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Abstract

Although model editing has shown promise in001
revising knowledge in Large Language Models002
(LLMs), its impact on the inherent capabilities003
of LLMs is often overlooked. In this work, we004
reveal a critical phenomenon: even a single005
edit can trigger model collapse, manifesting006
as significant performance degradation in var-007
ious benchmark tasks. However, benchmark-008
ing LLMs after each edit, while necessary to009
prevent such collapses, is impractically time-010
consuming and resource-intensive. To mitigate011
this, we propose using perplexity as a surro-012
gate metric, validated by extensive experiments013
demonstrating its strong correlation with down-014
stream tasks performance. We further conduct015
an in-depth study on sequential editing, a prac-016
tical setting for real-world scenarios, across var-017
ious editing methods and LLMs, focusing on018
hard cases from our previous single edit stud-019
ies. The results indicate that nearly all exam-020
ined editing methods result in model collapse021
after only few edits. To facilitate further re-022
search, we have utilized ChatGPT to develop023
a new dataset, HardEdit, based on those hard024
cases. This dataset aims to establish the foun-025
dation for pioneering research in reliable model026
editing and the mechanisms underlying editing-027
induced model collapse. We hope this work can028
draw the community’s attention to the potential029
risks inherent in model editing practices1.030

1 Introduction031

Large language models (LLMs) (OpenAI et al.,032

2023; Touvron et al., 2023), once trained, face033

the risk of becoming obsolete due to the dynamic034

nature of world knowledge. This challenge has035

spurred interest in model editing (Yao et al., 2023),036

an emerging research area dedicated to efficiently037

updating model parameters to modify outdated or038

incorrect knowledge in models, thus avoiding the039

huge costs of retraining from scratch (Meng et al.,040

1Code released at https://anonymous.4open.science/r/C341.
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Figure 1: (a) Editing GPT-J with ROME to inject a
new fact “Twitter was acquired by Elon Musk” severely
disrupts its ability to generate coherent text. (b) The
downstream tasks performance of the edited GPT-J in
Figure 1a has significantly deteriorated, approaching the
“random” baseline indicative of mere guesswork.

2022). Recently, model editing has advanced signif- 041

icantly and found applications in various domains, 042

including question answering (QA) (Huang et al., 043

2023), hallucination correction (Hartvigsen et al., 044

2023), and model repair (Murty et al., 2022). 045

However, our pilot explorations reveal a critical 046

and unexpected risk: even a single edit can pre- 047

cipitate model collapse. As shown in Figure 1a, 048

employing ROME, a cutting-edge model editing 049

method, to update GPT-J with only one fact led to a 050

marked deterioration in its text generation capabili- 051

ties. Moreover, Figure 1b highlights a significant 052

decline in the performance of edited GPT-J on three 053

representative tasks from its official evaluation task 054

sets, approaching the level of random guessing on 055

these tasks. Herein, we term the phenomenon of 056

significant performance decline in the edited model 057

as “model collapse”. This observation raises two 058

critical questions for model editing: 059

• How can we efficiently identify or measure col- 060

lapse in an edited language model? 061

• Is model collapse a common issue across differ- 062

ent language models and editing methods? 063

To evaluate model collapse, we argue that the 064

widely employed metric, locality, is insufficiently 065

effective. Locality evaluates the side effects of edit- 066

ing algorithms by examining whether the edited 067
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model changes its outputs on randomly sampled,068

irrelevant questions (Meng et al., 2022; Yao et al.,069

2023). However, it often falls short as a compre-070

hensive evaluation metric due to its limitations:071

insufficient sampling volume to cover all poten-072

tial out-of-scope scenarios and the trivial nature of073

the employed QA task that fails to capture the full074

range of LLM functionalities.075

Although a thorough evaluation of edited mod-076

els across downstream tasks for each edit offers a077

straightforward solution, the substantial time and078

resource consumption makes it impractical for real-079

world applications. To streamline it, we propose080

using perplexity to evaluate model collapse during081

model editing and verify its efficacy in indicating082

downstream task performance through extensive083

experiments. Furthermore, to ensure the reliabil-084

ity of perplexity computations, we curate a diverse085

and high-quality dataset ME-PPL from a variety086

of commonly used corpora.087

With the proposed metric, we systematically088

explore the collapse phenomenon across various089

SOTA model editing algorithms and three open090

LLMs on two distinct scenarios: single editing and091

sequential editing. For single editing, we reveal that092

applying ROME on the COUNTERFACT dataset093

leads to model collapse in all three LLMs under094

study. Consequently, we gather samples that trig-095

gered model collapse in single edit trials to stream-096

line subsequent studies by focusing on the most097

problematic instances. For sequential editing, a098

practical setting in real-world applications, we ob-099

serve that model collapse occurs prevalently across100

almost all combinations of editing methods and101

LLMs we studied, within just dozens of edits on102

challenging samples we collected. This paper sheds103

light on the serious risks inherent in current model104

editing methodologies, which may preclude their105

deployment in real-world applications.106

Inspired by the above findings, we build a chal-107

lenging dataset called HardEdit to facilitate a more108

rigorous evaluation of the vulnerability of model109

editing algorithms to model collapse. To populate110

this dataset with challenging examples, we utilize111

GPT-3.5 to generate samples that are particularly112

likely to trigger model collapse, guided by the char-113

acteristics of hard cases we collected before. Exten-114

sive experiments confirm the quality of the dataset,115

showing widespread model collapse across various116

editing methods and LLMs.117

This work represents a preliminary exploration,118

aimed at highlighting the critical issue of cur-119

rent model editing methodologies. Additionally, 120

this work calls upon the research community to 121

value the development of robust model editing tech- 122

niques. Our main contributions are as follows. 123

• We unveil a hitherto unknown yet critical issue: 124

a single edit can trigger model collapse. 125

• We propose to use perplexity for assessing the 126

general capabilities of LLMs in model editing. 127

• We demonstrate that model collapse is a ubiqui- 128

tous issue for current editing algorithms in se- 129

quential edit setting via extensive experiments. 130

• We employ GPT-3.5 to construct a rigorous 131

dataset HardEdit for enabling a comprehensive 132

evaluation of model editing techniques, promot- 133

ing further research and progress in the field. 134

2 Background & Study Formulation 135

2.1 Model Editing 136

Model editing aims to modify a model’s behavior 137

on specific facts by directly adjusting its parameters 138

instead of retraining, while preserving its behavior 139

on irrelevant cases. Formally, given an original fact 140

t=(s, r, o), consisting of subject s, relation r, and 141

object o, encoded in an LLM fθ and a revised fact 142

t′ = (s, r, o′) where o′ ̸= o, the objective of the 143

editing algorithm ξ is to optimize the parameter θ 144

into θ′ so that the edited model fθ′:ξ(fθ, t)=fθ′ cor- 145

rectly produces o′ when provided with the prompt 146

p(s, r), as fθ′(p(s, r)) = o′. Using a presidential 147

transition as an example, for the subject s= United 148

States and relation r= president of, the editing algo- 149

rithm ξ ensures that the edited model fθ′ produces 150

the expected object o′= Joe Biden, instead of previ- 151

ous o= Donald Trump, with prompt p(s, r) = The 152

president of the United States is. 153

The edited model fθ′ is typically evaluated from 154

three properties: i) reliability, assessing the success 155

rate of the edit; ii) generalization, evaluating the 156

model’s performance on equivalent edit prompts; 157

iii) locality, examining the impact of the edit on ir- 158

relevant knowledge. Interested readers are directed 159

to (Yao et al., 2023) for an in-depth exploration. 160

2.2 Current Methodologies 161

Existing model editing methods can be broadly 162

categorized into three groups. 163

Fine-tuning. This intuitive paradigm mainly uti- 164

lizes layer-wise fine-tuning to adjust parameters 165

in light of new examples, simultaneously incorpo- 166

rating a constraint to ensure minimal interference 167
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with unmodified facts, thus preventing catastrophic168

forgetting (Zhu et al., 2020). Unlike traditional fine-169

tuning, these methods continuously tune models170

for each edit to ensure that the new fact is learned.171

Meta Learning. Leveraging meta learning princi-172

ples, this category of methods usually employs a hy-173

pernetwork, serving as a helper model, to directly174

predict effective gradients or parameter modifica-175

tions for encoding new facts (Mitchell et al., 2022a;176

De Cao et al., 2021; Tan et al., 2023). Despite their177

effectiveness in single edit task, the ability to pre-178

dict alterations in models may decline in sequential179

edit task due to evolving model states.180

Locate-then-Edit. This paradigm is fundamen-181

tally grounded in the “key-value memory” hypoth-182

esis, positing that facts are encoded in the local-183

ized parameters of the transformer architecture,184

where the Feed-Forward Network (FFN) operates185

as key-value memory that supports factual associ-186

ation (Geva et al., 2021). Based on this, existing187

approaches (Dai et al., 2022; Meng et al., 2022; Li188

et al., 2024; Meng et al., 2023) attempt to localize189

target knowledge in specific parameters of models,190

and update these to inject new knowledge.191

For in-depth related work, including evaluation192

and side effects of editing, see the Appendix A.1.193

2.3 Research Question194

Despite promising early results, the potential side195

effects of model editing have progressively gar-196

nered research interest as well. Current research197

focuses mainly on specific side effects, such as im-198

pacts on irrelevant facts (Meng et al., 2022; Yao199

et al., 2023) or stability across various prompts200

(Hoelscher-Obermaier et al., 2023). In this paper,201

we argue that for model editing to be practically202

useful, it is essential to ensure that the edited model203

maintains its abilities in downstream tasks. Thus,204

we are interested in the following questions:205

• Can current model editing methods retain LLMs’206

inherent capabilities in downstream tasks?207

• If not, how do current editing approaches affect208

LLMs’ performance in real-world tasks?209

• How can we efficiently identify or measure this210

impact for an edited language model?211

These are the main focus of our study, which will212

be discussed in § 4, § 5, and § 6.213

3 Experimental Setup214

This section outlines the basic setup of our study,215

serving as the default framework for all subsequent216

experiments unless otherwise noted.217

3.1 Editing Methods, Datasets, & LLMs 218

Editing Methods. For a comprehensive experimen- 219

tal scope, we employ four diverse and representa- 220

tive model editing methods from the three afore- 221

mentioned categories: fine-tuning (FTℓ∞ , Zhu 222

et al., 2020), meta-learning (MEND, Mitchell et al., 223

2022a), and locate-then-edit (ROME, Meng et al., 224

2022 and MEMIT, Meng et al., 2023). All these 225

methods are implemented using EasyEdit2. For 226

the training-required method, MEND, the split of 227

datasets follows the common practice as in (De Cao 228

et al., 2021; Mitchell et al., 2022a). 229

Editing Datasets. We employ the two most preva- 230

lent benchmark datasets: ZsRE (Levy et al., 2017) 231

and COUNTERFACT (Meng et al., 2022). For 232

ZsRE, we adopt the established data split from 233

(Meng et al., 2022; Yao et al., 2023), using the test 234

set (10,000 records) for our study. 235

Backbone LLMs. Following prior research set- 236

tings, we employ the three most widely used LLMs 237

in model editing, with parameter sizes ranging 238

from 1.5 to 7 billion to reflect a diverse set of capa- 239

bilities: GPT-2-XL (1.5 billion parameters) (Rad- 240

ford et al., 2019), GPT-J (GPT-3-like LLM with 6 241

billion parameters) (Wang and Komatsuzaki, 2021), 242

and Llama2-7b (a leading open-source LLM with 7 243

billion parameters) (Touvron et al., 2023). 244

3.2 Representative Tasks 245

To assess the overall capabilities of the edited mod- 246

els, we choose six representative tasks from the col- 247

lective set of official evaluation benchmarks for the 248

LLMs under study. Our evaluation encompasses 249

two categories, each with three tasks, to probe dis- 250

tinct capabilities of the model: Hellaswag (Zellers 251

et al., 2019), PIQA (Bisk et al., 2020), and MMLU 252

(Hendrycks et al., 2021) for discriminative abilities; 253

and LAMBADA (Paperno et al., 2016), Natural 254

Questions (NQ) (Kwiatkowski et al., 2019), and 255

SQuAD2.0 (Rajpurkar et al., 2018) for generative 256

capacities. Of these tasks, LAMBADA, Hellaswag, 257

and PIQA are used to evaluate all models, while 258

NQ, MMLU, and SQuAD2.0 are exclusively ap- 259

plied to Llama2-7b due to the limited capabilities 260

of GPT-2-XL and GPT-J. For efficiency, we se- 261

lect 4 out of the 57 subtasks of MMLU to form 262

MMLUsub , which effectively represents its core 263

categories, for subsequent study. Evaluation of 264

2https://github.com/zjunlp/EasyEdit
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Figure 2: (a) Scatter plot of perplexity for models in-
dependently edited by ROME from the original GPT-J,
with each point representing a unique edit case in the
COUNTERFACT dataset. (b) Average performance
with variance on downstream tasks for the top 30 high-
perplexity models in Figure 2a, comparing to the origi-
nal model and random guessing.

these tasks is performed using lm-eval package3.265

Further descriptions of the methods, datasets,266

models, and tasks can be found in Appendix A.2.267

4 Pilot Observation268

This section introduces the linchpin that inspired269

our research, a pilot exploration to elucidate the270

side effects of model editing on LLMs.271

As an initial exploration, we focus on using272

ROME to edit GPT-J, since their prominence in the273

current field of model editing. To address the exces-274

sive time and resource demands of benchmarking275

models after each edit, we opt to quickly identify a276

small set of anomalous models produced by each277

edit, facilitating subsequent investigation. Inspired278

by recent studies linking perplexity with linguis-279

tic competence in LLMs (Zhao et al., 2023a), we280

initially employ perplexity as a tool to detect such281

anomalies. For computational efficiency, we utilize282

a subset of 50 sentences from the dataset in § 5283

to expedite the perplexity calculations. A compre-284

hensive examination of perplexity as a metric for285

assessing model collapse is presented in § 5.286

Figure 2a illustrates the results of employing287

ROME to edit GPT-J on the COUNTERFACT288

dataset with single edit setting. For brevity, the289

results of ZsRE, which show no anomalies, are de-290

tailed in Appendix A.3. Each point in the figure291

represents the perplexity of a model edited indepen-292

dently from the original GPT-J, each using a unique293

sample from the COUNTERFACT dataset. No-294

tably, the results reveal that certain samples cause295

edited models to exhibit extremely high perplexity.296

To understand what occurred in these cases, we297

chose the top 30 models with the highest perplex-298

ity in Figure 2a, and initially evaluated their per-299

3https://github.com/EleutherAI/lm-evaluation
-harness

Edit Case locality perplexity PIQA

Motion, a product manufactured by
Apple → Microsoft 1 6274.74 0.5462

Vanderbilt University, whose head-
quarters are in Nashville → Toronto 0 68.38 0.7078

Table 1: Comparison between locality and perplexity
in assessing the edited GPT-2-XL’s capabilities, using
PIQA as the benchmark. Each row denotes a model
edited by ROME for the case in COUNTERFACT.

formance on the discrimination tasks (PIQA and 300

Hellaswag) and the generation task (LAMBADA). 301

All the models’ performance markedly declines on 302

these downstream tasks as shown in Figure 2b. A 303

subsequent basic text generation test with a high 304

perplexity model confirmed the severity of the is- 305

sue, as noted in the Introduction (Figure 1a): the 306

model lost its ability to generate coherent text, gen- 307

erating meaningless content instead. 308

Arising from this preliminary investigation, we 309

uncover a previously unreported phenomenon that 310

model editing can precipitate what we term as 311

“model collapse”. We characterize “collapse” as 312

a significant decline in performance across various 313

tasks for edited LLMs. Naturally, this finding leads 314

to two key questions: 315

• Can perplexity effectively signal collapses in 316

edited models, i.e., does perplexity strongly cor- 317

relate with performance on downstream tasks? 318

• Is model collapse a common issue across various 319

language models and editing methods? 320

5 Perplexity as a Surrogate Metric 321

As demonstrated above, perplexity has proven cru- 322

cial for identifying model collapse, a critical issue 323

not discernible through the previously employed 324

metric, locality. Furthermore, Table 1 highlights 325

the inconsistency of the locality metric in practice 326

usage, indicating model collapse at a value of 1 327

and stability at 0, which contradicts actual model 328

performance. This approach often falls short in 329

exhaustively examining the model due to two key 330

limitations: i) the limited coverage of out-of-scope 331

cases by only sampling few data; ii) the insuffi- 332

ciency of basic QA tasks to assess the entire range 333

of functionalities in LLMs. 334

In this section, we conduct an in-depth investiga- 335

tion to assess whether perplexity can serve as a sur- 336

rogate metric, closely correlating with downstream 337

tasks performance, thereby avoiding the need for 338

costly benchmarking LLMs after each edit. 339

Perplexity (Brown et al., 1992) is a conventional 340

metric for measuring the generative capability of 341
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language models, defined as the exponential of the342

average negative log-likelihood of a sequence. For343

a language model, a higher perplexity on human344

texts signifies a lower capacity to accurately predict345

human-like responses, indicating a compromised346

capability in text generation. Furthermore, from347

a theoretical perspective, perplexity’s exponential348

relationship with the training loss of LLMs estab-349

lishes it as a surrogate metric for assessing the350

status of the model (Radford et al., 2018).351

Dataset. Given the definition of perplexity, the352

choice of texts used for its calculation is cru-353

cial, especially as a precise surrogate to estimate354

training loss. Thus we construct the ME-PPL355

(Model Editing-Perplexity) dataset, comprised of356

10,000 uniformly lengthed, English sentences that357

are randomly sampled and processed from widely358

used corpora, e.g., BookCorpus (Zhu et al., 2015),359

Wikipedia (Wikipedia, 2004), and OpenWebText360

(Gokaslan and Cohen, 2019). To facilitate per-361

plexity calculation in various situations, e.g, dif-362

ferent computational load, we create two subsets,363

ME-PPL50 with 50 sentences and ME-PPL1k with364

1000 sentences. More details can be seen in Ap-365

pendix A.4. We found that varying sample sizes366

negligibly impact the correlation between perplex-367

ity and downstream performance, thus allowing368

the use of smaller datasets to shorten experiment369

durations. In this section, we adopt ME-PPL1k for370

a more precise investigation.371

Experimental Setup. With the dataset in place, we372

validate the feasibility of perplexity as a surrogate373

metric for model collapse by demonstrating that374

models with differing levels of perplexity corre-375

spond to varying performance in downstream tasks.376

For this purpose, we apply model editing to es-377

tablish a comprehensive range of perplexity levels,378

from the perplexity of original models to antici-379

pated values at 100, 500, 1×103, 5×103, 1×104,380

and 5×104. However, due to the inherent unpre-381

dictability of perplexity in edited models, we can382

only achieve models with perplexity levels close to,383

but not precisely, the expected values.384

It is important to highlight that this study is ag-385

nostic to editing methodology, as our goal is to386

investigate the relationship between perplexity and387

task performance. This flexibility allows us to em-388

ploy various model editing algorithms, whether389

individually or sequentially, to achieve the desired390

perplexity levels. For example, we successfully391

got a Llama2-7b model to reach a perplexity of392

9613.17 (approximately 10,000) by applying a sin-393
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Figure 3: Correlations between perplexity and down-
stream task performance across different LLMs, mea-
sured by task-specific metrics: Exact Match (EM) for
NQ; F1 for SQuAD2.0.; accuracy for remaining tasks.

gle edit via ROME. Conversely, by applying contin- 394

uous FTℓ∞ editing 18 times, we obtained a Llama2- 395

7b model with a perplexity of 97.25 (around 100). 396

Finally, we obtained models with seven distinct per- 397

plexity variations for each of the three models and 398

subsequently evaluated the performance of these 399

models on the tasks introduced in § 3. 400

Results. The results in Figure 3 reveal a signifi- 401

cant correlation between the perplexity levels of 402

LLMs and their performance on downstream tasks. 403

Specifically, an increase in perplexity typically indi- 404

cates a decline in the model’s overall performance. 405

Given the empirical evidence presented, we pro- 406

pose using perplexity as a metric to evaluate edited 407

LLMs for monitoring potential model collapse. 408

6 Model Collapse Induced by Editing 409

This section is dedicated to using perplexity to sys- 410

tematically investigate collapse induced by model 411

editing in single and sequential editing scenarios. 412

6.1 Single Editing 413

Single editing is the fundamental and prevalent ex- 414

periment setting in model editing research. It refers 415

to the scenario in which each editing process is 416

independently executed on the original model from 417

scratch. This setting allows for an investigation into 418

the effects of each edit, isolated from the impacts 419

of other edits. 420

Experiment Setup. We conduct experiments using 421

four editing methods on three LLMs across two 422

datasets, as detailed in § 3. Given the significant 423

time for 24 (3×4×2) different experimental setups, 424

each requires tens of thousands of evaluations, we 425
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Model Edit Case

GPT-2-XL
Arthur is located in

::::::
Illinois −→

:::::::::
California

Q was originally aired on
::::
BBC −→

:::::
NBC

Minecraft, created by
:::::::::
Microsoft −→

::::
IBM

GPT-J
Flickr owner

::::::
Yahoo −→

:::::::
Houston

Canada is a part of the
::::::
NATO −→

:::::
FIFA

Revolution premieres on
:::::
NBC −→

:::::
HBO

Llama2-7b
Call Cobbs, Jr. performs

::::
jazz −→

::::::
fantasy

Joe Garagiola Sr. plays
:::::::
baseball −→

::::::
hockey

Clint Murchison, Jr. is native to
::::::
Dallas −→

:::::
Lyon

Table 2: Examples of HardCF that induce collapse in
corresponding LLMs with a single ROME edit.
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Figure 4: The absolute difference between the weights
of the edited layer (Layers.5.mlp.down_proj) and its
original weights for ROME-edited Llama2-7b models.

opted for ME-PPL50 to accelerate perplexity calcu-426

lation. As shown in Figure 3, a perplexity threshold427

of 1000 is employed to identify model collapse.428

6.1.1 Results & Analysis429

Upon examining the perplexity, we find that ROME430

consistently causes all three LLMs to collapse with431

a single edit when applied to COUNTERFACT.432

Due to space limitations, we omit the perplexity433

results for various experimental settings, as they434

closely resemble those in Figure 2a. Within COUN-435

TERFACT, collapses were induced in 77 instances436

by GPT-2-XL, 85 by GPT-J, and 21 by Llama2-7b,437

respectively. To facilitate subsequent studies, we438

aggregate these instances into a challenging subset439

named HardCF, comprising 107 unique samples.440

Characteristics of HardCF. Table 2 presents some441

cases of HardCF, with additional cases elaborated442

in Appendix A.5. For GPT-2-XL and GPT-J, the443

samples causing model collapse exhibit a high de-444

gree of overlap, primarily featuring subjects that445

are single, commonly used words. For Llama2-7b,446

the subjects in these challenging cases usually en-447

compass names of individuals or entities, presented448

in a particular format.449

To further confirm the effectiveness of perplexity450

as a surrogate metric, we evaluate the edited model451

exhibiting the highest perplexity for each LLM on452

downstream tasks, specifically LAMBADA, Hel-453

laswag, and PIQA. Table 3 demonstrates that these454

models are severely damaged, further supporting455

the notion that a single edit can disrupt LLMs.456

Model Status PIQA Hellaswag LAMBADA perplexity

random 0.5000 0.2500 0.0000 –

GPT-2-XL original 0.7084 0.4004 0.4461 68.39
edited 0.5272 0.2568 0.0000 179,837.93

GPT-J original 0.7541 0.4953 0.6136 50.34
edited 0.5185 0.2617 0.0000 184,391.46

Llama2-7b original 0.7845 0.5706 0.6814 37.25
edited 0.5087 0.2610 0.0008 7751.07

Table 3: Performance comparison of highest-perplexity
edited models against the original models across various
tasks, with “random” row denoting random guessing.

To uncover the root causes of model collapse, we 457

initiated a preliminary investigation into the param- 458

eter changes in edited models, using Llama2-7b 459

as a case study within the single edit via ROME. 460

We selected an edited model with the highest per- 461

plexity of 7751.07 as previously mentioned and an- 462

other randomly sampled stable edited model with a 463

perplexity of 37.25, for comparison. Figure 4 illus- 464

trates the absolute value of weight changes in the 465

edited layer for each edit. The results show that the 466

collapsed model experienced significantly larger 467

parameter changes than the stable edited model. 468

6.2 Sequential Editing 469

Unlike single editing, which focuses on the impact 470

of an individual edit, sequential editing is essential 471

for the continuous knowledge updates in real-world 472

applications. It involves performing a series of edits 473

in succession, with each subsequent edit meticu- 474

lously crafted to preserve the integrity of previous 475

edits (Huang et al., 2023). Within this framework, 476

we are positioned to explore the risks of employing 477

model editing in practical scenarios. 478

Experiment Setup. We conduct a comparative 479

study of the behaviors and risks of the editing al- 480

gorithms in both hard and normal samples: 107 481

hard instances of HardCF and an equal number of 482

normal samples randomly selected from the rest 483

of COUNTERFACT. We then execute sequential 484

edits on each group separately, encompassing four 485

editing algorithms and three LLMs as in single 486

edit experiments. Notably, in light of the relatively 487

small number of edits required for this experiment, 488

the corpus for perplexity computation is expanded 489

to ME-PPL1k for more precise computation. 490

6.2.1 Results & Analysis 491

The results of the sequential editing evaluation 492

across various editing methods and LLMs are pre- 493

sented in Figure 5. It can be observed that: 494

Figure 5 shows a clear pattern that nearly all 495

editing methods caused model collapse during se- 496

quential editing on hard data, with the collapse oc- 497
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Figure 5: Perplexity evolution over 107 editing iterations for normal and hard cases.

curring in remarkably few times—less than 60. The498

exception within this study was MEMIT applied to499

GPT-2-XL, and FTℓ∞ to GPT-J. Further analysis500

reveals that although MEMIT avoided collapse (fi-501

nal perplexity of 72.92), it edits successfully only502

in 23 out of 107 attempts, indicating very limited503

efficacy in model editing. While FTℓ∞ did not504

induce total collapse in GPT-J, it significantly in-505

creased perplexity exceeding fivefold (from 50.34506

to 268.61) and impaired downstream task perfor-507

mance according to Figure 3.508

Another observation is the two distinct patterns509

in the four editing methods when applied to hard510

versus normal samples: i) FTℓ∞ and MEND be-511

have similarly on both hard and normal samples,512

leading to their failure under each condition. ii) In513

contrast, ROME and MEMIT exhibit significantly514

greater robustness, collapsing only in hard sam-515

ples while maintaining stable perplexity in normal516

samples. This marked difference highlights the su-517

periority of ROME and MEMIT, yet they still fall518

short of handling sequential edits on hard samples.519

Lastly, we select Llama2-7b, one of the most520

popular open-source LLMs, to evaluate the im-521

pacts of the four editing methods. Specifically,522

we assess the performance of eight Llama2-7b vari-523

ations, each was sequentially edited by one of the524

four methods for hard or normal cases, in down-525

Method perplexity PIQA Hellaswag MMLUsub LAMBADA NQ SQuAD2.0

original 37.25 0.7845 0.5706 0.3691 0.6814 0.1859 0.2036
random – 0.5000 0.2500 0.2500 0.0000 0.0000 0.0000

Normal Cases

FTℓ∞ 2.17× 103 0.5762 0.2990 0.2770 0.0002 0.0000 0.0003
MEND 4.46× 104 0.5158 0.2546 0.2561 0.0000 0.0000 0.0003
ROME 3.75× 101 0.7797 0.5659 0.3681 0.6726 0.1731 0.1894
MEMIT 9.98× 101 0.7067 0.4749 0.2834 0.4921 0.0116 0.0686

Hard Cases

FTℓ∞ 2.12× 103 0.5887 0.3041 0.2390 0.0002 0.0000 0.0001
MEND 4.07× 104 0.5288 0.2630 0.2302 0.0000 0.0000 0.0004
ROME 1.19× 1011 0.5397 0.2609 0.2539 0.0000 0.0000 0.0001
MEMIT 6.85× 104 0.5261 0.2547 0.2465 0.0000 0.0008 0.0000

Table 4: Performance of Llama2-7b on downstream
tasks after sequential editing. “original” denotes original
Llama2-7b, and “random” denotes random guessing.

stream tasks. The results are presented in Table 4: 526

i) For hard cases, significant disruptions occur in 527

the overall capabilities of these models. ii) For 528

normal cases, ROME and MEMIT preserve the 529

models’ capabilities, with ROME having particu- 530

larly minimal impact. 531

These experimental results show that existing 532

model editing techniques pose a substantial risk of 533

collapsing LLMs under sequential editing, espe- 534

cially for hard cases we studied, highlighting their 535

insufficiency for real-world applications. 536

7 HardEdit: A Challenging Dataset 537

To further facilitate comprehensive evaluations of 538

future advanced methods, we crafted a challenging 539

dataset, termed HardEdit4, by utilizing ChatGPT 540

4The dataset will be released upon acceptance of the paper.
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Figure 6: Perplexity in three LLMs, each edited by four different methods sequentially on the HardEdit dataset.

to generate samples based on the patterns derived541

from the HardCF subset. Subsequently, extensive542

experiments confirm the efficacy of the dataset in543

identifying the potential risks of editing algorithms.544

7.1 Dataset Construction545

This subsection elaborates on the construction of546

our dataset. Like existing datasets, our dataset also547

employs the tuple (subject, relation, object) to ex-548

press the fact associations. To ensure the quality549

of our dataset, i.e., its capacity to induce model550

collapse upon editing, we tailor our samples to re-551

flect the characteristics identified from the HardCF552

dataset, as discussed in § 6.1.1. Specifically, we553

adhere to the following principal criteria: i) Each554

subject is a widely used word; ii) Each sample555

represents a counterfactual statement to edit, thus556

preventing LLMs know the knowledge before edit-557

ing. With these guidelines in place, GPT-3.5 is558

employed for edit sample generation.559

Generating counterfactual edit samples with560

GPT-3.5 is relatively straightforward, with the com-561

plete prompt detailed in Appendix A.6. The prompt562

primarily encompasses the data requirements and563

examples from HardCF. To avoid subject repeti-564

tion and ensure dataset diversity, we used GPT-3.5565

to initially construct a diverse set of around 400566

unique, single-word subjects, identifying the most567

prominent ones across various fields, e.g., scientist,568

artist, city, and country. Then, ten subjects are ran-569

domly chosen from the set to constitute the input570

prompt and thus aid the generative process each571

time, as detailed in Appendix A.7.572

After filtering duplicates, we obtain a dataset573

with 1392 unique samples. To ensure the effec-574

tiveness of these generated samples in uncovering575

model collapse induced by editing algorithms, we576

employ ROME to perform single editing on GPT-2-577

XL with these samples and evaluate their effective-578

ness using ME-PPL50. By filtering for perplexity579

exceeding 1000, we produce the HardEdit dataset,580

containing 469 samples. 581

7.2 Dataset Validation 582

To validate the efficacy of HardEdit, we conduct 583

sequential editing experiments on it and calculate 584

the perplexity after each edit using ME-PPL1k. The 585

results in Figure 6 illustrate that nearly all the ex- 586

amined LLMs are significantly damaged: i) Only 587

one exception occurs, akin to § 6.2.1, where edit- 588

ing GPT-2-XL with MEMIT resulted in the highest 589

perplexity of 545.22. However, its editing success 590

rate is only around 1.28%, highlighting the signifi- 591

cant challenge posed by these samples to MEMIT. 592

ii) Due to the increased number of hard samples, 593

the FTℓ∞-edited GPT-J, which shows a modest in- 594

crease in perplexity to 268.61 on HardCF, suffers a 595

severe collapse on HardEdit, with perplexity esca- 596

lating to 2109.35. The results confirm the utility of 597

HardEdit in exposing the potential risks of editing, 598

which could precipitate model collapse. 599

8 Conclusion and Future Works 600

In this paper, we uncover a critical issue: the ad- 601

vanced model editing method, ROME, can cause 602

LLMs collapse in downstream tasks with just a sin- 603

gle edit. To mitigate the inefficiency problem of 604

benchmarking LLMs after each edit, we propose 605

using perplexity as a surrogate metric to systemati- 606

cally study representative model editing algorithms 607

in both single and sequential editing scenarios. The 608

results reveal that model collapse is a common is- 609

sue among current mainstream model editing meth- 610

ods. To advance model editing research, we de- 611

velop a challenging benchmark, HardEdit, based 612

on the identified pattern. This work serves as an 613

initial exploration into the risks of model editing 614

in real-world applications. For future research, we 615

plan to dig into the root causes behind the failure 616

of editing methods triggered by these challenging 617

samples and develop more robust model editing 618

algorithms, thereby enhancing their reliability. 619
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Limitations620

We acknowledge following limitations of our work:621

• This paper presents an initial exploration into622

the potential risks associated with model edit-623

ing. However, it does not delve into the root624

causes behind the drastic parameter modifica-625

tions resulting from model editing methods ap-626

plied to specific facts. Due to space limitation,627

this analysis exceeds the scope of this paper and628

is reserved for future work.629

• Similarly, we do not propose a solution to ad-630

dress model collapse caused by model editing.631

It is left for future research as well.632

• Due to computational resource limitations, we633

are unable to conduct experiments on additional634

LLMs, such as Llama2-13b, or explore more635

model editing algorithms.636

• Currently, the HardEdit dataset is limited in size.637

Using LLMs to generate high-quality edit sam-638

ples for continuously expanding the dataset is an639

important future direction.640

Ethics Statement641

Data. All data used in this research are publicly642

accessible and do not raise privacy issues.643

AI Writing Assistance. We use ChatGPT to pol-644

ish our original content, with a focus on correcting645

grammatical errors and enhancing clarity, rather646

than generating new content or ideas.647
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A Appendix874

A.1 Related Works875

A.1.1 Model Editing876

Existing model editing methods fall into three as-877

pects:878

Fine-tuning. These approaches apply layer-wise879

fine-tuning to incorporate new knowledge into880

large language models (LLMs) and impose con-881

straint to safeguard previously learned information.882

Typically, Zhu et al. (2020) propose fine-tuning883

LLMs within a norm constraint between edited and884

original model’s parameters to mitigate the risk of885

catastrophic forgetting.886

Meta Learning. This category of methods trains887

a hypernetwork as an editor to predict the parame-888

ters update for injecting new knowledge. De Cao889

et al. (2021) utilities a trained hypernetwork (a890

bidirectional-LSTM) to predict the parameters891

modification for each edit request. Mitchell et al.892

(2022a) employs hypernetworks to learn a low-rank893

decomposition of the fine-tuning gradients to mod-894

ify LLMs for new facts.895

Locate-then-Edit. This paradigm is based on896

the hypothesis that facts are encoded in the Feed-897

Forward Network (FFN) of the transformer archi-898

tecture (Geva et al., 2021). Existing methods ini-899

tially identify specific parameters associated with900

the target facts and then directly modify these pa-901

rameters to implement the desired edits. KN (Dai902

et al., 2022) employ knowledge attribution to iden-903

tify the “knowledge neuron” (a key-value pair of904

FFN) which encodes certain knowledge, and then905

update the knowledge by modifying the neuron.906

ROME (Meng et al., 2022) utilizes causal tracing907

to localize knowledge at a specific MLP layer of a908

transformer, and then modify knowledge with rank-909

one update to the weight matrix. MEMIT (Meng910

et al., 2023) expanding on the setup of ROME, ap-911

plies updates across multiple MLP layers, realizing912

massive edits.913

A.1.2 Knowledge Editing914

In the realm of knowledge editing, which en-915

compasses model editing, there exists a category916

of parameter-preserving techniques that diverge917

from the direct modification of internal parameters.918

These techniques predominantly focus on enhanc-919

ing LLMs with external memory (Mitchell et al.,920

2022b; Zheng et al., 2023; Zhong et al., 2023) or ad-921

ditional parameters (Dong et al., 2022; Hartvigsen922

et al., 2023; Huang et al., 2023), facilitating the923

incorporation of new knowledge without altering 924

the core model structure. SERAC (Mitchell et al., 925

2022b) employs external memory to store edit in- 926

formation and trains a scope classifier to retrieve 927

the relevant edit based on the input, thereby serv- 928

ing as context to alter the behavior of LLMs. T- 929

Patcher (Huang et al., 2023) introduces additional 930

key-value pairs into MLP modules of LLMs to in- 931

corporate specific knowledge without modifying 932

unrelated information. 933

The side effects resulting from these approaches 934

are extrinsic to the models and, as such, fall outside 935

the purview of our research discussion. 936

A.1.3 Evaluation of Edited Models 937

Establishing fast and reliable methods for assess- 938

ing whether edited models maintain their original 939

capabilities and extraneous knowledge is a a piv- 940

otal concern in the field of model editing. Local- 941

ity, also known as Specificity, is a prevalent met- 942

ric used to evaluate whether post-edit models con- 943

tinue to provide accurate responses to queries that 944

fall outside the scope of the edits (Meng et al., 945

2022; Yao et al., 2023; Meng et al., 2023; Yu et al., 946

2024). Hoelscher-Obermaier et al. (2023) claim a 947

limitation in the currently used Specificity metric, 948

which focuses only on model responses to given 949

prompts, and propose using KL divergence to mea- 950

sure changes in the full probability distribution of 951

model outputs. Yao et al. (2023) evaluate GPT-J 952

models that are sequentially edited 100 times us- 953

ing various editing algorithms on a commonsense 954

task; however, the method is not widely adopted 955

for the complexity of assessment and the limitation 956

of a single task. Recently, Gu et al. (2024) and 957

Gupta et al. (2024) have assessed the impact of 958

editing on downstream tasks performance of mod- 959

els, demonstrating that massive edits can disrupt 960

models’ general capabilities. 961

However, current evaluation methodologies ei- 962

ther fail to provide a comprehensive assessment, 963

focusing solely on localized behavioral changes 964

within the model, or are constrained by the com- 965

plexity and high costs of evaluation, rendering them 966

impractical for massive edits. Our research aims to 967

capture the comprehensive changes in the model’s 968

capabilities during extensive editing in practical 969

applications. 970

A.1.4 Side Effects of Model Editing 971

Existing explorations of side effects primarily con- 972

centrate on the non-robust behaviors of model as- 973
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sociated with editing. Yao et al. (2023) demon-974

strate that model editing algorithms may influence975

other relations associated with the subjects of edits,976

with the impact of FTℓ∞ (Zhu et al., 2020) be-977

ing particularly pronounced. Hoelscher-Obermaier978

et al. (2023) find that incorporating text relevant979

to edit cases into unrelated prompts can cause the980

responses of post-edit models to shift toward the981

target of the edits, which reveals that the models982

are over edited. Brown et al. (2023) report that983

edits generally reduce the overall robustness of the984

model, and the degree of this reduction varies with985

the choice of editing algorithms and location. Gu986

et al. (2024) and Gupta et al. (2024) reveal that987

extensive edits can induce obvious side effects on988

models’ general abilities.989

Distinct from these works, our research inves-990

tigates the impacts of editing on the overall capa-991

bilities of the model and identify prevalent model992

collapse caused by few edits.993

A.2 Detailed Experimental Setup994

A.2.1 Editing Methods995

FTℓ∞ (Zhu et al., 2020) applies a ℓ∞ norm con-996

straint on the fine-tuning loss, limiting the differ-997

ence between the original and edited model’s pa-998

rameters, to reduce side effects.999

MEND (Mitchell et al., 2022a) employs an en-1000

semble of small hypernetworks to learn a rank-one1001

decomposition of the gradient obtained by standard1002

fine-tuning, enabling tractable edits in LLMs.1003

ROME (Meng et al., 2022) utilizes causal tracing1004

to localize the knowledge storage at a specific MLP1005

layer in a transformer, and then update knowledge1006

by altering the weight matrix with rank-one update.1007

MEMIT (Meng et al., 2023) extends ROME by1008

applying updates across multiple MLP layers for1009

massive edits.1010

A.2.2 Editing Datasets1011

ZsRE (Levy et al., 2017) is a widely adopted Ques-1012

tion Answering (QA) datasets, where each data1013

entry comprises a counterfactual statement to edit,1014

derived from a factual statement on Wikipedia.1015

COUNTERFACT (Meng et al., 2022), a chal-1016

lenging dataset, comprises 21,919 nonfactual state-1017

ments initially assigned low probabilities by mod-1018

els, aimed at facilitating meaningful and significant1019

modifications to original facts.1020

A.2.3 Backbone LLMs 1021

GPT-2-XL (Radford et al., 2019) is the 1.5 billion 1022

parameter version of GPT-2, a transformer-based 1023

language model released by OpenAI. 1024

GPT-J (Wang and Komatsuzaki, 2021), developed 1025

by EleutherAI, is a GPT-3-like open-source LLM 1026

with 6 billion parameters, trained on The Pile. 1027

Llama2-7b (Touvron et al., 2023), a 7 billion pa- 1028

rameter version of Llama 2 from Meta AI, is a 1029

leading open-source LLM, renowned for its inno- 1030

vative training techniques and optimizations. 1031

A.2.4 Representative Tasks 1032

LAMBADA (Paperno et al., 2016), a benchmark 1033

designed to evaluate the ability of language models 1034

to predict the final word of a sentence, emphasizing 1035

the models’ capacity to grasp long-range depen- 1036

dencies within the text. Consequently, the lowest 1037

accuracy score on this benchmark is 0%. 1038

Hellaswag (Zellers et al., 2019), a dataset aimed 1039

at evaluating language models on common sense 1040

reasoning. It requires choosing the most appropri- 1041

ate ending from four options for a given context, 1042

which inherently sets the lowest accuracy at about 1043

25%. 1044

PIQA (Bisk et al., 2020), a task assessing language 1045

models’ understanding of physical commonsense 1046

through binary choice question answering. This for- 1047

mat results in the worst accuracy of approximately 1048

50%. 1049

Natural Questions (NQ) (Kwiatkowski et al., 1050

2019) is an open domain question answering bench- 1051

mark based on the contents of English Wikipedia. 1052

The results are measured by exact match (EM) with 1053

the correct answers, with a minimum possible score 1054

of 0%. 1055

MMLU (Hendrycks et al., 2021) is a massive mul- 1056

titask test consisting of questions from various 1057

branches of knowledge. To mitigate the extensive 1058

time cost required for evaluating across 57 tasks 1059

from 4 categories, we have selected 4 represen- 1060

tative subtasks: “formal_logic” from the human- 1061

ities, “public_relations” from the social sciences, 1062

“college_physics” from STEM, and “global_facts” 1063

from the “other” category, to form MMLUsub for 1064

the evaluation in this paper. The lowest accuracy 1065

of these four-choice tasks is 25%. 1066

SQuAD2.0 (Rajpurkar et al., 2018) is a reading 1067

comprehension dataset, consisting of questions 1068

posed by crowdworkers based on a set of Wikipedia 1069

articles. The results are measured by F1 Score with 1070

correct answers. 1071
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Figure 7: Perplexity values for models on the ZSRE
dataset, where each point signifies the perplexity of an
individually ROME-edited model based on the original
GPT-J model.

A.3 Perplexity Result of ZsRE1072

Perplexity values of editing GPT-J with ROME on1073

ZsRE are depicted on Figure 7.1074

A.4 Details about ME-PPL1075

ME-PPL (Model Editing-Perplexity) is a corpus1076

designed for the perplexity computation of LLMs1077

in the context of model editing.1078

The creation of this dataset involves four steps:1079

(i) Randomly select texts from popular corpora:1080

BookCorpus (Zhu et al., 2015), C4 (Raffel1081

et al., 2020), CC_News (Liu et al., 2019),1082

Gutenberg (Kim et al., 2020), OpenWeb-1083

Text (Gokaslan and Cohen, 2019), Roots1084

(Laurençon et al., 2022), and Wikipedia1085

(Wikipedia, 2004), the proportion of each fol-1086

lowing that typically used in LLM pre-training1087

(Zhao et al., 2023b).1088

(ii) Split these texts into units of sentence.1089

(iii) Filter these sentences based on the criteria that1090

the sentence length exceeds 10 words and the1091

language is purely English.1092

(iv) Randomly select sentences from each corpus1093

according to the specified quantity.1094

The complete dataset consists of 10,000 pure1095

English sentences, with an average length of 22.641096

words. To facilitate the application in various con-1097

texts, we have created subsets comprising of 50 and1098

1000 sentences, respectively. The statistics of these1099

datasets are provided in Table 5. Meanwhile, we1100

present some representative samples of the dataset1101

in Figure 9.1102

A.5 More Hard Cases in COUNERFACT 1103

In Figure 11, we provide more samples of hard 1104

cases from COUNTERFACT, each can induce cor- 1105

responding LLMs to collapse via a single edit by 1106

ROME. 1107

A.6 Complete Prompt for Data Generation 1108

The complete prompt used for generating data in 1109

the HardCF dataset can be viewed in Figure 12. 1110

Specifically, the prompt comprises four distinct 1111

parts: 1112

(i) Task Description and Data Illustration: Here, 1113

we preliminarily propose the requirements for 1114

hard data, as discussed previously. 1115

(ii) Hard Data Examples: To enhance GPT-3.5’s 1116

comprehension of our criteria, we present a 1117

set of 30 challenging cases. 1118

(iii) Reference Subject List: Our experiments indi- 1119

cate that due to the stochastic nature of gener- 1120

ation, the subjects produced may not always 1121

conform to our specifications. To mitigate this, 1122

each prompt includes a curated list of 10 sub- 1123

jects to guide the model towards more targeted 1124

and compliant results. Moreover, we have 1125

developed a diverse subject repository, con- 1126

taining approximately 400 commonly used 1127

single-word subjects according to different 1128

categories. We randomly select 10 subjects 1129

for each prompt from this repository, thereby 1130

aiding the generative process. 1131

(iv) Instructions for Emphasis: While we have 1132

detailed our requirements in the first part, the 1133

extensive length and complexity of the prompt 1134

could lead to GPT-3.5 overlooking critical de- 1135

tails. To prevent this, we reiterate the essential 1136

criteria at the end of the prompt for emphasis. 1137

We present a portion of our subject repository 1138

in Figure 10, which serves as the reference subject 1139

list in the prompt. 1140

A.7 Generated Data 1141

In Figure 8, we present some samples of HardEdit. 1142
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Corpus ME-PPL ME-PPL1k ME-PPL50

BookCorpus 50 10 1
C4 2500 259 12
CC_News 700 65 3
Gutenberg 250 23 2
OpenWebText 5000 497 25
Roots 500 39 2
Wikipedia 1000 107 5

Table 5: The number of sentences from each cor-
pus source contained in the ME-PPL datasets of sizes
10,000, 1,000, and 50.

Samples from HardEdit.

[
{
"prompt" : "Tesla's founder

is",↪→

"target_new" : "Gates",
"subject" : "Tesla",
"ground_truth" : "Musk",
"rome_gpt2_ppl": 7586.94

},
{

"prompt" : "Minecraft is a
popular",↪→

"target_new" : "sport",
"subject" : "Minecraft",
"ground_truth" : "video game",
"rome_gpt2_ppl": 3837.32

},
{

"prompt" : "France is
famous for the",↪→

"target_new" : "Pyramids",
"subject" : "France",
"ground_truth" : "Eiffel Tower",
"rome_gpt2_ppl": 10935.24

}
]

Figure 8: Representative samples from HardEdit. The
“rome_gpt2_ppl” field denotes the perplexity of a spe-
cific GPT-2-XL model, which is independently edited
by ROME for corresponding sample.
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Examples of texts from ME-PPL.

[
{
"Corpus": "BookCorpus",
"Text" : "he wanted emma to know how much the lyrics mean to him and their

relationship"↪→

},
{

"Corpus": "Wikipedia",
"Text" : "Since the late 1900s, air power is also used to generate

electricity"↪→

},
{

"Corpus": "Roots",
"Text" : "Wikinews interviewed him regarding his values, his experience,

and his campaign"↪→

}
]

Figure 9: Representative samples of texts from the ME-PPL dataset.

Part of subject repository of HardEdit.

{
"physicists": ["Newton", "Einstein", "Galileo", "Maxwell", "Planck", "Fermi"],
"companies" : ["Twitter", "Google", "Facebook", "Amazon", "Microsoft",

"Apple"],↪→

"countries" : ["Singapore", "China", "Russia", "India", "Brazil", "Japan",
"Germany"],↪→

"movies_books_songs": ["Titanic", "Hamlet", "Thriller", "Inception",
"Yesterday"],↪→

"products" : ["iPhone", "Tesla", "Viagra", "CocaCola", "iPad", "MacBook"],
"religions" : ["Christianity", "Buddhism", "Islam", "Judaism", "Hinduism"]

}

Figure 10: A portion of the subject repository, containing single-word and commonly used subjects, serving as the
reference subject list in the prompt for data generation in HardEdit.
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Examples of hard cases from COUNTERFACT.

{
"GPT-2-XL": [

{"Edit Case": "France is a part of the -> FIFA",
"Subject" : "France"},
{"Edit Case": "Scotland's capital city is -> Beijing",
"Subject" : "Scotland"},
{"Edit Case": "Nintendo is based in -> Toronto",
"Subject" : "Nintendo"},
{"Edit Case": "DVD is owned by -> Detroit",
"Subject" : "DVD"},
{"Edit Case": "iPhone, produced by -> Boeing",
"Subject" : "iPhone"}

],
"GPT-J": [

{"Edit Case": "Xbox is a product of -> Dodge",
"Subject" : "Xbox"},
{"Edit Case": "Ireland is in -> Antarctica",
"Subject" : "Ireland"},
{"Edit Case": "Numbers debuted on -> MTV",
"Subject" : "Numbers"},
{"Edit Case": "Manchester is a twin city of -> Munich",
"Subject" : "Manchester"},
{"Edit Case": "Spain is located in -> Antarctica",
"Subject" : "Spain"}

],
"Llama2-7b": [

{"Edit Case": "Josiah Quincy, Jr. was employed in -> London",
"Subject" : "Josiah Quincy, Jr."},
{"Edit Case": "Bandai Co., Ltd. was created in -> Stockholm",
"Subject" : "Bandai Co., Ltd."},
{"Edit Case": "Robert Allan Ltd. is based in -> Helsinki",
"Subject" : "Robert Allan Ltd."},
{"Edit Case": "James Thomas Aubrey, Jr. works for -> BBC",
"Subject" : "James Thomas Aubrey, Jr."},
{"Edit Case": "Alan Ball, Jr. is a professional -> basketball",
"Subject" : "Alan Ball, Jr."}

]
}

Figure 11: Part of hard cases in the COUNTERFACT dataset, each can trigger corresponding LLMs to collapse
through a single edit by ROME. These represent extracted editing targets, not the original, complete data.
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Prompt for data generation.

**Task Description**:
1. **Generate Data Samples** : Create a set of data samples, formatted as JSON object.
2. **Components of Each Sample**:

- **Prompt** : Combine a single-word, commonly recognized 'subject' with a 'relation'.
The 'subject' should be a single word and easily identifiable.↪→

- **subject** : Clearly define the 'subject' for each prompt, it must be strictly one
word, universally recognizable and unambiguous.↪→

- **target_new ** : Propose a 'target_new', which is a plausible yet distinct
counterfactual alternative to the 'ground_truth'. It should illustrate a potential
change in output achievable through model editing.

↪→
↪→
- **ground_truth**: Specify the 'ground_truth', ensuring it's a noun entity and relevant

to the 'subject'.↪→
3. **Sentence Formation** : Each 'prompt', combined with 'target_new' or 'ground_truth',

should form a coherent sentence in the format of (subject, relation, object).↪→
4. **Output Format** : Return the data in JSON format.

**Example Seed Sample**:
```json
[

{
"prompt" : "Thunder's occupation is",
"target_new" : "architect",
"subject" : "Thunder",
"ground_truth": "actor"

},
...

]
```

**You can refer to the Subjects List (JSON Format)**:
```json
{

"subjects": [subject list]
}
```

**Instructions:**
- Cross-reference each new 'subject' against the 'excluded_subjects' JSON array to ensure no

repetition.↪→
- Strictly ensure all 'subjects' are single-word entities, widely recognized and not compound

words or phrases.↪→
- 'Target_new' and 'ground_truth' should both be nouns and contextually appropriate for the

'subject'!!!↪→
- Creativity is encouraged in selecting 'target_new' to depict a clear **contrast** with

'ground_truth'.↪→
- Aim for variety in 'subjects' and 'relations' to encompass a broad range of knowledge.
- Develop more varied and common 'relations' that logically link the 'subject' to an 'object',

ensuring plausibility and relevance.↪→
- Provide only the JSON data in your response, without additional commentary.
- Generate 10 data points
- The 'subject' must be a **single** word!!!
- **'target_new' must be a clearly false answer to 'prompt'!!!**

Figure 12: Complete prompt used for generating data in the HardEdit dataset. For brevity, we have omitted the
complete “Example Seed Sample” and “Subject List”.
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