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ABSTRACT

We study anisotropic diffusion for generative modeling by replacing the scalar
noise schedule with a matrix-valued path M; that allocates noise (and denois-
ing effort) across subspaces. We introduce a trajectory-level objective that jointly
trains the score network and learns M,;(0); in the isotropic case, it recovers stan-
dard score matching, making schedule learning equivalent to choosing the weight
over noise levels. We further derive an efficient estimator for dyV logp; that
enables efficient optimization of M;. For inference, we develop an anisotropic
reverse-ODE sampler based on a second-order Heun update with a closed-form
step, and we learn a scalar time-transform r(¢; y) that targets discretization error.
Across CIFAR-10, AFHQv2, and FFHQ, our method matches EDM overall and
substantially improve few-step generation. Together, these pieces yield a practical,
trajectory-optimal recipe for anisotropic diffusion. Code is available atEtj

1 INTRODUCTION

Diffusion and flow-based generative models typically add and remove isotropic Gaussian noise with
a scalar schedule o (t) while learning a score network and integrating a reverse-time SDE/ODE (Ho
et al., [2020; |Song et al., 2021} |[Karras et al., 2022). The isotropic design is simple and effective, but
forces the dynamics to act uniformly in all directions.

Why anisotropy. Replacing the scalar schedule by a matrix-valued path M, substantially enlarges
the design space: noise can be allocated differently across subspaces and time, better matching data
geometry—natural images concentrate energy in low spatial frequencies (Ruderman & Bialekl |1993);
latent diffusion offloads fine detail to a learned autoencoder (Rombach et al., [2022); video models
benefit from temporally structured priors or decomposed noise (Ge et al., 2023} [Luo et al.| [2023);
multi-resolution autoregressive models gain from coarse-to-fine generation (Tian et al.,[2024).

From heuristics to learning. Existing anisotropy is often hand-crafted (e.g., temporal correlation
in video; frequency-biased processing in image pipelines), and the space of possible M, is huge,
making manual search impractical. In parallel, work on isotropic models shows that optimizing
only the discretization schedule can already boost few-step quality (Sabour et al., |2024). These
trends motivate a learned, general-purpose anisotropic framework.

This paper. We introduce a trajectory-level objective that (i) trains the score network and (ii) learns
an anisotropic schedule M; (). Separately, we learn a scalar time reparameterization r(t;~) that
reduces discretization error; both compose with a second-order sampler, yielding a practical train-
ing/inference recipe.

Notation. The isotropic variance-exploding (VE) process is
ro~po, dry=dB; <= dx; = —% Vlog pi(xy) dt, (D

with p; = pg * N(0,tI). We generalize the above to anisotropic diffusion by letting z; ~ pg *
N (0, M) with a nondecreasing PSD trajectory M; € R4*4:

Tro~po, dry= (5'tMt)l/2 dB; <= dx;= *% 0y My V log py(x¢) dt, (2

where My = 0, My = T for some maximum noise level 7', and t > s = M; = M,. We discuss
further details Section 2l
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1.1 MAIN CONTRIBUTIONS

We study anisotropic diffusion for generative modeling by learning a matrix-valued noise schedule
M, that allocates noise and denoising effort across subspaces. Our contributions are:

1. Anisotropic diffusion and reverse ODE. We formalize variance—exploding and vari-
ance—preserving anisotropic diffusion processes, derive the corresponding reverse ODE, and give
practical samplers: a first-order Euler update and a second—order Heun update and
Lemmal[6] This yields stable, efficient generation for the reverse anisotropic ODE.

2. Trajectory-Level Score Matching (TLSM). We introduce a path-integrated loss L(0, ¢) that
simultaneously (i) trains the score network to match the score and (ii) learns the anisotropic
schedule M;(6) by minimizing score error along the generation trajectory (Section . At opti-
mality, the network matches the exact score LemmalI] and in the isotropic case TLSM reduces
to weighted score matching—formally tying any choice of weights w(t) to a scalar schedule g(t)
(Lemma 2] Section[3.1). This reveals a surprising interpretation — isotropic TLSM is equivalent
to learning an optimal weight function for score-matching.

3. Differentiating through 1/, (6) efficiently. Optimizing over M; () is challenging because it
involves 9V log p;(x; 6), which cannot be easily obtained from the score-network. We pro-
pose a directional estimator for 9pV log p; (z; 0) that uses only higher-order x-directional deriva-
tives of the network and is implementable in three backward passes, independent of dim(6)
(Lemma [3] Section [4.I). We further present a variance-reduced formula based on estimating
09 (M,(0)~1/2V log py(;0)) (Lemmals).

4. Learning the discretization schedule. Orthogonal to optimizing M, () wrt the score-matching
loss, we learn a time-reparameterization r(¢;~y) that minimizes a trajectory-level discretization
error (3)). Our formulation cleanly separate score-matching from discretization-error minimiza-
tion. In Algorithm the learned r(t; ) composes with the Heun integrator based on the learned
M, (9) noise schedule, gaining benefits from optimization of both (¢; ) and M, (6).

5. Empirical benefits. On CIFAR-10 (Krizhevsky et al., [2009), AFHQv2 (Choi et al., 2020), and
FFHQ (Karras et al., |2019), our learned anisotropic denoising model is competitive with EDM
across budgets, and yields large gains on FFHQ, and at small counts e.g., FFHQ FID 6.05
vs. 57.28 at NFE=9 and 3.45 vs. 15.98 at NFE=13; CIFAR-10 2.93 vs. 6.80 at NFE=13 (50k
samples), with a small gap at very large NFE on CIFAR-10 (Table[I]and Figure [2).

1.2 RELATED WORK

Optimizing schedules in isotropic diffusion. Recent work tunes the fest-time discretization
schedule to improve few-step sampling (Sabour et al., 2024; |Wang et al.l 2023} [Liu et al., [2023;
Park et al.| [2024; [Williams et al.| |2024), complementing hand-crafted EDM designs (Karras et al.,
2022). Related efforts adjust training-time noise weighting or sampling over noise levels while
retaining a scalar schedule (Hang et al.| 2024; |Okada et al., [2024)).

Beyond isotropy: correlated noising. Methods introduce structure via edge-aware anisotropy
(Vandersanden et al.| [2024), per-pixel multivariate schedules (Sahoo et al., 2024)), or time-varying
correlated masks (Huang et al., |[2024). Frequency-/subspace formulations restrict or bias diffusion
dynamics (Jing et al., [2022), and video models exploit structured noise across time through decom-
position or temporally correlated priors (Luo et al.| 2023} |Ge et al., 2023} |(Chang et al., [2025). In
contrast, we learn a general matrix-valued trajectory M;(6) together with a scalar time-transform
r(t;y) under a trajectory-level objective, and compose both within a second-order anisotropic sam-
pler (Algorithm [T)).

2 PRELIMINARIES
2.1 ANISOTROPIC DIFFUSION: PROCESS, SCORE, AND PARAMETERIZATIONS

Recall the anisotropic diffusion process in (2)). Let M;(#) denote the noise covariance at time ¢,
parameterized by € R. p, as defined in (2) has score given by

Vlogpt(x; 9) = Mtil(eﬂg’x[ﬂxt:x [370 - l‘t] 5 (3)
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where (zg, z;) are defined by the joint distribution xy ~ pg and z; = x¢ + N (0, M;). We provide
a short proof in Lemma[7]in Appendix [B] In case of time-uniform isotropic diffusion (i.e. standard
Brownian Motion), M, (#) = tI, and the formula in (3)) reduces to the standard score expression.

We parameterize a neural network net(x,t, ¢) to approximate the score, we also define £low, a
transformation of net whose norm is approximately time-invariant:

net(z,t,¢) ~ Vlogp(x;0), flow(z,t, @) = Mt1/2net(x,t,¢). )

Remark 1 (Anisotropic score matching for fixed M;; not used in this paper). For a fixed M; sched-
ule, the natural per-time objective at time ¢ is

0(8) 1= Egy e [Hnet(:pt,t, ) — M; () (0 — xt)||§] L m=ao+ M e )

We show in Lemma[d]in Appendix B|that /;(¢) is minimized by net (z¢,t, ¢) = Vlog p¢ ().

Continuous and discrete Reverse ODE for anisotropic denoising. Given net in (6), we define
the continuous-time forward ODE and reverse ODE are respectively defined as

1 1
d.’ft = —iatMt(G)net(i"t, t, (b), ~ di'Tft = §atMt(9)net(i'T,t7 T— t7 (b) (6)

The reverse-ODE above can be implemented via a time-discretization of (6). For intuition, we
present below the simple Euler-discretization of (6): Let K be number of steps, let tg < ¢1... <
tx € [0, T denote discretization points. The Euler reverse ODE is

x{i_qi = :vtb;“l + (Ml/2 — Mtlkﬂ)flow(xi“l, tk). @)

te—1

Our experiments use Heun’s second order integrator (Ascher & Petzold, [1998; Karras et al., [2022)
which consistently gives better FID per NFE. We detail this algorithm in Section [5

Variance-Preserving Anisotropic Diffusion. It is often more useful to consider the variance pre-
serving anisotropic diffusion, which is simply (time-dependent) linear-transformation of (2)). Define

af P = (I + My(0)) ;. (8)

The choice of I above is based on the assumption that Cov(zg) =~ I. The dynamics of ¥ can be
explicitly written, without reference to z;, using a matrix exponential. However, it is much simpler
mathematically and programmatically to maintain z; explicitly, and define =}’ ¥ via (B).

2.2 IMPLEMENTATION DETAILS: M;(#) FOR DCT BASIS ON IMAGES

We present below a simple example of M;(#) based on the 2D Discrete Cosine Transform (2D-
DCT). See Appendix [A] background on 2D-DCT bases. Let d = H x H denote the dimension of
an image. Let v1...vy2 denote the 2D-DCT basis vectors of H x H. Let S;...S; C {vi..vg2} be
a disjoint union of these H? 2D-DCT vectors. For each i = 1...J, let g;(t;0) : R* — RT denote

a monotonically increasing function satisfying g;(0;6) = 0 and ¢;(T;6) = T'. Let V; € RISilxH’
denote the basis matrix for S;, so that V, V; is a projection matrix onto span(S;). Then we define

J J
My(0) ==Y gi(t:;0)V;' Vi, equiv. O M(0) =Y Dpgi(t;0)V;' Vi 9)
=1

i=1

We verify that M;(0) = M(6) for t > s, and thus defines a valid forward anisotropic diffusion
process (2). Intuitively, each g;(¢; ) defines a separate time-schedule on each subspace Sj...S;.

Efficient matrix algebra. The form @) implies F(M;) = >, F(g:(t))V,'V; for F €
{()¢, 04, 0p}; our experiments use J = 2 and implement g; using log-linear knots (App. [C).

3 TRAJECTORY-LEVEL SCORE MATCHING LOSS

Goal. We want to learn an anisotropic noise path M;(6) that reduces generation error. Two error
sources dominate at test time: (i) score approximation error, and (ii) discretization error of the
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Figure 1: Illustration of Isotropic vs. anisotropic denoising. Top: standard isotropic sampler
denoises all directions uniformly. Bottom: anisotropic sampler with two DCT subspaces, V1 (low
frequency) and V5 (high frequency), (Section[2.2)). Columns show intermediate reconstructions as
t decreases. The plot (right) displays the learned subspace schedules g;(¢) and go(t); the former
is denoised more aggressively, thus low-frequency structure emerges earlier from the V3, while
high-frequency details emerge later from V5. Illustration only: in practice anisotropic and isotropic
will reconstruct different images, and the gap between g; and g5 is typically smaller (see Fig. )

reverse ODE. In this section we focus on (i), introducing a trajectory-level objective that jointly
trains the score network and learns M; (). We discuss (ii) in SectionEl

From () and (6), the variance-preserving ODE (8) with V log p; and net are defined by the drift
velocity fields v(x¢, t; 0) and v(Z¢, t; 0) respectively:

(@, t0) = —(I + My(0)) ™20, M (0)V log py (; 0) — %(I + My(0)) 20, My (),
oz, t;0,¢) = —(I + My(0))~ Y20, M,(0)net (z,t, ) — %(1 + My(0)) 7320, M, (0)z.  (10)

Let us also define o(z,y,t;0) = —(I + Mi(0))"29,M,(0)M; " (0)(y —x) — $(I +
M(60))=3/20, M (0)x. Tt follows from @) that v(x,t;0) = Evo e, = [0(7, 20,1;0)]. For e ~

N, 1),z :=xo + Mtl/ 2 (0)e, we now define the trajectory-level score-matching loss as

T

L0.60) = [ Eue [I0(01,6,0) = s, 0, t:0)[3] (1
0

where T denotes maximum noise level. We also provide a more explicit expression of L(6, ¢) in

(13) in Sectionbelow. L(0, ¢) can be viewed as a generalization to the standard score-matching

objective, but with matrix-valued weights. The loss in (TT) has a number of desirable properties:

Exact score at optimality. The following analog of Lemma@ shows that L(0, ¢), like the stan-
dard score-matching loss, also encourages net to match the score. Proof in Appendix [B}

Lemma 1. L(0,¢), as defined in (T1)), is minimized if net(x, t; ¢) = V log pi(x; 0) for all (z,t).

Connection to path-level KL divergence: For two stochastic processes evolving as dxr; =
v(xg, t)dt + dBy and dT; = ©(Z,t)dt + dBy, the path-level KL divergence is bounded by

fOT E[||o(xe, t) — v(ae, t) ||]§ dt (assuming sufficient regularity, e.g. Novikov’s condition). This has
been used, for instance, to bound the discretization error of the reverse SDE in (2022).
Our loss (I)) differs from the KL upper bound in replacing v(z, t; ) by 0(z, zo; 6), because the true
score (and hence v(x, t; 0)) is not accessible during training. In this paper, we focus on the forward
and reverse ODE for simplicity, but the forward and reverse SDE can be analogously defined.

Integration error under VP scaling (intuition). We choose to compute the score-matching error
under the VP formulation for two reasons: (1) VP transformation keeps scale roughly constant wrt
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time, and (2) at large time, the backward ODE is dominated by z; contracting towards 0. Thus
discretization errors at high noise should be discounted (via the (I 4 M;(6))~'/2 scaling).

3.1 CHOICE OF WEIGHT w(t) 1S EQUIVALENT TO CHOICE OF NOISE-SCHEDULE g;(#).

Possibly of independent interest, we present here a connection between learning g;(6), and the
standard score-matching formuation. Consider the isotropic version of (I1). Let M;(6) := g+(0)I,
where g, is a scalar-valued monotonically increasing function. L(6, ¢) thus simplifies to

/T (19:(0))?
o 14+ g:(0)

With slight abuse of notation we let net,2(x¢;¢) denote the network trained to match the
score of py * N'(0,02I). In literature, the score-matching loss is usually a weighted average
fOT w(s)Eqg, ¢ [Hnets(xo + /s + f/\/§||§] ds. We show below that choosing a g;(#) is exactly

equivalent to choosing a weighing function w(s):

2
Eoy e [Hnetgt((g)(mo +g(0)Y2€;¢) + gt(e)—l/QgHz] dt. (12)

Lemma 2. For any w(t), there exists a g.(0) and constant ¢, such that for any H (t)

T 2 T
(8tgt(9)) q _ / H

| S o = c [ wim

We defer the proof to Appendix [Bl Consequently, any weighted score-matching loss for isotropic
diffusion (where the weights can be a combination of explicit weighting function and implicit distri-
bution density, e.g. [Karras et al.[(2022))) can be equivalently written as an instance of trajectory-level
score-matching loss, for a specific choice of g¢(f). When we optimize over the space of noise-
schedules g;:(0) wrt L(6, ¢), we are equivalently optimizing over the choice of weighing function
w(t) under the standard score-matching loss.

4  OPTIMIZATION SCORE MATCHING LOSS OVER M,(0)
For fixed t, let § € R€ be the vector parameterizing My (¢). Then for all i = 1...c,
1 1.
0p, () = —gagngVIngt(x;ﬂ) & Og,pi(z;0;) = idlv(agth(Hi)th(x;Gi)). (13)

The LHS of (T3] resembles (2)), as both describe the density evolution of p;(x; #), and follow almost
identical proofs. However, do note that (2)) and have very different meanings. Specifically, )
holds 6 fixed, and evolves x(6) over ¢, whereas (I3 holds ¢ fixed, and evolves x(6) over 6.

4.1 STOCHASTIC APPROXIMATION TO 95V log pi(x;60) AND OgnNET(2, ¢, @)

A significant challenge of optimizing L(6, ¢) lies in the fact that there is no simple way to approxi-
mate JgV log p:(x; 0). This is because, whereas net (z, t; ¢) ~ V log p;(x; 0) is a good approxima-
tion of the value of the score, it does not explicitly provide the derivative of the score, with respect
to ¢. One simple approach is to allow net (z, ¢, ¢, 0) to additionally take in € as an input argument,
e.g. via a more complex time-embedding module, but this approach has two major downsides:

1. The score-matching loss (IT]) needs to integrate over not just time ¢ € [0, T'], but over a large set
of potential §’s. This is forces the net to trade-off the score loss at various suboptimal 6 values,
which are not used for inference-time reverse-ODE.

2. As the parameterization of M, () as a function of 6 becomes more complex, net (z, t, ¢, §) must
also use a more complex time-embedding module to encode (¢, 9).

In contrast, we present a principled approach, that computes an unbiased stochastic estimate of
the d-space derivative 9y, V log p;(z; 6), using only higher-order directional z-space derivatives
V log pi(x; 0) along specific directions. Programmatically (e.g. in PyTorch), the derivatives with
respect to all of #;...0. is computed together in three backward passes, so the additional computa-
tional cost is agnostic to the dimension of 6, and the parameterization of M (6).
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Lemma 3. Let e;...ey denote any orthonormal basis of R%. Then

d
1
0p, V log pe(z;0) =3 Z 0,0,V log p¢(x + re; + s0p, M (0)e;; 0)
j=1

+ 05V log py(x + 509, M (0)V log ps(x;6); 6).

Applying the approximation of net(z, t, ¢) &~ V log p;(x; #) on both sides gives

d
Op,net(z,t,d) z% Z Or0snet(x + re; + s0p, My (0)e;, t, d)
i=1

+ Osnet(x + $0p, My (0)net(z,t, 9),t, d). (14)

The sum over j = 1...d is expensive to compute exactly, but it can be efficiently approximated in
expectation, by sampling e; from the standard Gaussian distribution.

4.2 OPTIMIZING THE LOSS L(0, ¢)

We now apply our formula from Section to optimize L(6,¢) in (TI). For notational clarity,
we treat 6 as a scalar. Mathematically, # € R® can be handled by repeating the computation for
each scalar 6;. At the end of this section, we provide PyTorch code, showing how the gradients
of all 0;...0, can be simultaneously computed in one set of backward passes. Let xo ~ pg and
& ~ N(0, I) independently, and define x; := x¢ + Mtl/ 25, consistent with (2)). Following the setup
in Section L(6, ¢) is equal to

Eao ¢ [H(I + My(8)) 0, My(8) (net (o + M, > (0)€, 1, 8) + My (0) /¢ Hﬂ Cas)

Let us define the gradient of L(6, ¢) above with respect to net as.

G(0,¢) == 2B, ¢ [atMt(a)(I + M,(60)) 10, M, (0) (net(ﬂco M2 0)6,,6) + Mt(e)—lﬂgﬂ .

To estimate the actual derivative of L(6), accounting for the change-in-score-due-to-6, we augment
the derivative Jp (15)) using

The expectation wrt g, £ can be approximated by a finite sum over j = 1...n of {(x(()j), EONYicq s
sampled iid from py x A(0, ). We highlight below two aspects of practical implementation.

4.3 IMPLEMENTATION DETAILS

Time embedding and detaching 6. In common implementations, net (x, o (t), ¢) takes as input
the noise-level o, and not the time index. In our actual experiment setup described in Section
we use net(x,d(t;0), ¢), with 5 (t;0) := /g1 (t; 0)g2(t; 0) to replace o () as this requires minimal
retraining of the time-embedding of the original net (and requires no retraining if g; = g2). In the
implementation, it is important to detach the € from the computation graph of 6, so as not to double-
count the derivative wrt §. We also emphasize that backpropagating through & (¢; 0) is insufficient for
estimating the derivative Jgnet, because & is a scalar-valued “projection” of the full matrix-valued
M (0) noise, and thus we still need to use (14).

Variance Reduction with Jyflow instead of Jynet. The scale of |net(z,t;¢)|, =

|V log pe(x; )|, ~ ||Mt_1/2(9)||2 can vary significantly with the noise level. This could lead
to high variance in the stochastic-estimation of dgnet in (TI4). To address this, we propose a math-

ematically equivalent estimate of Jpnet based on £low(z,t, ¢) := Mt1/2(9)net(x, t, ¢), whose

scale is approximately constant across time: | flow(z,t,¢)|2 = ||Mt1/2Vlogpt(x;0)H2 ~ d.
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(£1ow is defined in (@) We show in Lemma 3] that

d
Opflow(z,t,¢) = % Z O0r0stlow(x + re; + sOp Mi(0)e;, t, P)
i=1
+ 0. Elow(z + sMy 0y My (0) £ Low(x, t, ¢), 1, &) + %Mt_l(ﬁ)(ath(G))flow(x, t,¢)

H(0,6) = 2B, ¢ [&Mt(ﬂ)(I + M,(0)) 718, My (6) M, (6) /2 (flow(xo + MM2(0)6, 1, 0) + g)}

0o L(0,¢) = 0p(15) + (G(0, ), DpfLow(z,1,)) -
The last line above is equivalent to (I6), but written with £1ow instead of net.

5 LEARNING SCALAR DISCRETIZATION SCHEDULE

In this section, we present the implementation of Heun’s second-order backward ODE integrator
for anisotropic diffusion. Additionally, we discuss a way to select an optimal denoising schedule
r(t;y) : [0,T] — [0,T] based on a trajectory-level discretization loss. We emphasize that the
optimal denoising schedule 7 (¢; v) can be composed with the optimal score-matching noise schedule
M, (6) obtained from minimizing L(6, ¢) in (TI). In this section, we omid dependence on 6, ¢.

5.1 HEUN’S SECOND-ORDER ALGORITHM FOR ANISOTROPIC DIFFUSION DENOISING.

Let @ be the estimate of £10w(Z;, ), given two evaluations of £1ow at (x,t) and &, f respectively:

a(f;z,,t,1) = £low(z,t) + (M* — M}*)(M}? — M%)  (£1ow(2, 1) — £1ow(z,1)).

Letty < t; < ... < tx denote K discretization points withtg = Oandtx = K. Letty_1 < tr < ti
denote a set of secondary evaluation points. Then Heun’s second-order backward ODE is defined as

By, = Fu + (M2 = M) ELow(T,, th),

tr—1
Tto , = T, +/ (O MY PVa(T; oy, 27, ot L) dE. (17)

172
We verify in Lemma@that f tt:’l w(t; Ty, Zi, s ks t1,)dt has a simple closed-form expression:

1/2 - 1, 1/2
M) (£Low(E,  th)) — 5 (M), -
In general, the choices of evaluation points ¢; and i) can have a si gnificant effect on the discretization
error. In |Karras et al.| (2022), for isotropic diffusion models, the authors choose a schedule which

p
corresponds to tj, ~ (O'Iln/;x — KTfk (O—Iln/ifl — aé{ﬁ)) , with p = 7 being an empirically chosen

(0,

k-1

Mtlk/2)2(M§k/2_Mt1k/2)*1(flow(j:gk,fk) — flow(E,,t1)).

hyperparameter, and oin, =~ 0, omax =~ T, {; = tp_1. In the next section, we present a principled
way to select a discretization schedule by minimizing the trajectory-level discretization error.

5.2 OPTIMAL DISCRETIZATION SCHEDULE

We will let 7(¢;y) : [0,7] — [0,T] denote a monotonically increasing time-transformation with
r(0;v) = 0,7(T;~v) = T. We will optimize over the choice of discretization schedules r(t; ). Let
¢ denote the continuous-time backward ODE, defined as the time-reversal of

1
dxy = _§atMtHet(xt7t) = —atMt1/2flOW(xt7t)' (18)

On the other hand, is equivalent to d%; = —(8,5Mt1/2)ﬂ(f; i, &gt ) for t € [tp_1, L.
Again inspired by the Girsanov’s Theorem, which gave rise to our trajectory-level score-matching
loss L(0, ¢), we define the idealized trajectory-level discretization loss H () as

ﬁ(v)Z/OTEU

2 B B R . 2
ML (£10w(@paiy), T(57)) = B ) Ertanins Tty T80 7)s (03 ) ) M dt,
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where in the above, t5_1, tj, are the two evaluation points such that 7(¢; ) € [r(tx—1;7), 7(tx;7)]-
In practice, we optimize a stochastic approximation of H defined by

R 2
atMrl(/t?”/) (floW(xr(t;"/)a T(t§ '7)) - ﬁ(r(t; 7); z, T, r(t; ’Y)’ r(t; PY))) H2:| .

H(y) = Et,ﬂfc,fc U

where £ ~ Unif([0,T]),t = max {0, — T/8},t ~ Unif([t,t]). £ = (£ + £)/2. In addition to the
discretization error, recall the continuous-time score-matching loss L defined in (TT)). For 6, ¢ fixed,
and under the time-transformation r(¢; 7y), the score-matching loss is given by

T
L(’Y) = /0 Emo,e |:H17('r'r’(t;’y)7r(t;/7); 67 ¢) - ﬂ(xr(t;v)vaar(t;'Y); G)Hﬂ dt, (19)

where v and v are as defined in Section and T,(4;y) = To + Mrl(/fy)e. Combining the above, we

optimize r(+; ), over the space of ¢’s, to minimize H () + L(y). We parameterize r(t;y) the same
as g;(t; 0) (Section . In practice, we replace L by L, which is a more elaborate version of L that
is a more accurate estimator of the score-matching loss (see (20) in Appendix D). The following
algorithm combines all our previous optimization techniques:

Algorithm 1 Combining all training
1: Train (6%, ¢*) onloss L(8, ¢)
2: Given M;(6*) and net (-, -, ¢*), train v* as described in Section 5.2
3: Let s; = iT/K denote a uniform grid. Let t; = r(s;,v*) fori = 0...K. Lett; = r((s;_1 +
5)/2.7") A
4: To generate samples, implement (T7)), with ¢; and ¢; from step 3 above.

6 EXPERIMENTAL EVALUATION

We evaluate our anisotropic diffusion schedules on three standard image generation benchmarks:
CIFAR-10 (32 x 32) (Krizhevsky et al.l [2009), AFHQv2 (64 x 64) (Choi et al.,[2020), and FFHQ
(64x64) (Karras et al.,[2019). All experiments are compared against the EDM baseline (Karras et al.,
2022), using the official generation code and their best-reported settings. Our models are finetuned
from the corresponding EDM networks, consuming the equivalent of 1.2M image passes over the
course of training. For evaluation, we generate 50k samples and compute the Fréchet Inception
Distance (FID]). Results are reported across a range of function evaluations (NFE), following the
same experimental settings as |[Karras et al.[(2022). No additional hyperparameters are tuned.

Algorithm details. (1) EDM is EDM baseline. (2) g**° parameterizes an isotropic noise schedule
(M, with J = 1in @)). (0, ) is trained on L(6, ¢) and generation uses (I7), with uniform grid
tr and t = (tr_1 + t)/2. (g7, g3™") parameterize M; with J = 2 in (©); the training/infer-
ence procedure is identical to g'*°. gis° (resp (g{", g5")) is generated using Algorithm |1} and
parameterizes M; with J = 1 (resp J = 2). For the J = 2 setups, we choose V7 to contain the
H? /4 lowest-frequency DCT bases, and V5 to contain the remainder bases, where H is the image
resolution (e.g., H = 64 for 64 x 64). g; and g5 are their respective schedules.

Comparable overall performance. Across datasets, our learned schedules achieve performance
broadly comparable to EDM. As shown in Table[I]and Figure[2] the reported FIDs remain close to
those of the baseline over a wide range of NFE. The only noticeable deviation occurs on CIFAR-10
at large NFE, where performance is slightly worse, but the gap is minor relative to the overall trend.

Significant gains at low NFE. Our methods show consistent advantages over EDM in the low-
NFE regime, often by a large margin (Table . On CIFAR-10, (g¢™, g3™%) achieves FID=2.93 at
NFE=13. On AFHQvV2, the wrapped anisotropy achieves FID=2.38 at NFE=19. On FFHQ, the same
variant reaches FID=3.45 at NFE=13.

Strong improvements on FFHQ. The largest gains are observed on FFHQ, a more complex
human-face dataset. Across all NFE values, learned schedules outperform EDM. At smaller NFE
(e.g., 9-13 steps), the improvements are dramatic: at NFE=9, our method achieves FID=6.05 com-
pared to 57.28 for EDM; at NFE=11, 4.33 vs 29.48; and at NFE=13, 3.45 vs 15.98.
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Guw VS.g-  gis®and (g7, g3"7) consistently outperform g** and (g{™*, g5™") at small NFE (Table
Figure[2)), where discretization error has the largest impact. Moreover, as shown in Figure[3] the g,
schedules are flatter near the starting point ¢ = 6400, aligning better with the beginning of denoising
and helping stabilize early steps.

g1 VS. go.  Figure ] examines the ratio between the two anisotropic components. At the beginning
of denoising (¢ ~ 6400), g1 (low-frequency subspace) is smaller than g (high-frequency subspace),
indicating that the low-frequency schedule decreases more rapidly in the early stage. This behavior
mirrors human perception, where recognition often starts from coarse structures before attending to
finer details.

Table 1: FID | vs. small NFE across datasets (50k samples).

CIFAR-10 AFHQV2 FFHQ
Method 9 11 13 15 17 9 11 13 15 19 9 11 13 15 19
EDM 3555 1444 680 432 311 2798 13.66 759 475 299 5728 2948 1598 994 526
g 4929 3128 19.71 1334 938 3548 1520 1033 829 5.68 6841 2793 1344 8.12 4.03
90° 519 1408 694 263 259 480 385 297 256 250 674 436 394 356 3.12

(g§™, gs™) 598 358 293 264 247 2163 1150 835 6.68 439 4543 1724 830 5.19 3.05
(g§mi, ggmi 469 606 575 277 254 486 354 290 247 238 605 433 345 321 290

CIFAR-10 AFHQv2 FFHQ
10 30 2,60
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Figure 2: FID | vs. large NFE across datasets (50k samples).
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REPRODUCIBILITY STATEMENT

The code used to run all experiments is linked in the abstract. We provide detailed descriptions of
datasets, architectures, training settings, and evaluation protocols. Every theorem or lemma stated
or referenced in the main text is accompanied by a complete proof, either in the main body or in the
Appendix.

ETHICS STATEMENT

We rely exclusively on publicly available datasets (CIFAR-10, AFHQv2, FFHQ), which are widely
used in the machine learning community and distributed for research purposes. Our work is method-
ological in nature, with experiments confined to standard benchmarks. We do not anticipate any
significant ethical risks arising from this study.
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A  2D-DCT TRANSFORM

Let H be the image side length and d = H?. The two-dimensional DCT (type-II) basis over R *#
is defined as follows. For each pair (p, ¢) € {0,..., H — 1}?, the basis is

D, 4 (2,9) = g cos(%) COS(%), z,y=0,...,H—1,

with normalization factors

H~Y/2, p=0, H~1/2, q=0,
’y = ")/ =
! {\/ﬁH‘W, p>0, ! {\/iH‘l/Q, q>0.

Vectorizing each ®,, , into R? and enumerating them yields the orthonormal basis {v1,...,vgz},
which are the 2D-DCT basis of RY. Please refer to Figure |5|for example 2D-DCT bases.

u=0, v=0 u=0, v=1 u=1, v=0 u=1, v=1 u=0, v=2 u=1, v=2 u=2, v=0 u=2, v=1 u=2, v=2

B ™ I A

Figure 5: The first nine 2D-DCT bases ordered by increasing frequency.

B PROOFS
Lemma 4. Let (,(¢) be as defined in (B). Then {,(¢) is minimized if net(x,t; $) = V log pi(x; 6).
Proof of Lemmald] To see this, let V : R* — R< be an arbitrary vector field. With abuse of notation,
define
- 2
(V) 1= By [||[V(@) = M 0) (o0 — 2)[5]
Observe that ¢; above can be minimized pointwise at each x;. By law of iterated expectation,
2 2
E,, [HV(xt) M Y(zo — xt)||2} - E,, [Exoye‘mt [HV(xt) MY (o — xt)HQH. Further ob-
serve that
. _ 2 _
arg min Bz, i, [l[o = M7 @) @0 — 23] = M (O)Eay e, w0 — 2] = Vlog py(w ).

The last equality follows from (3). O

Proof of Lemmal(l] We simplify the term inside the Euclidean norm in (TT)):
O(xe, 50, 0) — 0(wy, 2o, 1;60) = (I + My(0)) Y20, M (0)(M; 1 (0) (20 — 1) — net (x4, t,0)).
Let M,y denote (I + M, (0))~/20,M,(8).
Following Lemmald] let V : R? — R? be an arbitrary vector field.
We can minimize the expectation pointwise at each x;. We can rewrite the expectation
E,, [HMan(net(:L't, £ ) — M7H(0)(xo — g:t))||j]
as
Eao.c [[|Mar(V (20) = M 0) (w0 = 20))|I3] = B, [Bagsete, [|Man(V () = M1 (0) (0 — 20) 3]
by the law of iterated expectation.
arg min By iz, [(v = M1 (0) (w0 — 24)) " Man(v — My (0) (w0 — )]
= M[l(G)Emoydzt [zo — x¢] = Viogpi(x; 0).

The above equality follows from (3). The penultimate equality follows from the fact that
argmingcga (b — a) ' Q(b — a) = b for any PSD matrix Q. Note that 9;M; = A? is PSD, and
M, being the covariance in the diffusion process is also PSD. Hence, M, is PSD. O

12
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Proof of Lemmal2] Letw : [0,T] — (0, 00) be measurable and define
¥ ds
O(z) = — < 0.
@)= |, Ty <

Then, to prove this Lemma, it is sufficient to show there exist a ¢ = % > 0 and a strictly
increasing continuous function g : [0, T] — [0, T] with g(0) = 0, g(T") = T such that

r(,—1 t
M = cw(t) for all ¢.
1+t
where ¢ = ®(T)/T.

Define g implicitly by ®(g(t)) = ctfor (0 < ¢t < T), ie. g(t) = ®'(ct). Differentiating

®(g(t)) = ct with respect to ¢ yields the separable ODE ¢'(t) = (1 + g(t)) cw(g(t)), and with
1o —1

r = g(t) this is % = cw(r). Hence, we derive an expression for g involving a constant ¢

and any w. Monotonicity of g(t) follows since w > 0 and ¢ > 0 imply ¢'(¢) > 0.

Substituting into chT w(t)H(t)dt, we get

T T /
c A w(r)H(r)dr = A IO pg)g ()it
0

Proof of Lemma[3] To simplify notation, we will drop the index ¢ and treat 6 as a scalar. The general
proof for 6 € R follows by repeating the proof for each 6;, while holding all other 6 s fixed.

1
Oopi(x;0) :gdiv(pt(x;9)39Mt(9)V10gPt($;9))

:%pt(x; 0)(div(0p M (0)V log py (3 0)) + (V log pi(x;0), 9 M (0)V log py(x;0)) ).

Dividing both sides by p;(z; 6) gives
1 .
Og log py (3 0) zi(dlv((“)th(H)V log pi(x;0)) + (Vlog pi(x; 0), 0o M (0)V log pi(x;0)))

1 1
=5 > (9eMy(0)ei, V log py (a3 0)e;) + 5 (Viogpi(w:0), 95 My(0)V log py (23 6))

1 1
=5 > (00 My(0)e:, 0.V log pi(w + cei; 0)) + 5 (VIog pi(w:0), g My(6)V log py(;0))

Taking a derivative wrt x gives

1
00V log pi(; 0) =3 Z (0o My(0)ei, 0.V log py(x + cei; 0)) + (99 My (0)V log py(w;6), V? log py (a3 60))

K3

1
=3 Z 0,0,V log py(x + 1e; + s0g My(0)e;; 0) 4+ 05V log pi(x + s09 M (0)V 1og py(; 6); 6).

O

Lemma 5.

d
Op flow(x,t,d) :% Z 0r0s f1low(x + re; + sOgMy(0)e;, t, &)
=1
40, £1ow(x + sMY20, M, () £1ow(z, 1, 6).1, ¢) + %M{l(ﬁ)(f)@Mt(H))flow(x, t o).

13
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Proof of Lemma[3] Recall that
flow(x;0) = Mgl/2net(x; 0) = M;/QVIngt(x; 0).
We verify that
L0y — a2 )4 a1 :
Opflow(x;0) =M, “Ognet(x;0) + §M9 (OgMp)net(x;0)

:% Z M;/Qarasnet(x + re; + s0p Mi(0)e;;0) + M;masnet(x + 50p My (0)net(z;0);0)

1.
+ 5 M, Y2 (9 My)net (z;0)
1
=5 E 0r0s£low(x + re; + sOgMi(0)e;; 0) + O£ low(x + SM;/289Mt(6)flow(x; 0);6)

1
+ iMe_l(agMg)flow(x; 0).

Lemma 6. Let u be as defined in Section Then

th—1

t/
/ a(E 23,0, 0)dE = (MY~ MY)(£10w(@, 1)
t

1,12 1/2 1/2 1/2— .2 .
- §(Mtk/_1 = MM = M) (£1ow(ig, i) — Flow(Fy, ).

Proof. 1t suffices to verify that

’

/ (@ M) (M}? = M}?)aE

7
¢
" 1/24 7 ;1/2
:/ SOM; — (DM},
¢

1
=5 (My — M) — (Mtl/Qth _ Mt1/2Mt1/2>

L 1/2 1/2
:§(Mt,/ — M2
This concludes the proof. O
Lemma 7. If z, evolves as the following (1. and 2. are equivalent):

1
(1.) (m¢ — o) ~ N(0, M(6)), (2.) dxy = —§8tMt(9)Vlogpt(xt; 0)dt,
where pi(x;0) := po x N(0, M¢(9)), then the score above is the conditional expectation
Viog pi(50) = My~ (0)Euja,=s [w0 — 2],

where (9, x;) are defined by the joint distribution xo ~ pg and xy = xo + N (0, My).

Proof of Lemmal[]] The expression for p; is given by

M,|~05 _
pe(x) = /;Do(a:o)‘L exp (—0.5(;100 - x)TMt 1(:r0 - x))dxo = /po(xo)pt(x|x0)dxo.
V2T

Taking the derivative of log p;(x) with respect to x

1
Vi logpi(z) = ——Vupi()

pe(z)
-1 —0.5
— ]J)\ﬁx) /Po(rm))“\/{;ﬂ exp (—0.5(z0 — )T M; (o — ) (0 — )dao

= MtflEzo‘mt:m [xo — 2¢] -

14
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C IMPLEMENTATION DETAILS OF g;

For a fixed set of node locations 0 = 79 < 71 < --- < Tx_1 = T, the subspace noise schedule
is defined in log—space between the smallest and largest variance values g(0) = go and g(T) = T.
The trainable parameters 6 = (01, ...,0x_1) define a collection of strictly positive increments

s; = softplus(6;), i=1,...,K—1,

These increments are then rescaled by « so that their sum exactly matches the total log—gap between
the endpoints,
log T — log go
e S D
i1 Si

The log—values at the nodes are constructed by cumulative summation,

J
Loy = log go, Ej:ZQ—&—Zasi, j=1...,K—-1,
i=1

sothat {1 =logT.
Given a time ¢ € [0, T, one locates the enclosing interval [7;_1, 7;] and computes the normalized

position

t— Tj—1

p(t) = —2L=1.
v T i1
The value of ¢(¢) is then obtained by linearly interpolating between successive log—nodes and expo-
nentiating:
logg(t) = (L —p(t)) {j—1 +p(t) &5, g(t) = exp(logg(t)).

Within each interval the derivative takes the simple form
Ej — fj_l .

Tj —Tj,1

g'(t) =g(t)
D REDUCING BIAS IN LEARNING 7(t;7)
Let r be short for r(¢; 7). We defined in that
~ T 2
£0) = [ Bug [0 736,0) oo z0, )] e
0

T 2
= [ B[ 3007200, (34 00 - 1) = met o) [

T
:/ oy | (20— 2) M AM " (20 — @) —2(x0 — 20) M Aynet (2,,8) + net (z,,8) Arnet (1) | |
0

®

where we define A, := 8; M,.(I + M, )~19; M,. The purpose of L is to capture the score-matching
loss, as described in SectionE} However, recall that the frue score-matching loss is really

T
/ E.. [||v(xr,r;9) — 17(37,&(;5)”3} dt
0

T
:/ Eqy e [V 1ogpr(xr)TM[1ArM;1Vlogpr(xr) —2Vlogp,(z,) M ' Apnet (z,,t) + net(zr,t)TArnet(a:r,t)] )
0

Contrasting the above with i, we see that L additionally includes the variance of Mr(;v) (xo —

Ty(t;)) due to @ For the purpose of optimizing -, this additional variance introduces a non-trivial
bias to the score-matching loss at time ¢.

15
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To reduce this bias, we can instead approximate E,, . [V logp,(z,) " M 1A, MV log p,(z,)]
by Eqy,c [net(z,,r)" M YA, M, net(z,,r)]. This is based on the assumption that, even when

net is not a good approximation of V logp, ||net||, should be a reasonably good approximation
of |V logpl,.

Consequently, we replace L(+y) by

T
[:(7) = / Eyy e [—2(360 —x,) "M Apnet (z,,t) + 2net(xr,t)TArnet(xr,t)] . (20
0

Note that although the first term of L also involves (zo — x,), there is no bias in expectation.
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