
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TRAJECTORY OPTIMAL ANISOTROPIC DIFFUSION
MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

We study anisotropic diffusion for generative modeling by replacing the scalar
noise schedule with a matrix-valued path Mt that allocates noise (and denois-
ing effort) across subspaces. We introduce a trajectory-level objective that jointly
trains the score network and learns Mt(θ); in the isotropic case, it recovers stan-
dard score matching, making schedule learning equivalent to choosing the weight
over noise levels. We further derive an efficient estimator for ∂θ∇ log pt that
enables efficient optimization of Mt. For inference, we develop an anisotropic
reverse-ODE sampler based on a second-order Heun update with a closed-form
step, and we learn a scalar time-transform r(t; γ) that targets discretization error.
Across CIFAR-10, AFHQv2, and FFHQ, our method matches EDM overall and
substantially improve few-step generation. Together, these pieces yield a practical,
trajectory-optimal recipe for anisotropic diffusion. Code is available at 1.

1 INTRODUCTION

Diffusion and flow-based generative models typically add and remove isotropic Gaussian noise with
a scalar schedule σ(t) while learning a score network and integrating a reverse-time SDE/ODE (Ho
et al., 2020; Song et al., 2021; Karras et al., 2022). The isotropic design is simple and effective, but
forces the dynamics to act uniformly in all directions.

Why anisotropy. Replacing the scalar schedule by a matrix-valued path Mt substantially enlarges
the design space: noise can be allocated differently across subspaces and time, better matching data
geometry–natural images concentrate energy in low spatial frequencies (Ruderman & Bialek, 1993);
latent diffusion offloads fine detail to a learned autoencoder (Rombach et al., 2022); video models
benefit from temporally structured priors or decomposed noise (Ge et al., 2023; Luo et al., 2023);
multi-resolution autoregressive models gain from coarse-to-fine generation (Tian et al., 2024).

From heuristics to learning. Existing anisotropy is often hand-crafted (e.g., temporal correlation
in video; frequency-biased processing in image pipelines), and the space of possible Mt is huge,
making manual search impractical. In parallel, work on isotropic models shows that optimizing
only the discretization schedule can already boost few-step quality (Sabour et al., 2024). These
trends motivate a learned, general-purpose anisotropic framework.

This paper. We introduce a trajectory-level objective that (i) trains the score network and (ii) learns
an anisotropic schedule Mt(θ). Separately, we learn a scalar time reparameterization r(t; γ) that
reduces discretization error; both compose with a second-order sampler, yielding a practical train-
ing/inference recipe.

Notation. The isotropic variance-exploding (VE) process is

x0∼p0, dxt = dBt ⇐⇒ dxt = − 1
2 ∇ log pt(xt) dt, (1)

with pt = p0 ∗ N (0, tI). We generalize the above to anisotropic diffusion by letting xt ∼ p0 ∗
N (0,Mt) with a nondecreasing PSD trajectory Mt ∈ Rd×d:

x0∼p0, dxt = (∂tMt)
1/2 dBt ⇐⇒ dxt = − 1

2 ∂tMt ∇ log pt(xt) dt, (2)

where M0 = 0, MT = T for some maximum noise level T , and t > s ⇒ Mt ⪰ Ms. We discuss
further details Section 2.

1anonymous.4open.science/r/anisotropic-diffusion-paper-8738

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1.1 MAIN CONTRIBUTIONS

We study anisotropic diffusion for generative modeling by learning a matrix-valued noise schedule
Mt that allocates noise and denoising effort across subspaces. Our contributions are:

1. Anisotropic diffusion and reverse ODE. We formalize variance–exploding and vari-
ance–preserving anisotropic diffusion processes, derive the corresponding reverse ODE, and give
practical samplers: a first–order Euler update (7) and a second–order Heun update (17) and
Lemma 6. This yields stable, efficient generation for the reverse anisotropic ODE.

2. Trajectory-Level Score Matching (TLSM). We introduce a path-integrated loss L(θ, ϕ) that
simultaneously (i) trains the score network to match the score and (ii) learns the anisotropic
schedule Mt(θ) by minimizing score error along the generation trajectory (Section 3). At opti-
mality, the network matches the exact score Lemma 1, and in the isotropic case TLSM reduces
to weighted score matching—formally tying any choice of weights w(t) to a scalar schedule g(t)
(Lemma 2, Section 3.1). This reveals a surprising interpretation – isotropic TLSM is equivalent
to learning an optimal weight function for score-matching.

3. Differentiating through Mt(θ) efficiently. Optimizing over Mt(θ) is challenging because it
involves ∂θ∇ log pt(x; θ), which cannot be easily obtained from the score-network. We pro-
pose a directional estimator for ∂θ∇ log pt(x; θ) that uses only higher-order x-directional deriva-
tives of the network and is implementable in three backward passes, independent of dim(θ)
(Lemma 3, Section 4.1). We further present a variance-reduced formula based on estimating
∂θ
(
Mt(θ)

−1/2∇ log pt(x; θ)
)

(Lemma 5).

4. Learning the discretization schedule. Orthogonal to optimizing Mt(θ) wrt the score-matching
loss, we learn a time-reparameterization r(t; γ) that minimizes a trajectory-level discretization
error (5). Our formulation cleanly separate score-matching from discretization-error minimiza-
tion. In Algorithm 1, the learned r(t; γ) composes with the Heun integrator based on the learned
Mt(θ) noise schedule, gaining benefits from optimization of both r(t; θ) and Mt(θ).

5. Empirical benefits. On CIFAR-10 (Krizhevsky et al., 2009), AFHQv2 (Choi et al., 2020), and
FFHQ (Karras et al., 2019), our learned anisotropic denoising model is competitive with EDM
across budgets, and yields large gains on FFHQ, and at small counts e.g., FFHQ FID 6.02
vs. 57.14 at NFE=9 and 3.37 vs. 15.81 at NFE=13; CIFAR-10 2.93 vs. 6.69 at NFE=13 (50k
samples), with a small gap at very large NFE on CIFAR-10 (Table 1).

1.2 RELATED WORK

Optimizing schedules in isotropic diffusion. Recent work tunes the test-time discretization
schedule to improve few-step sampling (Sabour et al., 2024; Wang et al., 2023; Liu et al., 2023;
Park et al., 2024; Williams et al., 2024), complementing hand-crafted EDM designs (Karras et al.,
2022). Related efforts adjust training-time noise weighting or sampling over noise levels while
retaining a scalar schedule (Hang et al., 2024; Okada et al., 2024).

Beyond isotropy: correlated noising. Methods introduce structure via edge-aware anisotropy
(Vandersanden et al., 2024), per-pixel multivariate schedules (Sahoo et al., 2024), or time-varying
correlated masks (Huang et al., 2024). Frequency-/subspace formulations restrict or bias diffusion
dynamics (Jing et al., 2022), and video models exploit structured noise across time through decom-
position or temporally correlated priors (Luo et al., 2023; Ge et al., 2023; Chang et al., 2025). In
contrast, we learn a general matrix-valued trajectory Mt(θ) together with a scalar time-transform
r(t; γ) under a trajectory-level objective, and compose both within a second-order anisotropic sam-
pler (Algorithm 1).

2 PRELIMINARIES

2.1 ANISOTROPIC DIFFUSION: PROCESS, SCORE, AND PARAMETERIZATIONS

Recall the anisotropic diffusion process in (2). Let Mt(θ) denote the noise covariance at time t,
parameterized by θ ∈ Rc. pt as defined in (2) has score given by

∇ log pt(x; θ) = M−1
t (θ)Ex0|xt=x [x0 − xt] , (3)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

where (x0, xt) are defined by the joint distribution x0 ∼ p0 and xt = x0 +N (0,Mt). We provide
a short proof in Lemma 7 in Appendix B. In case of time-uniform isotropic diffusion (i.e. standard
Brownian Motion), Mt(θ) = tI , and the formula in (3) reduces to the standard score expression.

We parameterize a neural network net(x, t, ϕ) to approximate the score, we also define flow, a
transformation of net whose norm is approximately time-invariant:

net(x, t, ϕ) ≈ ∇ log pt(x; θ), flow(x, t, ϕ) := M
1/2
t net(x, t, ϕ). (4)

Remark 1 (Anisotropic score matching for fixed Mt; not used in this paper). For a fixed Mt sched-
ule, the natural per-time objective at time t is

ℓt(ϕ) := Ex0,ϵ

[∥∥net(xt, t, ϕ)−M−1
t (θ)(x0 − xt)

∥∥2
2

]
, xt = x0 +M

1/2
t ϵ. (5)

We show in Lemma 4 in Appendix B that ℓt(ϕ) is minimized by net(xt, t, ϕ) = ∇ log pt(x).

Continuous and discrete Reverse ODE for anisotropic denoising. Given net in (6), we define
the continuous-time forward ODE and reverse ODE are respectively defined as

dx̄t = −1

2
∂tMt(θ)net(x̄t, t, ϕ)dt, ⇔ dx̄T−t =

1

2
∂tMt(θ)net(x̄T−t, T − t, ϕ)dt.

(6)

The reverse-ODE above can be implemented via a time-discretization of (6). For intuition, we
present below the simple Euler-discretization of (6): Let K be number of steps, let t0 < t1... <
tK ∈ [0, T] denote discretization points. The Euler reverse ODE is

xEul
tk−1

= xEul
tk

+ (M
1/2
tk−1

−M
1/2
tk

)flow
(
xEul
tk

, tk
)
. (7)

Our experiments use Heun’s second order integrator (Ascher & Petzold, 1998; Karras et al., 2022)
which consistently gives better FID per NFE. We detail this algorithm in Section 5.

Variance-Preserving Anisotropic Diffusion. It is often more useful to consider the variance pre-
serving anisotropic diffusion, which is simply (time-dependent) linear-transformation of (2). Define

xV P
t := (I +Mt(θ))

−1/2
xt. (8)

The choice of I above is based on the assumption that Cov(x0) ≈ I . The dynamics of xV P
t can be

explicitly written, without reference to xt, using a matrix exponential. However, it is much simpler
mathematically and programmatically to maintain xt explicitly, and define xV P

t via (8).

2.2 IMPLEMENTATION DETAILS: Mt(θ) FOR DCT BASIS ON IMAGES

We present below a simple example of Mt(θ) based on the 2D Discrete Cosine Transform (2D-
DCT). See Appendix A background on 2D-DCT bases. Let d = H × H denote the dimension of
an image. Let v1...vH2 denote the 2D-DCT basis vectors of H ×H . Let S1...SJ ⊂ {v1...vH2} be
a disjoint union of these H2 2D-DCT vectors. For each i = 1...J , let gi(t; θ) : R+ → R+ denote
a monotonically increasing function satisfying gi(0; θ) = 0 and gi(T ; θ) = T . Let Vi ∈ R|Si|×H2

denote the basis matrix for Si, so that V ⊤
i Vi is a projection matrix onto span(Si). Then we define

Mt(θ) :=

J∑
i=1

gi(t; θ)V
⊤
i Vi, equiv. ∂tMt(θ) :=

J∑
i=1

∂tgi(t; θ)V
⊤
i Vi. (9)

We verify that Mt(θ) ≻ Ms(θ) for t > s, and thus defines a valid forward anisotropic diffusion
process (2). Intuitively, each gi(t; θ) defines a separate time-schedule on each subspace S1...SJ .

Efficient matrix algebra. The form (9) implies F (Mt) =
∑

i F (gi(t))V
⊤
i Vi for F ∈

{(·) c, ∂t, ∂θ}; our experiments use J = 2 and implement gi using log-linear knots (App. C).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Isotropic

Denoising

Anisotropic

Denoising

𝜎2 𝑡 :

𝑡:

𝑔1 𝑡 :

𝑔2 𝑡 :

5600 4800 4000 3200 2400 1600 800

5600 4800 4000 3200 2400 1600 800

4900 3600 2500 1600 900 400 100

5600 4800 4000 3200 2400 1600 800

(6400,6400)

Figure 1: Illustration of Isotropic vs. anisotropic denoising. Top: standard isotropic sampler
denoises all directions uniformly. Bottom: anisotropic sampler with two DCT subspaces, V1 (low
frequency) and V2 (high frequency), (Section 2.2). Columns show intermediate reconstructions as
t decreases. The plot (right) displays the learned subspace schedules g1(t) and g2(t); the former
is denoised more aggressively, thus low-frequency structure emerges earlier from the V1, while
high-frequency details emerge later from V2. Illustration only: in practice anisotropic and isotropic
will reconstruct different images, and the gap between g1 and g2 is typically smaller (see Fig. 3)

3 TRAJECTORY-LEVEL SCORE MATCHING LOSS

Goal. We want to learn an anisotropic noise path Mt(θ) that reduces generation error. Two error
sources dominate at test time: (i) score approximation error, and (ii) discretization error of the
reverse ODE. In this section we focus on (i), introducing a trajectory-level objective that jointly
trains the score network and learns Mt(θ). We discuss (ii) in Section 5.

From (2) and (6), the variance-preserving ODE (8) with ∇ log pt and net are defined by the drift
velocity fields v(xt, t; θ) and v̄(x̄t, t; θ) respectively:

v(x, t; θ) := −(I +Mt(θ))
−1/2∂tMt(θ)∇ log pt(x; θ)−

1

2
(I +Mt(θ))

−3/2∂tMt(θ)x,

v̄(x, t; θ, ϕ) := −(I +Mt(θ))
−1/2∂tMt(θ)net(x, t, ϕ)−

1

2
(I +Mt(θ))

−3/2∂tMt(θ)x. (10)

Let us also define ṽ(x, y, t; θ) := −(I + Mt(θ))
−1/2∂tMt(θ)M

−1
t (θ)(y − x) − 1

2 (I +

Mt(θ))
−3/2∂tMt(θ)x. It follows from (3) that v(x, t; θ) = Ex0|xt=x [ṽ(x, x0, t; θ)]. For ϵ ∼

N (0, I), xt := x0 +M
1/2
t (θ)ϵ, we now define the trajectory-level score-matching loss as

L(θ, ϕ) =

∫ T

0

Ex0,ϵ

[
∥v̄(xt, t; θ, ϕ)− ṽ(xt, x0, t; θ)∥22

]
dt, (11)

where T denotes maximum noise level. We also provide a more explicit expression of L(θ, ϕ) in
(15) in Section 4.2 below. L(θ, ϕ) can be viewed as a generalization to the standard score-matching
objective, but with matrix-valued weights. The loss in (11) has a number of desirable properties:

Exact score at optimality. The following analog of Lemma 4 shows that L(θ, ϕ), like the stan-
dard score-matching loss, also encourages net to match the score. Proof in Appendix B.
Lemma 1. L(θ, ϕ), as defined in (11), is minimized if net(x, t;ϕ) = ∇ log pt(x; θ) for all (x, t).

Connection to path-level KL divergence: For two stochastic processes evolving as dxt =
v(xt, t)dt + dBt and dx̄t = v̄(x̄t, t)dt + dBt, the path-level KL divergence is bounded by∫ T

0
E [∥v̄(xt, t)− v(xt, t)∥]22 dt (assuming sufficient regularity, e.g. Novikov’s condition). This has

been used, for instance, to bound the discretization error of the reverse SDE in Chen et al. (2022).
Our loss (1) differs from the KL upper bound in replacing v(x, t; θ) by ṽ(x, x0; θ), because the true
score (and hence v(x, t; θ)) is not accessible during training. In this paper, we focus on the forward
and reverse ODE for simplicity, but the forward and reverse SDE can be analogously defined.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Integration error under VP scaling (intuition). We choose to compute the score-matching error
under the VP formulation for two reasons: (1) VP transformation keeps scale roughly constant wrt
time, and (2) at large time, the backward ODE is dominated by xt contracting towards 0. Thus
discretization errors at high noise should be discounted (via the (I +Mt(θ))

−1/2 scaling).

3.1 CHOICE OF WEIGHT w(t) IS EQUIVALENT TO CHOICE OF NOISE-SCHEDULE gt(θ).

Possibly of independent interest, we present here a connection between learning gt(θ), and the
standard score-matching formuation. Consider the isotropic version of (11). Let Mt(θ) := gt(θ)I ,
where gt is a scalar-valued monotonically increasing function. L(θ, ϕ) thus simplifies to∫ T

0

(∂tgt(θ))
2

1 + gt(θ)
Ex0,ξ

[∥∥∥netgt(θ)(x0 + gt(θ)
1/2ξ;ϕ) + gt(θ)

−1/2ξ
∥∥∥2
2

]
dt. (12)

With slight abuse of notation we let netσ2(xt;ϕ) denote the network trained to match the
score of p0 ∗ N (0, σ2I). In literature, the score-matching loss is usually a weighted average∫ T

0
w(s)Ex0,ξ

[
∥nets(x0 +

√
sξ) + ξ/

√
s∥22

]
ds. We show below that choosing a gt(θ) is exactly

equivalent to choosing a weighing function w(s):
Lemma 2. For any w(t), there exists a gt(θ) and constant c, such that for any H(t)∫ T

0

(∂tgt(θ))
2

1 + gt(θ)
H(gt(θ))dt = c

∫ T

0

w(t)H(t)dt.

We defer the proof to Appendix B. Consequently, any weighted score-matching loss for isotropic
diffusion (where the weights can be a combination of explicit weighting function and implicit distri-
bution density, e.g. Karras et al. (2022)) can be equivalently written as an instance of trajectory-level
score-matching loss, for a specific choice of gt(θ). When we optimize over the space of noise-
schedules gt(θ) wrt L(θ, ϕ), we are equivalently optimizing over the choice of weighing function
w(t) under the standard score-matching loss.

4 OPTIMIZATION SCORE MATCHING LOSS OVER Mt(θ)

For fixed t, let θ ∈ Rc be the vector parameterizing Mt(θ). Then for all i = 1...c,

∂θixt(θ) = −1

2
∂θiMθ∇ log pt(x; θ) ⇔ ∂θipt(x; θi) =

1

2
div(∂θiMt(θi)∇pt(x; θi)). (13)

The LHS of (13) resembles (2), as both describe the density evolution of pt(x; θ), and follow almost
identical proofs. However, do note that (2) and (13) have very different meanings. Specifically, (2)
holds θ fixed, and evolves xt(θ) over t, whereas (13) holds t fixed, and evolves xt(θ) over θ.

4.1 STOCHASTIC APPROXIMATION TO ∂θ∇ log pt(x; θ) AND ∂θNET(x, t, ϕ)

A significant challenge of optimizing L(θ, ϕ) lies in the fact that there is no simple way to approxi-
mate ∂θ∇ log pt(x; θ). This is because, whereas net(x, t;ϕ) ≈ ∇ log pt(x; θ) is a good approxima-
tion of the value of the score, it does not explicitly provide the derivative of the score, with respect
to ϕ. One simple approach is to allow net(x, t, ϕ, θ) to additionally take in θ as an input argument,
e.g. via a more complex time-embedding module, but this approach has two major downsides:

1. The score-matching loss (11) needs to integrate over not just time t ∈ [0, T], but over a large set
of potential θ’s. This is forces the net to trade-off the score loss at various suboptimal θ values,
which are not used for inference-time reverse-ODE.

2. As the parameterization of Mt(θ) as a function of θ becomes more complex, net(x, t, ϕ, θ) must
also use a more complex time-embedding module to encode (t, θ).

In contrast, we present a principled approach, that computes an unbiased stochastic estimate of
the θ-space derivative ∂θi∇ log pt(x; θ), using only higher-order directional x-space derivatives
∇ log pt(x; θ) along specific directions. Programmatically (e.g. in PyTorch), the derivatives with
respect to all of θ1...θc is computed together in three backward passes, so the additional computa-
tional cost is agnostic to the dimension of θ, and the parameterization of Mt(θ).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Lemma 3. Let e1...ed denote any orthonormal basis of Rd. Then

∂θi∇ log pt(x; θ) =
1

2

d∑
j=1

∂r∂s∇ log pt(x+ rej + s∂θiMt(θ)ei; θ)

+ ∂s∇ log pt(x+ s∂θiMt(θ)∇ log pt(x; θ); θ).

Applying the approximation of net(x, t, ϕ) ≈ ∇ log pt(x; θ) on both sides gives

∂θinet(x, t, ϕ) ≈
1

2

d∑
i=1

∂r∂snet(x+ rei + s∂θiMt(θ)ei, t, ϕ)

+ ∂snet(x+ s∂θiMt(θ)net(x, t, ϕ), t, ϕ). (14)

The sum over j = 1...d is expensive to compute exactly, but it can be efficiently approximated in
expectation, by sampling ei from the standard Gaussian distribution.

4.2 OPTIMIZING THE LOSS L(θ, ϕ)

We now apply our formula from Section 4.1 to optimize L(θ, ϕ) in (11). For notational clarity,
we treat θ as a scalar. Mathematically, θ ∈ Rc can be handled by repeating the computation for
each scalar θi. At the end of this section, we provide PyTorch code, showing how the gradients
of all θ1...θc can be simultaneously computed in one set of backward passes. Let x0 ∼ p0 and
ξ ∼ N (0, I) independently, and define xt := x0 +M

1/2
t ξ, consistent with (2). Following the setup

in Section 3, L(θ, ϕ) is equal to

Ex0,ξ

[∥∥∥(I +Mt(θ))
−1/2

∂tMt(θ)
(
net(x0 +M

1/2
t (θ)ξ, t, ϕ) +Mt(θ)

−1/2ξ
)∥∥∥2

2

]
. (15)

Let us define the gradient of L(θ, ϕ) above with respect to net as.

G(θ, ϕ) := 2Ex0,ξ

[
∂tMt(θ)(I +Mt(θ))

−1∂tMt(θ)
(
net(x0 +M

1/2
t (θ)ξ, t, ϕ) +Mt(θ)

−1/2ξ
)]

.

To estimate the actual derivative of L(θ), accounting for the change-in-score-due-to-θ, we augment
the derivative ∂θ(15) using

∂θL(θ, ϕ) = ∂θ(15) + ⟨G(θ, ϕ), (14)⟩ . (16)

The expectation wrt x0, ξ can be approximated by a finite sum over j = 1...n of {(x(j)
0 , ξ(j))}j=1...n,

sampled iid from p0 ×N (0, I). We highlight below two aspects of practical implementation.

4.3 IMPLEMENTATION DETAILS

Time embedding and detaching θ. In common implementations, net(x, σ(t), ϕ) takes as input
the noise-level σ, and not the time index. In our actual experiment setup described in Section 2.2,
we use net(x, σ̃(t; θ), ϕ), with σ̃(t; θ) :=

√
g1(t; θ)g2(t; θ) to replace σ(t) as this requires minimal

retraining of the time-embedding of the original net (and requires no retraining if g1 = g2). In the
implementation, it is important to detach the θ from the computation graph of θ̃, so as not to double-
count the derivative wrt θ. We also emphasize that backpropagating through σ̃(t; θ) is insufficient for
estimating the derivative ∂θnet, because σ̃ is a scalar-valued ”projection” of the full matrix-valued
Mt(θ) noise, and thus we still need to use (14).

Variance Reduction with ∂θflow instead of ∂θnet. The scale of ∥net(x, t;ϕ)∥2 ≈
∥∇ log pt(x; θ)∥2 ≈ ∥M−1/2

t (θ)∥2 can vary significantly with the noise level. This could lead
to high variance in the stochastic-estimation of ∂θnet in (14). To address this, we propose a math-
ematically equivalent estimate of ∂θnet based on flow(x, t, ϕ) := M

1/2
t (θ)net(x, t, ϕ), whose

scale is approximately constant across time: ∥flow(x, t, ϕ)∥2 ≈ ∥M1/2
t ∇ log pt(x; θ)∥2 ≈ d.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(flow is defined in (4)) We show in Lemma 5 that

∂θflow(x, t, ϕ) =
1

2

d∑
i=1

∂r∂sflow(x+ rei + s∂θMt(θ)ei, t, ϕ)

+ ∂sflow(x+ s∂θM
1/2
t (θ)flow(x, t, ϕ), t, ϕ) +

1

2
M−1

t (θ)(∂θMt(θ))flow(x, t, ϕ)

H(θ, ϕ) = 2Ex0,ξ

[
Mt(θ)

−1/2∂tMt(θ)(I +Mt(θ))
−1∂tMt(θ)Mt(θ)

−1/2
(
flow(x0 +M

1/2
t (θ)ξ, t, ϕ) + ξ

)]
∂θL(θ, ϕ) = ∂θ(15) + ⟨H(θ, ϕ), ∂θflow(x, t, ϕ)⟩ .
The last line above is equivalent to (16), but written with flow instead of net.

5 LEARNING SCALAR DISCRETIZATION SCHEDULE

In this section, we present the implementation of Heun’s second-order backward ODE integrator
for anisotropic diffusion. Additionally, we discuss a way to select an optimal denoising schedule
r(t; γ) : [0, T] → [0, T] based on a trajectory-level discretization loss. We emphasize that the
optimal denoising schedule r(t; γ) can be composed with the optimal score-matching noise schedule
Mt(θ) obtained from minimizing L(θ, ϕ) in (11). In this section, we omid dependence on θ, ϕ.

5.1 HEUN’S SECOND-ORDER ALGORITHM FOR ANISOTROPIC DIFFUSION DENOISING.

Let ũ be the estimate of flow(x̄t, t̄), given two evaluations of flow at (x, t) and x̂, t̂ respectively:

ũ(t̄;x, x̂, t, t̂) := flow(x, t) + (M
1/2
t̄ −M

1/2
t)(M

1/2

t̂
−M

1/2
t)−1

(
flow(x̂, t̂)− flow(x, t)

)
.

Let t0 < t1 < ... < tK denote K discretization points with t0 = 0 and tK = K. Let tk−1 ≤ t̂k < tk
denote a set of secondary evaluation points. Then Heun’s second-order backward ODE is defined as

x̂t̂k
= x̃tk + (M

1/2

t̂k
−M

1/2
tk

)flow(x̃tk , tk),

x̃tk−1
= x̃tk +

∫ tk−1

tk

(∂tM
1/2
t̄)ũ(t̄; x̃tk , x̂t̂k

, tk, t̂k)dt̄. (17)

We verify in Lemma 6 that
∫ tk−1

tk
ũ(t̄; x̃tk , x̃t̂k

, tk, t̂k)dt̄ has a simple closed-form expression:

(M
1/2
tk−1

−M
1/2
tk

)(flow(x̃tk , tk))−
1

2
(M

1/2
tk−1

−M
1/2
tk

)2(M
1/2

t̂k
−M

1/2
tk

)−1
(
flow(x̂t̂k

, t̂k)− flow(x̃tk , tk)
)
.

In general, the choices of evaluation points tk and t̂k can have a significant effect on the discretization
error. In Karras et al. (2022), for isotropic diffusion models, the authors choose a schedule which

corresponds to tk ≈
(
σ
1/ρ
max − K−k

K

(
σ
1/ρ
min − σ

1/ρ
max

))ρ

, with ρ = 7 being an empirically chosen

hyperparameter, and σmin ≈ 0, σmax ≈ T , t̂k = tk−1. In the next section, we present a principled
way to select a discretization schedule by minimizing the trajectory-level discretization error.

5.2 OPTIMAL DISCRETIZATION SCHEDULE

We will let r(t; γ) : [0, T] → [0, T] denote a monotonically increasing time-transformation with
r(0; γ) = 0, r(T ; γ) = T . We will optimize over the choice of discretization schedules r(t; γ). Let
xt denote the continuous-time backward ODE, defined as the time-reversal of

dxt = −1

2
∂tMtnet(xt, t) = −∂tM

1/2
t flow(xt, t). (18)

On the other hand, (17) is equivalent to dx̃t = −(∂tM
1/2
t)ũ(t̄; x̃tk , x̂t̂k

, tk, t̂k) for t ∈ [tk−1, tk].
Again inspired by the Girsanov’s Theorem, which gave rise to our trajectory-level score-matching
loss L(θ, ϕ), we define the idealized trajectory-level discretization loss Ĥ(γ) as

Ĥ(γ) =

∫ T

0

E
[∥∥∥∂tM1/2

r(t;γ)

(
flow(xr(t;γ), r(t; γ))− ũ(r(t; γ); x̃r(tk;γ), x̂r(t̂k;γ)

, r(tk; γ), r(t̂k; γ))
)∥∥∥2

2

]
dt,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

where in the above, tk−1, tk are the two evaluation points such that r(t; γ) ∈ [r(tk−1; γ), r(tk; γ)].
In practice, we optimize a stochastic approximation of Ĥ defined by

H(γ) = Et,t̃,x̃,x̂

[∥∥∥∂tM1/2
r(t;γ)

(
flow(xr(t;γ), r(t; γ))− ũ(r(t; γ); x̃, x̂, r(t̃; γ), r(t̂; γ))

)∥∥∥2
2

]
dt,

where t̃ ∼ Unif([0, T]), t̄ = max
{
0, t̃− T/8

}
, t ∼ Unif([t̄, t̃]). t̂ = (t̄+ t̂)/2. In addition to the

discretization error, recall the continuous-time score-matching loss L defined in (11). For θ, ϕ fixed,
and under the time-transformation r(t; γ), the score-matching loss is given by

L̃(γ) :=

∫ T

0

Ex0,ϵ

[∥∥v̄(xr(t;γ), r(t; γ); θ, ϕ)− ṽ(xr(t;γ), x0, r(t; γ); θ)
∥∥2
2

]
dt, (19)

where v̄ and ṽ are as defined in Section 3, and xr(t;γ) = x0 +M
1/2
r(t;γ)ϵ. Combining the above, we

optimize r(·; γ), over the space of γ’s, to minimize H(γ)+ L̃(γ). We parameterize r(t; γ) the same
as gi(t; θ) (Section 2.2). In practice, we replace L̃ by L̂, which is a more elaborate version of L̃ that
is a more accurate estimator of the score-matching loss (see (20) in Appendix D). The following
algorithm combines all our previous optimization techniques:

Algorithm 1 Combining all training
1: Train (θ∗, ϕ∗) on loss L(θ, ϕ)
2: Given Mt(θ

∗) and net(·, ·, ϕ∗), train γ∗ as described in Section 5.2.
3: Let si = iT/K denote a uniform grid. Let ti = r(si, γ

∗) for i = 0...K. Let t̂i = r((si−1 +
si)/2, γ

∗).
4: To generate samples, implement (17), with ti and t̂i from step 3 above.

6 EXPERIMENTAL EVALUATION

We evaluate our anisotropic diffusion schedules on three standard image generation benchmarks:
CIFAR-10 (32 × 32) (Krizhevsky et al., 2009), AFHQv2 (64 × 64) (Choi et al., 2020), and FFHQ
(64×64) (Karras et al., 2019). All experiments are compared against the EDM baseline (Karras et al.,
2022), using the official generation code and their best-reported settings. Our models are finetuned
from the corresponding EDM networks, consuming the equivalent of 1.2M image passes over the
course of training. For evaluation, we generate 50k samples and compute the Fréchet Inception
Distance (FID↓). Results are reported across a range of function evaluations (NFE), following the
same experimental settings as Karras et al. (2022). No additional hyperparameters are tuned.

Algorithm details. (1) EDM is EDM baseline. (2) giso parameterizes an isotropic noise schedule
(Mt with J = 1 in (9)). (θ, ϕ) is trained on L(θ, ϕ) and generation uses (17), with uniform grid
tk and t̂k = (tk−1 + tk)/2. (gani1 , gani2) parameterize Mt with J = 2 in (9); the training/infer-
ence procedure is identical to giso. gisow (resp (gani1,w, g

ani
2,w)) is generated using Algorithm 1, and

parameterizes Mt with J = 1 (resp J = 2). For the J = 2 setups, we choose V1 to contain the
H2/4 lowest-frequency DCT bases, and V2 to contain the remainder bases, where H is the image
resolution (e.g., H = 64 for 64× 64). g1 and g2 are their respective schedules.
Comparable overall performance. Across datasets, our learned schedules achieve performance
broadly comparable to EDM. As shown in Table 1, the reported FIDs remain close to those of the
baseline over a wide range of NFE. The only noticeable deviation occurs on CIFAR-10 at large NFE,
where performance is slightly worse, but the gap is minor relative to the overall trend.
Significant gains at low NFE. Our methods show consistent advantages over EDM in the low-
NFE regime, often by a large margin (Table 1). On CIFAR-10, (gani1 , gani2) achieves FID=2.93 at
NFE=13. On AFHQv2, (gani1,w, g

ani
1,w) achieves FID=2.42 at NFE=19. On FFHQ, the same variant

reaches FID=3.37 at NFE=13.
Strong improvements on FFHQ. The largest gains are observed on FFHQ, a more complex
human-face dataset. Across all NFE values, learned schedules outperform EDM. At smaller NFE
(e.g., 9–13 steps), the improvements are dramatic: at NFE=9, our method achieves FID=6.02 com-
pared to 57.14 for EDM; at NFE=11, 4.25 vs 29.39; and at NFE=13, 3.37 vs 15.81.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

CIFAR-10

Method nfe 9 nfe 11 nfe 13 nfe 15 nfe 17 nfe 35 nfe 59 nfe 79 Best FID

EDM 35.52 14.37 6.694 4.231 3.027 1.829 1.868 1.890 1.829
giso 49.06 31.17 19.53 13.03 9.082 2.134 1.928 1.946 1.928
gisow 5.133 14.05 6.898 2.633 2.585 2.003 1.955 1.949 1.949
(gani

1 , gani
2) 5.849 3.567 2.927 2.638 2.469 2.128 2.091 2.054 2.054

(gani
1,w , g

ani
2,w) 4.672 6.060 5.689 2.759 2.536 2.078 2.082 2.039 2.039

AFHQv2

Method nfe 9 nfe 11 nfe 13 nfe 15 nfe 19 nfe 39 nfe 79 nfe 119 Best FID

EDM 27.98 13.66 7.587 4.746 2.986 2.075 2.042 2.046 2.042
giso 35.38 15.20 10.33 8.287 5.684 2.332 2.103 2.068 2.068
gisow 4.745 3.766 2.920 2.564 2.495 2.123 2.088 2.067 2.067
(gani

1 , gani
2) 22.20 11.67 8.498 6.755 4.406 2.167 2.039 2.023 2.023

(gani
1,w , g

ani
2,w) 4.697 3.590 2.859 2.445 2.416 2.061 2.036 2.023 2.023

FFHQ

Method nfe 9 nfe 11 nfe 13 nfe 15 nfe 19 nfe 39 nfe 79 nfe 119 Best FID

EDM 57.14 29.39 15.81 9.769 5.169 2.575 2.391 2.374 2.374
giso 68.35 27.92 13.44 8.097 3.958 2.265 2.242 2.281 2.242
gisow 6.679 4.290 3.872 3.472 3.033 2.365 2.281 2.292 2.281
(gani

1 , gani
2) 45.43 17.21 8.263 5.129 3.001 2.327 2.313 2.354 2.313

(gani
1,w , g

ani
2,w) 6.016 4.253 3.365 3.119 2.829 2.359 2.309 2.348 2.309

Table 1: FID ↓ vs. NFE across datasets (50k samples). For each method, we perform 3 independent
random generations of 50k images and report the minimum FID across the three runs. Bold = per-
NFE best. Blue = Best FID lower than EDM.

Figure 2: Learned schedules for isotropic and anisotropic cases.

Figure 3: log(gani1 (t)/gani2 (t)) and log(gani1,w(t)/g
ani
2,w(t)).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

The code used to run all experiments is linked in the abstract. We provide detailed descriptions of
datasets, architectures, training settings, and evaluation protocols. Every theorem or lemma stated
or referenced in the main text is accompanied by a complete proof, either in the main body or in the
Appendix.

ETHICS STATEMENT

We rely exclusively on publicly available datasets (CIFAR-10, AFHQv2, FFHQ), which are widely
used in the machine learning community and distributed for research purposes. Our work is method-
ological in nature, with experiments confined to standard benchmarks. We do not anticipate any
significant ethical risks arising from this study.

REFERENCES

Uri M Ascher and Linda R Petzold. Computer methods for ordinary differential equations and
differential-algebraic equations. SIAM, 1998.

Pascal Chang, Jingwei Tang, Markus Gross, and Vinicius C Azevedo. How i warped your noise: a
temporally-correlated noise prior for diffusion models. arXiv preprint arXiv:2504.03072, 2025.

Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru R Zhang. Sampling is as easy
as learning the score: theory for diffusion models with minimal data assumptions. arXiv preprint
arXiv:2209.11215, 2022.

Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image synthesis
for multiple domains. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 8188–8197, 2020.

Songwei Ge, Seungjun Nah, Guilin Liu, Tyler Poon, Andrew Tao, Bryan Catanzaro, David Jacobs,
Jia-Bin Huang, Ming-Yu Liu, and Yogesh Balaji. Preserve your own correlation: A noise prior for
video diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 22930–22941, 2023.

Tiankai Hang, Shuyang Gu, Xin Geng, and Baining Guo. Improved noise schedule for diffusion
training. arXiv preprint arXiv:2407.03297, 2024.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Xingchang Huang, Corentin Salaun, Cristina Vasconcelos, Christian Theobalt, Cengiz Oztireli, and
Gurprit Singh. Blue noise for diffusion models. In ACM SIGGRAPH 2024 conference papers,
pp. 1–11, 2024.

Bowen Jing, Gabriele Corso, Renato Berlinghieri, and Tommi Jaakkola. Subspace diffusion gener-
ative models. In European conference on computer vision, pp. 274–289. Springer, 2022.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 4401–4410, 2019.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in neural information processing systems, 35:26565–26577,
2022.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Enshu Liu, Xuefei Ning, Zinan Lin, Huazhong Yang, and Yu Wang. Oms-dpm: Optimizing the
model schedule for diffusion probabilistic models. In International Conference on Machine
Learning, pp. 21915–21936. PMLR, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zhengxiong Luo, Dayou Chen, Yingya Zhang, Yan Huang, Liang Wang, Yujun Shen, Deli Zhao,
Jingren Zhou, and Tieniu Tan. Videofusion: Decomposed diffusion models for high-quality video
generation. arXiv preprint arXiv:2303.08320, 2023.

Shuntaro Okada, Ryota Yoshihashi, Hirokatsu Kataoka, Tomohiro Tanaka, et al. Constant rate
scheduling: Constant-rate distributional change for efficient training and sampling in diffusion
models. arXiv preprint arXiv:2411.12188, 2024.

Yong-Hyun Park, Chieh-Hsin Lai, Satoshi Hayakawa, Yuhta Takida, and Yuki Mitsufuji. Jump your
steps: Optimizing sampling schedule of discrete diffusion models. In The Thirteenth International
Conference on Learning Representations, 2024.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Daniel Ruderman and William Bialek. Statistics of natural images: Scaling in the woods. Advances
in neural information processing systems, 6, 1993.

Amirmojtaba Sabour, Sanja Fidler, and Karsten Kreis. Align your steps: Optimizing sampling
schedules in diffusion models. arXiv preprint arXiv:2404.14507, 2024.

Subham Sahoo, Aaron Gokaslan, Christopher M De Sa, and Volodymyr Kuleshov. Diffusion models
with learned adaptive noise. Advances in Neural Information Processing Systems, 37:105730–
105779, 2024.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations (ICLR), 2021. URL https://openreview.
net/forum?id=PxTIG12RRHS.

Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
Scalable image generation via next-scale prediction. Advances in neural information processing
systems, 37:84839–84865, 2024.

Jente Vandersanden, Sascha Holl, Xingchang Huang, and Gurprit Singh. Edge-preserving noise for
diffusion models. 2024.

Yunke Wang, Xiyu Wang, Anh-Dung Dinh, Bo Du, and Charles Xu. Learning to schedule in diffu-
sion probabilistic models. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 2478–2488, 2023.

Christopher Williams, Andrew Campbell, Arnaud Doucet, and Saifuddin Syed. Score-optimal diffu-
sion schedules. Advances in Neural Information Processing Systems, 37:107960–107983, 2024.

11

https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A 2D-DCT TRANSFORM

Let H be the image side length and d = H2. The two-dimensional DCT (type-II) basis over RH×H

is defined as follows. For each pair (p, q) ∈ {0, . . . ,H − 1}2, the basis is

Φp,q(x, y) = γpγq cos
(

(2x+1)pπ
2H

)
cos

(
(2y+1)qπ

2H

)
, x, y = 0, . . . ,H − 1,

with normalization factors

γp =

{
H−1/2, p = 0,
√
2H−1/2, p > 0,

γq =

{
H−1/2, q = 0,
√
2H−1/2, q > 0.

Vectorizing each Φp,q into Rd and enumerating them yields the orthonormal basis {v1, . . . , vH2},
which are the 2D-DCT basis of Rd. Please refer to Figure 4 for example 2D-DCT bases.

u=0, v=0 u=0, v=1 u=1, v=0 u=1, v=1 u=0, v=2 u=1, v=2 u=2, v=0 u=2, v=1 u=2, v=2

Figure 4: The first nine 2D-DCT bases ordered by increasing frequency.

B PROOFS

Lemma 4. Let ℓt(ϕ) be as defined in (5). Then ℓt(ϕ) is minimized if net(x, t;ϕ) = ∇ log pt(x; θ).

Proof of Lemma 4. To see this, let V : Rd → Rd be an arbitrary vector field. With abuse of notation,
define

ℓt(V) := Ex0,ϵ

[∥∥V (xt)−M−1
t (θ)(x0 − xt)

∥∥2
2

]
.

Observe that ℓt above can be minimized pointwise at each xt. By law of iterated expectation,
Ex0,ϵ

[∥∥V (xt)−M−1(x0 − xt)
∥∥2
2

]
= Ext

[
Ex0,ϵ|xt

[∥∥V (xt)−M−1(x0 − xt)
∥∥2
2

]]
. Further ob-

serve that

arg min
v∈Rd

Ex0,ϵ|xt

[∥∥v −M−1
t (θ)(x0 − xt)

∥∥2
2

]
= M−1

t (θ)Ex0,ϵ|xt
[x0 − xt] = ∇ log pt(x; θ).

The last equality follows from (3).

Proof of Lemma 1. We simplify the term inside the Euclidean norm in (11):

v̄(xt, t; θ, ϕ)− ṽ(xt, x0, t; θ) = (I +Mt(θ))
−1/2∂tMt(θ)(M

−1
t (θ)(x0 − xt)− net(xt, t, ϕ)).

Let Mall denote (I +Mt(θ))
−1/2∂tMt(θ).

Following Lemma 4, let V : Rd → Rd be an arbitrary vector field.

We can minimize the expectation pointwise at each xt. We can rewrite the expectation

Ex0,ϵ

[∥∥Mall(net(xt, t, ϕ)−M−1
t (θ)(x0 − xt))

∥∥2
2

]
as

Ex0,ϵ

[∥∥Mall(V (xt)−M−1
t (θ)(x0 − xt))

∥∥2
2

]
= Ext

[
Ex0,ϵ|xt

[∥∥Mall(V (xt)−M−1
t (θ)(x0 − xt))

∥∥2
2

]]
by the law of iterated expectation.

arg min
v∈Rd

Ex0,ϵ|xt

[
(v −M−1

t (θ)(x0 − xt))
⊤Mall(v −M−1

t (θ)(x0 − xt))
]

= M−1
t (θ)Ex0,ϵ|xt

[x0 − xt] = ∇ log pt(x; θ).

The above equality follows from (3). The penultimate equality follows from the fact that
argmina∈Rd(b − a)⊤Q(b − a) = b for any PSD matrix Q. Note that ∂tMt = A2

t is PSD, and
Mt being the covariance in the diffusion process is also PSD. Hence, Mall is PSD.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Proof of Lemma 2. Let w : [0, T] → (0,∞) be measurable and define

Φ(x) :=

∫ x

0

ds

(1 + s)w(s)
< ∞.

Then, to prove this Lemma, it is sufficient to show there exist a c = Φ(T)
T > 0 and a strictly

increasing continuous function g : [0, T] → [0, T] with g(0) = 0, g(T) = T such that

g′
(
g−1(t)

)
1 + t

= cw(t) for all t.

where c = Φ(T)/T .

Define g implicitly by Φ
(
g(t)

)
= ct for (0 ≤ t ≤ T), i.e. g(t) = Φ−1(c t). Differentiating

Φ(g(t)) = ct with respect to t yields the separable ODE g′(t) = (1 + g(t)) cw(g(t)), and with
r = g(t) this is g′(g−1(r))

1+r = cw(r). Hence, we derive an expression for g involving a constant c
and any w. Monotonicity of g(t) follows since w > 0 and c > 0 imply g′(t) > 0.

Substituting into c
∫ T

0
w(t)H(t)dt, we get

c

∫ T

0

w(r)H(r)dr =

∫ T

0

g′(t)

1 + g(t)
H(g(t))g′(t)dt.

Proof of Lemma 3. To simplify notation, we will drop the index i and treat θ as a scalar. The general
proof for θ ∈ Rc follows by repeating the proof for each θi, while holding all other θ′js fixed.

∂θpt(x; θ) =
1

2
div(pt(x; θ)∂θMt(θ)∇ log pt(x; θ))

=
1

2
pt(x; θ)(div(∂θMt(θ)∇ log pt(x; θ)) + ⟨∇ log pt(x; θ), ∂θMt(θ)∇ log pt(x; θ)⟩).

Dividing both sides by pt(x; θ) gives

∂θ log pt(x; θ) =
1

2
(div(∂θMt(θ)∇ log pt(x; θ)) + ⟨∇ log pt(x; θ), ∂θMt(θ)∇ log pt(x; θ)⟩)

=
1

2

∑
i

〈
∂θMt(θ)ei,∇2 log pt(x; θ)ei

〉
+

1

2
⟨∇ log pt(x; θ), ∂θMt(θ)∇ log pt(x; θ)⟩

=
1

2

∑
i

⟨∂θMt(θ)ei, ∂c∇ log pt(x+ cei; θ)⟩+
1

2
⟨∇ log pt(x; θ), ∂θMt(θ)∇ log pt(x; θ)⟩ .

Taking a derivative wrt x gives

∂θ∇ log pt(x; θ) =
1

2

∑
i

〈
∂θMt(θ)ei, ∂c∇2 log pt(x+ cei; θ)

〉
+
〈
∂θMt(θ)∇ log pt(x; θ),∇2 log pt(x; θ)

〉
=
1

2

∑
i

∂r∂s∇ log pt(x+ rei + s∂θMt(θ)ei; θ) + ∂s∇ log pt(x+ s∂θMt(θ)∇ log pt(x; θ); θ).

Lemma 5.

∂θflow(x, t, ϕ) =
1

2

d∑
i=1

∂r∂sflow(x+ rei + s∂θMt(θ)ei, t, ϕ)

+ ∂sflow(x+ sM
1/2
θ ∂θMt(θ)flow(x, t, ϕ), t, ϕ) +

1

2
M−1

t (θ)(∂θMt(θ))flow(x, t, ϕ).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Proof of Lemma 5. Recall that

flow(x; θ) = M
1/2
θ net(x; θ) = M

1/2
θ ∇ log pt(x; θ).

We verify that

∂θflow(x; θ) =M
1/2
θ ∂θnet(x; θ) +

1

2
M

−1/2
θ (∂θMθ)net(x; θ)

=
1

2

∑
i

M
1/2
θ ∂r∂snet(x+ rei + s∂θMt(θ)ei; θ) +M

1/2
θ ∂snet(x+ s∂θMt(θ)net(x; θ); θ)

+
1

2
M

−1/2
θ (∂θMθ)net(x; θ)

=
1

2

∑
i

∂r∂sflow(x+ rei + s∂θMt(θ)ei; θ) + ∂sflow(x+ sM
−1/2
θ ∂θMt(θ)flow(x; θ); θ)

+
1

2
M−1

θ (∂θMθ)flow(x; θ).

Lemma 6. Let ũ be as defined in Section 5.1. Then∫ t′

t

ũ(t̄;x, x̂, t, t̂)dt̄ = (M
1/2
tk−1

−M
1/2
tk

)(flow(x̃tk , tk))

− 1

2
(M

1/2
tk−1

−M
1/2
tk

)2(M
1/2

t̂k
−M

1/2
tk

)−1
(
flow(x̂t̂k

, t̂k)− flow(x̃tk , tk)
)
.

Proof. It suffices to verify that∫ t′

t

(∂tM
1/2
t̄)(M

1/2
t̄ −M

1/2
t)dt̄

=

∫ t′

t

1

2
∂tMt̄ − (∂tM

1/2
t̄)M

1/2
t dt

=
1

2
(Mt′ −Mt)−

(
M

1/2
t′ M

1/2
t −M

1/2
t M

1/2
t

)
=
1

2
(M

1/2
t′ −M

1/2
t)2.

This concludes the proof.

Lemma 7. If xt evolves as the following (1. and 2. are equivalent):

(1.) (xt − x0) ∼ N (0,Mt(θ)), (2.) dxt = −1

2
∂tMt(θ)∇ log pt(xt; θ)dt,

where pt(x; θ) := p0 ∗ N (0,Mt(θ)), then the score above is the conditional expectation

∇ log pt(x; θ) = M−1
t (θ)Ex0|xt=x [x0 − xt] ,

where (x0, xt) are defined by the joint distribution x0 ∼ p0 and xt = x0 +N (0,Mt).

Proof of Lemma 7. The expression for pt is given by

pt(x) =

∫
p0(x0)

|Mt|−0.5

√
2π

exp
(
−0.5(x0 − x)⊤M−1

t (x0 − x)
)
dx0 =

∫
p0(x0)pt(x|x0)dx0.

Taking the derivative of log pt(x) with respect to x

∇x log pt(x) =
1

pt(x)
∇xpt(x)

=
M−1

t

pt(x)

∫
p0(x0)

|Mt|−0.5

√
2π

exp
(
−0.5(x0 − x)⊤M−1

t (x0 − x)
)
(x0 − x)dx0

= M−1
t Ex0|xt=x [x0 − xt] .

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C IMPLEMENTATION DETAILS OF gi

For a fixed set of node locations 0 = τ0 < τ1 < · · · < τK−1 = T, the subspace noise schedule
is defined in log–space between the smallest and largest variance values g(0) = g0 and g(T) = T .
The trainable parameters θ = (θ1, . . . , θK−1) define a collection of strictly positive increments

si = softplus(θi), i = 1, . . . ,K − 1,

These increments are then rescaled by α so that their sum exactly matches the total log–gap between
the endpoints,

α =
log T − log g0∑K−1

i=1 si
.

The log–values at the nodes are constructed by cumulative summation,

ℓ0 = log g0, ℓj = ℓ0 +

j∑
i=1

α si, j = 1, . . . ,K − 1,

so that ℓK−1 = log T .

Given a time t ∈ [0, T], one locates the enclosing interval [τj−1, τj] and computes the normalized
position

p(t) =
t− τj−1

τj − τj−1
.

The value of g(t) is then obtained by linearly interpolating between successive log–nodes and expo-
nentiating:

log g(t) = (1− p(t)) ℓj−1 + p(t) ℓj , g(t) = exp
(
log g(t)

)
.

Within each interval the derivative takes the simple form

g′(t) = g(t)
ℓj − ℓj−1

τj − τj−1
.

D REDUCING BIAS IN LEARNING r(t; γ)

Let r be short for r(t; γ). We defined in (19) that

L̃(γ) =

∫ T

0

Ex0,ϵ

[
∥v̄(xr, r; θ, ϕ)− ṽ(xr, x0, r; θ)∥22

]
dt

=

∫ T

0

Ex0,ϵ

[∥∥∥(I +Mr)
−1/2∂tMr

(
M−1

r (x0 − xr)− net(xr, t)
)∥∥∥2

2

]

=

∫ T

0

Ex0,ϵ

(x0 − xr)
⊤M−1

r ArM
−1
r (x0 − x)︸ ︷︷ ︸

*

−2(x0 − xr)
⊤M−1

r Arnet(xr, t) + net(xr, t)
⊤Arnet(xr, t)

 ,

where we define Ar := ∂tMr(I +Mr)
−1∂tMr. The purpose of L is to capture the score-matching

loss, as described in Section 3. However, recall that the true score-matching loss is really∫ T

0

Exr

[
∥v(xr, r; θ)− v̄(x, t, ϕ)∥22

]
dt

=

∫ T

0

Ex0,ϵ

[
∇ log pr(xr)

⊤M−1
r ArM

−1
r ∇ log pr(xr)− 2∇ log pr(xr)

⊤M−1
r Arnet(xr, t) + net(xr, t)

⊤Arnet(xr, t)
]
.

Contrasting the above with L̃, we see that L̃ additionally includes the variance of M−1
r(t;γ)(x0 −

xr(t;γ)) due to * . For the purpose of optimizing γ, this additional variance introduces a non-trivial
bias to the score-matching loss at time t.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

To reduce this bias, we can instead approximate Ex0,ϵ

[
∇ log pr(xr)

⊤M−1
r ArM

−1
r ∇ log pr(xr)

]
by Ex0,ϵ

[
net(xr, r)

⊤M−1
r ArM

−1
r net(xr, r)

]
. This is based on the assumption that, even when

net is not a good approximation of ∇ log p, ∥net∥2 should be a reasonably good approximation
of ∥∇ log p∥2.

Consequently, we replace L̄(γ) by

L̂(γ) :=

∫ T

0

Ex0,ϵ

[
−2(x0 − xr)

⊤M−1
r Arnet(xr, t) + 2net(xr, t)

⊤Arnet(xr, t)
]
. (20)

Note that although the first term of L̂ also involves (x0 − xr), there is no bias in expectation.

E BOUNDING THE ESTIMATOR VARIANCE

E.1 THEORY

Let ϵ denote a random variable satisfying E [ϵ] = 0,E
[
ϵϵ⊤

]
= Id×d. Let v(x, t, ϕ) denote the exact

time derivative:

v(x, t, ϕ) :=
1

2

d∑
i=1

∂r∂sflow(x+ rei + s∂θMt(θ)ei, t, ϕ)

+ ∂sflow(x+ s∂θM
1/2
t (θ)flow(x, t, ϕ), t, ϕ) +

1

2
M−1

t (θ)(∂θMt(θ))flow(x, t, ϕ),

where log(Mt(θ)) is matrix logarithm. Let v̂(x, t, ϕ) denote the Hutchinson Estimator of v, defined
as

v̂(x, t, ϕ) :=
d

2
∂r∂sflow(x+ rϵ+ s∂θMt(θ)ϵ, t, ϕ)

+ ∂sflow(x+ s∂θM
1/2
t (θ)flow(x, t, ϕ), t, ϕ) +

1

2
M−1

t (θ)(∂θMt(θ))flow(x, t, ϕ),

where ϵ ∼ N (0, I).

Lemma 8. Assume curvature bound
∥∥∇2flow(x, t, ϕ)

∥∥
2
≤ C. Then for all x, t, ϕ,

1. E [v̂(x, t, ϕ)] = v(x, t, ϕ).

2. E [∥v̂(x, t, ϕ)− v(x, t, ϕ)∥2] ≤ 2Cd

Proof. Recall that ∇2flow(x, t, ϕ) is the second-derivative tensor. Then

E [∂r∂sflow(x+ rϵ+ s∂θMt(θ)ϵ, t, ϕ)]

=E
[
ϵ⊤∇2flow(x, t, ϕ)ϵ

]
=
∑
i,j

[
∇2flow(x, t, ϕ)

]
ij
E [ϵiϵj]

=
∑
i,j

[
∇2flow(x, t, ϕ)

]
ij
1 {i = j}

=
∑
i

[
∇2flow(x, t, ϕ)

]
ii

=
∑
i

e⊤i ∇2flow(x, t, ϕ)ei

=
1

2

d∑
i=1

∂r∂sflow(x+ rei + s∂θMt(θ)ei, t, ϕ).

This proves the first equality.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

To prove the second inequality,

E [∥v̂(x, t, ϕ)− v(x, t, ϕ)∥2]
≤E [∥v̂(x, t, ϕ)∥2] + E [∥v̂(x, t, ϕ)− v(x, t, ϕ)∥2]

≤E [∥v̂(x, t, ϕ)∥2] +
d∑

i=1

sup
∥u∥2≤1

∥∥u⊤∇2flow(x, t, ϕ)u
∥∥
2

≤E [∥v̂(x, t, ϕ)∥2] + Cd

=E
[
ϵ⊤∇2flow(x, t, ϕ)ϵ

]
+ Cd

≤E
[
∥ϵ∥22

]
sup

∥u∥2≤1

∥∥u⊤∇2flow(x, t, ϕ)u
∥∥
2
+ Cd

≤2Cd

where the first inequality is by triangle inequality, the second inequality is by ∥ei∥2 = 1, the third
inequality is by our assumption, the fifth line is by linearity, and the last line is by variance of
standard Gaussian. This concludes the proof.

E.2 EMPIRICAL VARIANCE BOUND

In the following, we evaluate the variance of estimating ∂θflow(x, t, ϕ) using the Hutchinson Esti-
mator. To be precise, let s denote the dimension of θ. In our experiment g(t; θ) is parameterized by
its log-values at 32 nodes, so s = 32. Let ∇ ∈ Rs denote the true derivative of L(θ, ϕ) wrt θ, and
let ∇̃ ∈ Rs denote the stochastic estimate using the Hutchinson Estimator. We define the relative
gradient error as

δ(x, t, ϕ) = ∥ ∇
∥∇∥2

− ∇̃
∥∇̃∥2

∥2.

With only gt(θ), we can compute the ground truth ∇ exactly by back-propagating through the net-
work’s time embedding. In the following table, we show the error δ(t) := Ex [δ(x, t, ϕ)], where
t is fixed and x is sampled randomly 50 times. For each sample, we draw ϵ ∼ N (0, I) for the
Hutchinson estimator.

Table 2: Error in relative stochastic gradient estimate.
t 6.4 1280 2560 3840 5120 6400

δ(t) 0.026 2.07e−7 3.84e−7 5.59e−7 3.76e−7 1.96e−7

F ADDITIONAL EXPERIMENTS

F.1 REVISIONS TO THE ORIGINAL EXPERIMENTS

For clarity, we updated the presentation of the small-NFE (Table 3) and large-NFE results (Figure 5)
in the main paper. The three separate small-NFE tables for CIFAR-10, AFHQv2, and FFHQ have
been merged into a single unified table (Table 1). In this unified table, we additionally report the
minimum FID across three random seeds for each method. The appendix reports results from a
single representative random seed.

All experimental settings for CIFAR-10 and FFHQ remain unchanged. The only minor adjustment
is for AFHQv2, where we used a slightly larger regularization constant c in the flow-matching loss
to improve numerical stability. The motivation and analysis behind this choice are provided in
Section F.3. This modification does not alter conclusions.

Overall trends across NFE and the relative performance of all methods remain consistent with the
original submission. All ablation studies reported below were conducted using the original setting,
and thus remain fully comparable to the originally reported results.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 3: FID ↓ vs. small NFE across datasets (50k samples).
CIFAR-10 AFHQv2 FFHQ

Method 9 11 13 15 17 9 11 13 15 19 9 11 13 15 19

EDM 35.55 14.44 6.80 4.32 3.11 27.98 13.66 7.59 4.75 2.99 57.28 29.48 15.98 9.94 5.26
giso 49.29 31.28 19.71 13.34 9.38 35.48 15.20 10.33 8.29 5.68 68.41 27.93 13.44 8.12 4.03
gisow 5.19 14.08 6.94 2.63 2.59 4.80 3.85 2.97 2.56 2.50 6.74 4.36 3.94 3.56 3.12
(gani1 , gani2) 5.98 3.58 2.93 2.64 2.47 21.63 11.50 8.35 6.68 4.39 45.43 17.24 8.30 5.19 3.05
(gani1,w , gani2,w) 4.69 6.06 5.75 2.77 2.54 4.86 3.54 2.90 2.47 2.38 6.05 4.33 3.45 3.21 2.90

Table 4: FID ↓ of EDM and learned schedules across datasets.
CIFAR-10

Model Schedule nfe 9 nfe 11 nfe 13 nfe 15 nfe 17 nfe 35 nfe 59 nfe 79

Ours gisow 5.195 14.08 6.941 2.633 2.585 2.003 1.955 1.949
EDM gisow 4.943 12.97 6.434 2.588 2.508 2.018 1.945 1.944
Ours gani

w (geom.) 4.687 6.060 5.753 2.769 2.536 2.078 2.082 2.039
EDM gani

w (geom.) 5.607 5.911 6.174 3.095 2.699 2.027 1.964 1.956

AFHQv2

Model Schedule nfe 9 nfe 11 nfe 13 nfe 15 nfe 19 nfe 39 nfe 79 nfe 119

Ours gisow 4.803 3.847 2.966 2.564 2.495 2.123 2.088 2.067
EDM gisow 4.715 3.847 3.028 2.613 2.482 2.119 2.103 2.070
Ours gani

w (geom.) 4.859 3.542 2.897 2.472 2.376 2.087 2.055 2.035
EDM gani

w (geom.) 4.572 3.633 3.060 2.609 2.457 2.120 2.106 2.068

FFHQ

Model Schedule nfe 9 nfe 11 nfe 13 nfe 15 nfe 19 nfe 39 nfe 79 nfe 119

Ours gisow 6.737 4.365 3.935 3.558 3.122 2.418 2.335 2.346
EDM gisow 7.182 4.771 4.042 3.704 3.397 2.629 2.498 2.482
Ours gani

w (geom.) 6.052 4.330 3.448 3.213 2.895 2.417 2.369 2.408
EDM gani

w (geom.) 6.723 4.945 3.864 3.555 3.225 3.370 3.405 3.653

Figure 5: FID ↓ vs. large NFE across datasets (50k samples).

F.2 EDM PERFORMANCE UNDER LEARNED SCHEDULES

We evaluate how the pretrained EDM model performs when used together with our learned sched-
ules. Specifically, instead of sampling with the original EDM schedule, we replace it with either (1)
our learned giso wrapper or (2) the geometric-mean anisotropic wrapper based on (gani, hani). For
each dataset, we report FID v.s. NFEs for: (i) the original EDM sampler, (ii) our model using the
learned schedule, and (iii) the pretrained EDM model using the learned schedule.

As shown in Table 4, the pretrained EDM model exhibits a performance trend under our learned
schedules that closely matches the trend observed when the same schedules are used with our model
trained jointly with them. This consistency shows that the learned schedules not only benefit our
own model but also improve the NFE performance of the pretrained EDM model, indicating that the
schedules possess strong generalizability and transfer well across different network architectures.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 5: FID ↓ for different values of the flow-matching regularization constant c on FFHQ and
AFHQv2.

AFHQv2

c Schedule nfe 9 nfe 11 nfe 13 nfe 15 nfe 19 nfe 39 nfe 79 nfe 119

0.5 (gani
1 , gani

2) 21.94 11.66 8.574 6.953 4.605 2.325 2.180 2.155
0.5 (gani

1,w , g
ani
2,w) 4.890 3.651 2.909 2.512 2.549 2.190 2.177 2.156

1 (gani
1 , gani

2) 21.63 11.50 8.352 6.684 4.387 2.183 2.051 2.032
1 (gani

1,w , g
ani
2,w) 4.859 3.542 2.897 2.472 2.376 2.087 2.055 2.035

2 (gani
1 , gani

2) 22.20 11.67 8.498 6.755 4.406 2.167 2.039 2.023
2 (gani

1,w , g
ani
2,w) 4.697 3.655 2.888 2.445 2.416 2.061 2.036 2.023

FFHQ

c Schedule nfe 9 nfe 11 nfe 13 nfe 15 nfe 19 nfe 39 nfe 79 nfe 119

0.5 (gani
1 , gani

2) 43.12 16.37 7.963 5.046 3.040 2.388 2.381 2.423
0.5 (gani

1,w , g
ani
2,w) 5.862 4.130 3.392 3.183 2.833 2.422 2.370 2.412

1 (gani
1 , gani

2) 45.43 17.24 8.297 5.192 3.052 2.376 2.376 2.414
1 (gani

1,w , g
ani
2,w) 6.052 4.330 3.448 3.213 2.895 2.417 2.369 2.408

2 (gani
1 , gani

2) 42.51 16.06 7.788 4.964 3.023 2.400 2.389 2.426
2 (gani

1,w , g
ani
2,w) 6.015 4.324 3.494 3.241 2.860 2.450 2.385 2.421

F.3 ABLATION ON THE REGULARIZATION CONSTANT c OF FLOW-MATCHING LOSS

To understand the role of the regularization constant c in the flow-matching objective, we evaluate
training performance under three values, c ∈ {0.5, 1, 2}, on FFHQ and AFHQv2. For each set-
ting, we report both the raw model performance (gani1 , gani2) and the corresponding performance of
(gani1,w, g

ani
2,w) across NFEs (Table 5).

The results show a clear dataset-dependent pattern. For AFHQv2, c = 2 achieves the best perfor-
mance consistently across NFEs for both the model and the wrapper. AFHQv2 exhibits substantially
higher variation and more heterogeneous structures, so a stronger regularization term provides more
stable gradients and improves training stability at low t. In contrast, FFHQ attains its best overall
performance with c = 1, which offers a moderate level of stabilization while preserving flexibility
in the learned flow. The c = 0.5 setting provides weaker regularization and underperforms on both
datasets.

F.4 ABLATION OF BASIS CHOICE

We evaluate the effect of the underlying basis used for anisotropic noise decomposition by training
the wrapper (gani1,w, g

ani
2,w) under three commonly used orthonormal bases: DCT, Haar wavelets, and

PCA (computed from each dataset). All training and sampling settings are kept fixed to enable a
controlled comparison.

Table 6 reports FID for CIFAR-10, AFHQv2, and FFHQ. For AFHQv2 and FFHQ, PCA performs
slightly better at very small NFEs (e.g., 9–13), while DCT performs better as NFE increases. For
CIFAR-10, the behavior is reversed: DCT performs best at small NFEs, whereas PCA becomes
slightly better at larger NFEs. Haar underperforms across all settings. Although PCA can offer
marginal improvements in certain low- or high-NFE regimes depending on the dataset, the DCT
basis remains the most stable and reliable choice.

F.5 ABLATION ON THE NUMBER OF IMAGE PASSES IN TRAINING FOR (gani1,w, g
ani
2,w)

We study how many image passes are needed to learn the anisotropic schedule (gani1,w, g
ani
2,w) by

training it under two settings: one with 100k/500k image passes per epoch and one with 2000k
image passes per epoch, while keeping all other training configurations fixed. As shown in Table 7,
the schedule obtained with the significantly smaller number of image passes (100k/500k) achieves

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 6: FID ↓ of (gani1,w, g
ani
2,w) using different bases (DCT, Haar, PCA) across datasets.

CIFAR-10

Basis Schedule nfe 9 nfe 11 nfe 13 nfe 15 nfe 17 nfe 35 nfe 59 nfe 79

DCT (gani
1,w , g

ani
2,w) 4.687 6.060 5.753 2.769 2.536 2.078 2.082 2.039

Haar (gani
1,w , g

ani
2,w) 6.022 14.90 14.31 3.494 3.265 2.135 2.126 2.057

PCA (gani
1,w , g

ani
2,w) 5.214 11.84 9.989 3.189 2.844 2.105 2.046 2.019

AFHQv2

Basis Schedule nfe 9 nfe 11 nfe 13 nfe 15 nfe 19 nfe 39 nfe 79 nfe 119

DCT (gani
1,w , g

ani
2,w) 4.859 3.542 2.897 2.472 2.376 2.087 2.055 2.035

Haar (gani
1,w , g

ani
2,w) 7.276 3.744 3.026 2.478 2.299 2.286 2.234 2.267

PCA (gani
1,w , g

ani
2,w) 4.598 3.101 2.588 2.383 2.330 2.117 2.070 2.079

FFHQ

Basis Schedule nfe 9 nfe 11 nfe 13 nfe 15 nfe 19 nfe 39 nfe 79 nfe 119

DCT (gani
1,w , g

ani
2,w) 6.052 4.330 3.448 3.213 2.895 2.417 2.369 2.408

Haar (gani
1,w , g

ani
2,w) 8.558 6.539 4.717 3.337 4.490 2.898 2.391 2.447

PCA (gani
1,w , g

ani
2,w) 5.448 3.818 3.382 3.162 3.016 2.647 2.656 2.733

Table 7: FID ↓ of (gani1,w, g
ani
2,w) with different image passes across datasets.

CIFAR-10

kimgs Schedule nfe 9 nfe 11 nfe 13 nfe 15 nfe 17 nfe 35 nfe 59 nfe 79

2000 (gani
1,w , g

ani
2,w) 4.687 6.060 5.753 2.769 2.536 2.078 2.082 2.039

500 (gani
1,w , g

ani
2,w) 4.778 6.951 5.641 2.956 2.542 2.124 2.078 2.050

AFHQv2

kimgs Schedule nfe 9 nfe 11 nfe 13 nfe 15 nfe 19 nfe 39 nfe 79 nfe 119

2000 (gani
1,w , g

ani
2,w) 4.859 3.542 2.897 2.472 2.376 2.087 2.055 2.035

100 (gani
1,w , g

ani
2,w) 4.571 3.429 2.722 2.624 2.380 2.115 2.057 2.037

FFHQ

kimgs Schedule nfe 9 nfe 11 nfe 13 nfe 15 nfe 19 nfe 39 nfe 79 nfe 119

2000 (gani
1,w , g

ani
2,w) 6.052 4.330 3.448 3.213 2.895 2.417 2.369 2.408

100 (gani
1,w , g

ani
2,w) 5.789 4.064 3.461 3.259 2.841 2.430 2.376 2.409

FID scores that closely match the results of the 2000k setting across all datasets and NFEs. This
indicates that (gani1,w, g

ani
2,w) can be learned very efficiently, requiring only a relatively small number

of image passes to reach strong performance.

20

	Introduction
	Main Contributions
	Related Work

	Preliminaries
	Anisotropic diffusion: process, score, and parameterizations
	Implementation Details: Mt() for DCT Basis on Images

	Trajectory-Level Score Matching Loss
	Choice of weight w(t) is equivalent to choice of noise-schedule gt().

	Optimization Score Matching Loss over Mt()
	Stochastic Approximation to pt(x;) and net(x,t,)
	Optimizing the loss L(,)
	Implementation Details

	Learning Scalar Discretization Schedule
	Heun's second-order algorithm for Anisotropic Diffusion Denoising.
	Optimal Discretization Schedule

	Experimental Evaluation
	2D-DCT transform
	Proofs
	Implementation Details of gi
	Reducing Bias in Learning r(t;)
	Bounding the Estimator Variance
	Theory
	Empirical Variance Bound

	Additional Experiments
	Revisions to the Original Experiments
	EDM Performance under Learned Schedules
	Ablation on the Regularization Constant c of Flow-matching Loss
	Ablation of Basis Choice
	Ablation on the Number of Image Passes in Training for (gani1,w, gani2,w)

