TRAJECTORY OPTIMAL ANISOTROPIC DIFFUSION MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

We study anisotropic diffusion for generative modeling by replacing the scalar noise schedule with a matrix-valued path M_t that allocates noise (and denoising effort) across subspaces. We introduce a trajectory-level objective that jointly trains the score network and $learns\ M_t(\theta)$; in the isotropic case, it recovers standard score matching, making schedule learning equivalent to choosing the weight over noise levels. We further derive an efficient estimator for $\partial_{\theta}\nabla \log p_t$ that enables efficient optimization of M_t . For inference, we develop an anisotropic reverse-ODE sampler based on a second-order Heun update with a closed-form step, and we learn a scalar time-transform $r(t;\gamma)$ that targets discretization error. Across CIFAR-10, AFHQv2, and FFHQ, our method matches EDM overall and substantially improve few-step generation. Together, these pieces yield a practical, trajectory-optimal recipe for anisotropic diffusion. Code is available at 1 .

1 Introduction

Diffusion and flow-based generative models typically add and remove *isotropic* Gaussian noise with a scalar schedule $\sigma(t)$ while learning a score network and integrating a reverse-time SDE/ODE (Ho et al., 2020; Song et al., 2021; Karras et al., 2022). The isotropic design is simple and effective, but forces the dynamics to act uniformly in all directions.

Why anisotropy. Replacing the scalar schedule by a matrix-valued path M_t substantially enlarges the design space: noise can be allocated differently across subspaces and time, better matching data geometry-natural images concentrate energy in low spatial frequencies (Ruderman & Bialek, 1993); latent diffusion offloads fine detail to a learned autoencoder (Rombach et al., 2022); video models benefit from temporally structured priors or decomposed noise (Ge et al., 2023; Luo et al., 2023); multi-resolution autoregressive models gain from coarse-to-fine generation (Tian et al., 2024).

From heuristics to learning. Existing anisotropy is often hand-crafted (e.g., temporal correlation in video; frequency-biased processing in image pipelines), and the space of possible M_t is huge, making manual search impractical. In parallel, work on *isotropic* models shows that optimizing only the discretization schedule can already boost few-step quality (Sabour et al., 2024). These trends motivate a *learned*, general-purpose anisotropic framework.

This paper. We introduce a trajectory-level objective that (i) trains the score network and (ii) *learns* an anisotropic schedule $M_t(\theta)$. Separately, we learn a scalar time reparameterization $r(t;\gamma)$ that reduces discretization error; both compose with a second-order sampler, yielding a practical training/inference recipe.

Notation. The isotropic variance-exploding (VE) process is

$$x_0 \sim p_0, \quad dx_t = dB_t \iff dx_t = -\frac{1}{2} \nabla \log p_t(x_t) dt,$$
 (1)

with $p_t = p_0 * \mathcal{N}(0, tI)$. We generalize the above to anisotropic diffusion by letting $x_t \sim p_0 * \mathcal{N}(0, M_t)$ with a nondecreasing PSD trajectory $M_t \in \mathbb{R}^{d \times d}$:

$$x_0 \sim p_0$$
, $dx_t = (\partial_t M_t)^{1/2} dB_t \iff dx_t = -\frac{1}{2} \partial_t M_t \nabla \log p_t(x_t) dt$, (2)

where $M_0 = 0$, $M_T = T$ for some maximum noise level T, and $t > s \Rightarrow M_t \succeq M_s$. We discuss further details Section 2.

¹anonymous.4open.science/r/anisotropic-diffusion-paper-8738

1.1 MAIN CONTRIBUTIONS

 We study *anisotropic* diffusion for generative modeling by learning a matrix-valued noise schedule M_t that allocates noise and denoising effort across subspaces. Our contributions are:

- 1. **Anisotropic diffusion and reverse ODE.** We formalize variance–exploding and variance–preserving anisotropic diffusion processes, derive the corresponding reverse ODE, and give practical samplers: a first–order Euler update (7) and a *second–order Heun update* (17) and Lemma 6. This yields stable, efficient generation for the reverse anisotropic ODE.
- 2. Trajectory-Level Score Matching (TLSM). We introduce a path-integrated loss $L(\theta,\phi)$ that simultaneously (i) trains the score network to match the score and (ii) *learns* the anisotropic schedule $M_t(\theta)$ by minimizing score error along the generation trajectory (Section 3). At optimality, the network matches the exact score Lemma 1, and in the isotropic case TLSM *reduces* to weighted score matching—formally tying any choice of weights w(t) to a scalar schedule g(t) (Lemma 2, Section 3.1). This reveals a surprising interpretation isotropic TLSM is equivalent to *learning an optimal weight function for score-matching*.
- 3. Differentiating through $M_t(\theta)$ efficiently. Optimizing over $M_t(\theta)$ is challenging because it involves $\partial_{\theta} \nabla \log p_t(x;\theta)$, which cannot be easily obtained from the score-network. We propose a directional estimator for $\partial_{\theta} \nabla \log p_t(x;\theta)$ that uses only higher-order x-directional derivatives of the network and is implementable in three backward passes, independent of $\dim(\theta)$ (Lemma 3, Section 4.1). We further present a variance-reduced formula based on estimating $\partial_{\theta} (M_t(\theta)^{-1/2} \nabla \log p_t(x;\theta))$ (Lemma 5).
- 4. Learning the discretization schedule. Orthogonal to optimizing $M_t(\theta)$ wrt the score-matching loss, we learn a time-reparameterization $r(t;\gamma)$ that minimizes a trajectory-level discretization error (5). Our formulation cleanly separate score-matching from discretization-error minimization. In Algorithm 1, the learned $r(t;\gamma)$ composes with the Heun integrator based on the learned $M_t(\theta)$ noise schedule, gaining benefits from optimization of both $r(t;\theta)$ and $M_t(\theta)$.
- 5. **Empirical benefits.** On CIFAR-10 (Krizhevsky et al., 2009), AFHQv2 (Choi et al., 2020), and FFHQ (Karras et al., 2019), our learned anisotropic denoising model is competitive with EDM across budgets, and yields large gains on FFHQ, and at small counts e.g., **FFHQ** FID **6.05** vs. 57.28 at NFE=9 and **3.45** vs. 15.98 at NFE=13; **CIFAR-10 2.93** vs. 6.80 at NFE=13 (50k samples), with a small gap at very large NFE on CIFAR-10 (Table 1 and Figure 2).

1.2 RELATED WORK

Optimizing schedules in isotropic diffusion. Recent work tunes the *test-time* discretization schedule to improve few-step sampling (Sabour et al., 2024; Wang et al., 2023; Liu et al., 2023; Park et al., 2024; Williams et al., 2024), complementing hand-crafted EDM designs (Karras et al., 2022). Related efforts adjust *training-time* noise weighting or sampling over noise levels while retaining a scalar schedule (Hang et al., 2024; Okada et al., 2024).

Beyond isotropy: correlated noising. Methods introduce structure via edge-aware anisotropy (Vandersanden et al., 2024), per-pixel multivariate schedules (Sahoo et al., 2024), or time-varying correlated masks (Huang et al., 2024). Frequency-/subspace formulations restrict or bias diffusion dynamics (Jing et al., 2022), and video models exploit structured noise across time through decomposition or temporally correlated priors (Luo et al., 2023; Ge et al., 2023; Chang et al., 2025). In contrast, we *learn* a general matrix-valued trajectory $M_t(\theta)$ together with a scalar time-transform $r(t;\gamma)$ under a trajectory-level objective, and compose both within a second-order anisotropic sampler (Algorithm 1).

2 PRELIMINARIES

2.1 Anisotropic diffusion: process, score, and parameterizations

Recall the anisotropic diffusion process in (2). Let $M_t(\theta)$ denote the noise covariance at time t, parameterized by $\theta \in \mathbb{R}^c$. p_t as defined in (2) has score given by

$$\nabla \log p_t(x;\theta) = M_t^{-1}(\theta) \mathbb{E}_{x_0 \mid x_t = x} \left[x_0 - x_t \right], \tag{3}$$

where (x_0, x_t) are defined by the joint distribution $x_0 \sim p_0$ and $x_t = x_0 + \mathcal{N}(0, M_t)$. We provide a short proof in Lemma 7 in Appendix B. In case of time-uniform isotropic diffusion (i.e. standard Brownian Motion), $M_t(\theta) = tI$, and the formula in (3) reduces to the standard score expression.

We parameterize a neural network $net(x, t, \phi)$ to approximate the score, we also define flow, a transformation of net whose norm is approximately time-invariant:

$$\operatorname{net}(x,t,\phi) \approx \nabla \log p_t(x;\theta), \qquad \operatorname{flow}(x,t,\phi) := M_t^{1/2} \operatorname{net}(x,t,\phi).$$
 (4)

Remark 1 (Anisotropic score matching for fixed M_t ; not used in this paper). For a fixed M_t schedule, the natural per-time objective at time t is

$$\ell_t(\phi) := \mathbb{E}_{x_0,\epsilon} \left[\left\| \text{net}(x_t, t, \phi) - M_t^{-1}(\theta)(x_0 - x_t) \right\|_2^2 \right], \qquad x_t = x_0 + M_t^{1/2} \epsilon. \tag{5}$$

We show in Lemma 4 in Appendix B that $\ell_t(\phi)$ is minimized by $\text{net}(x_t, t, \phi) = \nabla \log p_t(x)$.

Continuous and discrete Reverse ODE for anisotropic denoising. Given net in (6), we define the continuous-time *forward* ODE and *reverse* ODE are respectively defined as

$$d\bar{x}_t = -\frac{1}{2}\partial_t M_t(\theta) \mathrm{net}(\bar{x}_t, t, \phi), \qquad \Leftrightarrow \qquad d\bar{x}_{T-t} = \frac{1}{2}\partial_t M_t(\theta) \mathrm{net}(\bar{x}_{T-t}, T-t, \phi). \tag{6}$$

The reverse-ODE above can be implemented via a time-discretization of (6). For intuition, we present below the simple Euler-discretization of (6): Let K be number of steps, let $t_0 < t_1 ... < t_K \in [0,T]$ denote discretization points. The Euler reverse ODE is

$$x_{t_{k-1}}^{Eul} = x_{t_k}^{Eul} + (M_{t_{k-1}}^{1/2} - M_{t_k}^{1/2}) \text{flow}(x_{t_k}^{Eul}, t_k). \tag{7}$$

Our experiments use Heun's second order integrator (Ascher & Petzold, 1998; Karras et al., 2022) which consistently gives better FID per NFE. We detail this algorithm in Section 5.

Variance-Preserving Anisotropic Diffusion. It is often more useful to consider the *variance pre*serving anisotropic diffusion, which is simply (time-dependent) linear-transformation of (2). Define

$$x_t^{VP} := (I + M_t(\theta))^{-1/2} x_t.$$
(8)

The choice of I above is based on the assumption that $Cov(x_0) \approx I$. The dynamics of x_t^{VP} can be explicitly written, without reference to x_t , using a matrix exponential. However, it is much simpler mathematically and programmatically to maintain x_t explicitly, and define x_t^{VP} via (8).

2.2 IMPLEMENTATION DETAILS: $M_t(\theta)$ FOR DCT BASIS ON IMAGES

We present below a simple example of $M_t(\theta)$ based on the 2D Discrete Cosine Transform (2D-DCT). See Appendix A background on 2D-DCT bases. Let $d=H\times H$ denote the dimension of an image. Let $v_1...v_{H^2}$ denote the 2D-DCT basis vectors of $H\times H$. Let $S_1...S_J\subset \{v_1...v_{H^2}\}$ be a disjoint union of these H^2 2D-DCT vectors. For each i=1...J, let $g_i(t;\theta):\mathbb{R}^+\to\mathbb{R}^+$ denote a monotonically increasing function satisfying $g_i(0;\theta)=0$ and $g_i(T;\theta)=T$. Let $V_i\in\mathbb{R}^{|S_i|\times H^2}$ denote the basis matrix for S_i , so that $V_i^\top V_i$ is a projection matrix onto $span(S_i)$. Then we define

$$M_t(\theta) := \sum_{i=1}^J g_i(t; \theta) V_i^\top V_i, \quad \text{equiv.} \quad \partial_t M_t(\theta) := \sum_{i=1}^J \partial_t g_i(t; \theta) V_i^\top V_i. \quad (9)$$

We verify that $M_t(\theta) \succ M_s(\theta)$ for t > s, and thus defines a valid forward anisotropic diffusion process (2). Intuitively, each $g_i(t;\theta)$ defines a separate time-schedule on each subspace $S_1...S_J$.

Efficient matrix algebra. The form (9) implies $F(M_t) = \sum_i F(g_i(t)) V_i^{\top} V_i$ for $F \in \{(\cdot)^c, \partial_t, \partial_\theta\}$; our experiments use J=2 and implement g_i using log-linear knots (App. C).

3 TRAJECTORY-LEVEL SCORE MATCHING LOSS

Goal. We want to learn an anisotropic noise path $M_t(\theta)$ that reduces generation error. Two error sources dominate at test time: (i) **score approximation error**, and (ii) **discretization error** of the

Figure 1: Illustration of Isotropic vs. anisotropic denoising. Top: standard isotropic sampler denoises all directions uniformly. Bottom: anisotropic sampler with two DCT subspaces, V_1 (low frequency) and V_2 (high frequency), (Section 2.2). Columns show intermediate reconstructions as t decreases. The plot (right) displays the learned subspace schedules $g_1(t)$ and $g_2(t)$; the former is denoised more aggressively, thus low-frequency structure emerges earlier from the V_1 , while high-frequency details emerge later from V_2 . Illustration only: in practice anisotropic and isotropic will reconstruct different images, and the gap between g_1 and g_2 is typically smaller (see Fig. 4)

reverse ODE. In this section we focus on (i), introducing a trajectory-level objective that jointly trains the score network and learns $M_t(\theta)$. We discuss (ii) in Section 5.

From (2) and (6), the *variance-preserving* ODE (8) with $\nabla \log p_t$ and net are defined by the drift velocity fields $v(x_t, t; \theta)$ and $\bar{v}(\bar{x}_t, t; \theta)$ respectively:

$$v(x,t;\theta) := -(I + M_t(\theta))^{-1/2} \partial_t M_t(\theta) \nabla \log p_t(x;\theta) - \frac{1}{2} (I + M_t(\theta))^{-3/2} \partial_t M_t(\theta) x,$$

$$\bar{v}(x,t;\theta,\phi) := -(I + M_t(\theta))^{-1/2} \partial_t M_t(\theta) \text{net}(x,t,\phi) - \frac{1}{2} (I + M_t(\theta))^{-3/2} \partial_t M_t(\theta) x. \quad (10)$$

Let us also define $\tilde{v}(x,y,t;\theta):=-(I+M_t(\theta))^{-1/2}\partial_t M_t(\theta)M_t^{-1}(\theta)(y-x)-\frac{1}{2}(I+M_t(\theta))^{-3/2}\partial_t M_t(\theta)x$. It follows from (3) that $v(x,t;\theta)=\mathbb{E}_{x_0|x_t=x}\left[\tilde{v}(x,x_0,t;\theta)\right]$. For $\epsilon\sim\mathcal{N}(0,I), x_t:=x_0+M_t^{1/2}(\theta)\epsilon$, we now define the trajectory-level score-matching loss as

$$L(\theta,\phi) = \int_0^T \mathbb{E}_{x_0,\epsilon} \left[\|\bar{v}(x_t, t; \theta, \phi) - \tilde{v}(x_t, x_0, t; \theta)\|_2^2 \right] dt, \tag{11}$$

where T denotes maximum noise level. We also provide a more explicit expression of $L(\theta, \phi)$ in (15) in Section 4.2 below. $L(\theta, \phi)$ can be viewed as a generalization to the standard score-matching objective, but with *matrix-valued weights*. The loss in (11) has a number of desirable properties:

Exact score at optimality. The following analog of Lemma 4 shows that $L(\theta, \phi)$, like the standard score-matching loss, also encourages net to match the score. Proof in Appendix B.

Lemma 1. $L(\theta, \phi)$, as defined in (11), is minimized if $net(x, t; \phi) = \nabla \log p_t(x; \theta)$ for all (x, t).

Connection to path-level KL divergence: For two stochastic processes evolving as $dx_t = v(x_t,t)dt + dB_t$ and $d\bar{x}_t = \bar{v}(\bar{x}_t,t)dt + dB_t$, the path-level KL divergence is bounded by $\int_0^T \mathbb{E}\left[\|\bar{v}(x_t,t) - v(x_t,t)\|_2^2 dt$ (assuming sufficient regularity, e.g. Novikov's condition). This has been used, for instance, to bound the discretization error of the reverse SDE in Chen et al. (2022). Our loss (1) differs from the KL upper bound in replacing $v(x,t;\theta)$ by $\tilde{v}(x,x_0;\theta)$, because the true score (and hence $v(x,t;\theta)$) is not accessible during training. In this paper, we focus on the forward and reverse ODE for simplicity, but the forward and reverse SDE can be analogously defined.

Integration error under VP scaling (intuition). We choose to compute the score-matching error under the VP formulation for two reasons: (1) VP transformation keeps scale roughly constant wrt

time, and (2) at large time, the backward ODE is dominated by x_t contracting towards 0. Thus discretization errors at high noise should be discounted (via the $(I + M_t(\theta))^{-1/2}$ scaling).

3.1 Choice of weight w(t) is equivalent to choice of noise-schedule $g_t(\theta)$.

Possibly of independent interest, we present here a connection between learning $g_t(\theta)$, and the standard score-matching formulation. Consider the *isotropic* version of (11). Let $M_t(\theta) := g_t(\theta)I$, where g_t is a scalar-valued monotonically increasing function. $L(\theta, \phi)$ thus simplifies to

$$\int_0^T \frac{(\partial_t g_t(\theta))^2}{1 + g_t(\theta)} \mathbb{E}_{x_0,\xi} \left[\left\| \text{net}_{g_t(\theta)} (x_0 + g_t(\theta)^{1/2} \xi; \phi) + g_t(\theta)^{-1/2} \xi \right\|_2^2 \right] dt. \tag{12}$$

With slight abuse of notation we let $\text{net}_{\sigma^2}(x_t;\phi)$ denote the network trained to match the score of $p_0 * \mathcal{N}(0,\sigma^2I)$. In literature, the score-matching loss is usually a weighted average $\int_0^T w(s) \mathbb{E}_{x_0,\xi} \left[\|\text{net}_s(x_0 + \sqrt{s}\xi) + \xi/\sqrt{s}\|_2^2 \right] ds$. We show below that choosing a $g_t(\theta)$ is exactly equivalent to choosing a weighing function w(s):

Lemma 2. For any w(t), there exists a $g_t(\theta)$ and constant c, such that for any H(t)

$$\int_0^T \frac{(\partial_t g_t(\theta))^2}{1 + g_t(\theta)} H(g_t(\theta)) dt = c \int_0^T w(t) H(t) dt.$$

We defer the proof to Appendix B. Consequently, any weighted score-matching loss for isotropic diffusion (where the weights can be a combination of explicit weighting function and implicit distribution density, e.g. Karras et al. (2022)) can be equivalently written as an instance of trajectory-level score-matching loss, for a specific choice of $g_t(\theta)$. When we optimize over the space of noise-schedules $g_t(\theta)$ wrt $L(\theta,\phi)$, we are equivalently optimizing over the choice of weighing function w(t) under the standard score-matching loss.

4 Optimization Score Matching Loss over $M_t(\theta)$

For fixed t, let $\theta \in \mathbb{R}^c$ be the vector parameterizing $M_t(\theta)$. Then for all i = 1...c,

$$\partial_{\theta_i} x_t(\theta) = -\frac{1}{2} \partial_{\theta_i} M_{\theta} \nabla \log p_t(x; \theta) \quad \Leftrightarrow \quad \partial_{\theta_i} p_t(x; \theta_i) = \frac{1}{2} \operatorname{div}(\partial_{\theta_i} M_t(\theta_i) \nabla p_t(x; \theta_i)). \quad (13)$$

The LHS of (13) resembles (2), as both describe the density evolution of $p_t(x;\theta)$, and follow almost identical proofs. However, do note that (2) and (13) have very different meanings. Specifically, (2) holds θ fixed, and evolves $x_t(\theta)$ over t, whereas (13) holds t fixed, and evolves $x_t(\theta)$ over θ .

4.1 STOCHASTIC APPROXIMATION TO $\partial_{\theta} \nabla \log p_t(x;\theta)$ AND $\partial_{\theta} \text{NET}(x,t,\phi)$

A significant challenge of optimizing $L(\theta,\phi)$ lies in the fact that there is no simple way to approximate $\partial_{\theta}\nabla \log p_t(x;\theta)$. This is because, whereas $\text{net}(x,t;\phi) \approx \nabla \log p_t(x;\theta)$ is a good approximation of the value of the score, it does not explicitly provide the derivative of the score, with respect to ϕ . One simple approach is to allow $\text{net}(x,t,\phi,\theta)$ to additionally take in θ as an input argument, e.g. via a more complex time-embedding module, but this approach has two major downsides:

- 1. The score-matching loss (11) needs to integrate over not just time $t \in [0, T]$, but over a large set of potential θ 's. This is forces the net to trade-off the score loss at various suboptimal θ values, which are not used for inference-time reverse-ODE.
- 2. As the parameterization of $M_t(\theta)$ as a function of θ becomes more complex, $net(x,t,\phi,\theta)$ must also use a more complex time-embedding module to encode (t,θ) .

In contrast, we present a principled approach, that computes an unbiased stochastic estimate of the θ -space derivative $\partial_{\theta_i} \nabla \log p_t(x;\theta)$, using only higher-order directional x-space derivatives $\nabla \log p_t(x;\theta)$ along specific directions. Programmatically (e.g. in PyTorch), the derivatives with respect to all of $\theta_1...\theta_c$ is computed together in three backward passes, so the additional computational cost is agnostic to the dimension of θ , and the parameterization of $M_t(\theta)$.

Lemma 3. Let $e_1...e_d$ denote any orthonormal basis of \mathbb{R}^d . Then

$$\partial_{\theta_i} \nabla \log p_t(x;\theta) = \frac{1}{2} \sum_{j=1}^d \partial_r \partial_s \nabla \log p_t(x + re_j + s \partial_{\theta_i} M_t(\theta) e_i; \theta) + \partial_s \nabla \log p_t(x + s \partial_{\theta_i} M_t(\theta) \nabla \log p_t(x;\theta); \theta).$$

Applying the approximation of $net(x, t, \phi) \approx \nabla \log p_t(x; \theta)$ on both sides gives

$$\partial_{\theta_i} \operatorname{net}(x, t, \phi) \approx \frac{1}{2} \sum_{i=1}^d \partial_r \partial_s \operatorname{net}(x + re_i + s \partial_{\theta_i} M_t(\theta) e_i, t, \phi) + \partial_s \operatorname{net}(x + s \partial_{\theta_i} M_t(\theta) \operatorname{net}(x, t, \phi), t, \phi). \tag{14}$$

The sum over j=1...d is expensive to compute exactly, but it can be efficiently approximated in expectation, by sampling e_i from the standard Gaussian distribution.

4.2 Optimizing the loss $L(\theta, \phi)$

We now apply our formula from Section 4.1 to optimize $L(\theta,\phi)$ in (11). For notational clarity, we treat θ as a scalar. Mathematically, $\theta \in \mathbb{R}^c$ can be handled by repeating the computation for each scalar θ_i . At the end of this section, we provide PyTorch code, showing how the gradients of all $\theta_1...\theta_c$ can be *simultaneously computed in one set of backward passes*. Let $x_0 \sim p_0$ and $\xi \sim \mathcal{N}(0,I)$ independently, and define $x_t := x_0 + M_t^{1/2} \xi$, consistent with (2). Following the setup in Section 3, $L(\theta,\phi)$ is equal to

$$\mathbb{E}_{x_0,\xi} \left[\left\| (I + M_t(\theta))^{-1/2} \partial_t M_t(\theta) \left(\text{net}(x_0 + M_t^{1/2}(\theta)\xi, t, \phi) + M_t(\theta)^{-1/2} \xi \right) \right\|_2^2 \right]. \tag{15}$$

Let us define the gradient of $L(\theta, \phi)$ above with respect to net as.

$$G(\theta,\phi):=2\mathbb{E}_{x_0,\xi}\left[\partial_t M_t(\theta)(I+M_t(\theta))^{-1}\partial_t M_t(\theta)\Big(\mathrm{net}(x_0+M_t^{1/2}(\theta)\xi,t,\phi)+M_t(\theta)^{-1/2}\xi\Big)\right].$$

To estimate the actual derivative of $L(\theta)$, accounting for the change-in-score-due-to- θ , we augment the derivative $\partial_{\theta}(15)$ using

$$\partial_{\theta} L(\theta, \phi) = \partial_{\theta}(15) + \langle G(\theta, \phi), (14) \rangle. \tag{16}$$

The expectation wrt x_0, ξ can be approximated by a finite sum over j = 1...n of $\{(x_0^{(j)}, \xi^{(j)})\}_{j=1...n}$, sampled iid from $p_0 \times \mathcal{N}(0, I)$. We highlight below two aspects of practical implementation.

4.3 IMPLEMENTATION DETAILS

Time embedding and detaching θ . In common implementations, $\operatorname{net}(x,\sigma(t),\phi)$ takes as input the noise-level σ , and not the time index. In our actual experiment setup described in Section 2.2, we use $\operatorname{net}(x,\tilde{\sigma}(t;\theta),\phi)$, with $\tilde{\sigma}(t;\theta):=\sqrt{g_1(t;\theta)g_2(t;\theta)}$ to replace $\sigma(t)$ as this requires minimal retraining of the time-embedding of the original net (and requires no retraining if $g_1=g_2$). In the implementation, it is important to detach the θ from the computation graph of $\tilde{\theta}$, so as not to double-count the derivative wrt θ . We also emphasize that backpropagating through $\tilde{\sigma}(t;\theta)$ is insufficient for estimating the derivative $\partial_{\theta} \operatorname{net}$, because $\tilde{\sigma}$ is a scalar-valued "projection" of the full matrix-valued $M_t(\theta)$ noise, and thus we still need to use (14).

Variance Reduction with ∂_{θ} flow instead of ∂_{θ} net. The scale of $\|\operatorname{net}(x,t;\phi)\|_2 \approx \|\nabla \log p_t(x;\theta)\|_2 \approx \|M_t^{-1/2}(\theta)\|_2$ can vary significantly with the noise level. This could lead to high variance in the stochastic-estimation of ∂_{θ} net in (14). To address this, we propose a mathematically equivalent estimate of ∂_{θ} net based on $\operatorname{flow}(x,t,\phi) := M_t^{1/2}(\theta)\operatorname{net}(x,t,\phi)$, whose scale is approximately constant across time: $\|\operatorname{flow}(x,t,\phi)\|_2 \approx \|M_t^{1/2}\nabla \log p_t(x;\theta)\|_2 \approx d$.

(flow is defined in (4)) We show in Lemma 5 that

$$\begin{split} \partial_{\theta} \text{flow}(x,t,\phi) &= \frac{1}{2} \sum_{i=1}^{d} \partial_{r} \partial_{s} \text{flow}(x+re_{i}+s\partial_{\theta}M_{t}(\theta)e_{i},t,\phi) \\ &+ \partial_{s} \text{flow}(x+sM_{\theta}^{1/2}\partial_{\theta}M_{t}(\theta)\text{flow}(x,t,\phi),t,\phi) + \frac{1}{2}M_{t}^{-1}(\theta)(\partial_{\theta}M_{t}(\theta))\text{flow}(x,t,\phi) \\ H(\theta,\phi) &= 2\mathbb{E}_{x_{0},\xi} \left[\partial_{t} M_{t}(\theta)(I+M_{t}(\theta))^{-1}\partial_{t} M_{t}(\theta)M_{t}(\theta)^{-1/2} \Big(\text{flow}(x_{0}+M_{t}^{1/2}(\theta)\xi,t,\phi) + \xi \Big) \right] \\ \partial_{\theta} L(\theta,\phi) &= \partial_{\theta}(15) + \langle G(\theta,\phi), \partial_{\theta} \text{flow}(x,t,\phi) \rangle \,. \end{split}$$

The last line above is equivalent to (16), but written with flow instead of net.

5 LEARNING SCALAR DISCRETIZATION SCHEDULE

In this section, we present the implementation of Heun's second-order backward ODE integrator for anisotropic diffusion. Additionally, we discuss a way to select an optimal denoising schedule $r(t;\gamma):[0,T]\to[0,T]$ based on a trajectory-level discretization loss. We emphasize that the optimal denoising schedule $r(t;\gamma)$ can be composed with the optimal score-matching noise schedule $M_t(\theta)$ obtained from minimizing $L(\theta,\phi)$ in (11). In this section, we omid dependence on θ,ϕ .

5.1 HEUN'S SECOND-ORDER ALGORITHM FOR ANISOTROPIC DIFFUSION DENOISING.

Let \tilde{u} be the estimate of flow (\bar{x}_t, \bar{t}) , given two evaluations of flow at (x, t) and \hat{x}, \hat{t} respectively:

$$\tilde{u}(\bar{t};x,\hat{x},t,\hat{t}) := \mathrm{flow}(x,t) + (M_{\bar{t}}^{1/2} - M_t^{1/2})(M_{\hat{t}}^{1/2} - M_t^{1/2})^{-1} \big(\mathrm{flow}(\hat{x},\hat{t}) - \mathrm{flow}(x,t)\big).$$

Let $t_0 < t_1 < ... < t_K$ denote K discretization points with $t_0 = 0$ and $t_K = K$. Let $t_{k-1} \le \hat{t}_k < t_k$ denote a set of secondary evaluation points. Then Heun's second-order backward ODE is defined as

$$\hat{x}_{\hat{t}_k} = \tilde{x}_{t_k} + (M_{\hat{t}_k}^{1/2} - M_{t_k}^{1/2}) \text{flow}(\tilde{x}_{t_k}, t_k),$$

$$\tilde{x}_{t_{k-1}} = \tilde{x}_{t_k} + \int_{t_k}^{t_{k-1}} (\partial_t M_{\bar{t}}^{1/2}) \tilde{u}(\bar{t}; \tilde{x}_{t_k}, \hat{x}_{\hat{t}_k}, t_k, \hat{t}_k) d\bar{t}.$$
(17)

We verify in Lemma 6 that $\int_{t_k}^{t_{k-1}} \tilde{u}(\bar{t}; \tilde{x}_{t_k}, \tilde{x}_{\hat{t}_k}, t_k, \hat{t}_k) d\bar{t}$ has a simple closed-form expression:

$$(M_{t_{k-1}}^{1/2} - M_{t_k}^{1/2}) (\mathrm{flow}(\tilde{x}_{t_k}, t_k)) - \frac{1}{2} (M_{t_{k-1}}^{1/2} - M_{t_k}^{1/2})^2 (M_{\hat{t}_k}^{1/2} - M_{t_k}^{1/2})^{-1} \big(\mathrm{flow}(\hat{x}_{\hat{t}_k}, \hat{t}_k) - \mathrm{flow}(\tilde{x}_{t_k}, t_k) \big).$$

In general, the choices of evaluation points t_k and \hat{t}_k can have a significant effect on the discretization error. In Karras et al. (2022), for isotropic diffusion models, the authors choose a schedule which corresponds to $t_k \approx \left(\sigma_{\max}^{1/\rho} - \frac{K-k}{K}\left(\sigma_{\min}^{1/\rho} - \sigma_{\max}^{1/\rho}\right)\right)^{\rho}$, with $\rho=7$ being an empirically chosen hyperparameter, and $\sigma_{\min} \approx 0$, $\sigma_{\max} \approx T$, $\hat{t}_k = t_{k-1}$. In the next section, we present a principled way to select a discretization schedule by minimizing the trajectory-level discretization error.

5.2 OPTIMAL DISCRETIZATION SCHEDULE

We will let $r(t;\gamma):[0,T]\to [0,T]$ denote a monotonically increasing time-transformation with $r(0;\gamma)=0, r(T;\gamma)=T$. We will optimize over the choice of discretization schedules $r(t;\gamma)$. Let x_t denote the continuous-time backward ODE, defined as the time-reversal of

$$dx_t = -\frac{1}{2}\partial_t M_t \operatorname{net}(x_t, t) = -\partial_t M_t^{1/2} \operatorname{flow}(x_t, t). \tag{18}$$

On the other hand, (17) is equivalent to $d\tilde{x}_t = -(\partial_t M_t^{1/2})\tilde{u}(\bar{t}; \tilde{x}_{t_k}, \hat{x}_{\hat{t}_k}, t_k, \hat{t}_k)$ for $t \in [t_{k-1}, t_k]$. Again inspired by the Girsanov's Theorem, which gave rise to our trajectory-level score-matching loss $L(\theta, \phi)$, we define the idealized trajectory-level discretization loss $\hat{H}(\gamma)$ as

$$\hat{H}(\gamma) = \int_0^T \mathbb{E}\left[\left\|\partial_t M^{1/2}_{r(t;\gamma)}\Big(\mathrm{flow}(x_{r(t;\gamma)},r(t;\gamma)) - \tilde{u}(r(t;\gamma);\tilde{x}_{r(t_k;\gamma)},\hat{x}_{r(\hat{t}_k;\gamma)},r(t_k;\gamma),r(\hat{t}_k;\gamma))\Big)\right\|_2^2\right]dt,$$

where in the above, t_{k-1}, t_k are the two evaluation points such that $r(t; \gamma) \in [r(t_{k-1}; \gamma), r(t_k; \gamma)]$. In practice, we optimize a stochastic approximation of \hat{H} defined by

$$H(\gamma) = \mathbb{E}_{t,\tilde{t},\tilde{x},\hat{x}} \left[\left\| \partial_t M^{1/2}_{r(t;\gamma)} \big(\mathrm{flow}(x_{r(t;\gamma)},r(t;\gamma)) - \tilde{u}(r(t;\gamma);\tilde{x},\hat{x},r(\tilde{t};\gamma),r(\hat{t};\gamma)) \right) \right\|_2^2 \right] dt,$$

where $\tilde{t} \sim Unif([0,T])$, $\bar{t} = \max\{0, \tilde{t} - T/8\}$, $t \sim Unif([\bar{t},\tilde{t}])$. $\hat{t} = (\bar{t} + \hat{t})/2$. In addition to the discretization error, recall the continuous-time score-matching loss L defined in (11). For θ, ϕ fixed, and under the time-transformation $r(t;\gamma)$, the score-matching loss is given by

$$\tilde{L}(\gamma) := \int_0^T \mathbb{E}_{x_0,\epsilon} \left[\left\| \bar{v}(x_{r(t;\gamma)}, r(t;\gamma); \theta, \phi) - \tilde{v}(x_{r(t;\gamma)}, x_0, r(t;\gamma); \theta) \right\|_2^2 \right] dt, \tag{19}$$

where \bar{v} and \tilde{v} are as defined in Section 3, and $x_{r(t;\gamma)} = x_0 + M_{r(t;\gamma)}^{1/2} \epsilon$. Combining the above, we optimize $r(\cdot;\gamma)$, over the space of γ 's, to minimize $H(\gamma) + \tilde{L}(\gamma)$. We parameterize $r(t;\gamma)$ the same as $g_i(t;\theta)$ (Section 2.2). In practice, we replace \tilde{L} by \hat{L} , which is a more elaborate version of \tilde{L} that is a more accurate estimator of the score-matching loss (see (20) in Appendix D). The following algorithm combines all our previous optimization techniques:

Algorithm 1 Combining all training

- 1: Train (θ^*, ϕ^*) on loss $L(\theta, \phi)$
- 2: Given $M_t(\theta^*)$ and $\text{net}(\cdot,\cdot,\phi^*)$, train γ^* as described in Section 5.2.
- 3: Let $s_i = iT/K$ denote a uniform grid. Let $t_i = r(s_i, \gamma^*)$ for i = 0...K. Let $\hat{t}_i = r((s_{i-1} + s_i)/2, \gamma^*)$.
- 4: To generate samples, implement (17), with t_i and \hat{t}_i from step 3 above.

6 EXPERIMENTAL EVALUATION

We evaluate our anisotropic diffusion schedules on three standard image generation benchmarks: CIFAR-10 (32×32) (Krizhevsky et al., 2009), AFHQv2 (64×64) (Choi et al., 2020), and FFHQ (64×64) (Karras et al., 2019). All experiments are compared against the EDM baseline (Karras et al., 2022), using the official generation code and their best-reported settings. Our models are finetuned from the corresponding EDM networks, consuming the equivalent of 1.2M image passes over the course of training. For evaluation, we generate 50k samples and compute the Fréchet Inception Distance (FID \downarrow). Results are reported across a range of function evaluations (NFE), following the same experimental settings as Karras et al. (2022). No additional hyperparameters are tuned.

Algorithm details. (1) EDM is EDM baseline. (2) g^{iso} parameterizes an isotropic noise schedule $(M_t \text{ with } J=1 \text{ in (9)})$. (θ,ϕ) is trained on $L(\theta,\phi)$ and generation uses (17), with uniform grid t_k and $\hat{t}_k=(t_{k-1}+t_k)/2$. (g_1^{ani},g_2^{ani}) parameterize M_t with J=2 in (9); the training/inference procedure is identical to g^{iso} . g_w^{iso} (resp $(g_{1,w}^{ani},g_{2,w}^{ani})$) is generated using Algorithm 1, and parameterizes M_t with J=1 (resp J=2). For the J=2 setups, we choose V_1 to contain the $H^2/4$ lowest-frequency DCT bases, and V_2 to contain the remainder bases, where H is the image resolution (e.g., H=64 for 64×64). g_1 and g_2 are their respective schedules.

Comparable overall performance. Across datasets, our learned schedules achieve performance broadly comparable to EDM. As shown in Table 1 and Figure 2, the reported FIDs remain close to those of the baseline over a wide range of NFE. The only noticeable deviation occurs on CIFAR-10 at large NFE, where performance is slightly worse, but the gap is minor relative to the overall trend.

Significant gains at low NFE. Our methods show consistent advantages over EDM in the low-NFE regime, often by a large margin (Table 1). On CIFAR-10, (g_1^{ani}, g_2^{ani}) achieves FID=2.93 at NFE=13. On AFHQv2, the wrapped anisotropy achieves FID=2.38 at NFE=19. On FFHQ, the same variant reaches FID=3.45 at NFE=13.

Strong improvements on FFHQ. The largest gains are observed on FFHQ, a more complex human-face dataset. Across all NFE values, learned schedules outperform EDM. At smaller NFE (e.g., 9–13 steps), the improvements are dramatic: at NFE=9, our method achieves FID=6.05 compared to 57.28 for EDM; at NFE=11, 4.33 vs 29.48; and at NFE=13, 3.45 vs 15.98.

 g_w vs. g_* g_w^{iso} and $(g_{1,w}^{ani}, g_{2,w}^{ani})$ consistently outperform g^{iso} and (g_1^{ani}, g_2^{ani}) at small NFE (Table 1, Figure 2), where discretization error has the largest impact. Moreover, as shown in Figure 3, the g_w schedules are flatter near the starting point t=6400, aligning better with the beginning of denoising and helping stabilize early steps.

 g_1 vs. g_2 . Figure 4 examines the ratio between the two anisotropic components. At the beginning of denoising ($t \approx 6400$), g_1 (low-frequency subspace) is smaller than g_2 (high-frequency subspace), indicating that the low-frequency schedule decreases more rapidly in the early stage. This behavior mirrors human perception, where recognition often starts from coarse structures before attending to finer details.

Table 1: FID \downarrow vs. small NFE across datasets (50k samples).

	CIFAR-10					AFHQv2					FFHQ				
Method	9	11	13	15	17	9	11	13	15	19	9	11	13	15	19
EDM	35.55	14.44	6.80	4.32	3.11	27.98	13.66	7.59	4.75	2.99	57.28	29.48	15.98	9.94	5.26
g^{iso}	49.29	31.28	19.71	13.34	9.38	35.48	15.20	10.33	8.29	5.68	68.41	27.93	13.44	8.12	4.03
g_w^{iso}	5.19	14.08	6.94	2.63	2.59	4.80	3.85	2.97	2.56	2.50	6.74	4.36	3.94	3.56	3.12
(g_1^{ani}, g_2^{ani})	5.98	3.58	2.93	2.64	2.47	21.63	11.50	8.35	6.68	4.39	45.43	17.24	8.30	5.19	3.05
$(g_{1,w}^{ani}, g_{2,w}^{ani})$	4.69	6.06	5.75	2.77	2.54	4.86	3.54	2.90	2.47	2.38	6.05	4.33	3.45	3.21	2.90

Figure 2: FID ↓ vs. large NFE across datasets (50k samples).

Figure 3: Learned schedules for isotropic and anisotropic cases.

Figure 4: $\log(g_1^{ani}(t)/g_2^{ani}(t))$ and $\log(g_{1,w}^{ani}(t)/g_{2,w}^{ani}(t))$.

REPRODUCIBILITY STATEMENT

The code used to run all experiments is linked in the abstract. We provide detailed descriptions of datasets, architectures, training settings, and evaluation protocols. Every theorem or lemma stated or referenced in the main text is accompanied by a complete proof, either in the main body or in the Appendix.

ETHICS STATEMENT

We rely exclusively on publicly available datasets (CIFAR-10, AFHQv2, FFHQ), which are widely used in the machine learning community and distributed for research purposes. Our work is methodological in nature, with experiments confined to standard benchmarks. We do not anticipate any significant ethical risks arising from this study.

REFERENCES

- Uri M Ascher and Linda R Petzold. Computer methods for ordinary differential equations and differential-algebraic equations. SIAM, 1998.
- Pascal Chang, Jingwei Tang, Markus Gross, and Vinicius C Azevedo. How i warped your noise: a temporally-correlated noise prior for diffusion models. *arXiv* preprint arXiv:2504.03072, 2025.
- Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru R Zhang. Sampling is as easy as learning the score: theory for diffusion models with minimal data assumptions. *arXiv* preprint *arXiv*:2209.11215, 2022.
- Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image synthesis for multiple domains. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 8188–8197, 2020.
- Songwei Ge, Seungjun Nah, Guilin Liu, Tyler Poon, Andrew Tao, Bryan Catanzaro, David Jacobs, Jia-Bin Huang, Ming-Yu Liu, and Yogesh Balaji. Preserve your own correlation: A noise prior for video diffusion models. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 22930–22941, 2023.
- Tiankai Hang, Shuyang Gu, Xin Geng, and Baining Guo. Improved noise schedule for diffusion training. *arXiv preprint arXiv:2407.03297*, 2024.
- Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in neural information processing systems*, 33:6840–6851, 2020.
- Xingchang Huang, Corentin Salaun, Cristina Vasconcelos, Christian Theobalt, Cengiz Oztireli, and Gurprit Singh. Blue noise for diffusion models. In *ACM SIGGRAPH 2024 conference papers*, pp. 1–11, 2024.
- Bowen Jing, Gabriele Corso, Renato Berlinghieri, and Tommi Jaakkola. Subspace diffusion generative models. In *European conference on computer vision*, pp. 274–289. Springer, 2022.
- Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial networks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 4401–4410, 2019.
- Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-based generative models. *Advances in neural information processing systems*, 35:26565–26577, 2022.
- Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
 - Enshu Liu, Xuefei Ning, Zinan Lin, Huazhong Yang, and Yu Wang. Oms-dpm: Optimizing the model schedule for diffusion probabilistic models. In *International Conference on Machine Learning*, pp. 21915–21936. PMLR, 2023.

543

544

546 547

548

549

550

551

552

553 554

555

556

558 559

560

561 562

563

565

566

567

568

569 570

571

572

573

574

575 576

577

588 589

592

- 540 Zhengxiong Luo, Dayou Chen, Yingya Zhang, Yan Huang, Liang Wang, Yujun Shen, Deli Zhao, Jingren Zhou, and Tieniu Tan. Videofusion: Decomposed diffusion models for high-quality video 542 generation. arXiv preprint arXiv:2303.08320, 2023.
 - Shuntaro Okada, Ryota Yoshihashi, Hirokatsu Kataoka, Tomohiro Tanaka, et al. Constant rate scheduling: Constant-rate distributional change for efficient training and sampling in diffusion models. arXiv preprint arXiv:2411.12188, 2024.
 - Yong-Hyun Park, Chieh-Hsin Lai, Satoshi Hayakawa, Yuhta Takida, and Yuki Mitsufuji. Jump your steps: Optimizing sampling schedule of discrete diffusion models. In The Thirteenth International Conference on Learning Representations, 2024.
 - Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. Highresolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 10684–10695, 2022.
 - Daniel Ruderman and William Bialek. Statistics of natural images: Scaling in the woods. Advances in neural information processing systems, 6, 1993.
 - Amirmojtaba Sabour, Sanja Fidler, and Karsten Kreis. Align your steps: Optimizing sampling schedules in diffusion models. arXiv preprint arXiv:2404.14507, 2024.
 - Subham Sahoo, Aaron Gokaslan, Christopher M De Sa, and Volodymyr Kuleshov. Diffusion models with learned adaptive noise. Advances in Neural Information Processing Systems, 37:105730— 105779, 2024.
 - Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. In International Conference on Learning Representations (ICLR), 2021. URL https://openreview. net/forum?id=PxTIG12RRHS.
 - Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling: Scalable image generation via next-scale prediction. Advances in neural information processing systems, 37:84839-84865, 2024.
 - Jente Vandersanden, Sascha Holl, Xingchang Huang, and Gurprit Singh. Edge-preserving noise for diffusion models. 2024.
 - Yunke Wang, Xiyu Wang, Anh-Dung Dinh, Bo Du, and Charles Xu. Learning to schedule in diffusion probabilistic models. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 2478–2488, 2023.
 - Christopher Williams, Andrew Campbell, Arnaud Doucet, and Saifuddin Syed. Score-optimal diffusion schedules. Advances in Neural Information Processing Systems, 37:107960–107983, 2024.

A 2D-DCT TRANSFORM

Let H be the image side length and $d=H^2$. The two-dimensional DCT (type-II) basis over $\mathbb{R}^{H\times H}$ is defined as follows. For each pair $(p,q)\in\{0,\ldots,H-1\}^2$, the basis is

$$\Phi_{p,q}(x,y) = \gamma_p \gamma_q \cos\left(\frac{(2x+1)p\pi}{2H}\right) \cos\left(\frac{(2y+1)q\pi}{2H}\right), \qquad x,y = 0, \dots, H-1,$$

with normalization factors

$$\gamma_p = \begin{cases} H^{-1/2}, & p = 0, \\ \sqrt{2} H^{-1/2}, & p > 0, \end{cases} \qquad \gamma_q = \begin{cases} H^{-1/2}, & q = 0, \\ \sqrt{2} H^{-1/2}, & q > 0. \end{cases}$$

Vectorizing each $\Phi_{p,q}$ into \mathbb{R}^d and enumerating them yields the orthonormal basis $\{v_1, \dots, v_{H^2}\}$, which are the 2D-DCT basis of \mathbb{R}^d . Please refer to Figure 5 for example 2D-DCT bases.

Figure 5: The first nine 2D-DCT bases ordered by increasing frequency.

B Proofs

Lemma 4. Let $\ell_t(\phi)$ be as defined in (5). Then $\ell_t(\phi)$ is minimized if $\text{net}(x,t;\phi) = \nabla \log p_t(x;\theta)$.

Proof of Lemma 4. To see this, let $V: \mathbb{R}^d \to \mathbb{R}^d$ be an arbitrary vector field. With abuse of notation, define

$$\ell_t(V) := \mathbb{E}_{x_0,\epsilon} \left[\|V(x_t) - M_t^{-1}(\theta)(x_0 - x_t)\|_2^2 \right].$$

Observe that ℓ_t above can be minimized pointwise at each x_t . By law of iterated expectation, $\mathbb{E}_{x_0,\epsilon}\left[\left\|V(x_t)-M^{-1}(x_0-x_t)\right\|_2^2\right]=\mathbb{E}_{x_t}\left[\mathbb{E}_{x_0,\epsilon|x_t}\left[\left\|V(x_t)-M^{-1}(x_0-x_t)\right\|_2^2\right]\right]$. Further observe that

$$\arg\min_{v \in \mathbb{R}^d} \mathbb{E}_{x_0, \epsilon \mid x_t} \left[\left\| v - M_t^{-1}(\theta)(x_0 - x_t) \right\|_2^2 \right] = M_t^{-1}(\theta) \mathbb{E}_{x_0, \epsilon \mid x_t} \left[x_0 - x_t \right] = \nabla \log p_t(x; \theta).$$

The last equality follows from (3).

Proof of Lemma 1. We simplify the term inside the Euclidean norm in (11):

$$\bar{v}(x_t, t; \theta, \phi) - \tilde{v}(x_t, x_0, t; \theta) = (I + M_t(\theta))^{-1/2} \partial_t M_t(\theta) (M_t^{-1}(\theta)(x_0 - x_t) - \operatorname{net}(x_t, t, \phi)).$$

Let M_{all} denote $(I + M_t(\theta))^{-1/2} \partial_t M_t(\theta)$.

Following Lemma 4, let $V: \mathbb{R}^d \to \mathbb{R}^d$ be an arbitrary vector field.

We can minimize the expectation pointwise at each x_t . We can rewrite the expectation

$$\mathbb{E}_{x_0,\epsilon} \left[\left\| M_{\text{all}}(\mathsf{net}(x_t,t,\phi) - M_t^{-1}(\theta)(x_0-x_t)) \right\|_2^2 \right]$$

as

$$\mathbb{E}_{x_0,\epsilon} \left[\left\| M_{\text{all}}(V(x_t) - M_t^{-1}(\theta)(x_0 - x_t)) \right\|_2^2 \right] = \mathbb{E}_{x_t} \left[\mathbb{E}_{x_0,\epsilon|x_t} \left[\left\| M_{\text{all}}(V(x_t) - M_t^{-1}(\theta)(x_0 - x_t)) \right\|_2^2 \right] \right]$$

by the law of iterated expectation.

$$\arg\min_{v \in \mathbb{R}^d} \mathbb{E}_{x_0, \epsilon \mid x_t} \left[(v - M_t^{-1}(\theta)(x_0 - x_t))^\top M_{\text{all}} (v - M_t^{-1}(\theta)(x_0 - x_t)) \right]$$

$$= M_t^{-1}(\theta) \mathbb{E}_{x_0, \epsilon \mid x_t} \left[x_0 - x_t \right] = \nabla \log p_t(x; \theta).$$

The above equality follows from (3). The penultimate equality follows from the fact that $\arg\min_{a\in\mathbb{R}^d}(b-a)^\top Q(b-a)=b$ for any PSD matrix Q. Note that $\partial_t M_t=A_t^2$ is PSD, and M_t being the covariance in the diffusion process is also PSD. Hence, $M_{\rm all}$ is PSD.

Proof of Lemma 2. Let $w:[0,T]\to(0,\infty)$ be measurable and define

$$\Phi(x) := \int_0^x \frac{ds}{(1+s)w(s)} < \infty.$$

Then, to prove this Lemma, it is sufficient to show there exist a $c=\frac{\Phi(T)}{T}>0$ and a strictly increasing continuous function $g:[0,T]\to[0,T]$ with $g(0)=0,\ g(T)=T$ such that

$$\frac{g'(g^{-1}(t))}{1+t} = c w(t) \text{ for all } t.$$

where $c = \Phi(T)/T$.

 Define g implicitly by $\Phi(g(t)) = ct$ for $(0 \le t \le T)$, i.e. $g(t) = \Phi^{-1}(ct)$. Differentiating $\Phi(g(t)) = ct$ with respect to t yields the separable ODE g'(t) = (1 + g(t)) c w(g(t)), and with r = g(t) this is $\frac{g'(g^{-1}(r))}{1+r} = c w(r)$. Hence, we derive an expression for g involving a constant c and any w. Monotonicity of g(t) follows since w > 0 and c > 0 imply g'(t) > 0.

Substituting into $c \int_0^T w(t)H(t)dt$, we get

$$c \int_0^T w(r)H(r)dr = \int_0^T \frac{g'(t)}{1 + g(t)}H(g(t))g'(t)dt.$$

Proof of Lemma 3. To simplify notation, we will drop the index i and treat θ as a scalar. The general proof for $\theta \in \mathbb{R}^c$ follows by repeating the proof for each θ_i , while holding all other $\theta_i's$ fixed.

$$\partial_{\theta} p_{t}(x;\theta) = \frac{1}{2} \operatorname{div}(p_{t}(x;\theta) \partial_{\theta} M_{t}(\theta) \nabla \log p_{t}(x;\theta))$$

$$= \frac{1}{2} p_{t}(x;\theta) (\operatorname{div}(\partial_{\theta} M_{t}(\theta) \nabla \log p_{t}(x;\theta)) + \langle \nabla \log p_{t}(x;\theta), \partial_{\theta} M_{t}(\theta) \nabla \log p_{t}(x;\theta) \rangle).$$

Dividing both sides by $p_t(x;\theta)$ gives

$$\partial_{\theta} \log p_{t}(x;\theta) = \frac{1}{2} (\operatorname{\mathbf{div}}(\partial_{\theta} M_{t}(\theta) \nabla \log p_{t}(x;\theta)) + \langle \nabla \log p_{t}(x;\theta), \partial_{\theta} M_{t}(\theta) \nabla \log p_{t}(x;\theta) \rangle)$$

$$= \frac{1}{2} \sum_{i} \langle \partial_{\theta} M_{t}(\theta) e_{i}, \nabla^{2} \log p_{t}(x;\theta) e_{i} \rangle + \frac{1}{2} \langle \nabla \log p_{t}(x;\theta), \partial_{\theta} M_{t}(\theta) \nabla \log p_{t}(x;\theta) \rangle$$

$$= \frac{1}{2} \sum_{i} \langle \partial_{\theta} M_{t}(\theta) e_{i}, \partial_{c} \nabla \log p_{t}(x+ce_{i};\theta) \rangle + \frac{1}{2} \langle \nabla \log p_{t}(x;\theta), \partial_{\theta} M_{t}(\theta) \nabla \log p_{t}(x;\theta) \rangle.$$

Taking a derivative wrt x gives

$$\partial_{\theta} \nabla \log p_{t}(x;\theta) = \frac{1}{2} \sum_{i} \left\langle \partial_{\theta} M_{t}(\theta) e_{i}, \partial_{c} \nabla^{2} \log p_{t}(x + c e_{i}; \theta) \right\rangle + \left\langle \partial_{\theta} M_{t}(\theta) \nabla \log p_{t}(x; \theta), \nabla^{2} \log p_{t}(x; \theta) \right\rangle$$
$$= \frac{1}{2} \sum_{i} \partial_{r} \partial_{s} \nabla \log p_{t}(x + r e_{i} + s \partial_{\theta} M_{t}(\theta) e_{i}; \theta) + \partial_{s} \nabla \log p_{t}(x + s \partial_{\theta} M_{t}(\theta) \nabla \log p_{t}(x; \theta); \theta).$$

Lemma 5.

$$\begin{split} \partial_{\theta} \text{flow}(x,t,\phi) = & \frac{1}{2} \sum_{i=1}^{d} \partial_{r} \partial_{s} \text{flow}(x + re_{i} + s \partial_{\theta} M_{t}(\theta) e_{i}, t, \phi) \\ & + \partial_{s} \text{flow}(x + s M_{\theta}^{1/2} \partial_{\theta} M_{t}(\theta) \text{flow}(x,t,\phi), t, \phi) + \frac{1}{2} M_{t}^{-1}(\theta) (\partial_{\theta} M_{t}(\theta)) \text{flow}(x,t,\phi). \end{split}$$

Proof of Lemma 5. Recall that

$$flow(x;\theta) = M_{\theta}^{1/2} net(x;\theta) = M_{\theta}^{1/2} \nabla \log p_t(x;\theta).$$

We verify that

$$\begin{split} \partial_{\theta} \texttt{flow}(x;\theta) = & M_{\theta}^{1/2} \partial_{\theta} \texttt{net}(x;\theta) + \frac{1}{2} M_{\theta}^{-1/2} (\partial_{\theta} M_{\theta}) \texttt{net}(x;\theta) \\ = & \frac{1}{2} \sum_{i} M_{\theta}^{1/2} \partial_{r} \partial_{s} \texttt{net}(x + re_{i} + s \partial_{\theta} M_{t}(\theta) e_{i};\theta) + M_{\theta}^{1/2} \partial_{s} \texttt{net}(x + s \partial_{\theta} M_{t}(\theta) \texttt{net}(x;\theta);\theta) \\ & + \frac{1}{2} M_{\theta}^{-1/2} (\partial_{\theta} M_{\theta}) \texttt{net}(x;\theta) \\ = & \frac{1}{2} \sum_{i} \partial_{r} \partial_{s} \texttt{flow}(x + re_{i} + s \partial_{\theta} M_{t}(\theta) e_{i};\theta) + \partial_{s} \texttt{flow}(x + s M_{\theta}^{1/2} \partial_{\theta} M_{t}(\theta) \texttt{flow}(x;\theta);\theta) \\ & + \frac{1}{2} M_{\theta}^{-1} (\partial_{\theta} M_{\theta}) \texttt{flow}(x;\theta). \end{split}$$

Lemma 6. Let \tilde{u} be as defined in Section 5.1. Then

$$\begin{split} \int_{t}^{t'} \tilde{u}(\bar{t}; x, \hat{x}, t, \hat{t}) d\bar{t} &= (M_{t_{k-1}}^{1/2} - M_{t_{k}}^{1/2}) (\text{flow}(\tilde{x}_{t_{k}}, t_{k})) \\ &- \frac{1}{2} (M_{t_{k-1}}^{1/2} - M_{t_{k}}^{1/2})^{2} (M_{\hat{t}_{k}}^{1/2} - M_{t_{k}}^{1/2})^{-1} \big(\text{flow}(\hat{x}_{\hat{t}_{k}}, \hat{t}_{k}) - \text{flow}(\tilde{x}_{t_{k}}, t_{k}) \big). \end{split}$$

Proof. It suffices to verify that

$$\begin{split} & \int_{t}^{t'} (\partial_{t} M_{\bar{t}}^{1/2}) (M_{\bar{t}}^{1/2} - M_{t}^{1/2}) d\bar{t} \\ &= \int_{t}^{t'} \frac{1}{2} \partial_{t} M_{\bar{t}} - (\partial_{t} M_{\bar{t}}^{1/2}) M_{t}^{1/2} dt \\ &= \frac{1}{2} (M_{t'} - M_{t}) - \left(M_{t'}^{1/2} M_{t}^{1/2} - M_{t}^{1/2} M_{t}^{1/2} \right) \\ &= \frac{1}{2} (M_{t'}^{1/2} - M_{t}^{1/2})^{2}. \end{split}$$

This concludes the proof.

Lemma 7. If x_t evolves as the following (1. and 2. are equivalent):

$$(1.) (x_t - x_0) \sim \mathcal{N}(0, M_t(\theta)), \qquad (2.) dx_t = -\frac{1}{2} \partial_t M_t(\theta) \nabla \log p_t(x_t; \theta) dt,$$

where $p_t(x;\theta) := p_0 * \mathcal{N}(0, M_t(\theta))$, then the score above is the conditional expectation

$$\nabla \log p_t(x;\theta) = M_t^{-1}(\theta) \mathbb{E}_{x_0|x_t=x} \left[x_0 - x_t \right],$$

where (x_0, x_t) are defined by the joint distribution $x_0 \sim p_0$ and $x_t = x_0 + \mathcal{N}(0, M_t)$.

Proof of Lemma 7. The expression for p_t is given by

$$p_t(x) = \int p_0(x_0) \frac{|M_t|^{-0.5}}{\sqrt{2\pi}} \exp\left(-0.5(x_0 - x)^{\top} M_t^{-1}(x_0 - x)\right) dx_0 = \int p_0(x_0) p_t(x|x_0) dx_0.$$

Taking the derivative of $\log p_t(x)$ with respect to x

$$\nabla_x \log p_t(x) = \frac{1}{p_t(x)} \nabla_x p_t(x)$$

$$= \frac{M_t^{-1}}{p_t(x)} \int p_0(x_0) \frac{|M_t|^{-0.5}}{\sqrt{2\pi}} \exp\left(-0.5(x_0 - x)^\top M_t^{-1}(x_0 - x)\right) (x_0 - x) dx_0$$

$$= M_t^{-1} \mathbb{E}_{x_0 \mid x_t = x} \left[x_0 - x_t\right].$$

C IMPLEMENTATION DETAILS OF q_i

For a fixed set of node locations $0 = \tau_0 < \tau_1 < \dots < \tau_{K-1} = T$, the subspace noise schedule is defined in log-space between the smallest and largest variance values $g(0) = g_0$ and g(T) = T. The trainable parameters $\theta = (\theta_1, \dots, \theta_{K-1})$ define a collection of strictly positive increments

$$s_i = \text{softplus}(\theta_i), \quad i = 1, \dots, K - 1,$$

These increments are then rescaled by α so that their sum exactly matches the total log–gap between the endpoints,

$$\alpha = \frac{\log T - \log g_0}{\sum_{i=1}^{K-1} s_i}.$$

The log-values at the nodes are constructed by cumulative summation,

$$\ell_0 = \log g_0, \qquad \ell_j = \ell_0 + \sum_{i=1}^j \alpha \, s_i, \quad j = 1, \dots, K - 1,$$

so that $\ell_{K-1} = \log T$.

Given a time $t \in [0, T]$, one locates the enclosing interval $[\tau_{j-1}, \tau_j]$ and computes the normalized position

$$p(t) = \frac{t - \tau_{j-1}}{\tau_j - \tau_{j-1}}.$$

The value of g(t) is then obtained by linearly interpolating between successive log–nodes and exponentiating:

$$\log g(t) = (1 - p(t)) \ell_{j-1} + p(t) \ell_j, \qquad g(t) = \exp(\log g(t)).$$

Within each interval the derivative takes the simple form

$$g'(t) = g(t) \frac{\ell_j - \ell_{j-1}}{\tau_j - \tau_{j-1}}.$$

D REDUCING BIAS IN LEARNING $r(t; \gamma)$

Let r be short for $r(t; \gamma)$. We defined in (19) that

$$\begin{split} \tilde{L}(\gamma) &= \int_0^T \mathbb{E}_{x_0,\epsilon} \left[\left\| \bar{v}(x_r,r;\theta,\phi) - \tilde{v}(x_r,x_0,r;\theta) \right\|_2^2 \right] dt \\ &= \int_0^T \mathbb{E}_{x_0,\epsilon} \left[\left\| (I+M_r)^{-1/2} \partial_t M_r \big(M_r^{-1}(x_0-x_r) - \operatorname{net}(x_r,t) \big) \right\|_2^2 \right] \\ &= \int_0^T \mathbb{E}_{x_0,\epsilon} \left[\underbrace{(x_0-x_r)^\top M_r^{-1} A_r M_r^{-1}(x_0-x)}_{\text{\scriptsize $(*)$}} - 2(x_0-x_r)^\top M_r^{-1} A_r \operatorname{net}(x_r,t) + \operatorname{net}(x_r,t)^\top A_r \operatorname{net}(x_r,t) \right], \end{split}$$

where we define $A_r := \partial_t M_r (I + M_r)^{-1} \partial_t M_r$. The purpose of L is to capture the *score-matching loss*, as described in Section 3. However, recall that the *true* score-matching loss is really

$$\begin{split} & \int_0^T \mathbb{E}_{x_r} \left[\left\| v(x_r, r; \theta) - \bar{v}(x, t, \phi) \right\|_2^2 \right] dt \\ & = \int_0^T \mathbb{E}_{x_0, \epsilon} \left[\nabla \log p_r(x_r)^\top M_r^{-1} A_r M_r^{-1} \nabla \log p_r(x_r) - 2 \nabla \log p_r(x_r)^\top M_r^{-1} A_r \mathrm{net}(x_r, t) + \mathrm{net}(x_r, t)^\top A_r \mathrm{net}(x_r, t) \right]. \end{split}$$

Contrasting the above with \tilde{L} , we see that \tilde{L} additionally includes the variance of $M_{r(t;\gamma)}^{-1}(x_0-x_{r(t;\gamma)})$ due to (*). For the purpose of optimizing γ , this additional variance introduces a non-trivial bias to the score-matching loss at time t.

To reduce this bias, we can instead approximate $\mathbb{E}_{x_0,\epsilon}\left[\nabla \log p_r(x_r)^\top M_r^{-1} A_r M_r^{-1} \nabla \log p_r(x_r)\right]$ by $\mathbb{E}_{x_0,\epsilon}\left[\operatorname{net}(x_r,r)^\top M_r^{-1} A_r M_r^{-1} \operatorname{net}(x_r,r)\right]$. This is based on the assumption that, even when net is not a good approximation of $\nabla \log p$, $\|\operatorname{net}\|_2$ should be a reasonably good approximation of $\|\nabla \log p\|_2$.

Consequently, we replace $\bar{L}(\gamma)$ by

$$\hat{L}(\gamma) := \int_0^T \mathbb{E}_{x_0,\epsilon} \left[-2(x_0 - x_r)^\top M_r^{-1} A_r \text{net}(x_r, t) + 2 \text{net}(x_r, t)^\top A_r \text{net}(x_r, t) \right]. \tag{20}$$

Note that although the first term of \hat{L} also involves $(x_0 - x_r)$, there is no bias in expectation.