

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FEASIBLE POLICY OPTIMIZATION FOR SAFE REIN- FORCEMENT LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Policy gradient methods serve as a cornerstone of reinforcement learning (RL), yet their extension to safe RL, where policies must strictly satisfy safety constraints, remains challenging. While existing methods enforce constraints in every policy update, we demonstrate that this is unnecessarily conservative. Instead, each update only needs to progressively expand the feasible region while improving the value function. Our proposed algorithm, namely feasible policy optimization (FPO), simultaneously achieves both objectives by solving a region-wise policy optimization problem. Specifically, FPO maximizes the value function inside the feasible region and minimizes the feasibility function outside it. We prove that these two sub-problems share a common optimal solution, which is obtained based on a tight bound we derive on the constraint decay function. Extensive experiments on the Safety-Gymnasium benchmark show that FPO achieves excellent constraint satisfaction while maintaining competitive task performance, striking a favorable balance between safety and return compared to state-of-the-art safe RL algorithms.

1 INTRODUCTION

Reinforcement learning (RL) has demonstrated remarkable success in domains ranging from board games (Schrittwieser et al., 2020) and racing simulations (Wurman et al., 2022) to recent breakthroughs in large language models (Guo et al., 2025). Despite these successes, a fundamental challenge persists: current methods primarily excel in simulated environments where unsafe behaviors carry no real cost, while in safety-critical applications, policy failures could lead to severe consequences. Addressing this challenge requires considering a constrained optimal control problem, where policies must strictly satisfy safety constraints at all times, also known as state-wise constraints (Zhao et al., 2023b), while maximizing expected returns (Yang et al., 2024).

Policy gradient (PG) is a foundational method in RL (Li, 2023), which formulates RL as an optimization problem and applies gradient-based methods to solve it. This framework has given rise to powerful modern deep RL algorithms such as proximal policy gradient (PPO) (Schulman et al., 2017) and group relative policy optimization (GRPO) (Shao et al., 2024). However, a critical limitation of standard PG methods is that they are not directly applicable to safe RL because of their unconstrained problem formulation. Despite many well-established constrained optimization techniques (Boyd & Vandenberghe, 2004), integrating them with PG while maintaining high training efficiency remains an open challenge.

Existing safe RL methods fall into two categories. A prominent class is called iterative unconstrained RL, which reformulates safe RL as a sequence of unconstrained optimization problems, typically via the method of Lagrange multipliers, and solves them using standard RL algorithms (Paternain et al., 2019). While theoretically sound, these methods suffer from slow convergence and training instability. Slow convergence arises from the need to solve an RL problem in each iteration, resulting in convergence rates approximately an order of magnitude slower than standard RL algorithms. Training instability stems from the characteristic of the Lagrange multiplier, manifesting as persistent oscillations in return and constraint violation throughout training (Stooke et al., 2020).

Another class of methods, called constrained policy optimization, aligns more closely with PG, or more generally, policy optimization, which employs more advanced optimization techniques than

054 pure gradient ascent. These methods impose the safety constraint on the sub-problem in each iteration,
 055 requiring every intermediate policy to be strictly safe. While more efficient than unconstrained
 056 iterative RL, these methods suffer from the infeasibility issue: they often fail to find a constraint-
 057 satisfying solution to the sub-problems, especially during early training stages. This is because the
 058 constraint is too stringent for policies that have not been sufficiently trained after random initial-
 059 ization. In such cases, these methods must resort to pure constraint minimization without reward
 060 optimization (Achiam et al., 2017), resulting in overly conservative updates and inefficient training.

061 In this paper, we challenge the conventional practice of enforcing the original constraint in every
 062 iteration of policy optimization. Instead, we demonstrate that each iteration only needs to progres-
 063 sively expand the feasible region while improving the value function. This insight is theoretically
 064 grounded in feasible policy iteration (FPI) (Yang et al., 2023c), which proves that such updates
 065 guarantee convergence to the maximum feasible region and the optimal value function. Our ap-
 066 proach replaces the stringent constraint that every policy must be strictly safe with a milder one:
 067 each policy only needs to be safer than the previous one in the sense that its feasible region is
 068 expanded. Building on this foundation, we propose feasible policy optimization (FPO), which max-
 069 imizes the value function inside the feasible region and minimizes the feasibility function outside it.
 070 We prove that these two objectives, originally expressed by two separate optimization problems, can
 071 be simultaneously achieved with a shared optimal solution. We further derive a tight bound on the
 072 constraint decay function (CDF), enabling more accurate feasible region estimation compared to the
 073 conventional cost value function (CVF). Extensive evaluation on the Safety-Gymnasium benchmark
 074 demonstrates FPO’s excellent balance between safety and return.

075 2 RELATED WORK

076 **Iterative unconstrained RL** Most iterative unconstrained RL methods use the method of La-
 077 grange multipliers and solve the dual problem using dual ascent, where the minimization step solves
 078 an unconstrained RL problem (Paternain et al., 2019). For example, Chow et al. (2018) constrain
 079 the conditional value-at-risk of the CVF in a constrained Markov decision process (Altman, 2021),
 080 forming a probabilistic constraint. Tessler et al. (2018) incorporate the cost signal into the reward
 081 function, treating the integrated discounted sum as a new value function. The Lagrange multiplier
 082 framework is also adaptable to other kinds of feasibility functions, including Hamilton-Jacobi reach-
 083 ability (Yu et al., 2022; 2023), control barrier function (Yang et al., 2023a;b), and safety index (Ma
 084 et al., 2022). As a special case, when the multiplier is fixed as a constant, the algorithm reduces to a
 085 penalty function method (Thomas et al., 2021).

086 **Constrained policy optimization** The most representative example of this class is the constrained
 087 policy optimization (CPO) algorithm (Achiam et al., 2017), which builds on the trust region policy
 088 optimization (TRPO) (Schulman et al., 2015) and further adds a linearized safety constraint. To
 089 avoid the computationally expensive line search in CPO, Yang et al. (2020) propose to first perform
 090 a reward improvement update and then project the policy back onto the constrained set. Zhang et al.
 091 (2020) propose to first solve for the optimal policy in a non-parameterized policy space and then
 092 project it back into the parametric space. Following the projection method, Yang et al. (2022) pro-
 093 pose generalized advantage estimation (GAE) for the surrogate function to further improve perfor-
 094 mance. Inspired by techniques from constrained optimization, the interior-point method (Liu et al.,
 095 2020) and the augmented Lagrange method (Dai et al., 2023) are also explored to solve the policy
 096 optimization problem in each iteration. For finite-horizon problems, Zhao et al. (2023a) and Zhao
 097 et al. (2024) convert state-wise constraints to cumulative constraints through cost reconstruction and
 098 bound the worst-case violation.

100 3 PRELIMINARIES

101 3.1 PROBLEM STATEMENT

102 Safe RL addresses control problems in which an agent aims to maximize long-term rewards while
 103 strictly adhering to safety constraints at every step. We consider a Markov decision process (MDP)
 104 $(\mathcal{X}, \mathcal{U}, d_{\text{init}}, P, r, \gamma)$, where $\mathcal{X} \subseteq \mathbb{R}^n$ is the state space, $\mathcal{U} \subseteq \mathbb{R}^m$ is the action space, $d_{\text{init}} \in \Delta \mathcal{X}$ is the
 105 initial state distribution, $P : \mathcal{X} \times \mathcal{U} \rightarrow \Delta \mathcal{X}$ is the transition probability, $r : \mathcal{X} \times \mathcal{U} \rightarrow \mathbb{R}$ is the reward

108 function, and $0 < \gamma < 1$ is the discount factor. We consider a stochastic policy $\pi : \mathcal{X} \rightarrow \Delta \mathcal{U}$, whose
109 value function is defined as:

$$111 \quad V^\pi(x) = \mathbb{E}_{x_{t+1} \sim P(\cdot|x_t, u_t), u_t \sim \pi(\cdot|x_t)} \left[\sum_{t=0}^{\infty} \gamma^t r(x_t, u_t) \middle| x_0 = x \right]. \quad (1)$$

113 Safety is specified through a state constraint expressed as an inequality $h(x) < 0$, where $h : \mathcal{X} \rightarrow \mathbb{R}$
114 is the constraint function. We aim to find a policy that maximizes the expected value function while
115 satisfying the state constraint at every step over an infinite horizon:

$$116 \quad \begin{aligned} \max_{\pi} \mathbb{E}_{x \sim d_{\text{init}}} [V^\pi(x)] \\ 117 \quad \text{s.t. } h(x_t) \leq 0, \forall t \geq 0, x_0 \in \mathcal{X}_{\text{init}}, \end{aligned} \quad (2)$$

119 where $\mathcal{X}_{\text{init}} = \{x \in \mathcal{X} | d_{\text{init}}(x) > 0\}$ is the support of the initial state distribution.
120

121 3.2 FEASIBLE REGION AND FEASIBILITY FUNCTION

123 The constrained optimal control problem (2) is intractable because it has infinitely many constraints.
124 A common solution is to aggregate these constraints into a single one through a feasibility function.
125 To formally describe the concept of feasibility, we first define the reachable set.

126 **Definition 1** (Reachable set). *The reachable set of a policy π from a state $x \in \mathcal{X}$, denoted $\mathcal{R}^\pi(x)$,
127 is the set of states that can be reached with non-zero probability under π in finite time:*

$$128 \quad \mathcal{R}^\pi(x) = \{x' \in \mathcal{X} | \exists t \geq 0, \text{s.t. } P(x_t = x' | x, \pi) > 0\}, \quad (3)$$

130 where $P(x_t = x' | x, \pi)$ is the probability of reaching x' at time t starting from x and following π .

131 We call a state feasible under a policy if all its future states satisfy the safety constraint, and the set
132 of all feasible states under a policy is the feasible region of the policy.

133 **Definition 2** (Feasible region). *The feasible region of a policy π , denoted \mathcal{X}^π , is the set of states
134 from which every reachable set under π satisfies the safety constraint:*

$$135 \quad \mathcal{X}^\pi = \{x \in \mathcal{X} | \forall x' \in \mathcal{R}^\pi(x), h(x') \leq 0\}. \quad (4)$$

137 The feasible region enables us to describe the long-term safety requirement compactly: the feasible
138 region must include all possible initial states. This requirement can be expressed as a single
139 constraint by the feasibility function.

140 **Definition 3** (Feasibility function). *Function $F^\pi : \mathcal{X} \rightarrow \mathbb{R}$ is a feasibility function of π if and only
141 if its zero-sublevel set equals the feasible region of π , i.e., $\{x \in \mathcal{X} | F^\pi(x) \leq 0\} = \mathcal{X}^\pi$.*

142 An example of a feasibility function is the CDF (Yang et al., 2023b).

144 **Definition 4** (Constraint decay function). *The CDF of a policy π is defined as*

$$145 \quad F^\pi(x) = \mathbb{E}_{\tau \sim \pi} \left[\gamma^{N(\tau)} \middle| x_0 = x \right], \quad (5)$$

147 where $\gamma \in (0, 1)$ is the discount factor, $\tau = \{x_0, u_0, x_1, u_1, \dots\}$ is a trajectory sampled by π , and
148 $N(\tau) \in \mathbb{N}$ is the time step of the first constraint violation in τ .

149 The CDF is non-negative by definition, and thus its zero-sublevel set equals its zero-level set. Without
150 loss of generality, we only consider non-negative feasibility functions in this paper. For feasibility
151 functions with negative values, we can take their non-negative parts $F_+^\pi = \max\{F^\pi, 0\}$
152 without changing the feasible region. With a feasibility function, we can aggregate the infinitely
153 many constraints in Problem (2) into a single one, obtaining the following problem:

$$154 \quad \max_{\pi} \mathbb{E}_{x \sim d_{\text{init}}} [V^\pi(x)] \quad \text{s.t. } \mathbb{E}_{x \sim d_{\text{init}}} [F^\pi(x)] \leq 0. \quad (6)$$

157 4 METHODS

159 Existing constrained policy optimization methods typically require that every intermediate policy
160 satisfies the constraint in Problem (6). Instead, our algorithm only requires each policy to have a
161 larger feasible region than the previous policy, which can be achieved through a region-wise policy
optimization scheme.

162 4.1 REGION-WISE POLICY OPTIMIZATION
163

164 We propose to solve two optimization problems in each iteration. Let π_k denote the policy from
165 the previous iteration. The first problem is to maximize the value function inside the feasible region
166 under the constraint that the new feasible region is not smaller:

$$\begin{aligned} 167 \max_{\pi} \mathbb{E}_{x \sim d_{\text{init}}} [\mathbb{I}[F^{\pi_k}(x) \leq 0] V^{\pi}(x)] \\ 168 \text{s.t. } \mathbb{E}_{x \sim d_{\text{init}}} [\mathbb{I}[F^{\pi_k}(x) \leq 0] F^{\pi}(x)] \leq 0. \end{aligned} \quad (7)$$

170 The second problem is to minimize the feasibility function outside the feasible region under the
171 same constraint:

$$\begin{aligned} 172 \min_{\pi} \mathbb{E}_{x \sim d_{\text{init}}} [\mathbb{I}[F^{\pi_k}(x) > 0] F^{\pi}(x)] \\ 173 \text{s.t. } \mathbb{E}_{x \sim d_{\text{init}}} [\mathbb{I}[F^{\pi_k}(x) \leq 0] F^{\pi}(x)] \leq 0. \end{aligned} \quad (8)$$

174 The next policy π_{k+1} is obtained by solving Problem (7) and (8), which, we will prove, have a shared
175 optimal solution. The theoretical basis of this policy update rule is provided by FPI (Yang et al.,
176 2023c), which proves that in finite state and action spaces, this update rule produces monotonically
177 improved value functions and feasible regions, with guaranteed convergence to the optimal solution
178 to the original safe RL problem (6). We generalize the update rule of FPI to infinite spaces by
179 replacing the state-wise optimization with expectation optimization.

180 **Theorem 1.** *There exists a policy π_{k+1} that is the optimal solution to both Problem (7) and (8).*

182 *Proof Sketch.* Let π_{in} and π_{out} denote the optimal solutions to Problem (7) and (8), respectively. We
183 construct the following policy:

$$\pi_{k+1}(\cdot|x) = \begin{cases} \pi_{\text{in}}(\cdot|x), & x \in \mathcal{R}^{\pi_{\text{in}}}(\mathcal{X}_{\text{init}} \cap \mathcal{X}^{\pi_k}), \\ \pi_{\text{out}}(\cdot|x), & \text{otherwise,} \end{cases} \quad (9)$$

187 where $\mathcal{R}^{\pi}(X) = \bigcup_{x \in X} \mathcal{R}^{\pi}(x)$ denotes the reachable set of π from a set of states $X \subseteq \mathcal{X}$. We prove
188 that π_{k+1} is the optimal solution to both problems. The key is to observe that $\mathcal{R}^{\pi_{\text{in}}}(\mathcal{X}_{\text{init}} \cap \mathcal{X}^{\pi_k})$ is
189 forward invariant under π_{k+1} . See Appendix A.1 for the complete proof. \square

191 Note that Equation (9) only provides one valid choice of π_{k+1} . There may exist other valid policies,
192 such as remaining with π_k in the overlapping part of the reachable sets. Theorem (1) allows us to
193 merge Problem (7) and (8) into a single problem as follows:

$$\begin{aligned} 194 \max_{\pi} \mathbb{E}_{x \sim d_{\text{init}}} [\mathbb{I}[F^{\pi_k}(x) \leq 0] V^{\pi}(x) - \mathbb{I}[F^{\pi_k}(x) > 0] F^{\pi}(x)] \\ 195 \text{s.t. } \mathbb{E}_{x \sim d_{\text{init}}} [\mathbb{I}[F^{\pi_k}(x) \leq 0] F^{\pi}(x)] \leq 0. \end{aligned} \quad (10)$$

197 **Corollary 1.** *The optimal solution to Problem (10) is also the optimal solution to both Problem (7)
198 and (8).*

200 This is because the objective function of Problem (10) is the sum of the objective functions of
201 Problem (7) and (8), and they share the same constraint. Thus, π_{k+1} defined in (9) is the optimal
202 solution to all three problems.

203 4.2 FEASIBILITY FUNCTION BOUNDS
204

205 A difficulty of solving Problem (10) is that the value function and feasibility function of the new
206 policy π cannot be directly approximated with samples collected by the old policy π_k . To solve this
207 problem, we replace the two functions with their lower and upper bounds, which can be approximated
208 by samples from the old policy. Achiam et al. (2017) derive the bounds for functions in the
209 form of discounted summation, which is applicable to the value function. In this section, we move
210 a step further and derive the bounds for CDF.

211 We begin with a decomposition of state distribution. Given an initial state $x \in \mathcal{X}$, the discounted
212 future state distribution under policy π is $d^{\pi}(x'|x) = (1 - \gamma) \sum_{t=0}^{\infty} \gamma^t P(x_t = x'|x, \pi)$. By law
213 of total probability, we decompose each term in the summation based on whether the constraint has
214 been violated up to that step:

$$215 P(x_t = x'|x, \pi) = P(x_t = x', \max_{s < t} c_s = 0|x, \pi) + P(x_t = x', \max_{s < t} c_s = 1|x, \pi),$$

216 where $c_s = \mathbb{I}[h(x_s) > 0]$ is the indicator function for constraint violation. Then, the future state
 217 distribution can be decomposed as $d^\pi(x'|x) = d_0^\pi(x'|x) + d_+^\pi(x'|x)$, where
 218

$$219 \quad d_0^\pi(x'|x) = (1 - \gamma) \sum_{t=0}^{\infty} \gamma^t P(x_t = x', \max_{s < t} c_s = 0 | x, \pi),$$

$$220 \quad d_+^\pi(x'|x) = (1 - \gamma) \sum_{t=0}^{\infty} \gamma^t P(x_t = x', \max_{s < t} c_s = 1 | x, \pi).$$

224 We call d_0^π the prefix state distribution. This decomposition is critical in deriving the bounds for
 225 CDF. As we will show later, the bounds for CDF only depend on the prefix state distribution because
 226 states beyond the first violation are irrelevant to the CDF. In the following analysis, we slightly abuse
 227 notation by writing $\mathbb{E}_{x \sim d_0^\pi}[f(x)]$ to represent $\int_{\mathcal{X}} f(x) d_0^\pi(x) dx$ even when $\int_{\mathcal{X}} d_0^\pi(x) dx < 1$.
 228

Theorem 2. For any policies $\tilde{\pi}$ and π , and any state $x \in \mathcal{X}$, define

$$229 \quad A_F^\pi(x, u) = \mathbb{E}_{x' \sim P(\cdot | x, u)}[c(x) + (1 - c(x))\gamma F^\pi(x') - F^\pi(x)],$$

231 and $L_{\tilde{\pi}}^\pi(x) = \mathbb{E}_{x' \sim d_0^\pi(\cdot | x), u' \sim \tilde{\pi}(\cdot | x')}[A_F^\pi(x', u')]$, $\epsilon_{\tilde{\pi}}^\pi = \max_x |\mathbb{E}_{u \sim \tilde{\pi}(\cdot | x)}[A_F^\pi(x, u)]|$. Then,

$$233 \quad F^{\tilde{\pi}}(x) - F^\pi(x) \geq \frac{L_{\tilde{\pi}}^\pi(x)}{1 - \gamma} - \frac{2\gamma\epsilon_{\tilde{\pi}}^\pi}{(1 - \gamma)^2} \mathbb{E}_{x' \sim d_0^\pi(\cdot | x)}[D_{TV}(\tilde{\pi} \| \pi)[x']],$$

$$235 \quad F^{\tilde{\pi}}(x) - F^\pi(x) \leq \frac{L_{\tilde{\pi}}^\pi(x)}{1 - \gamma} + \frac{2\gamma\epsilon_{\tilde{\pi}}^\pi}{(1 - \gamma)^2} \mathbb{E}_{x' \sim d_0^\pi(\cdot | x)}[D_{TV}(\tilde{\pi} \| \pi)[x']],$$

238 where $D_{TV}(\tilde{\pi} \| \pi)[x'] = (1/2) \sum_u |\tilde{\pi}(u | x') - \pi(u | x')|$ is the total variational divergence between
 239 action distributions at x' . Furthermore, the bounds are tight (when $\tilde{\pi} = \pi$, the LHS and RHS are
 240 identically zero).

241 *Proof Sketch.* We construct an auxiliary MDP \tilde{M} , which is identical to M except for its transition
 242 probability. In \tilde{M} , once the constraint is violated, the state is fixed at the one that violates the
 243 constraint for all future steps. We prove that the CDF and prefix state distribution are identical in
 244 M and \tilde{M} , and the result to prove holds in \tilde{M} . Therefore, the result also holds in M . See Appendix
 245 A.2 for the complete proof. \square

247 One may ask why not use the CVF as the feasibility function, which is a discounted summation so
 248 that the bound from CPO would still apply. The reason is that CDF yields more accurate estimates
 249 than CVF in practice. In safe RL, feasibility functions are typically estimated using bootstrapping
 250 methods like TD(λ), which suffer from approximation bias of the feasibility function itself. While
 251 this bias affects both CDF and CVF, CVF suffers more severely because it is unbound and requires
 252 infinite-horizon trajectories. In contrast, CDF is bounded within $[0, 1]$, allowing the bootstrapping
 253 target to be explicitly clipped, and its shorter trajectories (truncated at first violation) also decrease
 254 variance.

255 4.3 FEASIBLE POLICY OPTIMIZATION

257 With the CDF bounds, we are ready to solve Problem (10). Substituting the upper bound of CDF
 258 from Theorem 2 and the lower bound of value function from Corollary 1 in the CPO paper (Achiam
 259 et al., 2017), and following the practice of trust region methods, we obtain the following problem:

$$261 \quad \max_{\pi} \mathbb{E}_{x \sim d^{\pi_k}, u \sim \pi} [\mathbb{I}[F^{\pi_k}(x) \leq 0] A^{\pi_k}(x, u)] - \mathbb{E}_{x \sim d_0^{\pi_k}, u \sim \pi} [\mathbb{I}[F^{\pi_k}(x) > 0] A_F^{\pi_k}(x, u)] \\ 262 \quad \text{s.t. } \mathbb{E}_{x \sim d^{\pi_k}, u \sim \pi} [\mathbb{I}[F^{\pi_k}(x) \leq 0] (F^{\pi_k}(x) + A_F^{\pi_k}(x, u)/(1 - \gamma))_+] \leq 0 \\ 263 \quad \mathbb{E}_{x \sim d^{\pi_k}} [\mathbb{I}[F^{\pi_k}(x) \leq 0] D_{KL}(\pi \| \pi_k)[x]] \leq \delta/2 \\ 264 \quad \mathbb{E}_{x \sim d^{\pi_k}} [\mathbb{I}[F^{\pi_k}(x) > 0] D_{KL}(\pi \| \pi_k)[x]] \leq \delta/2. \quad (11)$$

266 Here, $A^{\pi_k}(x, u) = Q^{\pi_k}(x, u) - V^{\pi_k}(x)$ is the standard advantage function in RL. In the above
 267 constraints, we replace the prefix state distribution d_0^π with the whole state distribution d^π . This re-
 268 placement is valid because $d^\pi \geq d_0^\pi$ for all states. Our algorithm, called feasible policy optimization
 269 (FPO), iteratively solves Problem (11) to update the policy. This update rule provides the following
 guarantees on the safety and performance of the new policy.

270 **Corollary 2.** *The optimal solution to Problem (11), denoted π_{k+1} , satisfies the following two properties:*

273 *1. Feasibility enhancement:*

$$274 \quad \mathbb{E}_{x \sim d_{init}} [\mathbb{I}[F^{\pi_k}(x) \leq 0] F^{\pi_{k+1}}(x)] \leq \frac{\sqrt{\delta} \gamma \epsilon_F^{\pi_{k+1}}}{(1 - \gamma)^2}, \quad (12a)$$

$$277 \quad \mathbb{E}_{x \sim d_{init}} [\mathbb{I}[F^{\pi_k}(x) > 0] (F^{\pi_{k+1}}(x) - F^{\pi_k}(x))] \leq \frac{\sqrt{\delta} \gamma \epsilon_F^{\pi_{k+1}}}{(1 - \gamma)^2}, \quad (12b)$$

280 where $\epsilon_F^{\pi_{k+1}} = \max_x |\mathbb{E}_{u \sim \pi_{k+1}(\cdot|x)} [A_F^\pi(x, u)]|$.

281 *2. Value improvement:*

$$283 \quad \mathbb{E}_{x \sim d_{init}} [\mathbb{I}[F^{\pi_k}(x) \leq 0] (V^{\pi_{k+1}}(x) - V^{\pi_k}(x))] \geq -\frac{\sqrt{\delta} \gamma \epsilon^{\pi_{k+1}}}{(1 - \gamma)^2}, \quad (13)$$

285 where $\epsilon^{\pi_{k+1}} = \max_x |\mathbb{E}_{u \sim \pi_{k+1}(\cdot|x)} [A^\pi(x, u)]|$.

287 *Proof Sketch.* Split (11) into two problems similar to Section 4.1 and prove that they share the same
288 optimal solution. The rest follows by Theorem 2 and Corollary 1 in the CPO paper (Achiam et al.,
289 2017). See Appendix A.3 for the complete proof. \square

291 This corollary tells us that the safety and performance degradation of the new policy is controlled.
292 Specifically, its feasibility function will not exceed zero too much inside the feasible region or in-
293 crease too much outside the feasible region, and its value function will not decrease too much inside
294 the feasible region. As the step size δ decreases, the policy sequence obtained by FPO approaches a
295 monotonically improving sequence in both safety and performance.

297 4.4 PRACTICAL IMPLEMENTATION

299 We adopt the method from PPO to solve Problem (11), which applies a first-order method with
300 the KL divergence constraints replaced by a clipped importance sampling (IS) ratio. FPO learns
301 a feasibility network F_ϕ , a value network V_ω , and a policy network π_θ , where ϕ , ω , and θ denote
302 their parameters. We additionally introduce a hyperparameter $\epsilon > 0$ and approximate feasibility
303 by $F_\phi(x) \leq \epsilon$. This is because, in practice, approximation error causes the CDF to be positive
304 almost everywhere since its learning target is non-negative. This approximation is valid under the
305 assumption that the step to violation is uniformly bounded (Thomas et al., 2021). In our experiments,
306 we find that a fixed value of $\epsilon = 0.1$ works well for all environments.

306 We deal with the constraint inside the feasible region by penalizing the advantage function. Specifi-
307 cally, we take a weighted sum of the reward advantage and feasibility advantage:

$$309 \quad \bar{A}(x, u) = \mathbb{I}[F_\phi(x) \leq \epsilon] (\alpha(x) A(x, u) + (1 - \alpha(x)) A_F(x, u)) + \mathbb{I}[F_\phi(x) > \epsilon] A_F(x, u),$$

310 where the weight $\alpha(x) = (1 - F_\phi(x)/\epsilon)^\beta$, and the exponent $\beta > 0$ is updated by

$$312 \quad \beta \leftarrow \beta + \eta \mathbb{E}_{x \sim d^{\pi_{\theta_k}}, u \sim \pi_\theta} [\mathbb{I}[F_\phi(x) \leq \epsilon] (F_\phi(x) + A_F(x, u)/(1 - \gamma) - \epsilon)_+], \quad (14)$$

313 where η is the learning rate. The reason for designing the weight in this way is that states with CDF
314 values close to ϵ are more likely to become infeasible after an update step. Thus, we need to put
315 more weight on the feasibility advantage of these states to prevent them from becoming infeasible.
316 To compute the feasibility advantage, we extend the GAE of the value function to the CDF:

$$318 \quad A_F(x, u) = \sum_{t=0}^{\infty} (\lambda \gamma)^t \prod_{s=0}^{t-1} (1 - c_s) (c_t + (1 - c_t) \gamma F_\phi(x_{t+1}) - F_\phi(x_t)). \quad (15)$$

320 See Appendix B.1 for the detailed derivation.

321 The loss function for the feasibility network is

$$323 \quad L_F(\phi) = \mathbb{E} \left[(F_\phi(x) - (F_{\phi_k}(x) + A_F(x, u)))^2 \right]. \quad (16)$$

324 The loss function for the value network is
 325

$$326 \quad L_V(\omega) = \mathbb{E} \left[(V_\omega(x) - (V_{\omega_k}(x) + A(x, u)))^2 \right]. \quad (17)$$

327 The loss function for the policy network is
 328

$$329 \quad L_\pi(\theta) = -\mathbb{E} \left[\min \left\{ \frac{\pi_\theta(u|x)}{\pi_{\theta_k}(u|x)} \bar{A}(x, u), \text{clip} \left(\frac{\pi_\theta(u|x)}{\pi_{\theta_k}(u|x)}, 1 - \xi, 1 + \xi \right) \bar{A}(x, u) \right\} \right], \quad (18)$$

331 where $\xi > 0$ is a constant for clipping the IS ratio. In the policy loss function, we use all state samples to approximate the advantage, which essentially replaces d_0^π with d^π in the objective function of Problem (11) for higher sample efficiency. The pseudocode of FPO is in Appendix B.2.
 332
 333

335 5 EXPERIMENTS

337 We aim to answer the following questions through our experiments:
 338

339 **Q1** How does FPO perform in terms of safety and return compared to existing algorithms?
 340

341 **Q2** Does FPO maintain monotonic expansion of the feasible region throughout training?
 342

343 **Q3** What specific behaviors does FPO’s policy learn to achieve both safety and high performance?
 344

5.1 EXPERIMENT SETUPS

345 **Environments** Our experiments cover 14 environments in the Safety-Gymnasium benchmark (Ji
 346 et al., 2023a), including navigation and locomotion. The navigation environments include two
 347 robots, i.e., Point and Car, and four tasks, i.e., Goal, Push, Button, and Circle, with all difficulty
 348 levels set as 1 and constraints set as default. The locomotion environments include six classic robots
 349 from Gymnasium’s MuJoCo environments, i.e., HalfCheetah, Hopper, Swimmer, Walker2d, Ant,
 350 and Humanoid, with maximum velocity constraints.
 351

352 **Baselines** We compare FPO with a wide variety of mainstream safe RL algorithms implemented in
 353 the Omnisafe toolbox (Ji et al., 2023b), including iterative unconstrained RL methods RCPO (Tessler
 354 et al., 2018), PPO-Lag (Ray et al., 2019), and TRPO-PID (Stooke et al., 2020), and constrained pol-
 355 icy optimization methods CPO (Achiam et al., 2017), PCPO (Yang et al., 2020), FOCOPS (Zhang
 356 et al., 2020), and P3O (Zhang et al., 2022). Hyperparameters for all algorithms are detailed in Ap-
 357 pendix C.1. We use the default hyperparameters in Omnisafe for all baselines **except that we set the**
 358 **cost limit to zero for all algorithms. Other hyperparameters** have been tuned for good performance
 359 as stated by Ji et al. (2023b).
 360

5.2 EXPERIMENT RESULTS

362 **Cost-return evaluation** In safe RL, we eval-
 363 uate algorithms by two metrics: (1) episode
 364 cost, representing the average number of
 365 constraint-violating steps per episode, and (2)
 366 episode return, representing the average cumu-
 367 lative rewards per episode. To perform a com-
 368 prehensive evaluation, we place the scores of all
 369 algorithms in a cost-return plot in Figure 1. The
 370 scores are first normalized by those of PPO and
 371 then averaged on all 14 environments. The re-
 372 sults demonstrate FPO’s excellent performance
 373 in balancing safety and return: it reduces vi-
 374 olation to 2% of PPO’s level while maintain-
 375 ing 70% of its return. In contrast, other algo-
 376 rithms exhibit less favorable trade-offs. CPO
 377 and PCPO significantly sacrifice return due to
 378 their strict requirements on constraint satis-
 379 faction in every iteration. Lagrangian and pen-
 380 ality-based methods (PPO-Lag, RCPO, TRPO-PID, and

381 Figure 1: Normalized cost-return plot. The error
 382 bars represent 95% confidence intervals.
 383

378 P3O) explicitly trade off cost and return by adjusting penalty coefficients, forming a Pareto front.
 379 Among these, TRPO-PID adaptively controls the Lagrange multiplier to achieve a more balanced
 380 performance, though it remains inferior to FPO in both safety and return. These results answer **Q1**.
 381

382 **Training curves** Figure 2 shows the training curves of all algorithms across eight environments.
 383 Training curves on all 14 environments, along with final cost and return scores, are provided in Ap-
 384 pendix C.2. FPO ideally balances cost and return in all environments. Notably, FPO is the only
 385 algorithm that finds a high-return and safe policy in SwimmerVelocity, while all other algorithms
 386 fails to solve this task. Constrained optimization methods like CPO and PCPO are overly conser-
 387 vative in most environments. Lagrangian-based methods like RCPO and PPO-Lag exhibit severe
 388 oscillations during training, resulting in inferior final performance. These results provide further
 389 empirical evidence to answer **Q1**.
 390

421 Figure 2: Training curves on eight environments in Safety-Gymnasium benchmark. The shaded
 422 areas represent 95% confidence intervals over 5 seeds.
 423

424 **Feasible region visualization** We visualize the feasible regions learned by FPO during training
 425 in Figure 3 to check whether they are monotonically expanding as required by the constraint of our
 426 algorithm. While the training lasts 500 epochs, we find that the feasible regions after 100 epochs
 427 remain almost the same. The red circles in the figure are where the hazards are located. By epoch 5,
 428 FPO demonstrates preliminary capability to identify unsafe areas, but no state is identified as fea-
 429 sible. With continued learning, the feasible region emerges and gradually expands. By epoch 50, FPO
 430 already achieves complete distinguishability between feasible and infeasible regions. These results
 431 demonstrate that the monotonic expansion constraint of the feasible region is satisfied throughout

432 training, answering **Q2**. By quickly acquiring representations of the feasible region, FPO effectively
 433 focuses exploration within safe boundaries while optimizing returns.

436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891

486 REFERENCES
487

488 Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
489 *International conference on machine learning*, pp. 22–31. PMLR, 2017.

490 Eitan Altman. *Constrained Markov decision processes*. Routledge, 2021.

491

492 Stephen P Boyd and Lieven Vandenberghe. *Convex optimization*. Cambridge university press, 2004.

493

494 Yinlam Chow, Mohammad Ghavamzadeh, Lucas Janson, and Marco Pavone. Risk-constrained rein-
495 forcement learning with percentile risk criteria. *Journal of Machine Learning Research*, 18(167):
496 1–51, 2018.

497 Juntao Dai, Jiaming Ji, Long Yang, Qian Zheng, and Gang Pan. Augmented proximal policy op-
498 timization for safe reinforcement learning. In *Proceedings of the AAAI Conference on Artificial*
499 *Intelligence*, volume 37, pp. 7288–7295, 2023.

500 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
501 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
502 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

503

504 Jiaming Ji, Borong Zhang, Jiayi Zhou, Xuehai Pan, Weidong Huang, Ruiyang Sun, Yiran Geng, Yi-
505 fan Zhong, Josef Dai, and Yaodong Yang. Safety gymnasium: A unified safe reinforcement learn-
506 ing benchmark. *Advances in Neural Information Processing Systems*, 36:18964–18993, 2023a.

507 Jiaming Ji, Jiayi Zhou, Borong Zhang, Juntao Dai, Xuehai Pan, Ruiyang Sun, Weidong Huang,
508 Yiran Geng, Mickel Liu, and Yaodong Yang. Omnisafe: An infrastructure for accelerating safe
509 reinforcement learning research. *arXiv preprint arXiv:2305.09304*, 2023b.

510

511 Shengbo Eben Li. *Reinforcement learning for sequential decision and optimal control*. Springer
512 Verlag, Singapore, 2023.

513

514 Yongshuai Liu, Jiaxin Ding, and Xin Liu. Ipo: Interior-point policy optimization under constraints.
In *Proceedings of the AAAI conference on artificial intelligence*, volume 34, pp. 4940–4947, 2020.

515

516 Haitong Ma, Changliu Liu, Shengbo Eben Li, Sifa Zheng, and Jianyu Chen. Joint synthesis of
517 safety certificate and safe control policy using constrained reinforcement learning. In *Learning*
518 *for Dynamics and Control Conference*, pp. 97–109. PMLR, 2022.

519 Santiago Paternain, Luiz Chamon, Miguel Calvo-Fullana, and Alejandro Ribeiro. Constrained re-
520 inforcement learning has zero duality gap. *Advances in Neural Information Processing Systems*,
521 32, 2019.

522

523 Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep reinforcement
524 learning. *arXiv preprint arXiv:1910.01708*, 7(1):2, 2019.

525 Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
526 Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
527 go, chess and shogi by planning with a learned model. *Nature*, 588(7839):604–609, 2020.

528

529 John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
530 policy optimization. In *International conference on machine learning*, pp. 1889–1897. PMLR,
531 2015.

532

533 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
534 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

535

536 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
537 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
538 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

539

540 Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning
541 by pid lagrangian methods. In *International Conference on Machine Learning*, pp. 9133–9143.
542 PMLR, 2020.

540 Chen Tessler, Daniel J Mankowitz, and Shie Mannor. Reward constrained policy optimization. *arXiv*
 541 *preprint arXiv:1805.11074*, 2018.
 542

543 Garrett Thomas, Yuping Luo, and Tengyu Ma. Safe reinforcement learning by imagining the near
 544 future. *Advances in Neural Information Processing Systems*, 34:13859–13869, 2021.

545 Peter R Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik Subramanian,
 546 Thomas J Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert, Florian Fuchs, et al. Out-
 547 racing champion gran turismo drivers with deep reinforcement learning. *Nature*, 602(7896):223–
 548 228, 2022.

549 Long Yang, Jiaming Ji, Juntao Dai, Linrui Zhang, Binbin Zhou, Pengfei Li, Yaodong Yang, and
 550 Gang Pan. Constrained update projection approach to safe policy optimization. *Advances in*
 551 *Neural Information Processing Systems*, 35:9111–9124, 2022.

553 Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J Ramadge. Projection-based
 554 constrained policy optimization. *arXiv preprint arXiv:2010.03152*, 2020.

555 Yujie Yang, Yuxuan Jiang, Yichen Liu, Jianyu Chen, and Shengbo Eben Li. Model-free safe rein-
 556 force learning through neural barrier certificate. *IEEE Robotics and Automation Letters*, 8
 557 (3):1295–1302, 2023a.

559 Yujie Yang, Yuhang Zhang, Wenjun Zou, Jianyu Chen, Yuming Yin, and Shengbo Eben Li. Syn-
 560 thesizing control barrier functions with feasible region iteration for safe reinforcement learning.
 561 *IEEE Transactions on Automatic Control*, 69(4):2713–2720, 2023b.

562 Yujie Yang, Zhilong Zheng, Shengbo Eben Li, Jingliang Duan, Jingjing Liu, Xianyuan Zhan, and
 563 Ya-Qin Zhang. Feasible policy iteration. *arXiv preprint arXiv:2304.08845*, 2023c.

564 Yujie Yang, Zhilong Zheng, Shengbo Eben Li, Masayoshi Tomizuka, and Changliu Liu. The
 565 feasibility of constrained reinforcement learning algorithms: A tutorial study. *arXiv preprint*
 566 *arXiv:2404.10064*, 2024.

568 Dongjie Yu, Haitong Ma, Shengbo Li, and Jianyu Chen. Reachability constrained reinforcement
 569 learning. In *International conference on machine learning*, pp. 25636–25655. PMLR, 2022.

570

571 Dongjie Yu, Wenjun Zou, Yujie Yang, Haitong Ma, Shengbo Eben Li, Yuming Yin, Jianyu Chen, and
 572 Jingliang Duan. Safe model-based reinforcement learning with an uncertainty-aware reachability
 573 certificate. *IEEE Transactions on Automation Science and Engineering*, 21(3):4129–4142, 2023.

574 Linrui Zhang, Li Shen, Long Yang, Shixiang Chen, Bo Yuan, Xueqian Wang, and Dacheng
 575 Tao. Penalized proximal policy optimization for safe reinforcement learning. *arXiv preprint*
 576 *arXiv:2205.11814*, 2022.

577 Yiming Zhang, Quan Vuong, and Keith Ross. First order constrained optimization in policy space.
 578 *Advances in Neural Information Processing Systems*, 33:15338–15349, 2020.

580 Weiyue Zhao, Rui Chen, Yifan Sun, Tianhao Wei, and Changliu Liu. State-wise constrained policy
 581 optimization. *arXiv preprint arXiv:2306.12594*, 2023a.

582 Weiyue Zhao, Tairan He, Rui Chen, Tianhao Wei, and Changliu Liu. State-wise safe reinforcement
 583 learning: A survey. *arXiv preprint arXiv:2302.03122*, 2023b.

585 Weiyue Zhao, Feihan Li, Yifan Sun, Yujie Wang, Rui Chen, Tianhao Wei, and Changliu Liu. Absolute
 586 state-wise constrained policy optimization: High-probability state-wise constraints satisfaction.
 587 *arXiv preprint arXiv:2410.01212*, 2024.

588

589

590

591

592

593

594 **A PROOFS**
 595

596 **A.1 PROOF OF SHARED SOLUTION THEOREM**
 597

598 **Theorem 1.** *There exists a policy π_{k+1} that is the optimal solution to both Problem (7) and (8).*

599

600 *Proof.* Let π_{in} and π_{out} denote the optimal solutions to Problem (7) and (8), respectively. We con-
 601 struct the policy π_{k+1} as follows:

602
$$\pi_{k+1}(\cdot|x) = \begin{cases} \pi_{\text{in}}(\cdot|x), & x \in \mathcal{R}^{\pi_{\text{in}}}(\mathcal{X}_{\text{init}} \cap X^{\pi_k}), \\ \pi_{\text{out}}(\cdot|x), & \text{otherwise,} \end{cases} \quad (19)$$

603 where $\mathcal{R}^{\pi}(X) = \bigcup_{x \in X} \mathcal{R}^{\pi}(x)$ denotes the reachable set of π from a set of states $X \subseteq \mathcal{X}$.

604 By construction, the trajectories of π_{k+1} starting from $\mathcal{X}_{\text{init}} \cap X^{\pi_k}$ coincide with those of π_{in} . There-
 605 fore,

606
$$\mathbb{E}_{x \sim d_{\text{init}}} [\mathbb{I}[F^{\pi_k}(x) \leq 0] F^{\pi_{k+1}}(x)] = \mathbb{E}_{x \sim d_{\text{init}}} [\mathbb{I}[F^{\pi_k}(x) \leq 0] F^{\pi_{\text{in}}}(x)] \leq 0,$$

607 which proves that π_{k+1} satisfies the shared constraint of both problems.

608 Since π_{in} is optimal for Problem (7), and π_{k+1} achieves the same value function as π_{in} for all
 609 $x \in \mathcal{X}_{\text{init}} \cap X^{\pi_k}$, it follows that

610
$$\mathbb{E}_{x \sim d_{\text{init}}} [\mathbb{I}[F^{\pi_k}(x) \leq 0] V^{\pi_{k+1}}(x)] = \mathbb{E}_{x \sim d_{\text{init}}} [\mathbb{I}[F^{\pi_k}(x) \leq 0] V^{\pi_{\text{in}}}(x)].$$

611 Thus, π_{k+1} is also optimal for Problem (7).

612 For any $x \in \mathcal{X}_{\text{init}} \setminus X^{\pi_k}$, we analyze two cases: (1) No future state enters $\mathcal{R}^{\pi_{\text{in}}}(\mathcal{X}_{\text{init}} \cap X^{\pi_k})$. In this
 613 case, $\pi_{k+1} = \pi_{\text{out}}$ for all future states, thus $F^{\pi_{k+1}}(x) = F^{\pi_{\text{out}}}(x)$. (2) There exists a future state that
 614 enters $\mathcal{R}^{\pi_{\text{in}}}(\mathcal{X}_{\text{init}} \cap X^{\pi_k})$ in finite time. In this case, π_{k+1} switches to π_{in} once entered, ensuring no
 615 future constraint violation. This, $F^{\pi_{k+1}}(x) \leq F^{\pi_{\text{out}}}(x)$. Combining these two cases, we have

616
$$\forall x \in \mathcal{X}_{\text{init}} \setminus X^{\pi_k}, F^{\pi_{k+1}}(x) \leq F^{\pi_{\text{out}}}(x),$$

617 which implies

618
$$\mathbb{E}_{x \sim d_{\text{init}}} [\mathbb{I}[F^{\pi_k}(x) > 0] F^{\pi_{k+1}}(x)] \leq \mathbb{E}_{x \sim d_{\text{init}}} [\mathbb{I}[F^{\pi_k}(x) > 0] F^{\pi_{\text{out}}}(x)].$$

619 Since π_{out} is optimal for Problem (8), π_{k+1} is also optimal. Therefore, we conclude that π_{k+1} is the
 620 optimal solution to both Problem (7) and (8). \square

621 **A.2 PROOF OF CDF BOUNDS**
 622

623 **Lemma 1.** *For any policies $\tilde{\pi}$ and π , and for any state $x \in \mathcal{X}$,*

624
$$F^{\tilde{\pi}}(x) - F^{\pi}(x) = \mathbb{E}_{\tau \sim \tilde{\pi}} \left[\sum_{t=0}^{\infty} \gamma^t \prod_{s=0}^{t-1} (1 - c_s) A_F^{\pi}(x_t, u_t) \middle| x_0 = x \right].$$

625 *Proof.* By definition of F^{π} , we have

626
$$\begin{aligned} F^{\pi}(x) &= \mathbb{E}_{\tau \sim \pi} [c_0 + (1 - c_0)\gamma(c_1 + (1 - c_1)\gamma(\dots)) \mid x_0 = x] \\ &= \mathbb{E}_{\tau \sim \pi} [c_0 + \gamma(1 - c_0)c_1 + \gamma^2(1 - c_0)(1 - c_1)c_2 + \dots \mid x_0 = x] \\ &= \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^{\infty} \gamma^t \prod_{s=0}^{t-1} (1 - c_s) c_t \middle| x_0 = x \right]. \end{aligned}$$

627 Thus,

628
$$\begin{aligned} F^{\tilde{\pi}}(x) - F^{\pi}(x) &= \mathbb{E}_{\tau \sim \tilde{\pi}} \left[\sum_{t=0}^{\infty} \gamma^t \prod_{s=0}^{t-1} (1 - c_s) c_t \middle| x_0 = x \right] - F^{\pi}(x) \\ &= \mathbb{E}_{\tau \sim \tilde{\pi}} \left[\sum_{t=0}^{\infty} \gamma^t \prod_{s=0}^{t-1} (1 - c_s) (c_t + (1 - c_t)\gamma F^{\pi}(x_{t+1}) - F^{\pi}(x_t)) \middle| x_0 = x \right] \\ &= \mathbb{E}_{\tau \sim \tilde{\pi}} \left[\sum_{t=0}^{\infty} \gamma^t \prod_{s=0}^{t-1} (1 - c_s) A_F^{\pi}(x_t, u_t) \middle| x_0 = x \right]. \end{aligned}$$

629 \square

648
 649 **Definition 5** (Constraint-absorbing counterpart). *Let M be an MDP with transition probability P .
 650 The constraint-absorbing counterpart of M , denoted \tilde{M} , is an MDP with all elements equal those
 651 of M except the transition probability, which is defined as:*

652
 653
$$\tilde{P}(x'|x, u) = \begin{cases} P(x'|x, u), & c(x) = 0, \\ 1, & c(x) = 1 \text{ and } x' = x, \\ 0, & c(x) = 1 \text{ and } x' \neq x, \end{cases}$$

654
 655 We also call such \tilde{M} a constraint-absorbing MDP.

656 **Lemma 2.** *In a constraint-absorbing MDP \tilde{M} , for any policies $\tilde{\pi}$ and π , and any state $x \in \mathcal{X}$,*

657
 658
$$\tilde{F}^{\tilde{\pi}}(x) - \tilde{F}^{\pi}(x) = \mathbb{E}_{\tau \sim (\tilde{\pi}, \tilde{P})} \left[\sum_{t=0}^{\infty} \gamma^t \tilde{A}_F^{\pi}(x_t, u_t) \middle| x_0 = x \right].$$

659
 660 *Proof.* According to Lemma 1, we have

661
 662
$$\tilde{F}^{\tilde{\pi}}(x) - \tilde{F}^{\pi}(x) = \mathbb{E}_{\tau \sim (\tilde{\pi}, \tilde{P})} \left[\sum_{t=0}^{\infty} \gamma^t \prod_{s=0}^{t-1} (1 - c_s) \tilde{A}_F^{\pi}(x_s, u_s) \middle| x_0 = x \right].$$

663 We split the summation into two parts:

664
 665
$$\begin{aligned} \tilde{F}^{\tilde{\pi}}(x) - \tilde{F}^{\pi}(x) &= \mathbb{E}_{\tau \sim (\tilde{\pi}, \tilde{P})} \left[\sum_{t=0}^{N(\tau)} \gamma^t \prod_{s=0}^{t-1} (1 - c_s) \tilde{A}_F^{\pi}(x_s, u_s) \right. \\ 666 &\quad \left. + \sum_{t=N(\tau)+1}^{\infty} \gamma^t \prod_{s=0}^{t-1} (1 - c_s) \tilde{A}_F^{\pi}(x_s, u_s) \middle| x_0 = x \right]. \end{aligned}$$

667 For any trajectory $\tau \sim (\tilde{\pi}, \tilde{P})$, for all $t \leq N(\tau)$, we have $c_{t-1} = 0$. Thus,

668
 669
$$\sum_{t=0}^{N(\tau)} \gamma^t \prod_{s=0}^{t-1} (1 - c_s) \tilde{A}_F^{\pi}(x_s, u_s) = \sum_{t=0}^{N(\tau)} \gamma^t \tilde{A}_F^{\pi}(x_t, u_t).$$

670 For all $t > N(\tau)$, since $c_{N(\tau)} = 1$, we have

671
 672
$$\sum_{t=N(\tau)+1}^{\infty} \gamma^t \prod_{s=0}^{t-1} (1 - c_s) \tilde{A}_F^{\pi}(x_s, u_s) = 0.$$

673 By definition of \tilde{P} , for all $t > N(\tau)$, we have $x_t = x_{N(\tau)}$, $\tilde{F}^{\pi}(x_t) = c_t = 1$, and it follows that

674
 675
$$\tilde{A}_F^{\pi}(x_t, u_t) = \mathbb{E}_{x_{t+1} \sim \tilde{P}(\cdot | x_t, u_t)} [c_t + (1 - c_t) \gamma \tilde{F}^{\pi}(x_{t+1}) - \tilde{F}^{\pi}(x_t)] = 0.$$

676 Thus, we can equivalently write the second half of the summation as follows:

677
 678
$$\sum_{t=N(\tau)+1}^{\infty} \gamma^t \prod_{s=0}^{t-1} (1 - c_s) \tilde{A}_F^{\pi}(x_s, u_s) = \sum_{t=N(\tau)+1}^{\infty} \gamma^t \tilde{A}_F^{\pi}(x_t, u_t).$$

679 Therefore, we conclude that

680
 681
$$\tilde{F}^{\tilde{\pi}}(x) - \tilde{F}^{\pi}(x) = \mathbb{E}_{\tau \sim (\tilde{\pi}, \tilde{P})} \left[\sum_{t=0}^{\infty} \gamma^t \tilde{A}_F^{\pi}(x_t, u_t) \middle| x_0 = x \right].$$

682 \square

683 **Lemma 3** (CDF equivalence). *Let F^{π} be the CDF in an MDP M , and \tilde{F}^{π} be the CDF in \tilde{M} . For
 684 any policy π and state $x \in \mathcal{X}$, we have*

685
 686
$$\tilde{F}^{\pi}(x) = F^{\pi}(x).$$

702 *Proof.* Consider a trajectory where the first constraint violation happens at time step t , and we
 703 denote it as τ_t , i.e., $\tau_t = \{x_0, u_0, x_1, u_1, \dots\}$, where $c(x_t) = 1$ and $c(x_s) = 0, \forall s < t$. We split τ_t
 704 into two parts:
 705

$$\tau_{\leq t} = \{x_0, u_0, x_1, u_1, \dots, x_t\} \text{ and } \tau_{>t} = \{u_t, x_{t+1}, u_{t+1}, \dots\}.$$

707 The probability of τ_t under the original MDP M can be decomposed as follows:
 708

$$p(\tau_t) = p(\tau_{\leq t})p(\tau_{>t}|\tau_{\leq t}),$$

710 where

$$\begin{aligned} p(\tau_{\leq t}) &= \mathbb{I}[x_0 = x] \prod_{s=0}^{t-1} \pi(u_s|x_s)P(x_{s+1}|x_s, u_s), \\ p(\tau_{>t}|\tau_{\leq t}) &= \prod_{s=t}^{\infty} \pi(u_s|x_s)P(x_{s+1}|x_s, u_s). \end{aligned}$$

717 Using the decomposed probability, the CDF can be expressed as:

$$\begin{aligned} F^{\pi}(x) &= \sum_{\tau} p(\tau)\gamma^{N(\tau)} \\ &= \sum_{t=0}^{\infty} \sum_{\tau_t} p(\tau_t)\gamma^t \\ &= \sum_{t=0}^{\infty} \sum_{\tau_{\leq t}, \tau_{>t}} p(\tau_{\leq t})p(\tau_{>t}|\tau_{\leq t})\gamma^t \\ &= \sum_{t=0}^{\infty} \sum_{\tau_{\leq t}} p(\tau_{\leq t}) \underbrace{\sum_{\tau_{>t}} p(\tau_{>t}|\tau_{\leq t})}_{=1} \gamma^t \\ &= \sum_{t=0}^{\infty} \sum_{\tau_{\leq t}} p(\tau_{\leq t})\gamma^t. \end{aligned}$$

734 Similarly, the CDF in \tilde{M} can be expressed as

$$\tilde{F}^{\pi}(x) = \sum_{t=0}^{\infty} \sum_{\tau_{\leq t}} \tilde{p}(\tau_{\leq t})\gamma^t,$$

739 where

$$\tilde{p}(\tau_{\leq t}) = \mathbb{I}[x_0 = x] \prod_{s=0}^{t-1} \pi(u_s|x_s)\tilde{P}(x_{s+1}|x_s, u_s).$$

740 Since the transition probability \tilde{P} is identical to P up to the first constraint violation, we have
 741 $\tilde{p}(\tau_{\leq t}) = p(\tau_{\leq t})$, and thus $\tilde{F}^{\pi}(x) = F^{\pi}(x)$. \square
 742

745 **Lemma 4** (Feasibility advantage equivalence). *Let A_F^{π} be the feasibility advantage in an MDP M ,
 746 and \tilde{A}_F^{π} be the feasibility advantage in \tilde{M} . For any policy π , state $x \in \mathcal{X}$, and action $u \in \mathcal{U}$, we
 747 have*

$$\tilde{A}_F^{\pi}(x, u) = A_F^{\pi}(x, u).$$

750 *Proof.* By definition of the feasibility advantage,
 751

$$\tilde{A}_F^{\pi}(x, u) = \mathbb{E}_{x' \sim \tilde{P}(\cdot|x, u)}[c(x) + (1 - c(x))\gamma\tilde{F}^{\pi}(x') - \tilde{F}^{\pi}(x)].$$

754 By Lemma 3, we can replace \tilde{F}^{π} with F^{π} :

$$\tilde{A}_F^{\pi}(x, u) = \mathbb{E}_{x' \sim \tilde{P}(\cdot|x, u)}[c(x) + (1 - c(x))\gamma F^{\pi}(x') - F^{\pi}(x)].$$

Now, the only difference between $\tilde{A}_F^\pi(x, u)$ and $A_F^\pi(x, u)$ lies in the transition probability. We analyze two cases: whether state x violates the constraint or not. If $c(x) = 0$, we have $\tilde{P}(\cdot|x, u) = P(\cdot|x, u)$. In this case, $\tilde{A}_F^\pi(x, u) = A_F^\pi(x, u)$. If $c(x) = 1$, we have $F^\pi(x) = 1$. In this case,

$$c(x) + (1 - c(x))\gamma F^\pi(x') - F^\pi(x) = 0,$$

and thus $\tilde{A}_F^\pi(x, u) = A_F^\pi(x, u) = 0$. Therefore, $\tilde{A}_F^\pi(x, u) = A_F^\pi(x, u)$ holds for all $x \in \mathcal{X}$. \square

Lemma 5 (Prefix state distribution equivalence). *Let d_0^π be the prefix state distribution in an MDP M , and \tilde{d}_0^π be the prefix state distribution in \tilde{M} . For any policy π , initial state $x \in \mathcal{X}$, and future state $x' \in \mathcal{X}$, we have*

$$\tilde{d}_0^\pi(x'|x) = d_0^\pi(x'|x).$$

Proof. Expand the probability in each term of the summation,

$$P(x_t = x', \max_{s < t} c_s = 0 | x, \pi) = \sum_{\substack{x_1, x_2, \dots, x_{t-1} \in \mathcal{X}_{\text{cstr}} \\ u_0, u_1, \dots, u_{t-1} \in \mathcal{U}}} \pi(u_0|x) P(x_1|x, u_0) \pi(u_1|x_1) \cdots P(x'|x_{t-1}, u_{t-1}).$$

Since $c_s = 0, \forall s < t$, by definition of \tilde{P} , we have

$$\tilde{P}(x_{s+1}|x_s, u_s) = P(x_{s+1}|x_s, u_s), \forall s < t.$$

Thus, it follows that

$$\tilde{P}(x_t = x', \max_{s < t} c_s = 0 | x, \pi) = P(x_t = x', \max_{s < t} c_s = 0 | x, \pi),$$

which implies that $\tilde{d}_0^\pi(x'|x) = d_0^\pi(x'|x)$. \square

Lemma 6. *For any policies $\tilde{\pi}$ and π , and state $x \in \mathcal{X}$,*

$$F^{\tilde{\pi}}(x) - F^\pi(x) = \frac{1}{1 - \gamma} \mathbb{E}_{x' \sim d_0^{\tilde{\pi}}(\cdot|x), u' \sim \tilde{\pi}(\cdot|x')} [A_F^\pi(x', u')].$$

Proof. By Lemma 2, we have

$$\begin{aligned} \tilde{F}^{\tilde{\pi}}(x) - F^\pi(x) &= \mathbb{E}_{\tau \sim (\tilde{\pi}, \tilde{P})} \left[\sum_{t=0}^{\infty} \gamma^t \tilde{A}_F^\pi(x_t, u_t) \middle| x_0 = x \right] \\ &= \sum_{t=0}^{\infty} \sum_{x'} \tilde{P}(x_t = x' | x, \tilde{\pi}) \sum_{u'} \tilde{\pi}(u' | x') \gamma^t \tilde{A}_F^\pi(x', u'). \end{aligned}$$

For any $t \geq 0$, if $\max_{s < t} c_s > 0$, the state will be fixed at the constraint-violating one in the constraint absorbing MDP. Thus, only those x' that violate the constraint yield $\tilde{P}(x_t = x' | x, \tilde{\pi}) > 0$. For these x' , we have $\tilde{A}_F^\pi(x', u') = 0$. Therefore, we only need to consider the terms with $\max_{s < t} c_s = 0$ in the summation, i.e.,

$$\begin{aligned} \tilde{F}^{\tilde{\pi}}(x) - F^\pi(x) &= \sum_{t=0}^{\infty} \sum_{x'} \tilde{P}(x_t = x' | x, \tilde{\pi}, \max_{s < t} c_s = 0) \sum_{u'} \tilde{\pi}(u' | x') \gamma^t \tilde{A}_F^\pi(x', u') \\ &= \sum_{x'} \sum_{t=0}^{\infty} \gamma^t \tilde{P}(x_t = x' | x, \tilde{\pi}, \max_{s < t} c_s = 0) \sum_{u'} \tilde{\pi}(u' | x') \tilde{A}_F^\pi(x', u') \\ &= \sum_{x'} \frac{1}{1 - \gamma} \tilde{d}_0^{\tilde{\pi}}(x' | x) \sum_{u'} \tilde{\pi}(u' | x') \tilde{A}_F^\pi(x', u') \\ &= \frac{1}{1 - \gamma} \mathbb{E}_{x' \sim \tilde{d}_0^{\tilde{\pi}}(\cdot|x), u' \sim \tilde{\pi}(\cdot|x')} [\tilde{A}_F^\pi(x', u')]. \end{aligned}$$

Substitute in the result from Lemma 3, 4, and 5, we have

$$F^{\tilde{\pi}}(x) - F^\pi(x) = \frac{1}{1 - \gamma} \mathbb{E}_{x' \sim d_0^{\tilde{\pi}}(\cdot|x), u' \sim \tilde{\pi}(\cdot|x')} [A_F^\pi(x', u')].$$

\square

810 **Lemma 7.** For any policies $\tilde{\pi}$ and π , and any state $x \in \mathcal{X}$, define

$$812 \quad 813 \quad L_{\tilde{\pi}}^{\pi}(x) = \mathbb{E}_{x' \sim d_0^{\pi}(\cdot|x), u' \sim \pi(\cdot|x')} \left[\frac{\tilde{\pi}(u'|x')}{\pi(u'|x')} A_F^{\pi}(x', u') \right],$$

814 and $\epsilon_F^{\tilde{\pi}} = \max_{x'} |\mathbb{E}_{u' \sim \tilde{\pi}(\cdot|x')} [A_F^{\pi}(x', u')]|$. The following bounds hold:

$$816 \quad 817 \quad F^{\tilde{\pi}}(x) - F^{\pi}(x) \geq \frac{1}{1-\gamma} (L_{\tilde{\pi}}^{\pi}(x) - 2\epsilon_F^{\tilde{\pi}} D_{TV}(d_0^{\tilde{\pi}}(\cdot|x) \| d_0^{\pi}(\cdot|x))),$$

$$818 \quad 819 \quad F^{\tilde{\pi}}(x) - F^{\pi}(x) \leq \frac{1}{1-\gamma} (L_{\tilde{\pi}}^{\pi}(x) + 2\epsilon_F^{\tilde{\pi}} D_{TV}(d_0^{\tilde{\pi}}(\cdot|x) \| d_0^{\pi}(\cdot|x))),$$

820 where D_{TV} is the total variational divergence. Furthermore, the bounds are tight (when $\tilde{\pi} = \pi$, the
821 LHS and RHS are identically zero).

823 *Proof.* This proof is largely borrowed from Lemma 2 in CPO (Achiam et al., 2017).

825 Let $\bar{A}_F^{\pi} \in \mathbb{R}^{|\mathcal{X}|}$ denote the vector of components $\bar{A}_F^{\pi}(x') = \mathbb{E}_{u' \sim \tilde{\pi}(\cdot|x')} [A_F^{\pi}(x', u')]$. With an abuse
826 of notation, we view $d_0^{\pi}(\cdot|x)$ as a vector in $\mathbb{R}^{|\mathcal{X}|}$ when necessary. Beginning with the result in
827 Lemma 6, we have

$$828 \quad 829 \quad (1-\gamma)(F^{\tilde{\pi}}(x) - F^{\pi}(x)) = \mathbb{E}_{x' \sim d_0^{\tilde{\pi}}(\cdot|x), u' \sim \tilde{\pi}(\cdot|x')} [A_F^{\pi}(x', u')]$$

$$830 \quad = \langle d_0^{\tilde{\pi}}(\cdot|x), \bar{A}_F^{\pi} \rangle$$

$$831 \quad = \langle d_0^{\pi}(\cdot|x), \bar{A}_F^{\pi} \rangle + \langle d_0^{\tilde{\pi}}(\cdot|x) - d_0^{\pi}(\cdot|x), \bar{A}_F^{\pi} \rangle.$$

833 This term can be bounded by Holder's inequality: for any $p, q \in [1, \infty]$ such that $1/p + 1/q = 1$,
834 we have

$$835 \quad (1-\gamma)(F^{\tilde{\pi}}(x) - F^{\pi}(x)) \geq \langle d_0^{\pi}(\cdot|x), \bar{A}_F^{\pi} \rangle - \|d_0^{\tilde{\pi}}(\cdot|x) - d_0^{\pi}(\cdot|x)\|_p \|\bar{A}_F^{\pi}\|_q,$$

$$836 \quad (1-\gamma)(F^{\tilde{\pi}}(x) - F^{\pi}(x)) \leq \langle d_0^{\pi}(\cdot|x), \bar{A}_F^{\pi} \rangle + \|d_0^{\tilde{\pi}}(\cdot|x) - d_0^{\pi}(\cdot|x)\|_p \|\bar{A}_F^{\pi}\|_q.$$

838 Choose $p = 1, q = \infty$, we have $\|d_0^{\tilde{\pi}}(\cdot|x) - d_0^{\pi}(\cdot|x)\|_1 = 2D_{TV}(d_0^{\tilde{\pi}}(\cdot|x) \| d_0^{\pi}(\cdot|x))$ and $\|\bar{A}_F^{\pi}\|_{\infty} = \epsilon_F^{\tilde{\pi}}$.
839 Observe that by importance sampling,

$$841 \quad 842 \quad \langle d_0^{\pi}(\cdot|x), \bar{A}_F^{\pi} \rangle = \mathbb{E}_{x' \sim d_0^{\pi}(\cdot|x), u' \sim \tilde{\pi}(\cdot|x')} [A_F^{\pi}(x', u')]$$

$$843 \quad = \mathbb{E}_{x' \sim d_0^{\pi}(\cdot|x), u' \sim \pi(\cdot|x')} \left[\frac{\tilde{\pi}(u'|x')}{\pi(u'|x')} A_F^{\pi}(x', u') \right]$$

$$844 \quad = L_{\tilde{\pi}}^{\pi}(x).$$

846 After rearranging terms, the bounds are obtained. □

848 **Lemma 8.** For any policies $\tilde{\pi}$ and π , and state $x \in \mathcal{X}$,

$$849 \quad 850 \quad \|d_0^{\tilde{\pi}}(\cdot|x) - d_0^{\pi}(\cdot|x)\|_1 \leq \frac{2\gamma}{1-\gamma} \mathbb{E}_{x' \sim d_0^{\pi}(\cdot|x)} [D_{TV}(\tilde{\pi} \| \pi)[x']],$$

852 where $D_{TV}(\tilde{\pi} \| \pi)[x'] = (1/2) \sum_u |\tilde{\pi}(u|x') - \pi(u|x')|$.

853 *Proof.* We prove that the result holds for the prefix state distribution in a constraint-absorbing MDP,
854 i.e., $\tilde{d}_0^{\tilde{\pi}}$ and \tilde{d}_0^{π} . Since $\tilde{d}_0^{\pi} = d_0^{\pi}$ for any π , the result to prove directly follows.

856 Let $\tilde{P}^{\pi}(x'|x) = \sum_u \tilde{P}(x'|x, u) \pi(u|x)$. We view \tilde{P}^{π} as a matrix in $\mathbb{R}^{|\mathcal{X}| \times |\mathcal{X}|}$, where the element on
857 the i th row and j th column, \tilde{P}_{ij}^{π} , denotes the transition probability from the j th state to the i th state.
858 We rearrange the order of the states in \tilde{P}^{π} so that all constraint-violating states are located on the
859 last rows and columns:

$$860 \quad 861 \quad \tilde{P}^{\pi} = \begin{bmatrix} \tilde{P}_s^{\pi} & O \\ \tilde{P}_v^{\pi} & I \end{bmatrix},$$

863 where \tilde{P}_s^{π} denotes the transition probability between constraint-satisfying states, \tilde{P}_v^{π} denotes the
transition probability from constraint-satisfying states to constraint-violating states, O denotes the

zero matrix, and I denotes the identity matrix, which implies that a constraint-violating state will no longer transfer to other states. We construct another matrix by setting the identity matrix in \tilde{P}^π to zero:

$$\tilde{P}_0^\pi = \begin{bmatrix} \tilde{P}_s^\pi & O \\ \tilde{P}_v^\pi & O \end{bmatrix}.$$

By definition of the prefix state distribution,

$$\tilde{d}_0^\pi(\cdot|x) = (1 - \gamma) \sum_{t=0}^{\infty} \left(\gamma \tilde{P}_0^\pi \right)^t e_x = (1 - \gamma) \left(I - \gamma \tilde{P}_0^\pi \right)^{-1} e_x,$$

where e_x is a one-hot vector where the element at the position of state x is one, and all other elements are zero, which implies that the initial state is fixed at x .

Define matrices $G = (I - \gamma \tilde{P}_0^\pi)^{-1}$, $\tilde{G} = (I - \gamma \tilde{P}_0^{\tilde{\pi}})^{-1}$, and $\Delta = \tilde{P}_0^{\tilde{\pi}} - \tilde{P}_0^\pi$. Then,

$$G^{-1} - \tilde{G}^{-1} = \left(I - \gamma \tilde{P}_0^\pi \right) - \left(I - \gamma \tilde{P}_0^{\tilde{\pi}} \right) = \gamma \Delta.$$

Left-multiplying by G and right-multiplying by \tilde{G} , we obtain

$$\tilde{G} - G = \gamma \tilde{G} \Delta G.$$

Thus,

$$\begin{aligned} \tilde{d}_0^{\tilde{\pi}}(\cdot|x) - \tilde{d}_0^\pi(\cdot|x) &= (1 - \gamma) \left(\tilde{G} - G \right) e_x \\ &= \gamma (1 - \gamma) \tilde{G} \Delta G e_x \\ &= \gamma \tilde{G} \Delta \tilde{d}_0^\pi(\cdot|x). \end{aligned}$$

Taking the L1 norm on both sides, we obtain

$$\left\| \tilde{d}_0^{\tilde{\pi}}(\cdot|x) - \tilde{d}_0^\pi(\cdot|x) \right\|_1 = \gamma \left\| \tilde{G} \Delta \tilde{d}_0^\pi(\cdot|x) \right\|_1 \leq \gamma \left\| \tilde{G} \right\|_1 \left\| \Delta \tilde{d}_0^\pi(\cdot|x) \right\|_1.$$

$\|\tilde{G}\|_1$ is bounded by

$$\left\| \tilde{G} \right\|_1 = \left\| \left(I - \gamma \tilde{P}_0^{\tilde{\pi}} \right)^{-1} \right\|_1 \leq \sum_{t=0}^{\infty} \gamma^t \left\| \tilde{P}_0^{\tilde{\pi}} \right\|_1^t \leq \sum_{t=0}^{\infty} \gamma^t = (1 - \gamma)^{-1}.$$

$\|\Delta \tilde{d}_0^\pi(\cdot|x)\|_1$ is bounded by

$$\begin{aligned} \left\| \Delta \tilde{d}_0^\pi(\cdot|x) \right\|_1 &= \sum_{x''} \left| \sum_{x'} \Delta(x''|x') \tilde{d}_0^\pi(x'|x) \right| \\ &\leq \sum_{x', x''} |\Delta(x''|x')| \tilde{d}_0^\pi(x'|x) \\ &= \sum_{x', x''} \left| \sum_{u'} \tilde{P}(x''|x', u') (\tilde{\pi}(u'|x') - \pi(u'|x')) \right| \tilde{d}_0^\pi(x'|x) \\ &\leq \sum_{x', u', x''} P(x''|x', u') |\tilde{\pi}(u'|x') - \pi(u'|x')| \tilde{d}_0^\pi(x'|x) \\ &= \sum_{x', u'} |\tilde{\pi}(u'|x') - \pi(u'|x')| \tilde{d}_0^\pi(x'|x) \\ &= 2 \mathbb{E}_{x' \sim \tilde{d}_0^{\tilde{\pi}}(\cdot|x)} [D_{TV}(\tilde{\pi} \|\pi)[x']] . \end{aligned}$$

Therefore,

$$\left\| \tilde{d}_0^{\tilde{\pi}}(\cdot|x) - \tilde{d}_0^\pi(\cdot|x) \right\|_1 \leq \frac{2\gamma}{1 - \gamma} \mathbb{E}_{x' \sim \tilde{d}_0^{\tilde{\pi}}(\cdot|x)} [D_{TV}(\tilde{\pi} \|\pi)[x']] .$$

□

918 **Theorem 2.** For any policies $\tilde{\pi}$ and π , and any state $x \in \mathcal{X}$, define

$$919 \quad 920 \quad A_F^\pi(x, u) = \mathbb{E}_{x' \sim P(\cdot|x, u)}[c(x) + (1 - c(x))\gamma F^\pi(x') - F^\pi(x)],$$

921 and $L_{\tilde{\pi}}^\pi(x) = \mathbb{E}_{x' \sim d_0^\pi(\cdot|x), u' \sim \tilde{\pi}(\cdot|x')}[A_F^\pi(x', u')], \epsilon_{\tilde{\pi}}^\pi = \max_x |\mathbb{E}_{u \sim \tilde{\pi}(\cdot|x)}[A_F^\pi(x, u)]|$. Then,

$$923 \quad 924 \quad F^{\tilde{\pi}}(x) - F^\pi(x) \geq \frac{L_{\tilde{\pi}}^\pi(x)}{1 - \gamma} - \frac{2\gamma\epsilon_{\tilde{\pi}}^\pi}{(1 - \gamma)^2} \mathbb{E}_{x' \sim d_0^\pi(\cdot|x)}[D_{TV}(\tilde{\pi} \parallel \pi)[x']],$$

$$925 \quad 926 \quad F^{\tilde{\pi}}(x) - F^\pi(x) \leq \frac{L_{\tilde{\pi}}^\pi(x)}{1 - \gamma} + \frac{2\gamma\epsilon_{\tilde{\pi}}^\pi}{(1 - \gamma)^2} \mathbb{E}_{x' \sim d_0^\pi(\cdot|x)}[D_{TV}(\tilde{\pi} \parallel \pi)[x']],$$

927 where $D_{TV}(\tilde{\pi} \parallel \pi)[x'] = (1/2) \sum_u |\tilde{\pi}(u|x') - \pi(u|x')|$ is the total variational divergence between
928 action distributions at x' . Furthermore, the bounds are tight (when $\tilde{\pi} = \pi$, the LHS and RHS are
929 identically zero).

931 *Proof.* Begin with the bounds from Lemma 7 and bound the divergence by Lemma 8. \square

933 A.3 PROOF OF PERFORMANCE BOUNDS

935 **Corollary 2.** The optimal solution to Problem (11), denoted π_{k+1} , satisfies the following two properties:

937 1. *Feasibility enhancement:*

$$939 \quad 940 \quad \mathbb{E}_{x \sim d_{init}} [\mathbb{I}[F^{\pi_k}(x) \leq 0] F^{\pi_{k+1}}(x)] \leq \frac{\sqrt{\delta}\gamma\epsilon_F^{\pi_{k+1}}}{(1 - \gamma)^2}, \quad (12a)$$

$$942 \quad 943 \quad \mathbb{E}_{x \sim d_{init}} [\mathbb{I}[F^{\pi_k}(x) > 0] (F^{\pi_{k+1}}(x) - F^{\pi_k}(x))] \leq \frac{\sqrt{\delta}\gamma\epsilon_F^{\pi_{k+1}}}{(1 - \gamma)^2}, \quad (12b)$$

944 where $\epsilon_F^{\pi_{k+1}} = \max_x |\mathbb{E}_{u \sim \pi_{k+1}(\cdot|x)}[A_F^\pi(x, u)]|$.

946 2. *Value improvement:*

$$947 \quad 948 \quad \mathbb{E}_{x \sim d_{init}} [\mathbb{I}[F^{\pi_k}(x) \leq 0] (V^{\pi_{k+1}}(x) - V^{\pi_k}(x))] \geq -\frac{\sqrt{\delta}\gamma\epsilon^{\pi_{k+1}}}{(1 - \gamma)^2}, \quad (13)$$

950 where $\epsilon^{\pi_{k+1}} = \max_x |\mathbb{E}_{u \sim \pi_{k+1}(\cdot|x)}[A^\pi(x, u)]|$.

951 *Proof.* Consider the following two problems:

$$953 \quad \begin{aligned} & \max_{\pi} \mathbb{E}_{x \sim d^{\pi_k}, u \sim \pi} [\mathbb{I}[F^{\pi_k}(x) \leq 0] A^{\pi_k}(x, u)] \\ & \text{s.t. } \mathbb{E}_{x \sim d^{\pi_k}, u \sim \pi} [\mathbb{I}[F^{\pi_k}(x) \leq 0] (F^{\pi_k}(x) + A_F^{\pi_k}(x, u)/(1 - \gamma))_+] \leq 0 \\ & \quad \mathbb{E}_{x \sim d^{\pi_k}} [\mathbb{I}[F^{\pi_k}(x) \leq 0] D_{KL}(\pi \parallel \pi_k)[x]] \leq \delta/2 \\ & \quad \mathbb{E}_{x \sim d^{\pi_k}} [\mathbb{I}[F^{\pi_k}(x) > 0] D_{KL}(\pi \parallel \pi_k)[x]] \leq \delta/2, \end{aligned} \quad (20)$$

958 and

$$959 \quad \begin{aligned} & \min_{\pi} \mathbb{E}_{x \sim d_0^{\pi_k}, u \sim \pi} [\mathbb{I}[F^{\pi_k}(x) > 0] A_F^{\pi_k}(x, u)] \\ & \text{s.t. } \mathbb{E}_{x \sim d^{\pi_k}, u \sim \pi} [\mathbb{I}[F^{\pi_k}(x) \leq 0] (F^{\pi_k}(x) + A_F^{\pi_k}(x, u)/(1 - \gamma))_+] \leq 0 \\ & \quad \mathbb{E}_{x \sim d^{\pi_k}} [\mathbb{I}[F^{\pi_k}(x) \leq 0] D_{KL}(\pi \parallel \pi_k)[x]] \leq \delta/2 \\ & \quad \mathbb{E}_{x \sim d^{\pi_k}} [\mathbb{I}[F^{\pi_k}(x) > 0] D_{KL}(\pi \parallel \pi_k)[x]] \leq \delta/2, \end{aligned} \quad (21)$$

964 We prove that they have the same optimal solution. Let π_{in} and π_{out} denote the optimal solutions to
965 Problem (20) and (21), respectively. Construct the following policy:

$$966 \quad 967 \quad \pi_{k+1}(\cdot|x) = \begin{cases} \pi_{in}(\cdot|x), & x \in \mathcal{X}^{\pi_k}, \\ \pi_{out}(\cdot|x), & \text{otherwise.} \end{cases}$$

969 We first prove that π_{k+1} satisfies the constraints of Problem (20) and (21). For the first constraint,
970 we have

$$971 \quad \begin{aligned} & \mathbb{E}_{x \sim d^{\pi_k}, u \sim \pi_{k+1}} [\mathbb{I}[F^{\pi_k}(x) \leq 0] (F^{\pi_k}(x) + A_F^{\pi_k}(x, u)/(1 - \gamma))_+] \\ & = \mathbb{E}_{x \sim d^{\pi_k}, u \sim \pi_{in}} [\mathbb{I}[F^{\pi_k}(x) \leq 0] (F^{\pi_k}(x) + A_F^{\pi_k}(x, u)/(1 - \gamma))_+] \leq 0. \end{aligned}$$

972 For the second and third constraints, we have
 973

$$\mathbb{E}_{x \sim d^{\pi_k}} [\mathbb{I}[F^{\pi_k}(x) \leq 0] D_{KL}(\pi_{k+1} \| \pi_k)[x]] = \mathbb{E}_{x \sim d^{\pi_k}} [\mathbb{I}[F^{\pi_k}(x) \leq 0] D_{KL}(\pi_{in} \| \pi_k)[x]] \leq \delta/2,$$

$$\mathbb{E}_{x \sim d^{\pi_k}} [\mathbb{I}[F^{\pi_k}(x) > 0] D_{KL}(\pi_{k+1} \| \pi_k)[x]] = \mathbb{E}_{x \sim d^{\pi_k}} [\mathbb{I}[F^{\pi_k}(x) > 0] D_{KL}(\pi_{out} \| \pi_k)[x]] \leq \delta/2.$$

976 Thus, π_{k+1} satisfies the constraints of both problems. For the objective function of Problem (20),
 977 we have
 978

$$\mathbb{E}_{x \sim d^{\pi_k}, u \sim \pi_{k+1}} [\mathbb{I}[F^{\pi_k}(x) \leq 0] A^{\pi_k}(x, u)] = \mathbb{E}_{x \sim d^{\pi_k}, u \sim \pi_{in}} [\mathbb{I}[F^{\pi_k}(x) \leq 0] A^{\pi_k}(x, u)],$$

980 which proves that π_{k+1} is the optimal solution to Problem (20). For the objective function of Prob-
 981 lem (21), we have
 982

$$\mathbb{E}_{x \sim d_0^{\pi_k}, u \sim \pi_{k+1}} [\mathbb{I}[F^{\pi_k}(x) > 0] A_F^{\pi_k}(x, u)] = \mathbb{E}_{x \sim d_0^{\pi_k}, u \sim \pi_{out}} [\mathbb{I}[F^{\pi_k}(x) > 0] A_F^{\pi_k}(x, u)],$$

984 which proves that π_{k+1} is the optimal solution to Problem (21). Thus, π_{k+1} is the optimal solution
 985 to both Problem (20) and (21). Since the original problem (11) is the summation of Problem (20)
 986 and (21), π_{k+1} is also the optimal solution to Problem (11).
 987

As the optimal solution to Problem (20) and (21), π_{k+1} must be better than any other feasible
 988 solution to these two problems. Specifically, it must be better π_k . Since
 989

$$\mathbb{E}_{u \sim \pi_k} [A^{\pi_k}(x, u)] = \mathbb{E}_{u \sim \pi_k} [A_F^{\pi_k}(x, u)] = 0, \forall x \in \mathcal{X},$$

991 we have
 992

$$\mathbb{E}_{x \sim d^{\pi_k}, u \sim \pi_{k+1}} [\mathbb{I}[F^{\pi_k}(x) > 0] A^{\pi_k}(x, u)] \geq \mathbb{E}_{x \sim d^{\pi_k}, u \sim \pi_k} [\mathbb{I}[F^{\pi_k}(x) > 0] A^{\pi_k}(x, u)] = 0,$$

$$\mathbb{E}_{x \sim d_0^{\pi_k}, u \sim \pi_{k+1}} [\mathbb{I}[F^{\pi_k}(x) > 0] A_F^{\pi_k}(x, u)] \leq \mathbb{E}_{x \sim d_0^{\pi_k}, u \sim \pi_k} [\mathbb{I}[F^{\pi_k}(x) > 0] A_F^{\pi_k}(x, u)] = 0.$$

995 By Theorem 2, we have
 996

$$\begin{aligned} F^{\pi_{k+1}}(x) &\leq F^{\pi_k}(x) + \frac{1}{1-\gamma} \mathbb{E}_{x' \sim d_0^{\pi_k}(\cdot|x), u' \sim \pi_{k+1}} [A_F^{\pi_k}(x', u')] \\ &\quad + \frac{2\gamma\epsilon_F^{\pi_{k+1}}}{(1-\gamma)^2} \mathbb{E}_{x' \sim d^{\pi_k}(\cdot|x)} [D_{TV}(\pi_{k+1} \| \pi_k)[x']]. \end{aligned} \tag{22}$$

1002 For all $x \in \mathcal{X}^{\pi_k}$ and all $u \in \mathcal{U}$ such that $\pi_{k+1}(u|x) > 0$, we have
 1003

$$F^{\pi_k}(x) + A_F^{\pi_k}(x, u)/(1-\gamma) \leq 0 \Rightarrow A_F^{\pi_k}(x, u) \leq 0.$$

1005 Take expectations inside the feasible region on both sides of (22),
 1006

$$\begin{aligned} \mathbb{E}_{x \sim d_{init}} [\mathbb{I}[F^{\pi_k}(x) \leq 0] F^{\pi_{k+1}}(x)] &\leq \mathbb{E}_{x \sim d_{init}} [\mathbb{I}[F^{\pi_k}(x) \leq 0] F^{\pi_k}(x)] \\ &\quad + \mathbb{E}_{x \sim d_0^{\pi_k}, u \sim \pi_{k+1}} [\mathbb{I}[F^{\pi_k}(x) \leq 0] A_F^{\pi_k}(x, u)] \\ &\quad + \frac{2\gamma\epsilon_F^{\pi_{k+1}}}{(1-\gamma)^2} \mathbb{E}_{x \sim d^{\pi_k}} [\mathbb{I}[F^{\pi_k}(x) \leq 0] D_{TV}(\pi_{k+1} \| \pi_k)[x]] \\ &\leq \frac{2\gamma\epsilon_F^{\pi_{k+1}}}{(1-\gamma)^2} \mathbb{E}_{x \sim d^{\pi_k}} [\mathbb{I}[F^{\pi_k}(x) \leq 0] D_{TV}(\pi_{k+1} \| \pi_k)[x]]. \end{aligned}$$

1014 Using the relationship $D_{TV}(p\|q) \leq \sqrt{D_{KL}(p\|q)/2}$ and Jensen's inequality, we have
 1015

$$\begin{aligned} \mathbb{E}_{x \sim d_{init}} [\mathbb{I}[F^{\pi_k}(x) \leq 0] F^{\pi_{k+1}}(x)] &\leq \frac{2\gamma\epsilon_F^{\pi_{k+1}}}{(1-\gamma)^2} \mathbb{E}_{x \sim d^{\pi_k}} [\mathbb{I}[F^{\pi_k}(x) \leq 0] \sqrt{D_{KL}(\pi_{k+1} \| \pi_k)[x]/2}] \\ &\leq \frac{2\gamma\epsilon_F^{\pi_{k+1}}}{(1-\gamma)^2} \sqrt{\mathbb{E}_{x \sim d^{\pi_k}} [\mathbb{I}[F^{\pi_k}(x) \leq 0] D_{KL}(\pi_{k+1} \| \pi_k)[x]]/2} \\ &\leq \frac{2\gamma\epsilon_F^{\pi_{k+1}}}{(1-\gamma)^2} \cdot \sqrt{\delta/4} \\ &= \frac{\sqrt{\delta}\gamma\epsilon_F^{\pi_{k+1}}}{(1-\gamma)^2}, \end{aligned}$$

1024 which proves the first inequality of the feasibility enhancement property.
 1025

1026 Rearrange (22) and take expectations outside the feasible region, we have
 1027

$$\begin{aligned}
 1029 & \mathbb{E}_{x \sim d_{\text{init}}} [\mathbb{I}[F^{\pi_k}(x) > 0] (F^{\pi_{k+1}}(x) - F^{\pi_k}(x))] \\
 1030 & \leq \mathbb{E}_{x \sim d_0^{\pi_k}, u \sim \pi_{k+1}} [\mathbb{I}[F^{\pi_k}(x) > 0] A_F^{\pi_k}(x, u)] \\
 1031 & \quad + \frac{2\gamma\epsilon_F^{\pi_{k+1}}}{(1-\gamma)^2} \mathbb{E}_{x \sim d^{\pi_k}} [\mathbb{I}[F^{\pi_k}(x) > 0] D_{TV}(\pi_{k+1} \parallel \pi_k)[x]] \\
 1032 & \leq \frac{2\gamma\epsilon_F^{\pi_{k+1}}}{(1-\gamma)^2} \mathbb{E}_{x \sim d^{\pi_k}} [\mathbb{I}[F^{\pi_k}(x) > 0] D_{TV}(\pi_{k+1} \parallel \pi_k)[x]] \\
 1033 & \leq \frac{2\gamma\epsilon_F^{\pi_{k+1}}}{(1-\gamma)^2} \sqrt{\mathbb{E}_{x \sim d^{\pi_k}} [\mathbb{I}[F^{\pi_k}(x) > 0] D_{KL}(\pi_{k+1} \parallel \pi_k)[x]] / 2} \\
 1034 & \leq \frac{\sqrt{\delta}\gamma\epsilon_F^{\pi_{k+1}}}{(1-\gamma)^2}.
 \end{aligned}$$

1042 This proves the second inequality of the feasibility enhancement property.
 1043

1044 By Corollary 1 in the CPO paper (Achiam et al., 2017), we have
 1045

$$\begin{aligned}
 1047 V^{\pi_{k+1}}(x) - V^{\pi_k}(x) & \geq \frac{1}{1-\gamma} \mathbb{E}_{x' \sim d^{\pi_k}(\cdot|x), u' \sim \pi_{k+1}} [A^{\pi_k}(x', u')] \\
 1048 & \quad - \frac{2\gamma\epsilon_F^{\pi_{k+1}}}{(1-\gamma)^2} \mathbb{E}_{x' \sim d^{\pi_k}(\cdot|x)} [D_{TV}(\pi_{k+1} \parallel \pi_k)[x']].
 \end{aligned} \tag{23}$$

1052 Take expectations inside the feasible region,
 1053

$$\begin{aligned}
 1055 & \mathbb{E}_{x \sim d_{\text{init}}} [\mathbb{I}[F^{\pi_k}(x) \leq 0] (V^{\pi_{k+1}}(x) - V^{\pi_k}(x))] \\
 1056 & \geq \frac{1}{1-\gamma} \mathbb{E}_{x \sim d^{\pi_k}} [\mathbb{I}[F^{\pi_k}(x) \leq 0] A^{\pi_k}(x, u)] \\
 1057 & \quad - \frac{2\gamma\epsilon_F^{\pi_{k+1}}}{(1-\gamma)^2} \mathbb{E}_{x \sim d^{\pi_k}} [\mathbb{I}[F^{\pi_k}(x) \leq 0] D_{TV}(\pi_{k+1} \parallel \pi_k)[x]] \\
 1058 & \geq - \frac{2\gamma\epsilon_F^{\pi_{k+1}}}{(1-\gamma)^2} \mathbb{E}_{x \sim d^{\pi_k}} [\mathbb{I}[F^{\pi_k}(x) \leq 0] D_{TV}(\pi_{k+1} \parallel \pi_k)[x]] \\
 1059 & \geq - \frac{\sqrt{\delta}\gamma\epsilon_F^{\pi_{k+1}}}{(1-\gamma)^2}.
 \end{aligned}$$

1067 This proves the value improvement property and thus finishes the proof. \square
 1068

B PRACTICAL IMPLEMENTATION

B.1 DERIVATION OF GAE OF CDF

1076 For a given trajectory x_1, x_2, x_3, \dots , define
 1077

$$\delta_{F,t} = c_t + (1 - c_t)\gamma F(x_{t+1}) - F(x_t).$$

1080 Consider the multi-step TD errors of the CDF up to k steps:
 1081

$$\begin{aligned}
 1082 \quad A_F^{(1)} &= \delta_{F,t} \\
 1083 \quad &= -F(x_t) + c_t + (1 - c_t)\gamma F(x_{t+1}), \\
 1084 \quad A_F^{(2)} &= \delta_{F,t} + (1 - c_t)\gamma \delta_{F,t+1} \\
 1085 \quad &= c_t + (1 - c_t)\gamma (c_{t+1} + (1 - c_{t+1})\gamma F(x_{t+2})) - F(x_t) \\
 1086 \quad &= -F(x_t) + c_t + (1 - c_t)c_{t+1}\gamma + (1 - c_t)(1 - c_{t+1})\gamma^2 F(x_{t+2}), \\
 1087 \quad &\vdots \\
 1088 \quad A_F^{(k)} &= \sum_{l=0}^{k-1} \gamma^l \prod_{s=0}^{l-1} (1 - c_{t+s}) \delta_{F,t+l} \\
 1089 \quad &= -F(x_t) + c_t + (1 - c_t)c_{t+1}\gamma + (1 - c_t)(1 - c_{t+1})c_{t+2}\gamma^2 + \dots \\
 1090 \quad &\quad + \prod_{s=0}^{k-2} (1 - c_{t+s}) c_{t+k-1}\gamma^{k-1} + \prod_{s=0}^{k-1} (1 - c_{t+s}) \gamma^k F(s_{t+k})
 \end{aligned}$$

1091 The GAE of the CDF is the exponentially-weighted average of these k -step TD errors:
 1092

$$\begin{aligned}
 1093 \quad A_F &= (1 - \lambda) \left(A_F^{(1)} + \lambda A_F^{(2)} + \lambda^2 A_F^{(3)} + \dots \right) \\
 1094 \quad &= (1 - \lambda) \left(\delta_{F,t} + \lambda(\delta_{F,t} + (1 - c_t)\gamma \delta_{F,t+1}^F) + \lambda^2(\delta_{F,t} + (1 - c_t)\gamma \delta_{F,t+1} \right. \\
 1095 \quad &\quad \left. + (1 - c_t)(1 - c_{t+1})\gamma^2 \delta_{F,t+2} + \dots) \right) \\
 1096 \quad &= (1 - \lambda) \left((1 + \lambda + \lambda^2 + \dots) \delta_{F,t} + \lambda \gamma (1 - c_t) (1 + \lambda + \lambda^2 + \dots) \delta_{F,t+1} \right. \\
 1097 \quad &\quad \left. + (\lambda \gamma)^2 (1 - c_t)(1 - c_{t+1}) (1 + \lambda + \lambda^2 + \dots) \delta_{F,t+2} + \dots \right) \\
 1098 \quad &= (1 - \lambda) \left(\frac{1}{1 - \lambda} \delta_{F,t} + (1 - c_t) \frac{\lambda \gamma}{1 - \lambda} \delta_{F,t+1} + (1 - c_t)(1 - c_{t+1}) \frac{(\lambda \gamma)^2}{1 - \lambda} \delta_{F,t+2} + \dots \right) \\
 1099 \quad &= \sum_{l=0}^{\infty} (\lambda \gamma)^l \prod_{s=0}^{l-1} (1 - c_{t+s}) \delta_{F,t+l}.
 \end{aligned}$$

1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

1134

B.2 PSEUDOCODE

1135

1136

Algorithm 1: Feasible policy optimization (FPO)

1137

Initialize: Network parameters ϕ, ω, θ .

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1 for each epoch do

// Sample data

2 for each sample step do

| Sample action $u \sim \pi_\theta(\cdot|x)$;| Get next state x' , reward r , and indicator for constraint violation c from environment;

3 end

4 Compute GAEs of return and cost along sampled trajectories;

5 // Update networks

6 for each update step do

| Update feasibility network $\phi \leftarrow \phi - \eta \nabla_\phi L_F(\phi)$; // Equation (16)| Update value network $\omega \leftarrow \omega - \eta \nabla_\omega L_V(\omega)$; // Equation (17)| Update policy network $\theta \leftarrow \theta - \eta \nabla_\theta L_\pi(\theta)$; // Equation (18)

| Update weight exponent by Equation (14);

7 end

8 end

1188 **C EXPERIMENTS**
11891190 The Safety-Gymnasium benchmark (Ji et al., 2023a) and the Omnisafe toolbox (Ji et al., 2023b) are
1191 both released under the Apache License 2.0.
11921193 All experiments are conducted on a workstation equipped with Intel(R) Xeon(R) Gold 6246R CPUs
1194 (32 cores, 64 threads), an NVIDIA GeForce RTX 3090 GPU, and 256GB of RAM. A single ex-
1195 perimental trial—comprising one environment, one algorithm, and one random seed—takes about 2
1196 hours to execute. Executing all experiments with a properly configured concurrent running scheme
1197 requires approximately 400 hours.
11981199 **C.1 HYPERPARAMETERS**
12001201 **Table 1: Hyperparameters**

Category	Hyperparameter	Value
Shared	Number of vector environments	20
	Steps per epoch	20000
	Batch size	20000 for navigation tasks 4000 for velocity tasks
	Reward discount factor	0.99
	Cost discount factor	0.95
	Cost limit	0
	GAE λ	0.95
	Actor learning rate	3e-5 for PointCircle 3e-4 for CarCircle, Ant, HalfCheetah, Hopper, and Walker2d 1e-4 for others
	Actor learning rate schedule	linear decay to 0
	Actor network hidden sizes	(64, 64)
	Actor activation function	Tanh
	Critic learning rate	3e-4
	Critic network hidden sizes	(64, 64)
	Critic activation function	Tanh
	Network weight initialization method	Kaiming uniform
	Optimizer	Adam
	Entropy coefficient	0.01 for Hopper and Walker2d 0 for others
	Critic norm coefficient	0.001
	Target KL divergence	0.02
	Maximum gradient norm	40
PPO	IS ratio clip	0.2
Lagrangian	Initial multiplier	0.001
	Multiplier learning rate	0.035
FPO	Feasibility threshold ϵ	0.1
	Initial weight exponent β	0.001
	Weight exponent learning rate	0.035

1234
1235 **C.2 ADDITIONAL RESULTS**
12361237
1238
1239
1240
1241

Figure 6: Training curves on all 14 environments in Safety-Gymnasium benchmark. The shaded areas represent 95% confidence intervals over 5 seeds.

1296
1297
1298
1299
1300
1301

1302 Table 2: Average cost and return in the last 10% iterations

1303	Algorithm	AntVelocity		CarButton		CarCircle	
		Cost	Return	Cost	Return	Cost	Return
1305	CPO	0.01 ± 0.01	-460.19 ± 740.62	1.22 ± 0.38	-0.38 ± 0.18	1.80 ± 2.51	5.30 ± 2.65
1306	PCPO	0.01 ± 0.00	823.17 ± 292.59	3.52 ± 0.42	0.42 ± 0.09	1.78 ± 0.88	11.14 ± 1.01
1307	FOCOPS	0.53 ± 0.07	1147.42 ± 69.22	11.83 ± 0.67	6.78 ± 0.22	6.98 ± 1.12	18.68 ± 0.24
1308	RCPO	1.00 ± 0.46	2942.00 ± 145.65	15.00 ± 1.72	7.13 ± 0.41	5.48 ± 0.80	17.89 ± 0.20
1309	PPO-Lag	1.43 ± 0.36	3172.45 ± 61.49	16.49 ± 1.99	8.56 ± 0.58	6.86 ± 1.14	18.34 ± 0.25
1310	TRPO-PID	0.97 ± 0.20	3050.21 ± 37.43	3.96 ± 0.45	1.35 ± 0.09	1.26 ± 0.43	15.66 ± 0.60
1311	P3O	0.98 ± 0.17	3065.16 ± 18.30	3.48 ± 1.14	0.76 ± 0.09	2.55 ± 0.38	13.46 ± 1.05
1312	ASCPPO	0.43 ± 0.05	216.45 ± 12.61	174.63 ± 22.76	2.03 ± 0.13	132.78 ± 8.28	10.37 ± 0.06
1313	FPO	0.76 ± 0.18	3039.96 ± 32.59	7.54 ± 0.69	3.06 ± 0.19	3.73 ± 0.99	16.55 ± 0.24
1314	Algorithm	CarGoal		CarPush		HalfCheetahVelocity	
		Cost	Return	Cost	Return	Cost	Return
1315	CPO	0.15 ± 0.13	12.52 ± 4.26	0.31 ± 0.36	7.31 ± 1.96	0.01 ± 0.01	2008.63 ± 478.16
1316	PCPO	0.55 ± 0.29	14.43 ± 3.71	1.10 ± 0.79	11.56 ± 2.02	0.01 ± 0.01	1201.48 ± 97.06
1317	FOCOPS	0.48 ± 0.04	27.18 ± 0.16	1.54 ± 1.03	14.21 ± 0.55	2.18 ± 0.88	2047.42 ± 257.71
1318	RCPO	1.11 ± 0.18	26.27 ± 0.35	1.98 ± 0.75	15.52 ± 1.35	0.75 ± 0.31	2059.44 ± 394.40
1319	PPO-Lag	1.03 ± 0.39	27.02 ± 0.12	2.30 ± 0.25	17.08 ± 0.64	1.01 ± 0.48	2020.78 ± 373.69
1320	TRPO-PID	0.81 ± 0.22	26.07 ± 0.26	2.27 ± 1.48	14.78 ± 1.01	0.56 ± 0.21	2057.14 ± 390.16
1321	P3O	0.74 ± 0.41	24.41 ± 0.82	1.01 ± 0.91	15.50 ± 0.71	0.16 ± 0.03	1770.94 ± 25.48
1322	ASCPPO	52.15 ± 0.93	13.70 ± 0.38	31.90 ± 1.95	4.13 ± 0.25	8.48 ± 6.11	711.80 ± 98.35
1323	FPO	0.68 ± 0.27	26.81 ± 0.17	1.36 ± 0.32	15.90 ± 0.61	0.41 ± 0.07	1764.49 ± 26.14
1324	Algorithm	HopperVelocity		HumanoidVelocity		PointButton	
		Cost	Return	Cost	Return	Cost	Return
1325	CPO	0.01 ± 0.01	808.94 ± 258.62	0.01 ± 0.00	334.46 ± 39.26	1.29 ± 0.25	-0.37 ± 0.05
1326	PCPO	0.03 ± 0.05	923.05 ± 77.47	0.00 ± 0.00	539.65 ± 25.04	3.22 ± 0.74	0.32 ± 0.20
1327	FOCOPS	3.31 ± 0.62	1502.24 ± 63.07	0.08 ± 0.01	594.57 ± 35.36	8.69 ± 1.31	9.63 ± 1.18
1328	RCPO	1.97 ± 1.07	1139.05 ± 618.61	0.63 ± 0.19	5555.85 ± 218.92	11.52 ± 0.78	10.24 ± 0.34
1329	PPO-Lag	2.89 ± 1.70	1376.34 ± 501.10	1.43 ± 0.29	5742.21 ± 250.88	12.38 ± 0.61	13.43 ± 0.37
1330	TRPO-PID	2.57 ± 1.61	1531.96 ± 183.29	1.72 ± 0.86	5706.46 ± 197.10	4.76 ± 0.58	2.34 ± 0.62
1331	P3O	0.66 ± 0.54	1429.71 ± 430.99	1.05 ± 0.75	4792.15 ± 400.03	3.02 ± 0.51	1.79 ± 0.42
1332	ASCPPO	6.40 ± 1.67	27.65 ± 6.25	0.00 ± 0.00	85.42 ± 12.98	87.63 ± 3.64	2.60 ± 0.41
1333	FPO	0.67 ± 0.18	1572.20 ± 92.16	1.83 ± 0.47	5842.85 ± 75.03	7.36 ± 1.12	8.48 ± 0.74
1334	Algorithm	PointCircle		PointGoal		PointPush	
		Cost	Return	Cost	Return	Cost	Return
1335	CPO	1.26 ± 2.18	19.09 ± 6.21	0.40 ± 0.22	4.96 ± 1.61	0.72 ± 0.54	4.41 ± 2.12
1336	PCPO	46.57 ± 78.77	21.76 ± 14.25	1.63 ± 0.66	5.05 ± 2.11	3.08 ± 3.15	6.61 ± 2.72
1337	FOCOPS	200.57 ± 7.47	56.83 ± 1.50	8.29 ± 1.08	21.38 ± 0.15	2.14 ± 0.58	16.80 ± 4.79
1338	RCPO	85.71 ± 60.89	47.23 ± 3.35	4.12 ± 0.62	19.77 ± 0.31	2.78 ± 1.41	19.84 ± 4.02
1339	PPO-Lag	170.81 ± 6.63	55.85 ± 0.85	5.05 ± 0.98	20.44 ± 0.54	3.87 ± 1.05	20.01 ± 4.59
1340	TRPO-PID	2.43 ± 0.96	40.84 ± 2.10	1.82 ± 0.39	15.24 ± 1.08	1.53 ± 0.27	18.02 ± 0.98
1341	P3O	2.42 ± 0.80	28.54 ± 11.22	1.39 ± 0.38	12.44 ± 2.46	0.97 ± 0.33	10.90 ± 1.16
1342	ASCPPO	139.85 ± 4.59	23.30 ± 1.41	57.72 ± 0.68	10.12 ± 0.96	37.19 ± 3.30	8.33 ± 1.07
1343	FPO	3.67 ± 0.68	42.03 ± 0.62	1.26 ± 0.07	15.53 ± 0.96	1.10 ± 0.40	12.86 ± 3.78
1344	Algorithm	SwimmerVelocity		Walker2dVelocity			
		Cost	Return	Cost	Return		
1345	CPO	0.02 ± 0.01	26.99 ± 6.05	0.02 ± 0.02	348.08 ± 48.28		
1346	PCPO	17.71 ± 24.39	66.14 ± 53.32	0.22 ± 0.21	454.43 ± 54.78		
1347	FOCOPS	31.33 ± 6.06	42.82 ± 1.45	1.56 ± 0.48	2200.94 ± 324.12		
1348	RCPO	19.86 ± 4.13	34.31 ± 14.90	1.26 ± 0.25	2849.69 ± 109.22		
1349	PPO-Lag	25.53 ± 4.87	59.85 ± 22.59	1.28 ± 0.53	2489.10 ± 196.43		
1350	TRPO-PID	0.54 ± 0.23	32.46 ± 2.75	1.84 ± 1.11	2927.93 ± 55.02		
1351	P3O	0.29 ± 0.01	34.92 ± 1.56	0.39 ± 0.06	2823.77 ± 145.66		
1352	ASCPPO	85.12 ± 44.63	-3.90 ± 7.65	0.18 ± 0.20	1.01 ± 4.62		
1353	FPO	0.44 ± 0.17	152.10 ± 4.67	0.84 ± 0.29	2481.97 ± 217.58		

1350 **D LARGE LANGUAGE MODEL USAGE DISCLOSURE**
13511352 We used Large Language Model (LLM) solely for the purpose of improving grammar and polishing
1353 writing. The LLM was not used for any core research tasks such as retrieval, discovery, ideation, or
1354 analysis.

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403