, x1, u1, . . . } is a trajectory sampled by π, and
N(τ) ∈ N is the time step of the first constraint violation in τ .

The CDF is non-negative by definition, and thus its zero-sublevel set equals its zero-level set. With-
out loss of generality, we only consider non-negative feasibility functions in this paper. For fea-
sibility functions with negative values, we can take their non-negative parts Fπ

+ = max{Fπ, 0}
without changing the feasible region. With a feasibility function, we can aggregate the infinitely
many constraints in Problem (2) into a single one, obtaining the following problem:

max
π

Ex∼dinit [V
π(x)] s.t. Ex∼dinit [F

π(x)] ≤ 0. (6)

4 METHODS

Existing constrained policy optimization methods typically require that every intermediate policy
satisfies the constraint in Problem (6). Instead, our algorithm only requires each policy to have a
larger feasible region than the previous policy, which can be achieved through a region-wise policy
optimization scheme.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4.1 REGION-WISE POLICY OPTIMIZATION

We propose to solve two optimization problems in each iteration. Let πk denote the policy from
the previous iteration. The first problem is to maximize the value function inside the feasible region
under the constraint that the new feasible region is not smaller:

max
π

Ex∼dinit [I[Fπk(x) ≤ 0]V π(x)]

s.t. Ex∼dinit [I[Fπk(x) ≤ 0]Fπ(x)] ≤ 0.
(7)

The second problem is to minimize the feasibility function outside the feasible region under the
same constraint:

min
π

Ex∼dinit [I[Fπk(x) > 0]Fπ(x)]

s.t. Ex∼dinit [I[Fπk(x) ≤ 0]Fπ(x)] ≤ 0.
(8)

The next policy πk+1 is obtained by solving Problem (7) and (8), which, we will prove, have a shared
optimal solution. The theoretical basis of this policy update rule is provided by FPI (Yang et al.,
2023c), which proves that in finite state and action spaces, this update rule produces monotonically
improved value functions and feasible regions, with guaranteed convergence to the optimal solution
to the original safe RL problem (6). We generalize the update rule of FPI to infinite spaces by
replacing the state-wise optimization with expectation optimization.

Theorem 1. There exists a policy πk+1 that is the optimal solution to both Problem (7) and (8).

Proof Sketch. Let πin and πout denote the optimal solutions to Problem (7) and (8), respectively. We
construct the following policy:

πk+1(·|x) =
{
πin(·|x), x ∈ Rπin(Xinit ∩Xπk),

πout(·|x), otherwise,
(9)

whereRπ(X) =
⋃

x∈X Rπ(x) denotes the reachable set of π from a set of states X ⊆ X . We prove
that πk+1 is the optimal solution to both problems. The key is to observe that Rπin(Xinit ∩ Xπk) is
forward invariant under πk+1. See Appendix A.1 for the complete proof.

The above lemma allows us to merge Problem (7) and (8) into a single problem as follows:

max
π

Ex∼dinit [I[Fπk(x) ≤ 0]V π(x)− I[Fπk(x) > 0]Fπ(x)]

s.t. Ex∼dinit [I[Fπk(x) ≤ 0]Fπ(x)] ≤ 0.
(10)

Corollary 1. The optimal solution to Problem (10) is also the optimal solution to both Problem (7)
and (8).

This is because the objective function of Problem (10) is the sum of the objective functions of
Problem (7) and (8), and they share the same constraint. Thus, πk+1 defined in (9) is the optimal
solution to all three problems.

4.2 FEASIBILITY FUNCTION BOUNDS

A difficulty of solving Problem (10) is that the value function and feasibility function of the new
policy π cannot be directly approximated with samples collected by the old policy πk. To solve this
problem, we replace the two functions with their lower and upper bounds, which can be approxi-
mated by samples from the old policy. Achiam et al. (2017) derive the bounds for functions in the
form of discounted summation, which is applicable to the value function. In this section, we move
a step further and derive the bounds for CDF.

We begin with a decomposition of state distribution. Given an initial state x ∈ X , the discounted
future state distribution under policy π is dπ(x′|x) = (1 − γ)

∑∞
t=0 γ

tP (xt = x′|x, π). By law
of total probability, we decompose each term in the summation based on whether the constraint has
been violated up to that step:

P (xt = x′|x, π) = P (xt = x′,max
s<t

cs = 0|x, π) + P (xt = x′,max
s<t

cs = 1|x, π),

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where cs = I[h(xs) > 0] is the indicator function for constraint violation. Then, the future state
distribution can be decomposed as dπ(x′|x) = dπ0 (x

′|x) + dπ+(x
′|x), where

dπ0 (x
′|x) = (1− γ)

∞∑
t=0

γtP (xt = x′,max
s<t

cs = 0|x, π),

dπ+(x
′|x) = (1− γ)

∞∑
t=0

γtP (xt = x′,max
s<t

cs = 1|x, π).

We call dπ0 the prefix state distribution. This decomposition is critical in deriving the bounds for
CDF. As we will show later, the bounds for CDF only depend on the prefix state distribution because
states beyond the first violation are irrelevant to the CDF. In the following analysis, we slightly abuse
notation by writing Ex∼dπ

0
[f(x)] to represent

∫
X f(x)dπ0 (x)dx even when

∫
X dπ0 (x)dx < 1.

Theorem 2. For any policies π̃ and π, and any state x ∈ X , define

Aπ
F (x, u) = Ex′∼P (·|x,u)[c(x) + (1− c(x))γFπ(x′)− Fπ(x)],

and Lπ
π̃(x) = Ex′∼dπ

0 (·|x),u′∼π̃(·|x′) [A
π
F (x

′, u′)], ϵπ̃F = maxx |Eu∼π̃(·|x)[A
π
F (x, u)]|. Then,

F π̃(x)− Fπ(x) ≥ Lπ
π̃(x)

1− γ
− 2γϵπ̃F

(1− γ)2
Ex′∼dπ

0 (·|x)[DTV (π̃∥π)[x′]],

F π̃(x)− Fπ(x) ≤ Lπ
π̃(x)

1− γ
+

2γϵπ̃F
(1− γ)2

Ex′∼dπ
0 (·|x)[DTV (π̃∥π)[x′]],

where DTV (π̃∥π)[x′] = (1/2)
∑

u |π̃(u|x′) − π(u|x′)| is the total variational divergence between
action distributions at x′. Furthermore, the bounds are tight (when π̃ = π, the LHS and RHS are
identically zero).

Proof Sketch. We construct an auxiliary MDP M̃ , which is identical to M except for its transition
probability. In M̃ , once the constraint is violated, the state is fixed at the one that violates the
constraint for all future steps. We prove that the CDF and prefix state distribution are identical in
M and M̃ , and the result to prove holds in M̃ . Therefore, the result also holds in M . See Appendix
A.2 for the complete proof.

One may ask why not use the CVF as the feasibility function, which is a discounted summation so
that the bound from CPO would still apply. The reason is that CDF yields more accurate estimates
than CVF in practice. In safe RL, feasibility functions are typically estimated using bootstrapping
methods like TD(λ), which suffer from approximation bias of the feasibility function itself. While
this bias affects both CDF and CVF, CVF suffers more severely because it is unbound and requires
infinite-horizon trajectories. In contrast, CDF is bounded within [0, 1], allowing the bootstrapping
target to be explicitly clipped, and its shorter trajectories (truncated at first violation) also decrease
variance.

4.3 FEASIBLE POLICY OPTIMIZATION

With the CDF bounds, we are ready to solve Problem (10). Substituting the upper bound of CDF
from Theorem 2 and the lower bound of value function from Corollary 1 in the CPO paper (Achiam
et al., 2017), and following the practice of trust region methods, we obtain the following problem:

max
π

Ex∼dπk ,u∼π [I[Fπk(x) ≤ 0]Aπk(x, u)]− Ex∼d
πk
0 ,u∼π [I[F

πk(x) > 0]Aπk

F (x, u)]

s.t. Ex∼dπk ,u∼π [I[Fπk(x) ≤ 0](Fπk(x) +Aπk

F (x, u)/(1− γ))+] ≤ 0

Ex∼dπk [I[Fπk(x) ≤ 0]DKL(π∥πk)[x]] ≤ δ/2

Ex∼dπk [I[Fπk(x) > 0]DKL(π∥πk)[x]] ≤ δ/2.

(11)

In the above constraints, we replace the prefix state distribution dπ0 with the whole state distribution
dπ . This replacement is valid because dπ ≥ dπ0 for all states. Our algorithm, called feasible policy
optimization (FPO), iteratively solves Problem (11) to update the policy. This update rule provides
the following guarantees on the safety and performance of the new policy.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Corollary 2. The optimal solution to Problem (11), denoted πk+1, satisfies the following two prop-
erties:

1. Feasibility enhancement:

Ex∼dinit [I[Fπk(x) ≤ 0]Fπk+1(x)] ≤
√
δγϵ

πk+1

F

(1− γ)2
, (12a)

Ex∼dinit [I[Fπk(x) > 0] (Fπk+1(x)− Fπk(x))] ≤
√
δγϵ

πk+1

F

(1− γ)2
, (12b)

where ϵ
πk+1

F = maxx |Eu∼πk+1(·|x)[A
π
F (x, u)]|.

2. Value improvement:

Ex∼dinit [I[Fπk(x) ≤ 0] (V πk+1(x)− V πk(x))] ≥ −
√
δγϵπk+1

(1− γ)2
, (13)

where ϵπk+1 = maxx |Eu∼πk+1(·|x)[A
π(x, u)]|.

Proof Sketch. Split (11) into two problems similar to Section 4.1 and prove that they share the same
optimal solution. The rest follows by Theorem 2 and Corollary 1 in the CPO paper (Achiam et al.,
2017). See Appendix A.3 for the complete proof.

This corollary tells us that the safety and performance degradation of the new policy is controlled.
Specifically, its feasibility function will not exceed zero too much inside the feasible region or in-
crease too much outside the feasible region, and its value function will not decrease too much inside
the feasible region. As the step size δ decreases, the policy sequence obtained by FPO approaches a
monotonically improving sequence in both safety and performance.

4.4 PRACTICAL IMPLEMENTATION

We adopt the method from PPO to solve Problem (11), which applies a first-order method with
the KL divergence constraints replaced by a clipped importance sampling (IS) ratio. FPO learns
a feasibility network Fϕ, a value network Vω , and a policy network πθ, where ϕ, ω, and θ denote
their parameters. We additionally introduce a hyperparameter ϵ > 0 and approximate feasibility
by Fϕ(x) ≤ ϵ. This is because, in practice, approximation error causes the CDF to be positive
almost everywhere since its learning target is non-negative. This approximation is valid under the
assumption that the step to violation is uniformly bounded (Thomas et al., 2021). In our experiments,
we find that a fixed value of ϵ = 0.1 works well for all environments.

We deal with the constraint inside the feasible region by penalizing the advantage function. Specifi-
cally, we take a weighted sum of the reward advantage and feasibility advantage:

Ā(x, u) = I[Fϕ(x) ≤ ϵ](α(x)A(x, u) + (1− α(x))AF (x, u)) + I[Fϕ(x) > ϵ]AF (x, u),

where the weight α(x) = (1− Fϕ(x)/ϵ)
β , and the exponent β > 0 is updated by

β ← β + ηEx∼d
πθk ,u∼πθ

[I[Fϕ(x) ≤ ϵ](Fϕ(x) +AF (x, u)/(1− γ)− ϵ)+] , (14)

where η is the learning rate. The reason for designing the weight in this way is that states with CDF
values close to ϵ are more likely to become infeasible after an update step. Thus, we need to put
more weight on the feasibility advantage of these states to prevent them from becoming infeasible.
To compute the feasibility advantage, we extend the GAE of the value function to the CDF:

AF (x, u) =

∞∑
t=0

(λγ)t
t−1∏
s=0

(1− cs) (ct + (1− ct)γFϕ(xt+1)− Fϕ(xt)) . (15)

See Appendix B.1 for the detailed derivation.

The loss function for the feasibility network is

LF (ϕ) = E
[
(Fϕ(x)− (Fϕk

(x) +AF (x, u)))
2
]
. (16)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

The loss function for the value network is

LV (ω) = E
[
(Vω(x)− (Vωk

(x) +A(x, u)))
2
]
. (17)

The loss function for the policy network is

Lπ(θ) = −E
[
min

{
πθ(u|x)
πθk(u|x)

Ā(x, u), clip
(

πθ(u|x)
πθk(u|x)

, 1− ξ, 1 + ξ

)
Ā(x, u)

}]
, (18)

where ξ > 0 is a constant for clipping the IS ratio. In the policy loss function, we use all state sam-
ples to approximate the advantage, which essentially replaces dπ0 with dπ in the objective function
of Problem (11) for higher sample efficiency. The pseudocode of FPO is in Appendix B.2.

5 EXPERIMENTS

We aim to answer the following questions through our experiments:

Q1 How does FPO perform in terms of safety and return compared to existing algorithms?
Q2 Does FPO maintain monotonic expansion of the feasible region throughout training?
Q3 What specific behaviors does FPO’s policy learn to achieve both safety and high performance?

5.1 EXPERIMENT SETUPS

Environments Our experiments cover 14 environments in the Safety-Gymnasium benchmark (Ji
et al., 2023a), including navigation and locomotion. The navigation environments include two
robots, i.e., Point and Car, and four tasks, i.e., Goal, Push, Button, and Circle, with all difficulty
levels set as 1 and constraints set as default. The locomotion environments include six classic robots
from Gymnasium’s MuJoCo environments, i.e., HalfCheetah, Hopper, Swimmer, Walker2d, Ant,
and Humanoid, with maximum velocity constraints.

Baselines We compare FPO with a wide variety of mainstream safe RL algorithms implemented in
the Omnisafe toolbox (Ji et al., 2023b), including iterative unconstrained RL methods RCPO (Tessler
et al., 2018), PPO-Lag (Ray et al., 2019), and TRPO-PID (Stooke et al., 2020), and constrained
policy optimization methods CPO (Achiam et al., 2017), PCPO (Yang et al., 2020), FOCOPS (Zhang
et al., 2020), and P3O (Zhang et al., 2022). Hyperparameters for all algorithms are detailed in
Appendix C.1. We use the default hyperparameters in Omnisafe for all baselines, which have been
tuned for good performance as stated by Ji et al. (2023b).

5.2 EXPERIMENT RESULTS

0.000.020.040.060.080.100.120.14
Normalized cost

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
or

m
al

iz
ed

 re
tu

rn

CPO
PCPO
FOCOPS
RCPO
PPO-Lag
TRPO-PID
P3O
FPO

Figure 1: Normalized cost-return plot. The error
bars represent 95% confidence intervals.

Cost-return evaluation In safe RL, we eval-
uate algorithms by two metrics: (1) episode
cost, representing the average number of
constraint-violating steps per episode, and (2)
episode return, representing the average cumu-
lative rewards per episode. To perform a com-
prehensive evaluation, we place the scores of all
algorithms in a cost-return plot in Figure 1. The
scores are first normalized by those of PPO and
then averaged on all 14 environments. The re-
sults demonstrate FPO’s excellent performance
in balancing safety and return: it reduces vi-
olation to 2% of PPO’s level while maintain-
ing 70% of its return. In contrast, other algo-
rithms exhibit less favorable trade-offs. CPO
and PCPO significantly sacrifice return due to
their strict requirements on constraint satisfac-
tion in every iteration. Lagrangian and penalty-
based methods (PPO-Lag, RCPO, TRPO-PID,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

and P3O) explicitly trade off cost and return by adjusting penalty coefficients, forming a Pareto front.
Among these, TRPO-PID adaptively controls the Lagrange multiplier to achieve a more balanced
performance, though it remains inferior to FPO in both safety and return. These results answer Q1.

Training curves Figure 2 shows the training curves of all algorithms across eight environments.
Training curves on all 14 environments, along with final cost and return scores, are provided in Ap-
pendix C.2. FPO ideally balances cost and return in all environments. Notably, FPO is the only
algorithm that finds a high-return and safe policy in SwimmerVelocity, while all other algorithms
fails to solve this task. Constrained optimization methods like CPO and PCPO are overly conser-
vative in most environments. Lagrangian-based methods like RCPO and PPO-Lag exhibit severe
oscillations during training, resulting in inferior final performance. These results provide further
empirical evidence to answer Q1.

0.2 0.4 0.6 0.8 1.0
Environment step 1e7

0

50

100

150

200

250

Ep
is

od
e

co
st

PointCircle

0.95 1.00
1e7

0

5

10

0.2 0.4 0.6 0.8 1.0
Environment step 1e7

0

25

50

75

100

125

Ep
is

od
e

co
st

PointButton

0.95 1.00
1e7

0

5

10

0.2 0.4 0.6 0.8 1.0
Environment step 1e7

0

8

16

24

32

40

Ep
is

od
e

co
st

CarGoal

0.95 1.00
1e7

0

1

2

0.2 0.4 0.6 0.8 1.0
Environment step 1e7

0

15

30

45

60

Ep
is

od
e

co
st

CarPush

0.95 1.00
1e7

0

2

4

0.2 0.4 0.6 0.8 1.0
Environment step 1e7

0

15

30

45

60

Ep
is

od
e

re
tu

rn

PointCircle

0.2 0.4 0.6 0.8 1.0
Environment step 1e7

0

4

8

12

16

Ep
is

od
e

re
tu

rn

PointButton

0.2 0.4 0.6 0.8 1.0
Environment step 1e7

0

6

12

18

24

30

Ep
is

od
e

re
tu

rn

CarGoal

0.2 0.4 0.6 0.8 1.0
Environment step 1e7

0

4

8

12

16

Ep
is

od
e

re
tu

rn

CarPush

0.2 0.4 0.6 0.8 1.0
Environment step 1e7

0

2

4

6

8

10

Ep
is

od
e

co
st

AntVelocity

0.2 0.4 0.6 0.8 1.0
Environment step 1e7

0

6

12

18

24

30

Ep
is

od
e

co
st

HalfCheetahVelocity

0.95 1.00
1e7

0

1

2

0.2 0.4 0.6 0.8 1.0
Environment step 1e7

0

10

20

30

40

50

Ep
is

od
e

co
st

HopperVelocity

0.95 1.00
1e7

0

1

2

0.2 0.4 0.6 0.8 1.0
Environment step 1e7

0

20

40

60

80

Ep
is

od
e

co
st

SwimmerVelocity

0.95 1.00
1e7

0

1

2

0.2 0.4 0.6 0.8 1.0
Environment step 1e7

−3000

−1500

0

1500

3000

Ep
is

od
e

re
tu

rn

AntVelocity

0.2 0.4 0.6 0.8 1.0
Environment step 1e7

−800

0

800

1600

2400

Ep
is

od
e

re
tu

rn

HalfCheetahVelocity

0.2 0.4 0.6 0.8 1.0
Environment step 1e7

0

400

800

1200

1600

2000

Ep
is

od
e

re
tu

rn

HopperVelocity

0.2 0.4 0.6 0.8 1.0
Environment step 1e7

0

40

80

120

160

Ep
is

od
e

re
tu

rn

SwimmerVelocity

CPO PCPO FOCOPS RCPO PPO-Lag TRPO-PID P3O FPO

Figure 2: Training curves on eight environments in Safety-Gymnasium benchmark. The shaded
areas represent 95% confidence intervals over 5 seeds.

Feasible region visualization We visualize the feasible regions learned by FPO during training
in Figure 3 to check whether they are monotonically expanding as required by the constraint of our
algorithm. While the training lasts 500 epochs, we find that the feasible regions after 100 epochs
remain almost the same. The red circles in the figure are where the hazards are located. By epoch 5,
FPO demonstrates preliminary capability to identify unsafe areas, but no state is identified as feasi-
ble. With continued learning, the feasible region emerges and gradually expands. By epoch 50, FPO
already achieves complete distinguishability between feasible and infeasible regions. These results
demonstrate that the monotonic expansion constraint of the feasible region is satisfied throughout

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

training, answering Q2. By quickly acquiring representations of the feasible region, FPO effectively
focuses exploration within safe boundaries while optimizing returns.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
X Position

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Y
Po

sit
io

n

Epoch 5

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
X Position

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Epoch 10

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
X Position

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Epoch 20

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
X Position

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Epoch 50

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
X Position

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Epoch 100

0.4

0.2

0.0

0.2

0.4

0.6

Cr
iti

c
Va

lu
e

Figure 3: Visualization of the feasible regions during training in PointGoal. The colors represent
CDF values computed by placing the agent on every point of a grid covering the space. The contours
of the 0.1-level sets are marked in black.

Figure 4: Trajectories of FPO (left) and PPO-Lag
(right) in PointCircle.

Trajectory visualization We inspect the pol-
icy behavior in PointCircle and SwimmerVe-
locity by visualizing their trajectories. Fig-
ure 4 shows trajectories in PointCircle, where
FPO follows circular motion that strictly stays
within the constraint boundaries while PPO-
Lag moves out of it. This violation occurs be-
cause learning a safe behavior in this task re-
quires a quite large Lagrange multiplier, which
PPO-Lag fails to reach within a limited train-
ing. FPO avoids this problem by directly con-
straining the policy inside the feasible region.
Figure 5 shows trajectories in SwimmerVelocity, where FPO manages to move forward within speed
limits while PPO-Lag is trapped in a local optimum. Specifically, PPO-Lag learns a policy that
“climbs over” the constraint-violating pose as quickly as possible to reduce cumulative costs, before
getting stuck in a safe pose with almost no rewards. FPO escapes this local optimum by avoiding any
constraint violation in the first place. This owes to CDF, which treats all infeasible states equally,
regardless of their future cumulative costs. These results answer Q3.

Figure 5: Trajectories of FPO (top) and PPO-Lag (bottom) in SwimmerVelocity.

6 CONCLUSION

This paper points out that the conventional practice of enforcing the original constraint in each iter-
ation in safe RL is unnecessarily conservative. Instead, each update only needs to find an expanded
feasible region and an improved value function. We propose an algorithm called FPO that achieves
both objectives by simultaneously maximizing the value function inside the feasible region and
minimizing the feasibility function outside it. We prove that these two optimization problems have a
shared optimal solution, supported by a tight bound we derive on the CDF, which extends the result
from CPO. Extensive experiments on Safety-Gymnasium show that FPO strikes a favorable balance
between safety and return compared with state-of-the-art safe RL algorithms.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
International conference on machine learning, pp. 22–31. PMLR, 2017.

Eitan Altman. Constrained Markov decision processes. Routledge, 2021.

Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Yinlam Chow, Mohammad Ghavamzadeh, Lucas Janson, and Marco Pavone. Risk-constrained rein-
forcement learning with percentile risk criteria. Journal of Machine Learning Research, 18(167):
1–51, 2018.

Juntao Dai, Jiaming Ji, Long Yang, Qian Zheng, and Gang Pan. Augmented proximal policy op-
timization for safe reinforcement learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pp. 7288–7295, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Jiaming Ji, Borong Zhang, Jiayi Zhou, Xuehai Pan, Weidong Huang, Ruiyang Sun, Yiran Geng, Yi-
fan Zhong, Josef Dai, and Yaodong Yang. Safety gymnasium: A unified safe reinforcement learn-
ing benchmark. Advances in Neural Information Processing Systems, 36:18964–18993, 2023a.

Jiaming Ji, Jiayi Zhou, Borong Zhang, Juntao Dai, Xuehai Pan, Ruiyang Sun, Weidong Huang,
Yiran Geng, Mickel Liu, and Yaodong Yang. Omnisafe: An infrastructure for accelerating safe
reinforcement learning research. arXiv preprint arXiv:2305.09304, 2023b.

Shengbo Eben Li. Reinforcement learning for sequential decision and optimal control. Springer
Verlag, Singapore, 2023.

Yongshuai Liu, Jiaxin Ding, and Xin Liu. Ipo: Interior-point policy optimization under constraints.
In Proceedings of the AAAI conference on artificial intelligence, volume 34, pp. 4940–4947, 2020.

Haitong Ma, Changliu Liu, Shengbo Eben Li, Sifa Zheng, and Jianyu Chen. Joint synthesis of
safety certificate and safe control policy using constrained reinforcement learning. In Learning
for Dynamics and Control Conference, pp. 97–109. PMLR, 2022.

Santiago Paternain, Luiz Chamon, Miguel Calvo-Fullana, and Alejandro Ribeiro. Constrained re-
inforcement learning has zero duality gap. Advances in Neural Information Processing Systems,
32, 2019.

Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep reinforcement
learning. arXiv preprint arXiv:1910.01708, 7(1):2, 2019.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning
by pid lagrangian methods. In International Conference on Machine Learning, pp. 9133–9143.
PMLR, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Chen Tessler, Daniel J Mankowitz, and Shie Mannor. Reward constrained policy optimization. arXiv
preprint arXiv:1805.11074, 2018.

Garrett Thomas, Yuping Luo, and Tengyu Ma. Safe reinforcement learning by imagining the near
future. Advances in Neural Information Processing Systems, 34:13859–13869, 2021.

Peter R Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik Subramanian,
Thomas J Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert, Florian Fuchs, et al. Out-
racing champion gran turismo drivers with deep reinforcement learning. Nature, 602(7896):223–
228, 2022.

Long Yang, Jiaming Ji, Juntao Dai, Linrui Zhang, Binbin Zhou, Pengfei Li, Yaodong Yang, and
Gang Pan. Constrained update projection approach to safe policy optimization. Advances in
Neural Information Processing Systems, 35:9111–9124, 2022.

Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J Ramadge. Projection-based
constrained policy optimization. arXiv preprint arXiv:2010.03152, 2020.

Yujie Yang, Yuxuan Jiang, Yichen Liu, Jianyu Chen, and Shengbo Eben Li. Model-free safe rein-
forcement learning through neural barrier certificate. IEEE Robotics and Automation Letters, 8
(3):1295–1302, 2023a.

Yujie Yang, Yuhang Zhang, Wenjun Zou, Jianyu Chen, Yuming Yin, and Shengbo Eben Li. Syn-
thesizing control barrier functions with feasible region iteration for safe reinforcement learning.
IEEE Transactions on Automatic Control, 69(4):2713–2720, 2023b.

Yujie Yang, Zhilong Zheng, Shengbo Eben Li, Jingliang Duan, Jingjing Liu, Xianyuan Zhan, and
Ya-Qin Zhang. Feasible policy iteration. arXiv preprint arXiv:2304.08845, 2023c.

Yujie Yang, Zhilong Zheng, Shengbo Eben Li, Masayoshi Tomizuka, and Changliu Liu. The
feasibility of constrained reinforcement learning algorithms: A tutorial study. arXiv preprint
arXiv:2404.10064, 2024.

Dongjie Yu, Haitong Ma, Shengbo Li, and Jianyu Chen. Reachability constrained reinforcement
learning. In International conference on machine learning, pp. 25636–25655. PMLR, 2022.

Dongjie Yu, Wenjun Zou, Yujie Yang, Haitong Ma, Shengbo Eben Li, Yuming Yin, Jianyu Chen, and
Jingliang Duan. Safe model-based reinforcement learning with an uncertainty-aware reachability
certificate. IEEE Transactions on Automation Science and Engineering, 21(3):4129–4142, 2023.

Linrui Zhang, Li Shen, Long Yang, Shixiang Chen, Bo Yuan, Xueqian Wang, and Dacheng
Tao. Penalized proximal policy optimization for safe reinforcement learning. arXiv preprint
arXiv:2205.11814, 2022.

Yiming Zhang, Quan Vuong, and Keith Ross. First order constrained optimization in policy space.
Advances in Neural Information Processing Systems, 33:15338–15349, 2020.

Weiye Zhao, Rui Chen, Yifan Sun, Tianhao Wei, and Changliu Liu. State-wise constrained policy
optimization. arXiv preprint arXiv:2306.12594, 2023a.

Weiye Zhao, Tairan He, Rui Chen, Tianhao Wei, and Changliu Liu. State-wise safe reinforcement
learning: A survey. arXiv preprint arXiv:2302.03122, 2023b.

Weiye Zhao, Feihan Li, Yifan Sun, Yujie Wang, Rui Chen, Tianhao Wei, and Changliu Liu. Absolute
state-wise constrained policy optimization: High-probability state-wise constraints satisfaction.
arXiv preprint arXiv:2410.01212, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A PROOFS

A.1 PROOF OF SHARED SOLUTION THEOREM

Theorem 1. There exists a policy πk+1 that is the optimal solution to both Problem (7) and (8).

Proof. Let πin and πout denote the optimal solutions to Problem (7) and (8), respectively. We con-
struct the policy πk+1 as follows:

πk+1(·|x) =
{
πin(·|x), x ∈ Rπin(Xinit ∩Xπk),

πout(·|x), otherwise,
(19)

whereRπ(X) =
⋃

x∈X Rπ(x) denotes the reachable set of π from a set of states X ⊆ X .

By construction, the trajectories of πk+1 starting from Xinit ∩Xπk coincide with those of πin. There-
fore,

Ex∼dinit [I[Fπk(x) ≤ 0]Fπk+1(x)] = Ex∼dinit [I[Fπk(x) ≤ 0]Fπin(x)] ≤ 0,
which proves that πk+1 satisfies the shared constraint of both problems.

Since πin is optimal for Problem (7), and πk+1 achieves the same value function as πin for all
x ∈ Xinit ∩Xπk , it follows that

Ex∼dinit [I[Fπk(x) ≤ 0]V πk+1(x)] = Ex∼dinit [I[Fπk(x) ≤ 0]V πin(x)].

Thus, πk+1 is also optimal for Problem (7).

For any x ∈ Xinit \ Xπk , we analyze two cases: (1) No future state enters Rπin(Xinit ∩ Xπk). In this
case, πk+1 = πout for all future states, thus Fπk+1(x) = Fπout(x). (2) There exists a future state that
enters Rπin(Xinit ∩ Xπk) in finite time. In this case, πk+1 switches to πin once entered, ensuring no
future constraint violation. This, Fπk+1(x) ≤ Fπout(x). Combining these two cases, we have

∀x ∈ Xinit \Xπk , Fπk+1(x) ≤ Fπout(x),

which implies
Ex∼dinit [I[Fπk(x) > 0]Fπk+1(x)] ≤ Ex∼dinit [I[Fπk(x) > 0]Fπout(x)].

Since πout is optimal for Problem (8), πk+1 is also optimal. Therefore, we conclude that πk+1 is the
optimal solution to both Problem (7) and (8).

A.2 PROOF OF CDF BOUNDS

Lemma 1. For any policies π̃ and π, and for any state x ∈ X ,

F π̃(x)− Fπ(x) = Eτ∼π̃

[∞∑
t=0

γt
t−1∏
s=0

(1− cs)A
π
F (xt, ut)

∣∣∣x0 = x

]
.

Proof. By definition of Fπ , we have
Fπ(x) = Eτ∼π[c0 + (1− c0)γ(c1 + (1− c1)γ(. . .))|x0 = x]

= Eτ∼π[c0 + γ(1− c0)c1 + γ2(1− c0)(1− c1)c2 + . . . |x0 = x]

= Eτ∼π

[∞∑
t=0

γt
t−1∏
s=0

(1− cs)ct

∣∣∣x0 = x

]
.

Thus,

F π̃(x)− Fπ(x) = Eτ∼π̃

[∞∑
t=0

γt
t−1∏
s=0

(1− cs)ct

∣∣∣x0 = x

]
− Fπ(x)

= Eτ∼π̃

[∞∑
t=0

γt
t−1∏
s=0

(1− cs)(ct + (1− ct)γF
π(xt+1)− Fπ(xt))

∣∣∣x0 = x

]

= Eτ∼π̃

[∞∑
t=0

γt
t−1∏
s=0

(1− cs)A
π
F (xt, ut)

∣∣∣x0 = x

]
.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Definition 5 (Constraint-absorbing counterpart). Let M be an MDP with transition probability P .
The constraint-absorbing counterpart of M , denoted M̃ , is an MDP with all elements equal those
of M except the transition probability, which is defined as:

P̃ (x′|x, u) =


P (x′|x, u), c(x) = 0,

1, c(x) = 1 and x′ = x,

0, c(x) = 1 and x′ ̸= x,

We also call such M̃ a constraint-absorbing MDP.

Lemma 2. In a constraint-absorbing MDP M̃ , for any policies π̃ and π, and any state x ∈ X ,

F̃ π̃(x)− F̃π(x) = Eτ∼(π̃,P̃)

[∞∑
t=0

γtÃπ
F (xt, ut)

∣∣∣x0 = x

]
.

Proof. According to Lemma 1, we have

F̃ π̃(x)− F̃π(x) = Eτ∼(π̃,P̃)

[∞∑
t=0

γt
t−1∏
s=0

(1− cs)Ã
π
F (xt, ut)

∣∣∣x0 = x

]
.

We split the summation into two parts:

F̃ π̃(x)− F̃π(x) = Eτ∼(π̃,P̃)

[
N(τ)∑
t=0

γt
t−1∏
s=0

(1− cs)Ã
π
F (xt, ut)

+

∞∑
t=N(τ)+1

γt
t−1∏
s=0

(1− cs)Ã
π
F (xt, ut)

∣∣∣x0 = x

]
.

For any trajectory τ ∼ (π̃, P̃), for all t ≤ N(τ), we have ct−1 = 0. Thus,

N(τ)∑
t=0

γt
t−1∏
s=0

(1− cs)Ã
π
F (xt, ut) =

N(τ)∑
t=0

γtÃπ
F (xt, ut).

For all t > N(τ), since cN(τ) = 1, we have

∞∑
t=N(τ)+1

γt
t−1∏
s=0

(1− cs)Ã
π
F (xt, ut) = 0.

By definition of P̃ , for all t > N(τ), we have xt = xN(τ), F̃π(xt) = ct = 1, and it follows that

Ãπ
F (xt, ut) = Ext+1∼P̃ (·|xt,ut)

[ct + (1− ct)γF̃
π(xt+1)− F̃π(xt)] = 0.

Thus, we can equivalently write the second half of the summation as follows:

∞∑
t=N(τ)+1

γt
t−1∏
s=0

(1− cs)Ã
π
F (xt, ut) =

∞∑
t=N(τ)+1

γtÃπ
F (xt, ut).

Therefore, we conclude that

F̃ π̃(x)− F̃π(x) = Eτ∼(π̃,P̃)

[∞∑
t=0

γtÃπ
F (xt, ut)

∣∣∣x0 = x

]
.

Lemma 3 (CDF equivalence). Let Fπ be the CDF in an MDP M , and F̃π be the CDF in M̃ . For
any policy π and state x ∈ X , we have

F̃π(x) = Fπ(x).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Proof. Consider a trajectory where the first constraint violation happens at time step t, and we
denote it as τt, i.e., τt = {x0, u0, x1, u1, . . . }, where c(xt) = 1 and c(xs) = 0,∀s < t. We split τt
into two parts:

τ≤t = {x0, u0, x1, u1, . . . , xt} and τ>t = {ut, xt+1, ut+1, . . . }.

The probability of τt under the original MDP M can be decomposed as follows:

p(τt) = p(τ≤t)p(τ>t|τ≤t),

where

p(τ≤t) = I[x0 = x]

t−1∏
s=0

π(us|xs)P (xs+1|xs, us),

p(τ>t|τ≤t) =

∞∏
s=t

π(us|xs)P (xs+1|xs, us).

Using the decomposed probability, the CDF can be expressed as:

Fπ(x) =
∑
τ

p(τ)γN(τ)

=

∞∑
t=0

∑
τt

p(τt)γ
t

=

∞∑
t=0

∑
τ≤t,τ>t

p(τ≤t)p(τ>t|τ≤t)γ
t

=

∞∑
t=0

∑
τ≤t

p(τ≤t)
∑
τ>t

p(τ>t|τ≤t)︸ ︷︷ ︸
=1

γt

=

∞∑
t=0

∑
τ≤t

p(τ≤t)γ
t.

Similarly, the CDF in M̃ can be expressed as

F̃π(x) =

∞∑
t=0

∑
τ≤t

p̃(τ≤t)γ
t,

where

p̃(τ≤t) = I[x0 = x]

t−1∏
s=0

π(us|xs)P̃ (xs+1|xs, us).

Since the transition probability P̃ is identical to P up to the first constraint violation, we have
p̃(τ≤t) = p(τ≤t), and thus F̃π(x) = Fπ(x).

Lemma 4 (Feasibility advantage equivalence). Let Aπ
F be the feasibility advantage in an MDP M ,

and Ãπ
F be the feasibility advantage in M̃ . For any policy π, state x ∈ X , and action u ∈ U , we

have
Ãπ

F (x, u) = Aπ
F (x, u).

Proof. By definition of the feasibility advantage,

Ãπ
F (x, u) = Ex′∼P̃ (·|x,u)[c(x) + (1− c(x))γF̃π(x′)− F̃π(x)].

By Lemma 3, we can replace F̃π with Fπ:

Ãπ
F (x, u) = Ex′∼P̃ (·|x,u)[c(x) + (1− c(x))γFπ(x′)− Fπ(x)].

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Now, the only difference between Ãπ
F (x, u) and Aπ

F (x, u) lies in the transition probability. We
analyze two cases: whether state x violates the constraint or not. If c(x) = 0, we have P̃ (·|x, u) =
P (·|x, u). In this case, Ãπ

F (x, u) = Aπ
F (x, u). If c(x) = 1, we have Fπ(x) = 1. In this case,

c(x) + (1− c(x))γFπ(x′)− Fπ(x) = 0,

and thus Ãπ
F (x, u) = Aπ

F (x, u) = 0. Therefore, Ãπ
F (x, u) = Aπ

F (x, u) holds for all x ∈ X .

Lemma 5 (Prefix state distribution equivalence). Let dπ0 be the prefix state distribution in an MDP
M , and d̃π0 be the prefix state distribution in M̃ . For any policy π, initial state x ∈ X , and future
state x′ ∈ X , we have

d̃π0 (x
′|x) = dπ0 (x

′|x).

Proof. Expand the probability in each term of the summation,

P (xt = x′,max
s<t

cs = 0|x, π) =
∑

x1,x2,...,xt−1∈Xcstr
u0,u1,...,ut−1∈U

π(u0|x)P (x1|x, u0)π(u1|x1) · · ·P (x′|xt−1, ut−1).

Since cs = 0,∀s < t, by definition of P̃ , we have

P̃ (xs+1|xs, us) = P (xs+1|xs, us), ∀s < t.

Thus, it follows that

P̃ (xt = x′,max
s<t

cs = 0|x, π) = P (xt = x′,max
s<t

cs = 0|x, π),

which implies that d̃π0 (x
′|x) = dπ0 (x

′|x).

Lemma 6. For any policies π̃ and π, and state x ∈ X ,

F π̃(x)− Fπ(x) =
1

1− γ
Ex′∼dπ̃

0 (·|x),u′∼π̃(·|x′)[A
π
F (x

′, u′)].

Proof. By Lemma 2, we have

F̃ π̃(x)− F̃π(x) = Eτ∼(π̃,P̃)

[∞∑
t=0

γtÃπ
F (xt, ut)

∣∣∣x0 = x

]

=

∞∑
t=0

∑
x′

P̃ (xt = x′|x, π̃)
∑
u′

π̃(u′|x′)γtÃπ
F (x

′, u′).

For any t ≥ 0, if maxs<t cs > 0, the state will be fixed at the constraint-violating one in the
constraint absorbing MDP. Thus, only those x′ that violate the constraint yield P̃ (xt = x′|x, π̃) >
0. For these x′, we have Ãπ

F (x
′, u′) = 0. Therefore, we only need to consider the terms with

maxs<t cs = 0 in the summation, i.e.,

F̃ π̃(x)− F̃π(x) =

∞∑
t=0

∑
x′

P̃ (xt = x′|x, π̃,max
s<t

cs = 0)
∑
u′

π̃(u′|x′)γtÃπ
F (x

′, u′)

=
∑
x′

∞∑
t=0

γtP̃ (xt = x′|x, π̃,max
s<t

cs = 0)
∑
u′

π̃(u′|x′)Ãπ
F (x

′, u′)

=
∑
x′

1

1− γ
d̃π̃0 (x

′|x)
∑
u′

π̃(u′|x′)Ãπ
F (x

′, u′)

=
1

1− γ
Ex′∼d̃π̃

0 (·|x),u′∼π̃(·|x′)[Ã
π
F (x

′, u′)].

Substitute in the result from Lemma 3, 4, and 5, we have

F π̃(x)− Fπ(x) =
1

1− γ
Ex′∼dπ̃

0 (·|x),u′∼π̃(·|x′)[A
π
F (x

′, u′)].

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Lemma 7. For any policies π̃ and π, and any state x ∈ X , define

Lπ
π̃(x) = Ex′∼dπ

0 (·|x),u′∼π(·|x′)

[
π̃(u′|x′)

π(u′|x′)
Aπ

F (x
′, u′)

]
,

and ϵπ̃F = maxx′ |Eu′∼π̃(·|x′)[A
π
F (x

′, u′)]|. The following bounds hold:

F π̃(x)− Fπ(x) ≥ 1

1− γ

(
Lπ
π̃(x)− 2ϵπ̃FDTV (d

π̃
0 (·|x)∥dπ0 (·|x))

)
,

F π̃(x)− Fπ(x) ≤ 1

1− γ

(
Lπ
π̃(x) + 2ϵπ̃FDTV (d

π̃
0 (·|x)∥dπ0 (·|x))

)
,

where DTV is the total variational divergence. Furthermore, the bounds are tight (when π̃ = π, the
LHS and RHS are identically zero).

Proof. This proof is largely borrowed from Lemma 2 in CPO (Achiam et al., 2017).

Let Āπ
F ∈ R|X | denote the vector of components Āπ

F (x
′) = Eu′∼π̃(·|x′)[A

π
F (x

′, u′)]. With an abuse
of notation, we view dπ0 (·|x) as a vector in R|X | when necessary. Beginning with the result in
Lemma 6, we have

(1− γ)(F π̃(x)− Fπ(x)) = Ex′∼dπ̃
0 (·|x),u′∼π̃(·|x′)[A

π
F (x

′, u′)]

=
〈
dπ̃0 (·|x), Āπ

F

〉
=
〈
dπ0 (·|x), Āπ

F

〉
+
〈
dπ̃0 (·|x)− dπ0 (·|x), Āπ

F

〉
.

This term can be bounded by Holder’s inequality: for any p, q ∈ [1,∞] such that 1/p + 1/q = 1,
we have

(1− γ)(F π̃(x)− Fπ(x)) ≥
〈
dπ0 (·|x), Āπ

F

〉
−
∥∥dπ̃0 (·|x)− dπ0 (·|x)

∥∥
p

∥∥Āπ
F

∥∥
q
,

(1− γ)(F π̃(x)− Fπ(x)) ≤
〈
dπ0 (·|x), Āπ

F

〉
+
∥∥dπ̃0 (·|x)− dπ0 (·|x)

∥∥
p

∥∥Āπ
F

∥∥
q
.

Choose p = 1, q =∞, we have ∥dπ̃0 (·|x)−dπ0 (·|x)∥1 = 2DTV (d
π̃
0 (·|x)∥dπ0 (·|x)) and ∥Āπ

F ∥∞ = ϵπ̃F .
Observe that by importance sampling,〈

dπ0 (·|x), Āπ
F

〉
= Ex′∼dπ

0 (·|x),u′∼π̃(·|x′)[A
π
F (x

′, u′)]

= Ex′∼dπ
0 (·|x),u′∼π(·|x′)

[
π̃(u′|x′)

π(u′|x′)
Aπ

F (x
′, u′)

]
= Lπ

π̃(x).

After rearranging terms, the bounds are obtained.

Lemma 8. For any policies π̃ and π, and state x ∈ X ,∥∥dπ̃0 (·|x)− dπ0 (·|x)
∥∥
1
≤ 2γ

1− γ
Ex′∼dπ

0 (·|x) [DTV (π̃∥π)[x′]] ,

where DTV (π̃∥π)[x′] = (1/2)
∑

u |π̃(u|x′)− π(u|x′)|.

Proof. We prove that the result holds for the prefix state distribution in a constraint-absorbing MDP,
i.e., d̃π̃0 and d̃π0 . Since d̃π0 = dπ0 for any π, the result to prove directly follows.

Let P̃π(x′|x) =
∑

u P̃ (x′|x, u)π(u|x). We view P̃π as a matrix in R|X |×|X|, where the element on
the ith row and jth column, P̃π

ij , denotes the transition probability from the jth state to the ith state.
We rearrange the order of the states in P̃π so that all constraint-violating states are located on the
last rows and columns:

P̃π =

[
P̃π

s O

P̃π
v I

]
,

where P̃π
s denotes the transition probability between constraint-satisfying states, P̃π

v denotes the
transition probability from constraint-satisfying states to constraint-violating states, O denotes the

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

zero matrix, and I denotes the identity matrix, which implies that a constraint-violating state will no
longer transfer to other states. We construct another matrix by setting the identity matrix in P̃π to
zero:

P̃π
0 =

[
P̃π

s O

P̃π
v O

]
.

By definition of the prefix state distribution,

d̃π0 (·|x) = (1− γ)

∞∑
t=0

(
γP̃π

0

)t
ex = (1− γ)

(
I − γP̃π

0

)−1

ex,

where ex is a one-hot vector where the element at the position of state x is one, and all other elements
are zero, which implies that the initial state is fixed at x.

Define matrices G = (I − γP̃π
0)

−1, G̃ = (I − γP̃ π̃
0)

−1, and ∆ = P̃ π̃
0 − P̃π

0 . Then,

G−1 − G̃−1 =
(
I − γP̃π

0

)
−
(
I − γP̃ π̃

0

)
= γ∆.

Left-multiplying by G and right-multiplying by G̃, we obtain

G̃−G = γG̃∆G.

Thus,
d̃π̃0 (·|x)− d̃π0 (·|x) = (1− γ)

(
G̃−G

)
ex

= γ(1− γ)G̃∆Gex

= γG̃∆d̃π0 (·|x).
Taking the L1 norm on both sides, we obtain∥∥∥d̃π̃0 (·|x)− d̃π0 (·|x)

∥∥∥
1
= γ

∥∥∥G̃∆d̃π0 (·|x)
∥∥∥
1
≤ γ

∥∥∥G̃∥∥∥
1

∥∥∥∆d̃π0 (·|x)
∥∥∥
1
.

∥G̃∥1 is bounded by∥∥∥G̃∥∥∥
1
=

∥∥∥∥(I − γP̃ π̃
0

)−1
∥∥∥∥
1

≤
∞∑
t=0

γt
∥∥∥P̃ π̃

0

∥∥∥t
1
≤

∞∑
t=0

γt = (1− γ)−1.

∥∆d̃π0 (·|x)∥1 is bounded by∥∥∥∆d̃π0 (·|x)
∥∥∥
1
=
∑
x′′

∣∣∣∣∣∑
x′

∆(x′′|x′)d̃π0 (x
′|x)

∣∣∣∣∣
≤
∑
x′,x′′

|∆(x′′|x′)| d̃π0 (x′|x)

=
∑
x′,x′′

∣∣∣∣∣∑
u′

P̃ (x′′|x′, u′)(π̃(u′|x′)− π(u′|x′))

∣∣∣∣∣ d̃π0 (x′|x)

≤
∑

x′,u′,x′′

P (x′′|x′, u′) |π̃(u′|x′)− π(u′|x′)| d̃π0 (x′|x)

=
∑
x′,u′

|π̃(u′|x′)− π(u′|x′)| d̃π0 (x′|x)

= 2Ex′∼d̃π
0 (·|x)

[DTV (π̃∥π)[x′]] .

Therefore, ∥∥∥d̃π̃0 (·|x)− d̃π0 (·|x)
∥∥∥
1
≤ 2γ

1− γ
Ex′∼d̃π

0 (·|x)
[DTV (π̃∥π)[x′]] .

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Theorem 2. For any policies π̃ and π, and any state x ∈ X , define

Aπ
F (x, u) = Ex′∼P (·|x,u)[c(x) + (1− c(x))γFπ(x′)− Fπ(x)],

and Lπ
π̃(x) = Ex′∼dπ

0 (·|x),u′∼π̃(·|x′) [A
π
F (x

′, u′)], ϵπ̃F = maxx |Eu∼π̃(·|x)[A
π
F (x, u)]|. Then,

F π̃(x)− Fπ(x) ≥ Lπ
π̃(x)

1− γ
− 2γϵπ̃F

(1− γ)2
Ex′∼dπ

0 (·|x)[DTV (π̃∥π)[x′]],

F π̃(x)− Fπ(x) ≤ Lπ
π̃(x)

1− γ
+

2γϵπ̃F
(1− γ)2

Ex′∼dπ
0 (·|x)[DTV (π̃∥π)[x′]],

where DTV (π̃∥π)[x′] = (1/2)
∑

u |π̃(u|x′) − π(u|x′)| is the total variational divergence between
action distributions at x′. Furthermore, the bounds are tight (when π̃ = π, the LHS and RHS are
identically zero).

Proof. Begin with the bounds from Lemma 7 and bound the divergence by Lemma 8.

A.3 PROOF OF PERFORMANCE BOUNDS

Corollary 2. The optimal solution to Problem (11), denoted πk+1, satisfies the following two prop-
erties:

1. Feasibility enhancement:

Ex∼dinit [I[Fπk(x) ≤ 0]Fπk+1(x)] ≤
√
δγϵ

πk+1

F

(1− γ)2
, (12a)

Ex∼dinit [I[Fπk(x) > 0] (Fπk+1(x)− Fπk(x))] ≤
√
δγϵ

πk+1

F

(1− γ)2
, (12b)

where ϵ
πk+1

F = maxx |Eu∼πk+1(·|x)[A
π
F (x, u)]|.

2. Value improvement:

Ex∼dinit [I[Fπk(x) ≤ 0] (V πk+1(x)− V πk(x))] ≥ −
√
δγϵπk+1

(1− γ)2
, (13)

where ϵπk+1 = maxx |Eu∼πk+1(·|x)[A
π(x, u)]|.

Proof. Consider the following two problems:

max
π

Ex∼dπk ,u∼π [I[Fπk(x) ≤ 0]Aπk(x, u)]

s.t. Ex∼dπk ,u∼π [I[Fπk(x) ≤ 0](Fπk(x) +Aπk

F (x, u)/(1− γ))+] ≤ 0

Ex∼dπk [I[Fπk(x) ≤ 0]DKL(π∥πk)[x]] ≤ δ/2

Ex∼dπk [I[Fπk(x) > 0]DKL(π∥πk)[x]] ≤ δ/2,

(20)

and
min
π

Ex∼d
πk
0 ,u∼π [I[F

πk(x) > 0]Aπk

F (x, u)]

s.t. Ex∼dπk ,u∼π [I[Fπk(x) ≤ 0](Fπk(x) +Aπk

F (x, u)/(1− γ))+] ≤ 0

Ex∼dπk [I[Fπk(x) ≤ 0]DKL(π∥πk)[x]] ≤ δ/2

Ex∼dπk [I[Fπk(x) > 0]DKL(π∥πk)[x]] ≤ δ/2,

(21)

We prove that they have the same optimal solution. Let πin and πout denote the optimal solutions to
Problem (20) and (21), respectively. Construct the following policy:

πk+1(·|x) =
{
πin(·|x), x ∈ Xπk ,

πout(·|x), otherwise.

We first prove that πk+1 satisfies the constraints of Problem (20) and (21). For the first constraint,
we have

Ex∼dπk ,u∼πk+1
[I[Fπk(x) ≤ 0](Fπk(x) +Aπk

F (x, u)/(1− γ))+]

= Ex∼dπk ,u∼πin [I[Fπk(x) ≤ 0](Fπk(x) +Aπk

F (x, u)/(1− γ))+] ≤ 0.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

For the second and third constraints, we have

Ex∼dπk [I[Fπk(x) ≤ 0]DKL(πk+1∥πk)[x]] = Ex∼dπk [I[Fπk(x) ≤ 0]DKL(πin∥πk)[x]] ≤ δ/2,

Ex∼dπk [I[Fπk(x) > 0]DKL(πk+1∥πk)[x]] = Ex∼dπk [I[Fπk(x) > 0]DKL(πout∥πk)[x]] ≤ δ/2.

Thus, πk+1 satisfies the constraints of both problems. For the objective function of Problem (20),
we have

Ex∼dπk ,u∼πk+1
[I[Fπk(x) ≤ 0]Aπk(x, u)] = Ex∼dπk ,u∼πin [I[Fπk(x) ≤ 0]Aπk(x, u)] ,

which proves that πk+1 is the optimal solution to Problem (20). For the objective function of Prob-
lem (21), we have

Ex∼d
πk
0 ,u∼πk+1

[I[Fπk(x) > 0]Aπk

F (x, u)] = Ex∼d
πk
0 ,u∼πout

[I[Fπk(x) > 0]Aπk

F (x, u)] ,

which proves that πk+1 is the optimal solution to Problem (21). Thus, πk+1 is the optimal solution
to both Problem (20) and (21). Since the original problem (11) is the summation of Problem (20)
and (21), πk+1 is also the optimal solution to Problem (11).

As the optimal solution to Problem (20) and (21), πk+1 must be better than any other feasible
solution to these two problems. Specifically, it must be better πk. Since

Eu∼πk
[Aπk(x, u)] = Eu∼πk

[Aπk

F (x, u)] = 0, ∀x ∈ X ,

we have

Ex∼dπk ,u∼πk+1
[I[Fπk(x) > 0]Aπk(x, u)] ≥ Ex∼dπk ,u∼πk

[I[Fπk(x) > 0]Aπk(x, u)] = 0,

Ex∼d
πk
0 ,u∼πk+1

[I[Fπk(x) > 0]Aπk

F (x, u)] ≤ Ex∼d
πk
0 ,u∼πk

[I[Fπk(x) > 0]Aπk

F (x, u)] = 0.

By Theorem 2, we have

Fπk+1(x) ≤ Fπk(x) +
1

1− γ
Ex′∼d

πk
0 (·|x),u′∼πk+1

[Aπk

F (x′, u′)]

+
2γϵ

πk+1

F

(1− γ)2
Ex′∼dπk (·|x)[DTV (πk+1∥πk)[x

′]].

(22)

For all x ∈ Xπk and all u ∈ U such that πk+1(u|x) > 0, we have

Fπk(x) +Aπk

F (x, u)/(1− γ) ≤ 0⇒ Aπk

F (x, u) ≤ 0.

Take expectations inside the feasible region on both sides of (22),

Ex∼dinit [I[Fπk(x) ≤ 0]Fπk+1(x)] ≤ Ex∼dinit [I[Fπk(x) ≤ 0]Fπk(x)]

+ Ex∼d
πk
0 ,u∼πk+1

[I[Fπk(x) ≤ 0]Aπk

F (x, u)]

+
2γϵ

πk+1

F

(1− γ)2
Ex∼dπk [I[Fπk(x) ≤ 0]DTV (πk+1∥πk)[x]]

≤
2γϵ

πk+1

F

(1− γ)2
Ex∼dπk [I[Fπk(x) ≤ 0]DTV (πk+1∥πk)[x]].

Using the relationship DTV (p∥q) ≤
√
DKL(p∥q)/2 and Jensen’s inequality, we have

Ex∼dinit [I[Fπk(x) ≤ 0]Fπk+1(x)] ≤
2γϵ

πk+1

F

(1− γ)2
Ex∼dπk

[
I[Fπk(x) ≤ 0]

√
DKL(πk+1∥πk)[x]/2

]
≤

2γϵ
πk+1

F

(1− γ)2

√
Ex∼dπk [I[Fπk(x) ≤ 0]DKL(πk+1∥πk)[x]]/2

≤
2γϵ

πk+1

F

(1− γ)2
·
√
δ/4

=

√
δγϵ

πk+1

F

(1− γ)2
,

which proves the first inequality of the feasibility enhancement property.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Rearrange (22) and take expectations outside the feasible region, we have

Ex∼dinit [I[Fπk(x) > 0](Fπk+1(x)− Fπk(x)]

≤ Ex∼d
πk
0 ,u∼πk+1

[I[Fπk(x) > 0]Aπk

F (x, u)]

+
2γϵ

πk+1

F

(1− γ)2
Ex∼dπk [I[Fπk(x) > 0]DTV (πk+1∥πk)[x]]

≤
2γϵ

πk+1

F

(1− γ)2
Ex∼dπk [I[Fπk(x) > 0]DTV (πk+1∥πk)[x]]

≤
2γϵ

πk+1

F

(1− γ)2

√
Ex∼dπk [I[Fπk(x) > 0]DKL(πk+1∥πk)[x]]/2

≤
√
δγϵ

πk+1

F

(1− γ)2
.

This proves the second inequality of the feasibility enhancement property.

By Corollary 1 in the CPO paper (Achiam et al., 2017), we have

V πk+1(x)− V πk(x) ≥ 1

1− γ
Ex′∼dπk (·|x),u′∼πk+1

[Aπk(x′, u′)]

− 2γϵπk+1

(1− γ)2
Ex′∼dπk (·|x)[DTV (πk+1∥πk)[x

′]].

(23)

Take expectations inside the feasible region,

Ex∼dinit [I[Fπk(x) ≤ 0](V πk+1(x)− V πk(x))]

≥ 1

1− γ
Ex∼dπk [I[Fπk(x) ≤ 0]Aπk(x, u)]

− 2γϵπk+1

(1− γ)2
Ex∼dπk [I[Fπk(x) ≤ 0]DTV (πk+1∥πk)[x]]

≥ − 2γϵπk+1

(1− γ)2
Ex∼dπk [I[Fπk(x) ≤ 0]DTV (πk+1∥πk)[x]]

≥ −
√
δγϵπk+1

(1− γ)2
.

This proves the value improvement property and thus finishes the proof.

B PRACTICAL IMPLEMENTATION

B.1 DERIVATION OF GAE OF CDF

For a given trajectory x1, x2, x3, . . . , define

δF,t = ct + (1− ct)γF (xt+1)− F (xt).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Consider the multi-step TD errors of the CDF up to k steps:

A
(1)
F = δF,t

= −F (xt) + ct + (1− ct)γF (xt+1) ,

A
(2)
F = δF,t + (1− ct)γδF,t+1

= ct + (1− ct)γ (ct+1 + (1− ct+1)γF (xt+2))− F (xt)

= −F (xt) + ct + (1− ct)ct+1γ + (1− ct)(1− ct+1)γ
2F (xt+2) ,

...

A
(k)
F =

k−1∑
l=0

γl
l−1∏
s=0

(1− ct+s) δF,t+l

= −F (xt) + ct + (1− ct)ct+1γ + (1− ct)(1− ct+1)ct+2γ
2 + . . .

+

k−2∏
s=0

(1− ct+s) ct+k−1γ
k−1 +

k−1∏
s=0

(1− ct+s) γ
kF (st+k)

The GAE of the CDF is the exponentially-weighted average of these k-step TD errors:

AF = (1− λ)
(
A

(1)
F + λA

(2)
F + λ2A

(3)
F + . . .

)
= (1− λ)

(
δF,t + λ(δF,t + (1− ct)γδ

F
t+1) + λ2(δF,t + (1− ct)γδF,t+1

+ (1− ct)(1− ct+1)γ
2δF,t+2 + . . .)

)

= (1− λ)

((
1 + λ+ λ2 + . . .

)
δF,t + λγ(1− ct)

(
1 + λ+ λ2 + . . .

)
δF,t+1

+ (λγ)2(1− ct)(1− ct+1)
(
1 + λ+ λ2 + . . .

)
δF,t+2 + . . .

)

= (1− λ)

(
1

1− λ
δF,t + (1− ct)

λγ

1− λ
δF,t+1 + (1− ct)(1− ct+1)

(λγ)2

1− λ
δF,t+2 + . . .

)
=

∞∑
l=0

(λγ)l
l−1∏
s=0

(1− ct+s)δF,t+l.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

B.2 PSEUDOCODE

Algorithm 1: Feasible policy optimization (FPO)
Initialize: Network parameters ϕ, ω, θ.

1 for each epoch do
// Sample data

2 for each sample step do
3 Sample action u ∼ πθ(·|x);
4 Get next state x′, reward r, and cost c from environment;
5 end
6 Compute GAEs of return and cost along sampled trajectories;

// Update networks
7 for each update step do
8 Update feasibility network ϕ← ϕ− η∇ϕLF (ϕ); // Equation (16)
9 Update value network ω ← ω − η∇ωLV (ω); // Equation (17)

10 Update policy network θ ← θ − η∇θLπ(θ); // Equation (18)
11 Update weight exponent by Equation (14);
12 end
13 end

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

C EXPERIMENTS

The Safety-Gymnasium benchmark (Ji et al., 2023a) and the Omnisafe toolbox (Ji et al., 2023b) are
both released under the Apache License 2.0.

All experiments are conducted on a workstation equipped with Intel(R) Xeon(R) Gold 6246R CPUs
(32 cores, 64 threads), an NVIDIA GeForce RTX 3090 GPU, and 256GB of RAM. A single ex-
perimental trial—comprising one environment, one algorithm, and one random seed—takes about 2
hours to execute. Executing all experiments with a properly configured concurrent running scheme
requires approximately 400 hours.

C.1 HYPERPARAMETERS

Table 1: Hyperparameters
Category Hyperparameter Value

Shared Number of vector environments 20
Steps per epoch 20000
Batch size 20000 for navigation tasks

4000 for velocity tasks
Reward discount factor 0.99
Cost discount factor 0.95
Cost limit 0
GAE λ 0.95
Actor learning rate 3e-5 for PointCircle

3e-4 for CarCircle, Ant, HalfCheetah,
Hopper, and Walker2d
1e-4 for others

Actor learning rate schedule linear decay to 0
Actor network hidden sizes (64, 64)
Actor activation function Tanh
Critic learning rate 3e-4
Critic network hidden sizes (64, 64)
Critic activation function Tanh
Network weight initialization method Kaiming uniform
Optimizer Adam
Entropy coefficient 0.01 for Hopper and Walker2d

0 for others
Critic norm coefficient 0.001
Target KL divergence 0.02
Maximum gradient norm 40

PPO IS ratio clip 0.2

Lagrangian Initial multiplier 0.001
Multiplier learning rate 0.035

FPO Feasibility threshold ϵ 0.1
Initial weight exponent β 0.001
Weight exponent learning rate 0.035

C.2 ADDITIONAL RESULTS

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0.2 0.4 0.6 0.8 1.0
Environment step 1e7

0

15

30

45

60

75
Ep

is
od

e
co

st

PointGoal

0.95 1.00
1e7

0.0

2.5

5.0

0.2 0.4 0.6 0.8 1.0
Environment step 1e7

0

15

30

45

60

75

Ep
is

od
e

co
st

PointPush

0.95 1.00
1e7

0.0

2.5

5.0

0.2 0.4 0.6 0.8 1.0
Environment step 1e7

0

25

50

75

100

125

Ep
is

od
e

co
st

PointButton

0.95 1.00
1e7

0

5

10

0.2 0.4 0.6 0.8 1.0
Environment step 1e7

0

50

100

150

200

250

Ep
is

od
e

co
st

PointCircle

0.95 1.00
1e7

0

5

10

0.2 0.4 0.6 0.8 1.0
Environment step 1e7

0

5

10

15

20

Ep
is

od
e

re
tu

rn

PointGoal

0.2 0.4 0.6 0.8 1.0
Environment step 1e7

0

6

12

18

24

Ep
is

od
e

re
tu

rn

PointPush

0.2 0.4 0.6 0.8 1.0
Environment step 1e7

0

4

8

12

16

Ep
is

od
e

re
tu

rn

PointButton

0.2 0.4 0.6 0.8 1.0
Environment step 1e7

0

15

30

45

60

Ep
is

od
e

re
tu

rn

PointCircle

0.2 0.4 0.6 0.8 1.0
Environment step 1e7

0

8

16

24

32

40

Ep
is

od
e

co
st

CarGoal

0.95 1.00
1e7

0

1

2

0.2 0.4 0.6 0.8 1.0
Environment step 1e7

0

15

30

45

60

Ep
is

od
e

co
st

CarPush

0.95 1.00
1e7

0

2

4

0.2 0.4 0.6 0.8 1.0
Environment step 1e7

0

40

80

120

160

Ep
is

od
e

co
st

CarButton

0.95 1.00
1e7

0

10

0.2 0.4 0.6 0.8 1.0
Environment step 1e7

0

30

60

90

120

150

Ep
is

od
e

co
st

CarCircle

0.95 1.00
1e7

0

5

10

0.2 0.4 0.6 0.8 1.0
Environment step 1e7

0

6

12

18

24

30

Ep
is

od
e

re
tu

rn

CarGoal

0.2 0.4 0.6 0.8 1.0
Environment step 1e7

0

4

8

12

16

Ep
is

od
e

re
tu

rn

CarPush

0.2 0.4 0.6 0.8 1.0
Environment step 1e7

−3

0

3

6

9

12

Ep
is

od
e

re
tu

rn

CarButton

0.2 0.4 0.6 0.8 1.0
Environment step 1e7

0

4

8

12

16

20

Ep
is

od
e

re
tu

rn

CarCircle

0.2 0.4 0.6 0.8 1.0
Environment step 1e7

0

2

4

6

8

10

Ep
is

od
e

co
st

AntVelocity

0.2 0.4 0.6 0.8 1.0
Environment step 1e7

0

6

12

18

24

30

Ep
is

od
e

co
st

HalfCheetahVelocity

0.95 1.00
1e7

0

1

2

0.2 0.4 0.6 0.8 1.0
Environment step 1e7

0

10

20

30

40

50

Ep
is

od
e

co
st

HopperVelocity

0.95 1.00
1e7

0

1

2

0.2 0.4 0.6 0.8 1.0
Environment step 1e7

0.0

2.5

5.0

7.5

Ep
is

od
e

co
st

HumanoidVelocity

0.2 0.4 0.6 0.8 1.0
Environment step 1e7

−3000

−1500

0

1500

3000

Ep
is

od
e

re
tu

rn

AntVelocity

0.2 0.4 0.6 0.8 1.0
Environment step 1e7

−800

0

800

1600

2400

Ep
is

od
e

re
tu

rn

HalfCheetahVelocity

0.2 0.4 0.6 0.8 1.0
Environment step 1e7

0

400

800

1200

1600

2000

Ep
is

od
e

re
tu

rn

HopperVelocity

0.2 0.4 0.6 0.8 1.0
Environment step 1e7

0

1500

3000

4500

6000

Ep
is

od
e

re
tu

rn

HumanoidVelocity

0.2 0.4 0.6 0.8 1.0
Environment step 1e7

0

20

40

60

80

Ep
is

od
e

co
st

SwimmerVelocity

0.95 1.00
1e7

0

1

2

0.2 0.4 0.6 0.8 1.0
Environment step 1e7

0

40

80

120

160

Ep
is

od
e

re
tu

rn

SwimmerVelocity

0.2 0.4 0.6 0.8 1.0
Environment step 1e7

0.0

2.5

5.0

7.5

10.0

Ep
is

od
e

co
st

Walker2dVelocity

0.95 1.00
1e7

0

1

0.2 0.4 0.6 0.8 1.0
Environment step 1e7

0

600

1200

1800

2400

3000

Ep
is

od
e

re
tu

rn

Walker2dVelocity

CPO PCPO FOCOPS RCPO PPO-Lag TRPO-PID P3O FPO

Figure 6: Training curves on all 14 environments in Safety-Gymnasium benchmark. The shaded
areas represent 95% confidence intervals over 5 seeds.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 2: Average cost and return in the last 10% iterations
AntVelocity CarButton CarCircle

Algorithm Cost Return Cost Return Cost Return

CPO 0.01± 0.01 −460.19± 740.62 1.22± 0.38 −0.38± 0.18 1.80± 2.51 5.30± 2.65
PCPO 0.01± 0.00 823.17± 292.59 3.52± 0.42 0.42± 0.09 1.78± 0.88 11.14± 1.01
FOCOPS 0.53± 0.07 1147.42± 69.22 11.83± 0.67 6.78± 0.22 6.98± 1.12 18.68± 0.24
RCPO 1.00± 0.46 2942.00± 145.65 15.00± 1.72 7.13± 0.41 5.48± 0.80 17.89± 0.20
PPO-Lag 1.43± 0.36 3172.45± 61.49 16.49± 1.99 8.56± 0.58 6.86± 1.14 18.34± 0.25
TRPO-PID 0.97± 0.20 3050.21± 37.43 3.96± 0.45 1.35± 0.09 1.26± 0.43 15.66± 0.60
P3O 0.98± 0.17 3065.16± 18.30 3.48± 1.14 0.76± 0.09 2.55± 0.38 13.46± 1.05
FPO 0.76± 0.18 3039.96± 32.59 7.54± 0.69 3.06± 0.19 3.73± 0.99 16.55± 0.24

CarGoal CarPush HalfCheetahVelocity

Algorithm Cost Return Cost Return Cost Return

CPO 0.15± 0.13 12.52± 4.26 0.31± 0.36 7.31± 1.96 0.01± 0.01 2008.63± 478.16
PCPO 0.55± 0.29 14.43± 3.71 1.10± 0.79 11.56± 2.02 0.01± 0.01 1201.48± 97.06
FOCOPS 0.48± 0.04 27.18± 0.16 1.54± 1.03 14.21± 0.55 2.18± 0.88 2047.42± 257.71
RCPO 1.11± 0.18 26.27± 0.35 1.98± 0.75 15.52± 1.35 0.75± 0.31 2059.44± 394.40
PPO-Lag 1.03± 0.39 27.02± 0.12 2.30± 0.25 17.08± 0.64 1.01± 0.48 2020.78± 373.69
TRPO-PID 0.81± 0.22 26.07± 0.26 2.27± 1.48 14.78± 1.01 0.56± 0.21 2057.14± 390.16
P3O 0.74± 0.41 24.41± 0.82 1.01± 0.91 15.50± 0.71 0.16± 0.03 1770.94± 25.48
FPO 0.68± 0.27 26.81± 0.17 1.36± 0.32 15.90± 0.61 0.41± 0.07 1764.49± 26.14

HopperVelocity HumanoidVelocity PointButton

Algorithm Cost Return Cost Return Cost Return

CPO 0.01± 0.01 808.94± 258.62 0.01± 0.00 334.46± 39.26 1.29± 0.25 −0.37± 0.05
PCPO 0.03± 0.05 923.05± 77.47 0.00± 0.00 539.65± 25.04 3.22± 0.74 0.32± 0.20
FOCOPS 3.31± 0.62 1502.24± 63.07 0.08± 0.01 594.57± 35.36 8.69± 1.31 9.63± 1.18
RCPO 1.97± 1.07 1139.05± 618.61 0.63± 0.19 5555.85± 218.92 11.52± 0.78 10.24± 0.34
PPO-Lag 2.89± 1.70 1376.34± 501.10 1.43± 0.29 5742.21± 250.88 12.38± 0.61 13.43± 0.37
TRPO-PID 2.57± 1.61 1531.96± 183.29 1.72± 0.86 5706.46± 197.10 4.76± 0.58 2.34± 0.62
P3O 0.66± 0.54 1429.71± 430.99 1.05± 0.75 4792.15± 400.03 3.02± 0.51 1.79± 0.42
FPO 0.67± 0.18 1572.20± 92.16 1.83± 0.47 5842.85± 75.03 7.36± 1.12 8.48± 0.74

PointCircle PointGoal PointPush

Algorithm Cost Return Cost Return Cost Return

CPO 1.26± 2.18 19.09± 6.21 0.40± 0.22 4.96± 1.61 0.72± 0.54 4.41± 2.12
PCPO 46.57± 78.77 21.76± 14.25 1.63± 0.66 5.05± 2.11 3.08± 3.15 6.61± 2.72
FOCOPS 200.57± 7.47 56.83± 1.50 8.29± 1.08 21.38± 0.15 2.14± 0.58 16.80± 4.79
RCPO 85.71± 60.89 47.23± 3.35 4.12± 0.62 19.77± 0.31 2.78± 1.41 19.84± 4.02
PPO-Lag 170.81± 6.63 55.85± 0.85 5.05± 0.98 20.44± 0.54 3.87± 1.05 20.01± 4.59
TRPO-PID 2.43± 0.96 40.84± 2.10 1.82± 0.39 15.24± 1.08 1.53± 0.27 18.02± 0.98
P3O 2.42± 0.80 28.54± 11.22 1.39± 0.38 12.44± 2.46 0.97± 0.33 10.90± 1.16
FPO 3.67± 0.68 42.03± 0.62 1.26± 0.07 15.53± 0.96 1.10± 0.40 12.86± 3.78

SwimmerVelocity Walker2dVelocity

Algorithm Cost Return Cost Return

CPO 0.02± 0.01 26.99± 6.05 0.02± 0.02 348.08± 48.28
PCPO 17.71± 24.39 66.14± 53.32 0.22± 0.21 454.43± 54.78
FOCOPS 31.33± 6.06 42.82± 1.45 1.56± 0.48 2200.94± 324.12
RCPO 19.86± 4.13 34.31± 14.90 1.26± 0.25 2849.69± 109.22
PPO-Lag 25.53± 4.87 59.85± 22.59 1.28± 0.53 2489.10± 196.43
TRPO-PID 0.54± 0.23 32.46± 2.75 1.84± 1.11 2927.93± 55.02
P3O 0.29± 0.01 34.92± 1.56 0.39± 0.06 2823.77± 145.66
FPO 0.44± 0.17 152.10± 4.67 0.84± 0.29 2481.97± 217.58

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

D LARGE LANGUAGE MODEL USAGE DISCLOSURE

We used Large Language Model (LLM) solely for the purpose of improving grammar and polishing
writing. The LLM was not used for any core research tasks such as retrieval, discovery, ideation, or
analysis.

26

	Introduction
	Related work
	Preliminaries
	Problem statement
	Feasible region and feasibility function

	Methods
	Region-wise policy optimization
	Feasibility function bounds
	Feasible policy optimization
	Practical implementation

	Experiments
	Experiment Setups
	Experiment results

	Conclusion
	Proofs
	Proof of shared solution theorem
	Proof of CDF bounds
	Proof of performance bounds

	Practical implementation
	Derivation of GAE of CDF
	Pseudocode

	Experiments
	Hyperparameters
	Additional results

	Large Language Model usage disclosure

