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ABSTRACT

We present a novel image generation model with channel-wise quantization. Our
method quantizes image feature along channel into discrete codes. Then based
on the learned codes, our approach adopts masked-prediction paradigm for image
generation. Compared with widely used spatial tokenizers, our channel-wise to-
kenizer has an efficient modeling for image structure and strong representational
capacity. Besides, the codebook usage of our tokenizer can reach 100% under
different codebook size. Using the channel-wise tokenizer, our generation frame-
work achieves competitive performances on various benchmarks of image gener-
ation. In particular, on ImageNet 256x256 benchmark, our method significantly
improve baseline by improving Frechet inception distance (FID) to 1.87. Further-
more, we also validate the effectiveness of our proposed method on text-to-image
generation.

1 INTRODUCTION
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Figure 1: The comparisons between
spatial tokenizer (LlamaGen) and
our channel-wise tokenizer with dif-
ferent token dim.

Image synthesis has achieved great improvements on
quality, diversity and resolution in the past few years.
Many prominent frameworks are introduced, such as
GAN (Kang et al., 2023), diffusion models (Ho et al.,
2020; Rombach et al., 2021; Esser et al., 2024; Li et al.,
2024) and VQ models (Van Den Oord et al., 2017; Esser
et al., 2020; Yu et al., 2022; Chang et al., 2023). Among
these frameworks, VQ models attract enormous atten-
tions, as it is compatible with large language models
(LLMs). The training paradigm of VQ models is divided
into two stages: learns a compressed discrete represen-
tation by a visual tokenizer at the first stage and subse-
quently learns a underlying data distribution in discrete
latent space via a LLMs transformer at second stage. Re-
cent studies (Zheng et al., 2022; Yu et al., 2023; Tian et al.,
2024) find that a good compressed discrete representation
can improve the upper-bound of image generation.

To learn a good visual representation, existing
works (Razavi et al., 2019; You et al., 2022; Huang
et al., 2023; Chang et al., 2023; Tian et al., 2024)
propose hierarchical tokenizers, which explicitly embed
semantic contents and local details, separately. Also,
some approaches adopt new objective losses to boost
reconstruction quality (Esser et al., 2020) and generation
capability of discrete tokens (Gu et al., 2024). These
methods learn the compressed visual tokens by spatially
partitioning the image features, thus the visual tokens
focus on local features, leading to strong similarities
between tokens and low utilization rate of entire codebook. To achieve a high utilization of
codebook, previous studies (Yu et al., 2021; 2023; Sun et al., 2024) decrease the code embedding
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dimension. However, decreasing the code embedding reduces the expressive ability of image
tokens, thereby the whole capability of an entire codebook also deteriorates.

In this paper, we propose a novel visual tokenizer for image generation, which reaches 100% code-
book usage without sacrificing the expressive capacity of tokens, see Figure 1. Specifically, we
quantize each channel of image features into a discrete token from the codebook via similarities.
Unlike spatially partitioning tokens, the channel-wise partitioning tokens possess global structure
of the input image and have low similarities between them. Besides, these tokens can capture local
details to reconstruct input image. In image generation stage, we adopt the masked language model
(MLMs) (Chang et al., 2022; Yu et al., 2023) as the default generator. Utilizing the proposed vi-
sual tokenizer and the MLMs, our method can generate high-quality images with small number of
sampling steps.

To validate the effectiveness of our method, we conduct extensive experiments on different scenar-
ios. For class-conditional image generation, our approach demonstrates a comparable or superior
performance on ImageNet benchmarks. In particular, on ImageNet 256x256 benchmark, our method
significantly improve baseline by improving Frechet inception distance (FID) to 2.21 with 634M. To
substantiate the transferability of the learned codebook, we also utilize the codebook learned from
ImageNet to perform text-to-image generation on COCO dataset. In addition, we conduct ablation
studies to show the mechanism behind our proposed tokenizer.

In summary, our contributions are two folds: First, we propose a novel visual tokenizer that channel-
wise quantizes image features. Our tokenizer is simple but effective on image tokenization. Besides,
due to its 100% codebook usage, our tokenizer is a potential quantizer for training with a large
codebook. Second, based on this tokenizer, our generation framework can achieve comparable
performance with the state-of-the-art methods on various image generation tasks.

2 RELATED WORK

Image tokenization. As shown in VQ-VAE (Van Den Oord et al., 2017), image tokenization quan-
tizes image features into discrete tokens derived from a codebook via similarities. To improve image
fidelity, VQ-GAN (Esser et al., 2020) applies adversarial loss and perceptual loss in image recon-
struction stage. Besides, RQ-VAE (Lee et al., 2022) and MoVQ (Zheng et al., 2022) converts a sin-
gle index token into a stacked of tokens to reconstruct a high-quality image. Subsequent approaches
adopt multi-scale paradigm (Razavi et al., 2019; You et al., 2022; Huang et al., 2023; Chang et al.,
2023; Tian et al., 2024) to advance reconstruction quality. VAR (Tian et al., 2024) encodes an image
into multi-scale token maps, capturing the global structure and local details. Although these methods
have obtained a high image quality, they suffer from low codebook usage with increasing codebook
size. To achieve a high utilization of codebook, previous studies (Yu et al., 2021; 2023; Sun et al.,
2024) decrease the code embedding dimension, degrading the expressive capacity. Unlike existing
works that spatially partitioning images into tokens, our method obtains discrete tokens from image
features via channel-wise partitioning. Our method can reach a 100% utilization for the codebook
without sacrificing the expressive capacity of tokens.

Autoregressive models. With the good discrete tokens, autoregressive models (ARs) (Esser et al.,
2020; Lee et al., 2022; Yu et al., 2022; Tian et al., 2024) learn to predict image tokens in an autore-
gressive manner using a decoder-only transformer. VQ-GAN (Esser et al., 2020) is the first work
to employ a decoder-only transformer to generate image tokens for many vector-quantized image
modeling tasks. Parti (Yu et al., 2022) is able to generate photorealistic and content-rich images by
scaling the transformer up to 20B parameters. VAR (Tian et al., 2024) redefines the autoregressive
learning on images as coarse-to-fine “next-scale prediction”.

Masked-predition models. Unlike autoregressive models, masked-prediction models (Chang
et al., 2022; Yu et al., 2023; Chang et al., 2023; Yu et al., 2024) begins with generating all to-
kens of an image simultaneously and then refines the image iteratively conditioned on the previ-
ous generation using a bidirectional transformer decoder. Based on masked-prediction mechanism,
MaskGIT (Chang et al., 2022) accelerates autogressive decoding by up to 64x. Due to its efficiency,
our method adopt masked-prediction models for image generation stage.

2
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Figure 2: Overview of image quantization in our approach. The cubes represent the feature
tensors, with C as the channel axis, (H, W) as the spatial axes. Left: a quantized autoencoder
with our channel-wise quantization. CQ denotes channel-wise quantization. Right: the difference
of quantized unit between spatial tokenizer and channel-wise tokenizer. The highlighted pixels
(mineral green) are quantized by tokenizers.

3 METHOD

3.1 PRELIMINARY: SPATIAL TOKENIZER

Image quantization. In VQ models, the goal of image quantization is to learn discrete token
representations for image generation stage. Given an image I ∈ RH×W×3, encoder E extracts
image features Z ∈ RH1×W1×C with downsample factor f = H/H1 = W/W1. Then quantizer
Q converts Z into discrete tokens across spatial dimension. For each vector z(i,j) ∈ RC in Z, the
quantizer find the closest token index from a codebook C ∈ RK×C via similarities (e.g. euclidean
distance),

Q(z(i,j); C) = argmin
k∈[K]

||z(i,j) − ek||22 (1)

where ek ∈ C. The quantized vector is zq
(i,j) = e(Q(z(i,j); C)). Zq ∈ RH1×W1×C are the quantized

features. The decoder D takes the quantized features as input and output the reconstruction images.

Discussion. Current state-of-the-art tokenizers follow two design rules: (1) high codebook usage;
(2) multi-scale feature quantization. For a high codebook utilization, most works reduce the code
embedding dimension. This degrades the capacity of image tokens and leads to a poor representation
of an whole codebook. To improve the image quality, multi-scale feature quantization is introduced,
which captures global structure and local details using different groups of tokens. This hierarchical
paradigm leads to a heavy computation cost due to excessive tokens.

3.2 CHANNEL-WISE TOKENIZER

Unlike existing spatial tokenizers, we propose channel-wise tokenizer, which quantizes the im-
age features across channel dimension, as shown in Figure 2. Concretely, the codebook is
C′ ∈ RK×H1W1 , where the dimension of each code vector is H1W1. Given image feature
Z ∈ RH1×W1×C , it is firstly flattened into a 1D sequence Zc ∈ RC×H1W1 . For each vector
zc ∈ RH1W1 in Z, the channel-wise quantizer Q′ find the closet token index from a codebook
C′ via similarities as follows:

Q′(zc; C′) = argmin
k∈[K]

||zc − e′k||22 (2)

where e′k ∈ C′. The quantized vector is zq
c = e(Q′(zc; C′)). The quantized feature Zq

c ∈ RC×H1W1

can be converted into Zq ∈ RH1×W1×C and then mapped into the reconstruction image Iq by the
decoder.

3
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Training losses. Following VQ-VAE (Van Den Oord et al., 2017), we use the straight-through
estimator (Bengio et al., 2013) to approximate the gradient of the channel-wise quantizer. We apply
the reconstruction loss to optimize the encoder and decoder, Lmse = ||I− Iq||22. For a higher recon-
struction quality, we employ perceptual loss (Zhang et al., 2018) and adversarial loss (Goodfellow
et al., 2014) with StyleGAN discriminator (Karras et al., 2020). We also use LeCam regulariza-
tion (Tseng et al., 2021) to stabilize GAN training. For codebook learning, we use the following
loss:

Lcodebook = ||sg[zqc ]− e′k||22 + β||zqc − sg[e′k]||22 (3)

where sg denotes the stopgradient operator. In equation 3, the first term is used to update the code-
book and the second term is commitment loss to force the encoder features to be close to codebook
embeddings, where β is commitment loss weight. We find entropy regularization (Yu et al., 2023;
Gu et al., 2024) is bad for our codebook learning, and do not use it.

Discussion. For channel-wise tokenizer, its quantized tokens can capture image structures nat-
urally due to its global receptive field. Besides, these tokens need to possess local details for a
high-quality image reconstruction. Thus, channel-wise quantized tokens contain global structures
and local details at the same time. It is a potential alternative to multi-scale feature quantization used
in recent studies (Chang et al., 2023; Tian et al., 2024).

For default spatial tokenizers, the quantized tokens are more like visual characters, since they
pay attention to local image areas and are easily to collapse into a limited number of visual units.
Conversely, the quantized tokens in channel-wise tokenizer represent an image from an overall per-
spective. The image tokens concentrate on larger image areas and more diverse than ones generated
by spatial tokenziers, thus we denote them as visual words. As a result, the codebook usage for our
channel-wise tokenizer reaches 100%.

3.3 MASKED CHANNEL-WISE PREDICTION

Inspired by MaskGiT (Chang et al., 2022), we learn the distribution priors of the channel-wise visual
tokens using a bidirectional transformer for image generation. Specifically, in each training step, we
sample a subset of tokens and replace them with a special mask token. Then, based on the masked
token sequence, we employ a directional transformer to predict the corresponding discrete token
index of those masked tokens. In the inference, we generate all tokens in the image simultaneously
in a single pass and then select the predictions of the masked tokens with high confidence to update
the masked images. Through this way, we can refine the image tokens iteratively conditioned on the
previous generation and output the full generated tokens, which are later mapped to image pixels.

In addition, to improve the training stability, we adopt query-key normalization with the RM-
SNorm (Zhang & Sennrich, 2019). As done in MaskGiT (Chang et al., 2022), we train our model
with a variable masking rate based on a Cosine scheduling for a high quality of image generation.

Classifier-free guidance. Classifier-free guidance (Ho & Salimans, 2022) is an useful technique
to improve generation quality and text-image alignment, thus we employ it in our masked channel-
wise prediction. At training time, we drop text conditioning on 10% of samples randomly and
replace it with a null embedding. In the inference, we compute a conditional logit ℓc and an uncon-
ditional logit ℓu for each masked token. We compute the final logit ℓg as follows:

ℓg = tℓc − (t− 1)ℓu (4)

where t is the guidance scale.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Datasets. For image tokenizer and class-conditional image generation, we use ImageNet (Deng
et al., 2009) at 256 × 256 and 512 × 512 resolutions, which contains 1,281,167 training images
and 50,000 validation images from 1K different classes. Following U-ViT (Bao et al., 2022), for
text-to-image generation, we train the generator only using MS-COCO at 256 × 256 resolution,

4
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Table 1: Model sizes and architecture configurations of our models. The configurations are
following previous works (Chang et al., 2022).

Model #Para. #heads #layers Hidden size MLP dim
Ours-B 305M 16 24 1024 4096
Ours-L 634M 16 32 1280 5120
Ours-H 1.0B 16 36 1536 6144

Table 2: Class-conditional image generation on ImageNet 256×256. ”Tokenizer Type”: the type
of quantizer used by generative models, ”S” denotes ”spatial quantizer”, ”C” denotes ”channel-wise
quantizer”. ”↓” or ”↑” indicate lower or higher values are better. Metrics include Fréchet inception
distance (FID), inception score (IS). ”#Para”: the model size used in image generation. ”#Step”: the
number of model runs needed to generate an image. †: codebook size is 65536.

Type Models Tokenizer
Type FID↓ IS↑ #Para #Step

GAN
BigGAN (Brock, 2018) - 6.95 224.5 112M 1
GigaGAN (Kang et al., 2023) - 3.45 225.5 569M 1
StyleGan-XL (Sauer et al., 2022) - 2.30 265.1 166M 1

Diffusion

ADM (Dhariwal & Nichol, 2021) - 10.94 101.0 554M 250
CDM (Ho et al., 2022) - 4.88 158.7 - 8100
LDM-4-G (Rombach et al., 2021) - 3.60 247.7 400M 250
DiT-L/2 (Peebles & Xie, 2022) - 5.02 167.2 458M 250
DiT-XL/2 (Peebles & Xie, 2022) - 2.27 278.2 675M 250

AR

VQGAN (Esser et al., 2020) S 15.78 74.3 1.4B 256
ViTVQ (Yu et al., 2021) S 4.17 175.1 1.7B 1024
RQTran. (Lee et al., 2022) S 7.55 134.0 3.8B 68
LlamaGen-L (Sun et al., 2024) S 3.80 248.28 343M 256
LlamaGen-XL (Sun et al., 2024) S 3.39 227.08 775M 256
LlamaGen-XXL (Sun et al., 2024) S 3.09 253.61 1.4B 256
Open-MAGVIT2-B (Luo et al., 2024) S 3.08 258.26 343M 256
Open-MAGVIT2-L (Luo et al., 2024) S 2.51 271.70 804M 256
Open-MAGVIT2-XL (Luo et al., 2024) S 2.33 271.77 1.5B 256

VAR

VAR-d16 (Tian et al., 2024) S 3.60 257.5 310M 10
VAR-d20 (Tian et al., 2024) S 2.95 306.1 600M 10
VAR-d24 (Tian et al., 2024) S 2.33 320.1 1.0B 10
VAR-d30 (Tian et al., 2024) S 1.97 334.7 2.0B 10

Mask.
MaskGIT (Chang et al., 2022) S 6.18 182.1 227M 8
RCG (cond.) (Li et al., 2023) S 3.49 215.5 502M 20
MagViT-2 (Yu et al., 2023) S 1.78 319.4 307M 64

Mask.

Ours-B C 2.77 305.3 305M 10
Ours-L C 2.46 302.5 634M 10
Ours-H C 2.39 338.2 1.0B 10
Ours-B* C 2.21 301.2 305M 64
Ours-L* C 2.02 323.4 634M 64
Ours-H* C 1.91 344.9 1.0B 64
Ours-L† C 1.87 320.4 634M 64

which contains 82,783 training images and 40,504 validation images. Each image is annotated with
5 captions.

Architecture configurations. For channel-wise tokenizer, we follow the implementation of VG-
GAN (Esser et al., 2020). For simplicity, we remove the attention blocks from the architecture of

5
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Table 3: Class-conditional image generation on ImageNet 512×512. ”Tokenizer Type”: the type
of quantizer used by generative models, ”S” denotes ”spatial quantizer”, ”C” denotes ”channel-wise
quantizer”.

Type Models Tokenizer
Type FID↓ IS↑ #Para #Step

GAN BigGAN (Brock, 2018) - 8.43 177.9 - 1

Diffusion ADM (Dhariwal & Nichol, 2021) - 23.24 101.0 559M 250
DiT-XL/2 (Peebles & Xie, 2022) - 3.04 240.8 675M 250

AR VQGAN (Esser et al., 2020) S 26.52 66.8 227M 1024
VAR VAR-d36-s (Tian et al., 2024) S 2.63 303.2 >2B 10

Mask. MaskGiT (Chang et al., 2022) S 7.32 156.0 227M 12
MagViT-v2 (Yu et al., 2023) S 1.91 324.3 307M 64

Mask.

Ours-B C 2.68 318.5 305M 10
Ours-L C 2.46 336.4 634M 10
Ours-B* C 2.22 323.4 305M 64
Ours-L* C 2.01 341.5 634M 64

channel-wise tokenizer. As suggested in VIT-VQGAN (Yu et al., 2021), we employ the StyleGAN
discriminator in the training. Note that for stable training, we disable the default fp16 training for
StyleGAN discriminator.

Following MaskGiT (Chang et al., 2022), we adopt a bidirectional transformer for masked visual
modeling. As shown in Table 1, the base and large model have 305M and 634M parameters, respec-
tively. In text-to-image generation, we convert discrete texts to a sequence of embeddings using a
CLIP text encoder following Stable Diffusion (Rombach et al., 2021).

Training. Following SeQ-GAN (Gu et al., 2024), we train the channel-wise tokenizer using Adam
optimizer (Kingma, 2014). Besides, we train the model for 300 epochs with a total 256 batch
size. The initial learning rate is 1e-4 and decays to 5e-5 via cosine decay schedule. For StyleGAN
discriminator, we enable it after training 10 epochs.

The training settings of masked visual transformer in class-conditional image synthesis is as follows:
a initial 4e-4 learning rate, AdamW optimizer with β1 = 0.9, β2 = 0.96, and a total 1024 batch size
for 1200 epochs. But, in text-to-image tasks, we modify some settings: a initial 1e-4 learning rate
and a total 256 batch size for 3000 epochs.

Evaluation metrics. For image reconstruction, we adopt the reconstruction-FID (rFID), code-
book usage, PSNR and SSIM to measure the quality of reconstructed images on ImageNet 50K
validation set. To assess class-conditional image generation, we calculate Fréchet inception dis-
tance (FID) (Heusel et al., 2017) and Inception score (IS) (Salimans et al., 2016) on ImageNet using
50K generated images compared against the ImageNet training set. For text-to-image evaluation,
we randomly draw 30K prompts from the MS-COCO validation set, and generate samples on these
prompts to compute FID.

4.2 CLASS-CONDITIONAL GENERATION

Setup. We test our models with two variants (305M and 634M) on ImageNet class-conditional
generation benchmarks and compare them with the state-of-the-art image generation model families.
Unlike existing VQVAE-based models, our models are based on channel-wise tokenizer. Note that
we train the tokenzier directly on ImageNet, while VAR (Tian et al., 2024) and VQGAN (Esser
et al., 2020) use OpenImages (Kuznetsova et al., 2020) as training data for VQVAE. The results are
demonstrated in Table 2 and Table 3.

6
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Figure 3: Generated samples from our proposed models trained on ImageNet. We show
512×512 samples (top-2 rows) and 256×256 samples (bottom-2 rows). The samples are gener-
ated with Our-L models with 10 steps.

Results. In comparison with existing generative methods, our method establishes a new model
class based on channel-wise tokenizer. As shown in Table 2, under the same settings, our ap-
proach achieves better FID and IS than generative adversarial networks (GAN), diffusion models
(Diffusion), autoregressive model (AR), visual autoregressive (VAR) and masked-prediction mod-
els (Mask.), except for MagViT-2 (Yu et al., 2023). In particular, our method achieves a highest
IS score among all methods. Note that MagViT-2 utilizes a larger codebook than ours, thus it is
reasonable for them to achieve better FID score than ours. We must point out that our method have
potential to obtain better performance with a large-scale codebook, see section 4.4 for more details.
But due to limited compute resources, we leave it for the future. In addition, the effectiveness of out
model is also validated on the 512×512 synthesis benchmark, as shown in Table 3. Our model out-

7
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Table 4: Text to image generation on MS-COCO 256×256 validation. The evaluations are on
COCO 30k val2014 set at 256×256 resolution.

Models Type Training datasets FID↓
LAFITE (Zhou et al.) GAN CC3M (3M) 26.94
Make-A-Scene (Gafni et al., 2022) AR Union datasets (35M) 11.84
DALL-E 2 (Ramesh et al., 2022) Diffusion DALL-E dataset (250M) 10.39
Imagen (Saharia et al., 2022) Diffusion Internal dataset (460M) + LAION (400M) 7.27
Re-Imagen (Chen et al., 2022) Diffusion KNN-ImageText (50M) 6.88

XMC-GAN (Zhang et al., 2021) GAN MS-COCO (83K) 9.33
Friro (Fan et al., 2023) Diffusion MS-COCO (83K) 8.97
U-ViT-S/2 (Bao et al., 2023) Diffusion MS-COCO (83K) 5.95
Ours-L Mask. MS-COCO (83K) 6.40
Ours-L* Mask. MS-COCO (83K) 5.85

Table 5: Comparisons with other image tokenizers. The evaluations are on ImageNet 50k valida-
tion set and COCO 5k val2017 set at 256×256 resolution. The compression ratio is 16.

Method #Tokens #dim size ImageNet MS-COCO
rFID↓ PSNR↑ SSIM↑ rFID↓ PSNR↑ SSIM↑

VQGAN 256 256 1024 8.30 19.51 0.614 16.95 19.08 0.613
VQGAN 256 256 16384 4.99 20.00 0.629 12.29 19.57 0.630
MaskGIT 256 256 1024 2.28 - - - - -
LlamaGen 256 256 16384 9.21 18.32 0.575 - - -
LlamaGen 256 8 16384 2.19 20.79 0.675 8.11 20.42 0.678

Ours 256 256 16384 1.64 18.72 0.866 7.95 17.92 0.860
Ours 512 256 16384 0.98 21.47 0.925 6.22 21.10 0.931

performs other methods by a large margin on both FID and IS, except for MagViT-2. In particular,
ours-L∗ performs better on FID than VAR with > 2B parameters and beats MagViT-2 on IS score.
In Figure 3, we show the generated samples on ImageNet at 512×512 and 256×256 resolutions.

4.3 TEXT-TO-IMAGE GENERATION

Setup. We evaluate our model for text-to-image generation on the standard benchmark dataset
MS-COCO. We train masked-prediction model with MS-COCO 256×256 training data following
U-ViT (Bao et al., 2023). Note that we use the tokenzier trained on ImageNet for image quantization,
which does not utilize large-scale external dataset to train.

Results. As shown in Table 4, Our-L outperforms most of existing methods, such as Re-Imagen
and Friro. By further increasing the sampling steps from 10 to 64, Our-L∗ can even obtained 5.85
FID on MS-COCO benchmark, achieving a better result than U-ViT-S/2. These results demonstrate
the effectiveness of our method on text-to-image generation.

4.4 ABLATION STUDY

Comparisons with other image tokenizers. We compare with other image tokenizers, including
VQGAN (Esser et al., 2020), MaskGIT (Chang et al., 2022) and LlamaGen (Sun et al., 2024). As
shown in Table 5, our tokenizer have the best rFID score among these tokenizers. Since it is a
channel-wise quantizer and can capture global structure, our tokeniezr demonstrates superior results
on SSIM score. We find our tokenizer lag behinds on PSNR score due to limited tokens. When
increasing the number of tokens, our tokenizer achieves a large gain on PSNR. Besides, it also
obtains higher performances on rFID and SSIM.

8
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Table 6: Ablation studies on tokenizers design. The evaluations are on ImageNet 50k validation
set at 256×256 resolution. The default number of image tokens is 256. The compression ratio is 16.

(a) Spatial quantizer vs. Channel-wise quantizer.

Method Token dim rFID↓ Usage↑

LlamaGen

256 9.21 0.29%
32 3.22 20.9%
8 2.19 97.0%
4 9.88 82.0%

Ours 256 1.64 100%

(b) Effect of codebook size.

Codebook
size rFID↓ Unique

ratio Usage↑

1024 2.25 72.5% 100%
16384 1.64 92.6% 100%
65536 1.43 95.6% 100%

131072 1.33 96.9% 100%

Generalization of our tokenizer. To validate the generalization of our tokenizer, we directly eval-
uate our tokenizer trained with ImageNet on MS-COCO of 256×256 image resolution. Note that
MS-COCO mainly have scene-centric images, while ImageNet focuses on object-centric images.
There are a big domain gap between these two datasets. As shown in Table 5, compared with other
tokenizers, our tokenizer achieves the best rFID score and SSIM score. The results showcase that
our tokenizer is a generalizable image tokenizer.

Effect of tokenizer design. We compare our tokenizer with the spatial tokenzier used in Lla-
maGen. For fair comparison, we use the same codebook size (16384) for these two tokenizers.
As shown in Table 6a, LlamaGen can reduce the token dim to improve the reconstruction quality
and codebook usage. However, reducing token dimension degrades the expressive capacity of the
codebook. Unlike spatial tokenzier, our tokenizer can achieve a better image quality and codebook
usage without sacrificing the expressive capacities of quantized tokens. This demonstrates that our
tokenizer is a potential tokenizer for image quantization.

In addition, we compare the performance of our tokenizer with different codebook sizes. To under-
stand our tokenizer deeply, we also propose a new metric: unique ratio. For an image, we calculate
the ratio of unique tokens in the total image tokens. The high ratio of unique tokens means the more
distinct image features that tokenizer captures. As shown in Table 6b, with increasing codebook size,
the rFID score is getting better for our tokenzier. Meanwhile, the codebook usage of our tokenzier
reaches 100% under all codebook sizes. This demonstrates that the effectiveness of our tokenizer
with increasing codebook size. We also find that the unique ratio increases with larger codebook.
With a small codebook, our tokenizer have no enough capacity to represent image in details, while
our tokenizer can capture more image features when using a large codebook.

Table 7: Ablation studies on image generation.

Model size Codebook size #Step FID↓ IS↑

305M
16384 10 2.77 305.3

64 2.21 301.2

65536 10 2.53 301.1
64 2.04 306.9

634M
16384 10 2.46 302.4

64 2.01 323.4

65536 10 2.34 312.2
64 1.87 320.4

Ablation studies on image generation.
To study our model on image generation,
we analyze the effects of different compo-
nents, including model size, codebook size
and sampling steps. As demonstrated in Ta-
ble 7, we find that the model with 64 sam-
pling steps boost generation performance
largely. The codebook size also has a pos-
itive benefit to performance. With larger
codebook, our model boosts FID to 1.87.
This demonstrates our method can obtain
better performance with increasing code-
book size.

5 LIMITATIONS

There are two limitations in our method. First, our channel-wise tokenizer needs to be trained sep-
arately for different image resolution. Conversely, spatial tokenizers are trained in a low resolution
once but directly used for various high image resolution, though the transfer performance is not

9
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optimal. Second, due to limited compute resources, we can not train a large model to validate the
scalability of our approach.

6 CONCLUSION

We introduce a novel image generation model with channel-wise tokenizer. The channel-wise tok-
enizer provides a novel image quantization and achieves superior performance on image reconstruc-
tion. Compared with widely used spatial tokenizer, it showcases a high codebook usage. With the
proposed channel-wise tokenizer, our generation framework can perform comparable performance
with state-of-the-art models on image generation, demonstrating the effectiveness of our proposed
method.
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Lijun Yu, José Lezama, Nitesh B Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong
Cheng, Agrim Gupta, Xiuye Gu, Alexander G Hauptmann, et al. Language model beats diffusion–
tokenizer is key to visual generation. arXiv preprint arXiv:2310.05737, 2023.

Qihang Yu, Mark Weber, Xueqing Deng, Xiaohui Shen, Daniel Cremers, and Liang-Chieh Chen.
An image is worth 32 tokens for reconstruction and generation. arXiv preprint arXiv:2406.07550,
2024.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

Han Zhang, Jing Yu Koh, Jason Baldridge, Honglak Lee, and Yinfei Yang. Cross-modal contrastive
learning for text-to-image generation. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 833–842, 2021.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 586–595, 2018.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Chuanxia Zheng, Tung-Long Vuong, Jianfei Cai, and Dinh Phung. Movq: Modulating quantized
vectors for high-fidelity image generation. Advances in Neural Information Processing Systems,
35:23412–23425, 2022.

Yufan Zhou, Ruiyi Zhang, Changyou Chen, Chunyuan Li, Chris Tensmeyer, Tong Yu, Jiuxiang Gu,
Jinhui Xu, and Tong Sun. Lafite: Towards language-free training for text-to-image generation,
2021. URL https://arxiv. org/abs/2111.13792.

A APPENDIX

Figure 4: Visualization of codebook tokens (size=1024) learned by our channel-wise tokenizer.
The red and blue means high and low activations, respectively.

A.1 CODEBOOK ANALYSIS

We visualize codebook tokens (size=1024) in Figure 4. The visualization shows that our channel-
wise tokenizers can capture image structure and local details simultaneously. For example, in row
1, the first three tokens show high activations on global areas. It means that these three tokens are
used to represent image structure. The 4th, 5th, and 6th tokens have high activations on local areas,
meaning they are used for local details.
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