

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TRAJECTORY OPTIMAL ANISOTROPIC DIFFUSION MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

We study anisotropic diffusion for generative modeling by replacing the scalar noise schedule with a matrix-valued path M_t that allocates noise (and denoising effort) across subspaces. We introduce a trajectory-level objective that jointly trains the score network and *learns* $M_t(\theta)$; in the isotropic case, it recovers standard score matching, making schedule learning equivalent to choosing the weight over noise levels. We further derive an efficient estimator for $\partial_\theta \nabla \log p_t$ that enables efficient optimization of M_t . For inference, we develop an anisotropic reverse-ODE sampler based on a second-order Heun update with a closed-form step, and we learn a scalar time-transform $r(t; \gamma)$ that targets discretization error. Across CIFAR-10, AFHQv2, and FFHQ, our method matches EDM overall and substantially improve few-step generation. Together, these pieces yield a practical, trajectory-optimal recipe for anisotropic diffusion. Code is available at¹.

1 INTRODUCTION

Diffusion and flow-based generative models typically add and remove *isotropic* Gaussian noise with a scalar schedule $\sigma(t)$ while learning a score network and integrating a reverse-time SDE/ODE (Ho et al., 2020; Song et al., 2021; Karras et al., 2022). The isotropic design is simple and effective, but forces the dynamics to act uniformly in all directions.

Why anisotropy. Replacing the scalar schedule by a matrix-valued path M_t substantially enlarges the design space: noise can be allocated differently across subspaces and time, better matching data geometry—natural images concentrate energy in low spatial frequencies (Ruderman & Bialek, 1993); latent diffusion offloads fine detail to a learned autoencoder (Rombach et al., 2022); video models benefit from temporally structured priors or decomposed noise (Ge et al., 2023; Luo et al., 2023); multi-resolution autoregressive models gain from coarse-to-fine generation (Tian et al., 2024).

From heuristics to learning. Existing anisotropy is often hand-crafted (e.g., temporal correlation in video; frequency-biased processing in image pipelines), and the space of possible M_t is huge, making manual search impractical. In parallel, work on *isotropic* models shows that optimizing only the discretization schedule can already boost few-step quality (Sabour et al., 2024). These trends motivate a *learned*, general-purpose anisotropic framework.

This paper. We introduce a trajectory-level objective that (i) trains the score network and (ii) *learns* an anisotropic schedule $M_t(\theta)$. Separately, we learn a scalar time reparameterization $r(t; \gamma)$ that reduces discretization error; both compose with a second-order sampler, yielding a practical training/inference recipe.

Notation. The isotropic variance-exploding (VE) process is

$$x_0 \sim p_0, \quad dx_t = dB_t \iff dx_t = -\frac{1}{2} \nabla \log p_t(x_t) dt, \quad (1)$$

with $p_t = p_0 * \mathcal{N}(0, tI)$. We generalize the above to anisotropic diffusion by letting $x_t \sim p_0 * \mathcal{N}(0, M_t)$ with a nondecreasing PSD trajectory $M_t \in \mathbb{R}^{d \times d}$:

$$x_0 \sim p_0, \quad dx_t = (\partial_t M_t)^{1/2} dB_t \iff dx_t = -\frac{1}{2} \partial_t M_t \nabla \log p_t(x_t) dt, \quad (2)$$

where $M_0 = 0$, $M_T = T$ for some maximum noise level T , and $t > s \Rightarrow M_t \succeq M_s$. We discuss further details Section 2.

¹anonymous.4open.science/r/anisotropic-diffusion-paper-8738

054 1.1 MAIN CONTRIBUTIONS
055056 We study *anisotropic* diffusion for generative modeling by learning a matrix-valued noise schedule
057 M_t that allocates noise and denoising effort across subspaces. Our contributions are:
058

- 059 1. **Anisotropic diffusion and reverse ODE.** We formalize variance-exploding and variance-preserving anisotropic diffusion processes, derive the corresponding reverse ODE, and give
060 practical samplers: a first-order Euler update (7) and a *second-order Heun update* (17) and
061 Lemma 6. This yields stable, efficient generation for the reverse anisotropic ODE.
062
- 063 2. **Trajectory-Level Score Matching (TLSM).** We introduce a path-integrated loss $L(\theta, \phi)$ that
064 simultaneously (i) trains the score network to match the score and (ii) *learns* the anisotropic
065 schedule $M_t(\theta)$ by minimizing score error along the generation trajectory (Section 3). At optimality,
066 the network matches the exact score Lemma 1, and in the isotropic case TLSM *reduces* to weighted score matching—formally tying any choice of weights $w(t)$ to a scalar schedule $g(t)$
067 (Lemma 2, Section 3.1). This reveals a surprising interpretation – isotropic TLSM is equivalent
068 to *learning an optimal weight function for score-matching*.
069
- 070 3. **Differentiating through $M_t(\theta)$ efficiently.** Optimizing over $M_t(\theta)$ is challenging because it
071 involves $\partial_\theta \nabla \log p_t(x; \theta)$, which cannot be easily obtained from the score-network. We pro-
072 pose a *directional* estimator for $\partial_\theta \nabla \log p_t(x; \theta)$ that uses only higher-order *x-directional* deriva-
073 tives of the network and is implementable in **three backward passes**, independent of $\dim(\theta)$
074 (Lemma 3, Section 4.1). We further present a variance-reduced formula based on estimating
075 $\partial_\theta (M_t(\theta)^{-1/2} \nabla \log p_t(x; \theta))$ (Lemma 5).
076
- 077 4. **Learning the discretization schedule.** Orthogonal to optimizing $M_t(\theta)$ wrt the *score-matching*
078 *loss*, we learn a time-reparameterization $r(t; \gamma)$ that minimizes a trajectory-level *discretization*
079 *error* (5). Our formulation cleanly separate score-matching from discretization-error minimiza-
080 tion. In Algorithm 1, the learned $r(t; \gamma)$ composes with the Heun integrator based on the learned
081 $M_t(\theta)$ noise schedule, gaining benefits from optimization of both $r(t; \theta)$ and $M_t(\theta)$.
082
- 083 5. **Empirical benefits.** On CIFAR-10 (Krizhevsky et al., 2009), AFHQv2 (Choi et al., 2020), and
084 FFHQ (Karras et al., 2019), our learned anisotropic denoising model is competitive with EDM
085 across budgets, and yields large gains on FFHQ, and at small counts e.g., **FFHQ FID 6.02**
086 vs. 57.14 at NFE=9 and **3.37** vs. 15.81 at NFE=13; **CIFAR-10 2.93** vs. 6.69 at NFE=13 (50k
087 samples), with a small gap at very large NFE on CIFAR-10 (Table 1).
088

089 1.2 RELATED WORK
090091 **Optimizing schedules in isotropic diffusion.** Recent work tunes the *test-time* discretization
092 schedule to improve few-step sampling (Sabour et al., 2024; Wang et al., 2023; Liu et al., 2023;
093 Park et al., 2024; Williams et al., 2024), complementing hand-crafted EDM designs (Karras et al.,
094 2022). Related efforts adjust *training-time* noise weighting or sampling over noise levels while
095 retaining a scalar schedule (Hang et al., 2024; Okada et al., 2024).
096097 **Beyond isotropy: correlated noising.** Methods introduce structure via edge-aware anisotropy
098 (Vandersanden et al., 2024), per-pixel multivariate schedules (Sahoo et al., 2024), or time-varying
099 correlated masks (Huang et al., 2024). Frequency-/subspace formulations restrict or bias diffusion
100 dynamics (Jing et al., 2022), and video models exploit structured noise across time through decom-
101 position or temporally correlated priors (Luo et al., 2023; Ge et al., 2023; Chang et al., 2025). In
102 contrast, we *learn* a general matrix-valued trajectory $M_t(\theta)$ together with a scalar time-transform
103 $r(t; \gamma)$ under a trajectory-level objective, and compose both within a second-order anisotropic sam-
104 pler (Algorithm 1).
105106 2 PRELIMINARIES
107108 2.1 ANISOTROPIC DIFFUSION: PROCESS, SCORE, AND PARAMETERIZATIONS
109110 Recall the anisotropic diffusion process in (2). Let $M_t(\theta)$ denote the noise covariance at time t ,
111 parameterized by $\theta \in \mathbb{R}^c$. p_t as defined in (2) has score given by
112

113
$$\nabla \log p_t(x; \theta) = M_t^{-1}(\theta) \mathbb{E}_{x_0|x_t=x} [x_0 - x_t], \quad (3)$$

108 where (x_0, x_t) are defined by the joint distribution $x_0 \sim p_0$ and $x_t = x_0 + \mathcal{N}(0, M_t)$. We provide
 109 a short proof in Lemma 7 in Appendix B. In case of time-uniform isotropic diffusion (i.e. standard
 110 Brownian Motion), $M_t(\theta) = tI$, and the formula in (3) reduces to the standard score expression.
 111

112 We parameterize a neural network $\text{net}(x, t, \phi)$ to approximate the score, we also define flow , a
 113 transformation of net whose norm is approximately time-invariant:

$$114 \quad \text{net}(x, t, \phi) \approx \nabla \log p_t(x; \theta), \quad \text{flow}(x, t, \phi) := M_t^{1/2} \text{net}(x, t, \phi). \quad (4)$$

116 **Remark 1** (Anisotropic score matching for fixed M_t ; not used in this paper). For a fixed M_t schedule,
 117 the natural per-time objective at time t is

$$119 \quad \ell_t(\phi) := \mathbb{E}_{x_0, \epsilon} \left[\left\| \text{net}(x_t, t, \phi) - M_t^{-1}(\theta)(x_0 - x_t) \right\|_2^2 \right], \quad x_t = x_0 + M_t^{1/2} \epsilon. \quad (5)$$

121 We show in Lemma 4 in Appendix B that $\ell_t(\phi)$ is minimized by $\text{net}(x_t, t, \phi) = \nabla \log p_t(x)$.
 122

123 **Continuous and discrete Reverse ODE for anisotropic denoising.** Given net in (6), we define
 124 the continuous-time *forward* ODE and *reverse* ODE are respectively defined as
 125

$$126 \quad d\bar{x}_t = -\frac{1}{2} \partial_t M_t(\theta) \text{net}(\bar{x}_t, t, \phi) dt, \quad \Leftrightarrow \quad d\bar{x}_{T-t} = \frac{1}{2} \partial_t M_t(\theta) \text{net}(\bar{x}_{T-t}, T-t, \phi) dt. \quad (6)$$

129 The reverse-ODE above can be implemented via a time-discretization of (6). For intuition, we
 130 present below the simple Euler-discretization of (6): Let K be number of steps, let $t_0 < t_1 \dots <$
 131 $t_K \in [0, T]$ denote discretization points. The Euler reverse ODE is
 132

$$133 \quad x_{t_{k-1}}^{Eul} = x_{t_k}^{Eul} + (M_{t_{k-1}}^{1/2} - M_{t_k}^{1/2}) \text{flow}(x_{t_k}^{Eul}, t_k). \quad (7)$$

135 Our experiments use Heun’s second order integrator (Ascher & Petzold, 1998; Karras et al., 2022)
 136 which consistently gives better FID per NFE. We detail this algorithm in Section 5.
 137

138 **Variance-Preserving Anisotropic Diffusion.** It is often more useful to consider the *variance preserving*
 139 anisotropic diffusion, which is simply (time-dependent) linear-transformation of (2). Define
 140

$$141 \quad x_t^{VP} := (I + M_t(\theta))^{-1/2} x_t. \quad (8)$$

142 The choice of I above is based on the assumption that $\text{Cov}(x_0) \approx I$. The dynamics of x_t^{VP} can be
 143 explicitly written, without reference to x_t , using a matrix exponential. However, it is much simpler
 144 mathematically and programmatically to maintain x_t explicitly, and define x_t^{VP} via (8).
 145

146 2.2 IMPLEMENTATION DETAILS: $M_t(\theta)$ FOR DCT BASIS ON IMAGES

148 We present below a simple example of $M_t(\theta)$ based on the 2D Discrete Cosine Transform (2D-
 149 DCT). See Appendix A background on 2D-DCT bases. Let $d = H \times H$ denote the dimension of
 150 an image. Let $v_1 \dots v_{H^2}$ denote the 2D-DCT basis vectors of $H \times H$. Let $S_1 \dots S_J \subset \{v_1 \dots v_{H^2}\}$ be
 151 a disjoint union of these H^2 2D-DCT vectors. For each $i = 1 \dots J$, let $g_i(t; \theta) : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ denote
 152 a monotonically increasing function satisfying $g_i(0; \theta) = 0$ and $g_i(T; \theta) = T$. Let $V_i \in \mathbb{R}^{|S_i| \times H^2}$
 153 denote the basis matrix for S_i , so that $V_i^\top V_i$ is a projection matrix onto $\text{span}(S_i)$. Then we define
 154

$$155 \quad M_t(\theta) := \sum_{i=1}^J g_i(t; \theta) V_i^\top V_i, \quad \text{equiv.} \quad \partial_t M_t(\theta) := \sum_{i=1}^J \partial_t g_i(t; \theta) V_i^\top V_i. \quad (9)$$

158 We verify that $M_t(\theta) \succ M_s(\theta)$ for $t > s$, and thus defines a valid forward anisotropic diffusion
 159 process (2). Intuitively, each $g_i(t; \theta)$ defines a separate time-schedule on each subspace $S_1 \dots S_J$.
 160

161 **Efficient matrix algebra.** The form (9) implies $F(M_t) = \sum_i F(g_i(t)) V_i^\top V_i$ for $F \in \{(\cdot)^c, \partial_t, \partial_\theta\}$; our experiments use $J = 2$ and implement g_i using log-linear knots (App. C).

Figure 1: **Illustration of Isotropic vs. anisotropic denoising.** Top: standard isotropic sampler denoises all directions uniformly. Bottom: anisotropic sampler with two DCT subspaces, V_1 (low frequency) and V_2 (high frequency), (Section 2.2). Columns show intermediate reconstructions as t decreases. The plot (right) displays the learned subspace schedules $g_1(t)$ and $g_2(t)$; the former is denoised more aggressively, thus low-frequency structure emerges earlier from the V_1 , while high-frequency details emerge later from V_2 . **Illustration only: in practice anisotropic and isotropic will reconstruct different images, and the gap between g_1 and g_2 is typically smaller (see Fig. 3)**

3 TRAJECTORY-LEVEL SCORE MATCHING LOSS

Goal. We want to learn an anisotropic noise path $M_t(\theta)$ that reduces generation error. Two error sources dominate at test time: (i) **score approximation error**, and (ii) **discretization error** of the reverse ODE. In this section we focus on (i), introducing a trajectory-level objective that jointly trains the score network and learns $M_t(\theta)$. We discuss (ii) in Section 5.

From (2) and (6), the *variance-preserving* ODE (8) with $\nabla \log p_t$ and net are defined by the drift velocity fields $v(x_t, t; \theta)$ and $\bar{v}(\bar{x}_t, t; \theta)$ respectively:

$$\begin{aligned} v(x, t; \theta) &:= -(I + M_t(\theta))^{-1/2} \partial_t M_t(\theta) \nabla \log p_t(x; \theta) - \frac{1}{2}(I + M_t(\theta))^{-3/2} \partial_t M_t(\theta) x, \\ \bar{v}(x, t; \theta, \phi) &:= -(I + M_t(\theta))^{-1/2} \partial_t M_t(\theta) \text{net}(x, t, \phi) - \frac{1}{2}(I + M_t(\theta))^{-3/2} \partial_t M_t(\theta) x. \end{aligned} \quad (10)$$

Let us also define $\tilde{v}(x, y, t; \theta) := -(I + M_t(\theta))^{-1/2} \partial_t M_t(\theta) M_t^{-1}(\theta)(y - x) - \frac{1}{2}(I + M_t(\theta))^{-3/2} \partial_t M_t(\theta) x$. It follows from (3) that $v(x, t; \theta) = \mathbb{E}_{x_0|x_t=x} [\tilde{v}(x, x_0, t; \theta)]$. For $\epsilon \sim \mathcal{N}(0, I)$, $x_t := x_0 + M_t^{1/2}(\theta)\epsilon$, we now define the trajectory-level score-matching loss as

$$L(\theta, \phi) = \int_0^T \mathbb{E}_{x_0, \epsilon} \left[\|\bar{v}(x_t, t; \theta, \phi) - \tilde{v}(x_t, x_0, t; \theta)\|_2^2 \right] dt, \quad (11)$$

where T denotes maximum noise level. We also provide a more explicit expression of $L(\theta, \phi)$ in (15) in Section 4.2 below. $L(\theta, \phi)$ can be viewed as a generalization to the standard score-matching objective, but with *matrix-valued weights*. The loss in (11) has a number of desirable properties:

Exact score at optimality. The following analog of Lemma 4 shows that $L(\theta, \phi)$, like the standard score-matching loss, also encourages net to match the score. Proof in Appendix B.

Lemma 1. $L(\theta, \phi)$, as defined in (11), is minimized if $\text{net}(x, t; \phi) = \nabla \log p_t(x; \theta)$ for all (x, t) .

Connection to path-level KL divergence: For two stochastic processes evolving as $dx_t = v(x_t, t)dt + dB_t$ and $d\bar{x}_t = \bar{v}(\bar{x}_t, t)dt + dB_t$, the path-level KL divergence is bounded by $\int_0^T \mathbb{E} [\|\bar{v}(x_t, t) - v(x_t, t)\|_2^2] dt$ (assuming sufficient regularity, e.g. Novikov's condition). This has been used, for instance, to bound the discretization error of the reverse SDE in Chen et al. (2022). Our loss (1) differs from the KL upper bound in replacing $v(x, t; \theta)$ by $\tilde{v}(x, x_0; \theta)$, because the true score (and hence $v(x, t; \theta)$) is not accessible during training. In this paper, we focus on the forward and reverse ODE for simplicity, but the forward and reverse SDE can be analogously defined.

216 **Integration error under VP scaling (intuition).** We choose to compute the score-matching error
 217 under the VP formulation for two reasons: (1) VP transformation keeps scale roughly constant wrt
 218 time, and (2) at large time, the backward ODE is dominated by x_t contracting towards 0. Thus
 219 discretization errors at high noise should be discounted (via the $(I + M_t(\theta))^{-1/2}$ scaling).
 220

221 3.1 CHOICE OF WEIGHT $w(t)$ IS EQUIVALENT TO CHOICE OF NOISE-SCHEDULE $g_t(\theta)$.
 222

223 Possibly of independent interest, we present here a connection between learning $g_t(\theta)$, and the
 224 standard score-matching formulation. Consider the *isotropic* version of (11). Let $M_t(\theta) := g_t(\theta)I$,
 225 where g_t is a scalar-valued monotonically increasing function. $L(\theta, \phi)$ thus simplifies to

$$226 \int_0^T \frac{(\partial_t g_t(\theta))^2}{1 + g_t(\theta)} \mathbb{E}_{x_0, \xi} \left[\left\| \text{net}_{g_t(\theta)}(x_0 + g_t(\theta)^{1/2}\xi; \phi) + g_t(\theta)^{-1/2}\xi \right\|_2^2 \right] dt. \quad (12)$$

227 With slight abuse of notation we let $\text{net}_{\sigma^2}(x_t; \phi)$ denote the network trained to match the
 228 score of $p_0 * \mathcal{N}(0, \sigma^2 I)$. In literature, the score-matching loss is usually a weighted average
 229 $\int_0^T w(s) \mathbb{E}_{x_0, \xi} \left[\left\| \text{net}_s(x_0 + \sqrt{s}\xi) + \xi/\sqrt{s} \right\|_2^2 \right] ds$. We show below that choosing a $g_t(\theta)$ is exactly
 230 equivalent to choosing a weighing function $w(s)$:

231 **Lemma 2.** *For any $w(t)$, there exists a $g_t(\theta)$ and constant c , such that for any $H(t)$*

$$232 \int_0^T \frac{(\partial_t g_t(\theta))^2}{1 + g_t(\theta)} H(g_t(\theta)) dt = c \int_0^T w(t) H(t) dt.$$

233 We defer the proof to Appendix B. Consequently, *any weighted score-matching loss* for isotropic
 234 diffusion (where the weights can be a combination of explicit weighting function and implicit distribution
 235 density, e.g. Karras et al. (2022)) can be equivalently written as an instance of *trajectory-level score-matching loss*, for a specific choice of $g_t(\theta)$. When we optimize over the space of noise-schedules
 236 $g_t(\theta)$ wrt $L(\theta, \phi)$, we are *equivalently optimizing over the choice of weighing function $w(t)$ under the standard score-matching loss*.
 237

238 4 OPTIMIZATION SCORE MATCHING LOSS OVER $M_t(\theta)$
 239

240 For fixed t , let $\theta \in \mathbb{R}^c$ be the vector parameterizing $M_t(\theta)$. Then for all $i = 1 \dots c$,

$$241 \partial_{\theta_i} x_t(\theta) = -\frac{1}{2} \partial_{\theta_i} M_\theta \nabla \log p_t(x; \theta) \Leftrightarrow \partial_{\theta_i} p_t(x; \theta_i) = \frac{1}{2} \mathbf{div}(\partial_{\theta_i} M_t(\theta_i) \nabla p_t(x; \theta_i)). \quad (13)$$

242 The LHS of (13) resembles (2), as both describe the density evolution of $p_t(x; \theta)$, and follow almost
 243 identical proofs. However, do note that (2) and (13) *have very different meanings*. Specifically, (2)
 244 holds θ fixed, and evolves $x_t(\theta)$ over t , whereas (13) holds t fixed, and evolves $x_t(\theta)$ over θ .
 245

246 4.1 STOCHASTIC APPROXIMATION TO $\partial_\theta \nabla \log p_t(x; \theta)$ AND $\partial_\theta \text{NET}(x, t, \phi)$
 247

248 A significant challenge of optimizing $L(\theta, \phi)$ lies in the fact that *there is no simple way to approximate*
 249 $\partial_\theta \nabla \log p_t(x; \theta)$. This is because, whereas $\text{net}(x, t; \phi) \approx \nabla \log p_t(x; \theta)$ is a good approximation
 250 of the *value* of the score, it does not explicitly provide the *derivative* of the score, with respect
 251 to ϕ . One simple approach is to allow $\text{net}(x, t, \phi, \theta)$ to additionally take in θ as an input argument,
 252 e.g. via a more complex time-embedding module, but this approach has two major downsides:
 253

- 254 1. The score-matching loss (11) needs to integrate over not just time $t \in [0, T]$, but over a large set
 255 of potential θ 's. This is forces the net to trade-off the score loss at various suboptimal θ values,
 256 which are not used for inference-time reverse-ODE.
- 257 2. As the parameterization of $M_t(\theta)$ as a function of θ becomes more complex, $\text{net}(x, t, \phi, \theta)$ must
 258 also use a more complex time-embedding module to encode (t, θ) .

259 In contrast, we present a principled approach, that computes an unbiased stochastic estimate of
 260 the **θ -space derivative** $\partial_{\theta_i} \nabla \log p_t(x; \theta)$, using only **higher-order directional x -space derivatives**
 261 $\nabla \log p_t(x; \theta)$ **along specific directions**. Programmatically (e.g. in PyTorch), the derivatives with
 262 respect to all of $\theta_1 \dots \theta_c$ is computed together in three backward passes, so the additional computational
 263 cost is agnostic to the dimension of θ , and the parameterization of $M_t(\theta)$.
 264

270 **Lemma 3.** Let $e_1 \dots e_d$ denote any orthonormal basis of \mathbb{R}^d . Then
 271

$$\begin{aligned} 272 \quad \partial_{\theta_i} \nabla \log p_t(x; \theta) &= \frac{1}{2} \sum_{j=1}^d \partial_r \partial_s \nabla \log p_t(x + re_j + s\partial_{\theta_i} M_t(\theta)e_i; \theta) \\ 273 \quad &+ \partial_s \nabla \log p_t(x + s\partial_{\theta_i} M_t(\theta) \nabla \log p_t(x; \theta); \theta). \\ 274 \end{aligned}$$

275 Applying the approximation of $\text{net}(x, t, \phi) \approx \nabla \log p_t(x; \theta)$ on both sides gives
 276

$$\begin{aligned} 277 \quad \partial_{\theta_i} \text{net}(x, t, \phi) &\approx \frac{1}{2} \sum_{i=1}^d \partial_r \partial_s \text{net}(x + re_i + s\partial_{\theta_i} M_t(\theta)e_i, t, \phi) \\ 278 \quad &+ \partial_s \text{net}(x + s\partial_{\theta_i} M_t(\theta) \text{net}(x, t, \phi), t, \phi). \\ 279 \end{aligned} \quad (14)$$

280 The sum over $j = 1 \dots d$ is expensive to compute exactly, but it can be efficiently approximated in
 281 expectation, by sampling e_i from the standard Gaussian distribution.
 282

283 4.2 OPTIMIZING THE LOSS $L(\theta, \phi)$

284 We now apply our formula from Section 4.1 to optimize $L(\theta, \phi)$ in (11). For notational clarity,
 285 we treat θ as a scalar. Mathematically, $\theta \in \mathbb{R}^c$ can be handled by repeating the computation for
 286 each scalar θ_i . At the end of this section, we provide PyTorch code, showing how the gradients
 287 of all $\theta_1 \dots \theta_c$ can be *simultaneously computed in one set of backward passes*. Let $x_0 \sim p_0$ and
 288 $\xi \sim \mathcal{N}(0, I)$ independently, and define $x_t := x_0 + M_t^{1/2} \xi$, consistent with (2). Following the setup
 289 in Section 3, $L(\theta, \phi)$ is equal to
 290

$$291 \quad \mathbb{E}_{x_0, \xi} \left[\left\| (I + M_t(\theta))^{-1/2} \partial_t M_t(\theta) \left(\text{net}(x_0 + M_t^{1/2}(\theta) \xi, t, \phi) + M_t(\theta)^{-1/2} \xi \right) \right\|_2^2 \right]. \quad (15)$$

292 Let us define the gradient of $L(\theta, \phi)$ above with respect to net as.
 293

$$294 \quad G(\theta, \phi) := 2\mathbb{E}_{x_0, \xi} \left[\partial_t M_t(\theta) (I + M_t(\theta))^{-1} \partial_t M_t(\theta) \left(\text{net}(x_0 + M_t^{1/2}(\theta) \xi, t, \phi) + M_t(\theta)^{-1/2} \xi \right) \right].$$

295 To estimate the actual derivative of $L(\theta)$, accounting for the change-in-score-due-to- θ , we augment
 296 the derivative $\partial_\theta(15)$ using
 297

$$298 \quad \partial_\theta L(\theta, \phi) = \partial_\theta(15) + \langle G(\theta, \phi), (14) \rangle. \quad (16)$$

299 The expectation wrt x_0, ξ can be approximated by a finite sum over $j = 1 \dots n$ of $\{(x_0^{(j)}, \xi^{(j)})\}_{j=1 \dots n}$,
 300 sampled iid from $p_0 \times \mathcal{N}(0, I)$. We highlight below two aspects of practical implementation.
 301

302 4.3 IMPLEMENTATION DETAILS

303 **Time embedding and detaching θ .** In common implementations, $\text{net}(x, \sigma(t), \phi)$ takes as input
 304 the noise-level σ , and not the time index. In our actual experiment setup described in Section 2.2,
 305 we use $\text{net}(x, \tilde{\sigma}(t; \theta), \phi)$, with $\tilde{\sigma}(t; \theta) := \sqrt{g_1(t; \theta)g_2(t; \theta)}$ to replace $\sigma(t)$ as this requires minimal
 306 retraining of the time-embedding of the original net (and requires no retraining if $g_1 = g_2$). In the
 307 implementation, it is important to detach the θ from the computation graph of $\tilde{\sigma}$, so as not to double-
 308 count the derivative wrt θ . We also emphasize that backpropagating through $\tilde{\sigma}(t; \theta)$ is insufficient for
 309 estimating the derivative $\partial_\theta \text{net}$, because $\tilde{\sigma}$ is a scalar-valued "projection" of the full matrix-valued
 310 $M_t(\theta)$ noise, and thus we still need to use (14).
 311

312 **Variance Reduction with $\partial_\theta \text{flow}$ instead of $\partial_\theta \text{net}$.** The scale of $\|\text{net}(x, t; \phi)\|_2 \approx$
 313 $\|\nabla \log p_t(x; \theta)\|_2 \approx \|M_t^{-1/2}(\theta)\|_2$ can vary significantly with the noise level. This could lead
 314 to high variance in the stochastic-estimation of $\partial_\theta \text{net}$ in (14). To address this, we propose a math-
 315 ematically equivalent estimate of $\partial_\theta \text{net}$ based on $\text{flow}(x, t, \phi) := M_t^{1/2}(\theta) \text{net}(x, t, \phi)$, whose
 316 scale is approximately constant across time: $\|\text{flow}(x, t, \phi)\|_2 \approx \|M_t^{1/2} \nabla \log p_t(x; \theta)\|_2 \approx d$.
 317

(`flow` is defined in (4)) We show in Lemma 5 that

$$\begin{aligned} \partial_\theta \text{flow}(x, t, \phi) &= \frac{1}{2} \sum_{i=1}^d \partial_r \partial_s \text{flow}(x + re_i + s\partial_\theta M_t(\theta)e_i, t, \phi) \\ &\quad + \partial_s \text{flow}(x + s\partial_\theta M_t^{1/2}(\theta) \text{flow}(x, t, \phi), t, \phi) + \frac{1}{2} M_t^{-1}(\theta) (\partial_\theta M_t(\theta)) \text{flow}(x, t, \phi) \\ H(\theta, \phi) &= 2\mathbb{E}_{x_0, \xi} \left[M_t(\theta)^{-1/2} \partial_t M_t(\theta) (I + M_t(\theta))^{-1} \partial_t M_t(\theta) M_t(\theta)^{-1/2} \left(\text{flow}(x_0 + M_t^{1/2}(\theta)\xi, t, \phi) + \xi \right) \right] \\ \partial_\theta L(\theta, \phi) &= \partial_\theta(15) + \langle H(\theta, \phi), \partial_\theta \text{flow}(x, t, \phi) \rangle. \end{aligned}$$

The last line above is equivalent to (16), but written with `flow` instead of `net`.

5 LEARNING SCALAR DISCRETIZATION SCHEDULE

In this section, we present the implementation of Heun’s second-order backward ODE integrator for anisotropic diffusion. Additionally, we discuss a way to select an optimal denoising schedule $r(t; \gamma) : [0, T] \rightarrow [0, T]$ based on a *trajectory-level discretization loss*. We emphasize that the optimal denoising schedule $r(t; \gamma)$ can be composed with the optimal score-matching noise schedule $M_t(\theta)$ obtained from minimizing $L(\theta, \phi)$ in (11). In this section, we omit dependence on θ, ϕ .

5.1 HEUN’S SECOND-ORDER ALGORITHM FOR ANISOTROPIC DIFFUSION DENOISING.

Let \tilde{u} be the estimate of $\text{flow}(\bar{x}_t, \bar{t})$, given two evaluations of `flow` at (x, t) and \hat{x}, \hat{t} respectively:

$$\tilde{u}(\bar{t}; x, \hat{x}, t, \hat{t}) := \text{flow}(x, t) + (M_{\hat{t}}^{1/2} - M_t^{1/2})(M_{\hat{t}}^{1/2} - M_t^{1/2})^{-1} (\text{flow}(\hat{x}, \hat{t}) - \text{flow}(x, t)).$$

Let $t_0 < t_1 < \dots < t_K$ denote K discretization points with $t_0 = 0$ and $t_K = K$. Let $t_{k-1} \leq \hat{t}_k < t_k$ denote a set of secondary evaluation points. Then Heun’s second-order backward ODE is defined as

$$\begin{aligned} \hat{x}_{\hat{t}_k} &= \tilde{x}_{t_k} + (M_{\hat{t}_k}^{1/2} - M_{t_k}^{1/2}) \text{flow}(\tilde{x}_{t_k}, t_k), \\ \tilde{x}_{t_{k-1}} &= \tilde{x}_{t_k} + \int_{t_k}^{t_{k-1}} (\partial_t M_{\bar{t}}^{1/2}) \tilde{u}(\bar{t}; \tilde{x}_{t_k}, \hat{x}_{\hat{t}_k}, t_k, \hat{t}_k) d\bar{t}. \end{aligned} \quad (17)$$

We verify in Lemma 6 that $\int_{t_k}^{t_{k-1}} \tilde{u}(\bar{t}; \tilde{x}_{t_k}, \hat{x}_{\hat{t}_k}, t_k, \hat{t}_k) d\bar{t}$ has a simple closed-form expression:

$$(M_{t_{k-1}}^{1/2} - M_{t_k}^{1/2}) (\text{flow}(\tilde{x}_{t_k}, t_k)) - \frac{1}{2} (M_{t_{k-1}}^{1/2} - M_{t_k}^{1/2})^2 (M_{\hat{t}_k}^{1/2} - M_{t_k}^{1/2})^{-1} (\text{flow}(\hat{x}_{\hat{t}_k}, \hat{t}_k) - \text{flow}(\tilde{x}_{t_k}, t_k)).$$

In general, the choices of evaluation points t_k and \hat{t}_k can have a significant effect on the discretization error. In Karras et al. (2022), for isotropic diffusion models, the authors choose a schedule which corresponds to $t_k \approx \left(\sigma_{\max}^{1/\rho} - \frac{K-k}{K} \left(\sigma_{\min}^{1/\rho} - \sigma_{\max}^{1/\rho} \right) \right)^{\rho}$, with $\rho = 7$ being an empirically chosen hyperparameter, and $\sigma_{\min} \approx 0$, $\sigma_{\max} \approx T$, $\hat{t}_k = t_{k-1}$. In the next section, we present a principled way to select a discretization schedule by minimizing the trajectory-level discretization error.

5.2 OPTIMAL DISCRETIZATION SCHEDULE

We will let $r(t; \gamma) : [0, T] \rightarrow [0, T]$ denote a monotonically increasing time-transformation with $r(0; \gamma) = 0$, $r(T; \gamma) = T$. We will optimize over the choice of discretization schedules $r(t; \gamma)$. Let x_t denote the continuous-time backward ODE, defined as the time-reversal of

$$dx_t = -\frac{1}{2} \partial_t M_t \text{net}(x_t, t) = -\partial_t M_t^{1/2} \text{flow}(x_t, t). \quad (18)$$

On the other hand, (17) is equivalent to $d\tilde{x}_t = -(\partial_t M_t^{1/2}) \tilde{u}(\bar{t}; \tilde{x}_{t_k}, \hat{x}_{\hat{t}_k}, t_k, \hat{t}_k)$ for $t \in [t_{k-1}, t_k]$. Again inspired by the Girsanov’s Theorem, which gave rise to our *trajectory-level score-matching loss* $L(\theta, \phi)$, we define the *idealized trajectory-level discretization loss* $\hat{H}(\gamma)$ as

$$\hat{H}(\gamma) = \int_0^T \mathbb{E} \left[\left\| \partial_t M_{r(t; \gamma)}^{1/2} \left(\text{flow}(x_{r(t; \gamma)}, r(t; \gamma)) - \tilde{u}(r(t; \gamma); \tilde{x}_{r(t; \gamma)}, \hat{x}_{r(t; \gamma)}, r(t_k; \gamma), r(\hat{t}_k; \gamma)) \right) \right\|_2^2 \right] dt,$$

378 where in the above, t_{k-1}, t_k are the two evaluation points such that $r(t; \gamma) \in [r(t_{k-1}; \gamma), r(t_k; \gamma)]$.
 379 In practice, we optimize a stochastic approximation of \hat{H} defined by
 380

$$381 H(\gamma) = \mathbb{E}_{t, \tilde{t}, \tilde{x}, \hat{x}} \left[\left\| \partial_t M_{r(t; \gamma)}^{1/2} (\text{f1}\circ\text{w}(x_{r(t; \gamma)}, r(t; \gamma)) - \tilde{u}(r(t; \gamma); \tilde{x}, \hat{x}, r(\tilde{t}; \gamma), r(\hat{t}; \gamma))) \right\|_2^2 \right] dt,$$

383 where $\tilde{t} \sim \text{Unif}([0, T])$, $\bar{t} = \max \{0, \tilde{t} - T/8\}$, $t \sim \text{Unif}([\bar{t}, \tilde{t}])$. $\hat{t} = (\bar{t} + \tilde{t})/2$. In addition to the
 384 discretization error, recall the continuous-time score-matching loss L defined in (11). For θ, ϕ fixed,
 385 and under the time-transformation $r(t; \gamma)$, the score-matching loss is given by
 386

$$387 \tilde{L}(\gamma) := \int_0^T \mathbb{E}_{x_0, \epsilon} \left[\left\| \bar{v}(x_{r(t; \gamma)}, r(t; \gamma); \theta, \phi) - \tilde{v}(x_{r(t; \gamma)}, x_0, r(t; \gamma); \theta) \right\|_2^2 \right] dt, \quad (19)$$

389 where \bar{v} and \tilde{v} are as defined in Section 3, and $x_{r(t; \gamma)} = x_0 + M_{r(t; \gamma)}^{1/2} \epsilon$. Combining the above, we
 390 optimize $r(\cdot; \gamma)$, over the space of γ 's, to minimize $H(\gamma) + \tilde{L}(\gamma)$. We parameterize $r(t; \gamma)$ the same
 391 as $g_i(t; \theta)$ (Section 2.2). In practice, we replace \tilde{L} by \hat{L} , which is a more elaborate version of \tilde{L} that
 392 is a more accurate estimator of the score-matching loss (see (20) in Appendix D). The following
 393 algorithm combines all our previous optimization techniques:
 394

396 Algorithm 1 Combining all training

- 397 1: Train (θ^*, ϕ^*) on loss $L(\theta, \phi)$
- 398 2: Given $M_t(\theta^*)$ and $\text{net}(\cdot, \cdot, \phi^*)$, train γ^* as described in Section 5.2.
- 399 3: Let $s_i = iT/K$ denote a *uniform grid*. Let $t_i = r(s_i, \gamma^*)$ for $i = 0 \dots K$. Let $\hat{t}_i = r((s_{i-1} +$
 400 $s_i)/2, \gamma^*)$.
- 401 4: To generate samples, implement (17), with t_i and \hat{t}_i from step 3 above.

404 6 EXPERIMENTAL EVALUATION

406 We evaluate our anisotropic diffusion schedules on three standard image generation benchmarks:
 407 CIFAR-10 (32×32) (Krizhevsky et al., 2009), AFHQv2 (64×64) (Choi et al., 2020), and FFHQ
 408 (64×64) (Karras et al., 2019). All experiments are compared against the EDM baseline (Karras et al.,
 409 2022), using the official generation code and their best-reported settings. Our models are finetuned
 410 from the corresponding EDM networks, consuming the equivalent of 1.2M image passes over the
 411 course of training. For evaluation, we generate 50k samples and compute the Fréchet Inception
 412 Distance (FID \downarrow). Results are reported across a range of function evaluations (NFE), following the
 413 same experimental settings as Karras et al. (2022). No additional hyperparameters are tuned.

414 **Algorithm details.** (1) EDM is EDM baseline. (2) g^{iso} parameterizes an isotropic noise schedule
 415 (M_t with $J = 1$ in (9)). (θ, ϕ) is trained on $L(\theta, \phi)$ and generation uses (17), with uniform grid
 416 t_k and $\hat{t}_k = (t_{k-1} + t_k)/2$. (g_1^{ani}, g_2^{ani}) parameterize M_t with $J = 2$ in (9); the training/infer-
 417 ence procedure is identical to g^{iso} . g_w^{iso} (resp $(g_{1,w}^{ani}, g_{2,w}^{ani})$) is generated using Algorithm 1, and
 418 parameterizes M_t with $J = 1$ (resp $J = 2$). For the $J = 2$ setups, we choose V_1 to contain the
 419 $H^2/4$ lowest-frequency DCT bases, and V_2 to contain the remainder bases, where H is the image
 420 resolution (e.g., $H = 64$ for 64×64). g_1 and g_2 are their respective schedules.

421 **Comparable overall performance.** Across datasets, our learned schedules achieve performance
 422 broadly comparable to EDM. As shown in Table 1, the reported FIDs remain close to those of the
 423 baseline over a wide range of NFE. The only noticeable deviation occurs on CIFAR-10 at large NFE,
 424 where performance is slightly worse, but the gap is minor relative to the overall trend.

425 **Significant gains at low NFE.** Our methods show consistent advantages over EDM in the low-
 426 NFE regime, often by a large margin (Table 1). On CIFAR-10, (g_1^{ani}, g_2^{ani}) achieves FID=2.93 at
 427 NFE=13. On AFHQv2, $(g_{1,w}^{ani}, g_{2,w}^{ani})$ achieves FID=2.42 at NFE=19. On FFHQ, the same variant
 428 reaches FID=3.37 at NFE=13.

429 **Strong improvements on FFHQ.** The largest gains are observed on FFHQ, a more complex
 430 human-face dataset. Across all NFE values, learned schedules outperform EDM. At smaller NFE
 431 (e.g., 9–13 steps), the improvements are dramatic: at NFE=9, our method achieves FID=6.02 com-
 432 pared to 57.14 for EDM; at NFE=11, 4.25 vs 29.39; and at NFE=13, 3.37 vs 15.81.

CIFAR-10									
Method	nfe 9	nfe 11	nfe 13	nfe 15	nfe 17	nfe 35	nfe 59	nfe 79	Best FID
EDM	35.52	14.37	6.694	4.231	3.027	1.829	1.868	1.890	1.829
g^{iso}	49.06	31.17	19.53	13.03	9.082	2.134	1.928	1.946	1.928
g_w^{iso}	5.133	14.05	6.898	2.633	2.585	2.003	1.955	1.949	1.949
(g_1^{ani}, g_2^{ani})	5.849	3.567	2.927	2.638	2.469	2.128	2.091	2.054	2.054
$(g_{1,w}^{ani}, g_{2,w}^{ani})$	4.672	6.060	5.689	2.759	2.536	2.078	2.082	2.039	2.039
AFHQv2									
Method	nfe 9	nfe 11	nfe 13	nfe 15	nfe 19	nfe 39	nfe 79	nfe 119	Best FID
EDM	27.98	13.66	7.587	4.746	2.986	2.075	2.042	2.046	2.042
g^{iso}	35.38	15.20	10.33	8.287	5.684	2.332	2.103	2.068	2.068
g_w^{iso}	4.745	3.766	2.920	2.564	2.495	2.123	2.088	2.067	2.067
(g_1^{ani}, g_2^{ani})	22.20	11.67	8.498	6.755	4.406	2.167	2.039	2.023	2.023
$(g_{1,w}^{ani}, g_{2,w}^{ani})$	4.697	3.590	2.859	2.445	2.416	2.061	2.036	2.023	2.023
FFHQ									
Method	nfe 9	nfe 11	nfe 13	nfe 15	nfe 19	nfe 39	nfe 79	nfe 119	Best FID
EDM	57.14	29.39	15.81	9.769	5.169	2.575	2.391	2.374	2.374
g^{iso}	68.35	27.92	13.44	8.097	3.958	2.265	2.242	2.281	2.242
g_w^{iso}	6.679	4.290	3.872	3.472	3.033	2.365	2.281	2.292	2.281
(g_1^{ani}, g_2^{ani})	45.43	17.21	8.263	5.129	3.001	2.327	2.313	2.354	2.313
$(g_{1,w}^{ani}, g_{2,w}^{ani})$	6.016	4.253	3.365	3.119	2.829	2.359	2.309	2.348	2.309

Table 1: FID \downarrow vs. NFE across datasets (50k samples). For each method, we perform 3 independent random generations of 50k images and report the minimum FID across the three runs. *Bold* = per-NFE best. *Blue* = Best FID lower than EDM.

Figure 2: Learned schedules for isotropic and anisotropic cases.

Figure 3: $\log(g_1^{ani}(t)/g_2^{ani}(t))$ and $\log(g_{1,w}^{ani}(t)/g_{2,w}^{ani}(t))$.

486 REPRODUCIBILITY STATEMENT
487488 The code used to run all experiments is linked in the abstract. We provide detailed descriptions of
489 datasets, architectures, training settings, and evaluation protocols. Every theorem or lemma stated
490 or referenced in the main text is accompanied by a complete proof, either in the main body or in the
491 Appendix.492
493 ETHICS STATEMENT
494495 We rely exclusively on publicly available datasets (CIFAR-10, AFHQv2, FFHQ), which are widely
496 used in the machine learning community and distributed for research purposes. Our work is method-
497 ological in nature, with experiments confined to standard benchmarks. We do not anticipate any
498 significant ethical risks arising from this study.499
500 REFERENCES
501502 Uri M Ascher and Linda R Petzold. *Computer methods for ordinary differential equations and*
503 *differential-algebraic equations*. SIAM, 1998.504 Pascal Chang, Jingwei Tang, Markus Gross, and Vinicius C Azevedo. How i warped your noise: a
505 temporally-correlated noise prior for diffusion models. *arXiv preprint arXiv:2504.03072*, 2025.506 Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru R Zhang. Sampling is as easy
507 as learning the score: theory for diffusion models with minimal data assumptions. *arXiv preprint*
508 *arXiv:2209.11215*, 2022.509
510 Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image synthesis
511 for multiple domains. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
512 *recognition*, pp. 8188–8197, 2020.513
514 Songwei Ge, Seungjun Nah, Guilin Liu, Tyler Poon, Andrew Tao, Bryan Catanzaro, David Jacobs,
515 Jia-Bin Huang, Ming-Yu Liu, and Yogesh Balaji. Preserve your own correlation: A noise prior for
516 video diffusion models. In *Proceedings of the IEEE/CVF International Conference on Computer*
517 *Vision*, pp. 22930–22941, 2023.518
519 Tiankai Hang, Shuyang Gu, Xin Geng, and Baining Guo. Improved noise schedule for diffusion
520 training. *arXiv preprint arXiv:2407.03297*, 2024.521
522 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
523 *neural information processing systems*, 33:6840–6851, 2020.524
525 Xingchang Huang, Corentin Salaun, Cristina Vasconcelos, Christian Theobalt, Cengiz Oztireli, and
526 Gurprit Singh. Blue noise for diffusion models. In *ACM SIGGRAPH 2024 conference papers*,
527 pp. 1–11, 2024.528
529 Bowen Jing, Gabriele Corso, Renato Berlinghieri, and Tommi Jaakkola. Subspace diffusion gener-
530 ative models. In *European conference on computer vision*, pp. 274–289. Springer, 2022.531
532 Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
533 adversarial networks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
534 *recognition*, pp. 4401–4410, 2019.535
536 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
537 based generative models. *Advances in neural information processing systems*, 35:26565–26577,
538 2022.539
540 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
541 2009.542
543 Enshu Liu, Xuefei Ning, Zinan Lin, Huazhong Yang, and Yu Wang. Oms-dpm: Optimizing the
544 model schedule for diffusion probabilistic models. In *International Conference on Machine*
545 *Learning*, pp. 21915–21936. PMLR, 2023.

540 Zhengxiong Luo, Dayou Chen, Yingya Zhang, Yan Huang, Liang Wang, Yujun Shen, Deli Zhao,
 541 Jingren Zhou, and Tieniu Tan. Videofusion: Decomposed diffusion models for high-quality video
 542 generation. *arXiv preprint arXiv:2303.08320*, 2023.

543 Shuntaro Okada, Ryota Yoshihashi, Hirokatsu Kataoka, Tomohiro Tanaka, et al. Constant rate
 544 scheduling: Constant-rate distributional change for efficient training and sampling in diffusion
 545 models. *arXiv preprint arXiv:2411.12188*, 2024.

546 Yong-Hyun Park, Chieh-Hsin Lai, Satoshi Hayakawa, Yuhta Takida, and Yuki Mitsufuji. Jump your
 547 steps: Optimizing sampling schedule of discrete diffusion models. In *The Thirteenth International
 548 Conference on Learning Representations*, 2024.

549 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 550 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 551 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

552 Daniel Ruderman and William Bialek. Statistics of natural images: Scaling in the woods. *Advances
 553 in neural information processing systems*, 6, 1993.

554 Amirmojtaba Sabour, Sanja Fidler, and Karsten Kreis. Align your steps: Optimizing sampling
 555 schedules in diffusion models. *arXiv preprint arXiv:2404.14507*, 2024.

556 Subham Sahoo, Aaron Gokaslan, Christopher M De Sa, and Volodymyr Kuleshov. Diffusion models
 557 with learned adaptive noise. *Advances in Neural Information Processing Systems*, 37:105730–
 558 105779, 2024.

559 Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 560 Poole. Score-based generative modeling through stochastic differential equations. In *Inter-
 561 national Conference on Learning Representations (ICLR)*, 2021. URL <https://openreview.net/forum?id=PxTIG12RRHS>.

562 Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
 563 Scalable image generation via next-scale prediction. *Advances in neural information processing
 564 systems*, 37:84839–84865, 2024.

565 Jente Vandersanden, Sascha Holl, Xingchang Huang, and Gurprit Singh. Edge-preserving noise for
 566 diffusion models. 2024.

567 Yunke Wang, Xiyu Wang, Anh-Dung Dinh, Bo Du, and Charles Xu. Learning to schedule in diffu-
 568 sion probabilistic models. In *Proceedings of the 29th ACM SIGKDD Conference on Knowledge
 569 Discovery and Data Mining*, pp. 2478–2488, 2023.

570 Christopher Williams, Andrew Campbell, Arnaud Doucet, and Saifuddin Syed. Score-optimal diffu-
 571 sion schedules. *Advances in Neural Information Processing Systems*, 37:107960–107983, 2024.

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594 **A 2D-DCT TRANSFORM**
595596 Let H be the image side length and $d = H^2$. The two-dimensional DCT (type-II) basis over $\mathbb{R}^{H \times H}$
597 is defined as follows. For each pair $(p, q) \in \{0, \dots, H-1\}^2$, the basis is
598

599
$$\Phi_{p,q}(x, y) = \gamma_p \gamma_q \cos\left(\frac{(2x+1)p\pi}{2H}\right) \cos\left(\frac{(2y+1)q\pi}{2H}\right), \quad x, y = 0, \dots, H-1,$$

600 with normalization factors
601

602
$$\gamma_p = \begin{cases} H^{-1/2}, & p = 0, \\ \sqrt{2} H^{-1/2}, & p > 0, \end{cases} \quad \gamma_q = \begin{cases} H^{-1/2}, & q = 0, \\ \sqrt{2} H^{-1/2}, & q > 0. \end{cases}$$

603

604 Vectorizing each $\Phi_{p,q}$ into \mathbb{R}^d and enumerating them yields the orthonormal basis $\{v_1, \dots, v_{H^2}\}$,
605 which are the 2D-DCT basis of \mathbb{R}^d . Please refer to Figure 4 for example 2D-DCT bases.
606607 Figure 4: The first nine 2D-DCT bases ordered by increasing frequency.
608
609
610
611612 **B PROOFS**
613614 **Lemma 4.** Let $\ell_t(\phi)$ be as defined in (5). Then $\ell_t(\phi)$ is minimized if $\text{net}(x, t; \phi) = \nabla \log p_t(x; \theta)$.
615616 *Proof of Lemma 4.* To see this, let $V : \mathbb{R}^d \rightarrow \mathbb{R}^d$ be an arbitrary vector field. With abuse of notation,
617 define
618

619
$$\ell_t(V) := \mathbb{E}_{x_0, \epsilon} \left[\|V(x_t) - M_t^{-1}(\theta)(x_0 - x_t)\|_2^2 \right].$$

620

621 Observe that ℓ_t above can be minimized pointwise at each x_t . By law of iterated expectation,
622
$$\mathbb{E}_{x_0, \epsilon} \left[\|V(x_t) - M_t^{-1}(x_0 - x_t)\|_2^2 \right] = \mathbb{E}_{x_t} \left[\mathbb{E}_{x_0, \epsilon|x_t} \left[\|V(x_t) - M_t^{-1}(x_0 - x_t)\|_2^2 \right] \right].$$
 Further ob-
623 serve that
624

625
$$\arg \min_{v \in \mathbb{R}^d} \mathbb{E}_{x_0, \epsilon|x_t} \left[\|v - M_t^{-1}(\theta)(x_0 - x_t)\|_2^2 \right] = M_t^{-1}(\theta) \mathbb{E}_{x_0, \epsilon|x_t} [x_0 - x_t] = \nabla \log p_t(x; \theta).$$

626

627 The last equality follows from (3). □
628629 *Proof of Lemma 1.* We simplify the term inside the Euclidean norm in (11):
630

631
$$\bar{v}(x_t, t; \theta, \phi) - \tilde{v}(x_t, x_0, t; \theta) = (I + M_t(\theta))^{-1/2} \partial_t M_t(\theta) (M_t^{-1}(\theta)(x_0 - x_t) - \text{net}(x_t, t, \phi)).$$

632

633 Let M_{all} denote $(I + M_t(\theta))^{-1/2} \partial_t M_t(\theta)$.
634635 Following Lemma 4, let $V : \mathbb{R}^d \rightarrow \mathbb{R}^d$ be an arbitrary vector field.
636637 We can minimize the expectation pointwise at each x_t . We can rewrite the expectation
638

639
$$\mathbb{E}_{x_0, \epsilon} \left[\|M_{\text{all}}(\text{net}(x_t, t, \phi) - M_t^{-1}(\theta)(x_0 - x_t))\|_2^2 \right]$$

640 as
641

642
$$\mathbb{E}_{x_0, \epsilon} \left[\|M_{\text{all}}(V(x_t) - M_t^{-1}(\theta)(x_0 - x_t))\|_2^2 \right] = \mathbb{E}_{x_t} \left[\mathbb{E}_{x_0, \epsilon|x_t} \left[\|M_{\text{all}}(V(x_t) - M_t^{-1}(\theta)(x_0 - x_t))\|_2^2 \right] \right]$$

643

644 by the law of iterated expectation.
645

646
$$\begin{aligned} \arg \min_{v \in \mathbb{R}^d} \mathbb{E}_{x_0, \epsilon|x_t} \left[(v - M_t^{-1}(\theta)(x_0 - x_t))^{\top} M_{\text{all}}(v - M_t^{-1}(\theta)(x_0 - x_t)) \right] \\ = M_t^{-1}(\theta) \mathbb{E}_{x_0, \epsilon|x_t} [x_0 - x_t] = \nabla \log p_t(x; \theta). \end{aligned}$$

647

648 The above equality follows from (3). The penultimate equality follows from the fact that
649 $\arg \min_{a \in \mathbb{R}^d} (b - a)^{\top} Q(b - a) = b$ for any PSD matrix Q . Note that $\partial_t M_t = A_t^2$ is PSD, and
650 M_t being the covariance in the diffusion process is also PSD. Hence, M_{all} is PSD. □
651

648 *Proof of Lemma 2.* Let $w : [0, T] \rightarrow (0, \infty)$ be measurable and define
 649

$$650 \quad 651 \quad \Phi(x) := \int_0^x \frac{ds}{(1+s)w(s)} < \infty.$$

652 Then, to prove this Lemma, it is sufficient to show there exist a $c = \frac{\Phi(T)}{T} > 0$ and a strictly
 653 increasing continuous function $g : [0, T] \rightarrow [0, T]$ with $g(0) = 0$, $g(T) = T$ such that
 654

$$655 \quad 656 \quad \frac{g'(g^{-1}(t))}{1+t} = c w(t) \text{ for all } t.$$

658 where $c = \Phi(T)/T$.
 659

660 Define g implicitly by $\Phi(g(t)) = ct$ for $(0 \leq t \leq T)$, i.e. $g(t) = \Phi^{-1}(ct)$. Differentiating
 661 $\Phi(g(t)) = ct$ with respect to t yields the separable ODE $g'(t) = (1+g(t))c w(g(t))$, and with
 662 $r = g(t)$ this is $\frac{g'(g^{-1}(r))}{1+r} = c w(r)$. Hence, we derive an expression for g involving a constant c
 663 and any w . Monotonicity of $g(t)$ follows since $w > 0$ and $c > 0$ imply $g'(t) > 0$.
 664

665 Substituting into $c \int_0^T w(t)H(t)dt$, we get

$$666 \quad 667 \quad c \int_0^T w(r)H(r)dr = \int_0^T \frac{g'(t)}{1+g(t)} H(g(t))g'(t)dt.$$

668 \square

671 *Proof of Lemma 3.* To simplify notation, we will drop the index i and treat θ as a scalar. The general
 672 proof for $\theta \in \mathbb{R}^c$ follows by repeating the proof for each θ_i , while holding all other θ'_j 's fixed.
 673

$$674 \quad \begin{aligned} 675 \quad \partial_\theta p_t(x; \theta) &= \frac{1}{2} \mathbf{div}(p_t(x; \theta) \partial_\theta M_t(\theta) \nabla \log p_t(x; \theta)) \\ 676 \quad &= \frac{1}{2} p_t(x; \theta) (\mathbf{div}(\partial_\theta M_t(\theta) \nabla \log p_t(x; \theta)) + \langle \nabla \log p_t(x; \theta), \partial_\theta M_t(\theta) \nabla \log p_t(x; \theta) \rangle). \end{aligned}$$

679 Dividing both sides by $p_t(x; \theta)$ gives
 680

$$681 \quad \begin{aligned} 682 \quad \partial_\theta \log p_t(x; \theta) &= \frac{1}{2} (\mathbf{div}(\partial_\theta M_t(\theta) \nabla \log p_t(x; \theta)) + \langle \nabla \log p_t(x; \theta), \partial_\theta M_t(\theta) \nabla \log p_t(x; \theta) \rangle) \\ 683 \quad &= \frac{1}{2} \sum_i \langle \partial_\theta M_t(\theta) e_i, \nabla^2 \log p_t(x; \theta) e_i \rangle + \frac{1}{2} \langle \nabla \log p_t(x; \theta), \partial_\theta M_t(\theta) \nabla \log p_t(x; \theta) \rangle \\ 684 \quad &= \frac{1}{2} \sum_i \langle \partial_\theta M_t(\theta) e_i, \partial_c \nabla \log p_t(x + ce_i; \theta) \rangle + \frac{1}{2} \langle \nabla \log p_t(x; \theta), \partial_\theta M_t(\theta) \nabla \log p_t(x; \theta) \rangle. \end{aligned}$$

688 Taking a derivative wrt x gives
 689

$$690 \quad \begin{aligned} 691 \quad \partial_\theta \nabla \log p_t(x; \theta) &= \frac{1}{2} \sum_i \langle \partial_\theta M_t(\theta) e_i, \partial_c \nabla^2 \log p_t(x + ce_i; \theta) \rangle + \langle \partial_\theta M_t(\theta) \nabla \log p_t(x; \theta), \nabla^2 \log p_t(x; \theta) \rangle \\ 692 \quad &= \frac{1}{2} \sum_i \partial_r \partial_s \nabla \log p_t(x + re_i + s \partial_\theta M_t(\theta) e_i; \theta) + \partial_s \nabla \log p_t(x + s \partial_\theta M_t(\theta) \nabla \log p_t(x; \theta); \theta). \end{aligned}$$

695 \square

697 Lemma 5.

$$698 \quad \begin{aligned} 699 \quad \partial_\theta \text{flow}(x, t, \phi) &= \frac{1}{2} \sum_{i=1}^d \partial_r \partial_s \text{flow}(x + re_i + s \partial_\theta M_t(\theta) e_i, t, \phi) \\ 700 \quad &+ \partial_s \text{flow}(x + s M_\theta^{1/2} \partial_\theta M_t(\theta) \text{flow}(x, t, \phi), t, \phi) + \frac{1}{2} M_t^{-1}(\theta) (\partial_\theta M_t(\theta)) \text{flow}(x, t, \phi). \end{aligned}$$

702 *Proof of Lemma 5.* Recall that

$$703 \quad \text{flow}(x; \theta) = M_\theta^{1/2} \text{net}(x; \theta) = M_\theta^{1/2} \nabla \log p_t(x; \theta).$$

704 We verify that

$$\begin{aligned} 705 \quad \partial_\theta \text{flow}(x; \theta) &= M_\theta^{1/2} \partial_\theta \text{net}(x; \theta) + \frac{1}{2} M_\theta^{-1/2} (\partial_\theta M_\theta) \text{net}(x; \theta) \\ 706 \quad &= \frac{1}{2} \sum_i M_\theta^{1/2} \partial_r \partial_s \text{net}(x + re_i + s \partial_\theta M_t(\theta) e_i; \theta) + M_\theta^{1/2} \partial_s \text{net}(x + s \partial_\theta M_t(\theta) \text{net}(x; \theta); \theta) \\ 707 \quad &\quad + \frac{1}{2} M_\theta^{-1/2} (\partial_\theta M_\theta) \text{net}(x; \theta) \\ 708 \quad &= \frac{1}{2} \sum_i \partial_r \partial_s \text{flow}(x + re_i + s \partial_\theta M_t(\theta) e_i; \theta) + \partial_s \text{flow}(x + s M_\theta^{-1/2} \partial_\theta M_t(\theta) \text{flow}(x; \theta); \theta) \\ 709 \quad &\quad + \frac{1}{2} M_\theta^{-1} (\partial_\theta M_\theta) \text{flow}(x; \theta). \\ 710 \quad & \end{aligned}$$

□

711 **Lemma 6.** Let \tilde{u} be as defined in Section 5.1. Then

$$\begin{aligned} 712 \quad \int_t^{t'} \tilde{u}(\bar{t}; x, \hat{x}, t, \hat{t}) d\bar{t} &= (M_{t_{k-1}}^{1/2} - M_{t_k}^{1/2}) (\text{flow}(\tilde{x}_{t_k}, t_k)) \\ 713 \quad &\quad - \frac{1}{2} (M_{t_{k-1}}^{1/2} - M_{t_k}^{1/2})^2 (M_{\hat{t}_k}^{1/2} - M_{t_k}^{1/2})^{-1} (\text{flow}(\hat{x}_{\hat{t}_k}, \hat{t}_k) - \text{flow}(\tilde{x}_{t_k}, t_k)). \\ 714 \quad & \end{aligned}$$

715 *Proof.* It suffices to verify that

$$\begin{aligned} 716 \quad &\int_t^{t'} (\partial_t M_{\bar{t}}^{1/2}) (M_{\bar{t}}^{1/2} - M_t^{1/2}) d\bar{t} \\ 717 \quad &= \int_t^{t'} \frac{1}{2} \partial_t M_{\bar{t}} - (\partial_t M_{\bar{t}}^{1/2}) M_{\bar{t}}^{1/2} dt \\ 718 \quad &= \frac{1}{2} (M_{t'} - M_t) - \left(M_{t'}^{1/2} M_t^{1/2} - M_t^{1/2} M_{t'}^{1/2} \right) \\ 719 \quad &= \frac{1}{2} (M_{t'}^{1/2} - M_t^{1/2})^2. \\ 720 \quad & \end{aligned}$$

721 This concludes the proof. □

722 **Lemma 7.** If x_t evolves as the following (1. and 2. are equivalent):

$$723 \quad (1.) (x_t - x_0) \sim \mathcal{N}(0, M_t(\theta)), \quad (2.) dx_t = -\frac{1}{2} \partial_t M_t(\theta) \nabla \log p_t(x_t; \theta) dt,$$

724 where $p_t(x; \theta) := p_0 * \mathcal{N}(0, M_t(\theta))$, then the score above is the conditional expectation

$$725 \quad \nabla \log p_t(x; \theta) = M_t^{-1}(\theta) \mathbb{E}_{x_0|x_t=x} [x_0 - x_t],$$

726 where (x_0, x_t) are defined by the joint distribution $x_0 \sim p_0$ and $x_t = x_0 + \mathcal{N}(0, M_t)$.

727 *Proof of Lemma 7.* The expression for p_t is given by

$$728 \quad p_t(x) = \int p_0(x_0) \frac{|M_t|^{-0.5}}{\sqrt{2\pi}} \exp(-0.5(x_0 - x)^\top M_t^{-1}(x_0 - x)) dx_0 = \int p_0(x_0) p_t(x|x_0) dx_0.$$

729 Taking the derivative of $\log p_t(x)$ with respect to x

$$\begin{aligned} 730 \quad \nabla_x \log p_t(x) &= \frac{1}{p_t(x)} \nabla_x p_t(x) \\ 731 \quad &= \frac{M_t^{-1}}{p_t(x)} \int p_0(x_0) \frac{|M_t|^{-0.5}}{\sqrt{2\pi}} \exp(-0.5(x_0 - x)^\top M_t^{-1}(x_0 - x)) (x_0 - x) dx_0 \\ 732 \quad &= M_t^{-1} \mathbb{E}_{x_0|x_t=x} [x_0 - x_t]. \\ 733 \quad & \end{aligned}$$

□

756 C IMPLEMENTATION DETAILS OF g_i
757758 For a fixed set of node locations $0 = \tau_0 < \tau_1 < \dots < \tau_{K-1} = T$, the subspace noise schedule
759 is defined in log-space between the smallest and largest variance values $g(0) = g_0$ and $g(T) = T$.
760 The trainable parameters $\theta = (\theta_1, \dots, \theta_{K-1})$ define a collection of strictly positive increments
761

762
$$s_i = \text{softplus}(\theta_i), \quad i = 1, \dots, K-1,$$

763 These increments are then rescaled by α so that their sum exactly matches the total log-gap between
764 the endpoints,

765
$$\alpha = \frac{\log T - \log g_0}{\sum_{i=1}^{K-1} s_i}.$$

766

767 The log-values at the nodes are constructed by cumulative summation,

768
$$\ell_0 = \log g_0, \quad \ell_j = \ell_0 + \sum_{i=1}^j \alpha s_i, \quad j = 1, \dots, K-1,$$

769

770 so that $\ell_{K-1} = \log T$.
771772 Given a time $t \in [0, T]$, one locates the enclosing interval $[\tau_{j-1}, \tau_j]$ and computes the normalized
773 position

774
$$p(t) = \frac{t - \tau_{j-1}}{\tau_j - \tau_{j-1}}.$$

775

776 The value of $g(t)$ is then obtained by linearly interpolating between successive log-nodes and expo-
777 nentiating:

778
$$\log g(t) = (1 - p(t)) \ell_{j-1} + p(t) \ell_j, \quad g(t) = \exp(\log g(t)).$$

779

780 Within each interval the derivative takes the simple form
781

782
$$g'(t) = g(t) \frac{\ell_j - \ell_{j-1}}{\tau_j - \tau_{j-1}}.$$

783

784 D REDUCING BIAS IN LEARNING $r(t; \gamma)$
785786 Let r be short for $r(t; \gamma)$. We defined in (19) that
787

788
$$\begin{aligned} \tilde{L}(\gamma) &= \int_0^T \mathbb{E}_{x_0, \epsilon} \left[\|\bar{v}(x_r, r; \theta, \phi) - \tilde{v}(x_r, x_0, r; \theta)\|_2^2 \right] dt \\ 789 &= \int_0^T \mathbb{E}_{x_0, \epsilon} \left[\left\| (I + M_r)^{-1/2} \partial_t M_r (M_r^{-1}(x_0 - x_r) - \text{net}(x_r, t)) \right\|_2^2 \right] \\ 790 &= \int_0^T \mathbb{E}_{x_0, \epsilon} \left[\underbrace{(x_0 - x_r)^\top M_r^{-1} A_r M_r^{-1} (x_0 - x_r)}_{(*)} - 2(x_0 - x_r)^\top M_r^{-1} A_r \text{net}(x_r, t) + \text{net}(x_r, t)^\top A_r \text{net}(x_r, t) \right], \end{aligned}$$

791

792 where we define $A_r := \partial_t M_r (I + M_r)^{-1} \partial_t M_r$. The purpose of L is to capture the *score-matching*
793 loss, as described in Section 3. However, recall that the *true* score-matching loss is really
794

795
$$\begin{aligned} 796 &\int_0^T \mathbb{E}_{x_r} \left[\|v(x_r, r; \theta) - \bar{v}(x, t, \phi)\|_2^2 \right] dt \\ 797 &= \int_0^T \mathbb{E}_{x_0, \epsilon} \left[\nabla \log p_r(x_r)^\top M_r^{-1} A_r M_r^{-1} \nabla \log p_r(x_r) - 2 \nabla \log p_r(x_r)^\top M_r^{-1} A_r \text{net}(x_r, t) + \text{net}(x_r, t)^\top A_r \text{net}(x_r, t) \right]. \end{aligned}$$

798

799 Contrasting the above with \tilde{L} , we see that \tilde{L} additionally includes the variance of $M_{r(t; \gamma)}^{-1}(x_0 -$
800 $x_r)$ due to $(*)$. For the purpose of optimizing γ , this additional variance introduces a non-trivial
801 bias to the score-matching loss at time t .

To reduce this bias, we can instead approximate $\mathbb{E}_{x_0, \epsilon} [\nabla \log p_r(x_r)^\top M_r^{-1} A_r M_r^{-1} \nabla \log p_r(x_r)]$ by $\mathbb{E}_{x_0, \epsilon} [\text{net}(x_r, r)^\top M_r^{-1} A_r M_r^{-1} \text{net}(x_r, r)]$. This is based on the assumption that, even when net is not a good approximation of $\nabla \log p$, $\|\text{net}\|_2$ should be a reasonably good approximation of $\|\nabla \log p\|_2$.

Consequently, we replace $\bar{L}(\gamma)$ by

$$\hat{L}(\gamma) := \int_0^T \mathbb{E}_{x_0, \epsilon} [-2(x_0 - x_r)^\top M_r^{-1} A_r \text{net}(x_r, t) + 2\text{net}(x_r, t)^\top A_r \text{net}(x_r, t)]. \quad (20)$$

Note that although the first term of \hat{L} also involves $(x_0 - x_r)$, there is no bias in expectation.

E BOUNDING THE ESTIMATOR VARIANCE

E.1 THEORY

Let ϵ denote a random variable satisfying $\mathbb{E}[\epsilon] = 0$, $\mathbb{E}[\epsilon \epsilon^\top] = I_{d \times d}$. Let $v(x, t, \phi)$ denote the exact time derivative:

$$\begin{aligned} v(x, t, \phi) &:= \frac{1}{2} \sum_{i=1}^d \partial_r \partial_s \text{f1ow}(x + re_i + s\partial_\theta M_t(\theta)e_i, t, \phi) \\ &\quad + \partial_s \text{f1ow}(x + s\partial_\theta M_t^{1/2}(\theta) \text{f1ow}(x, t, \phi), t, \phi) + \frac{1}{2} M_t^{-1}(\theta)(\partial_\theta M_t(\theta)) \text{f1ow}(x, t, \phi), \end{aligned}$$

where $\log(M_t(\theta))$ is matrix logarithm. Let $\hat{v}(x, t, \phi)$ denote the Hutchinson Estimator of v , defined as

$$\begin{aligned} \hat{v}(x, t, \phi) &:= \frac{d}{2} \partial_r \partial_s \text{f1ow}(x + r\epsilon + s\partial_\theta M_t(\theta)\epsilon, t, \phi) \\ &\quad + \partial_s \text{f1ow}(x + s\partial_\theta M_t^{1/2}(\theta) \text{f1ow}(x, t, \phi), t, \phi) + \frac{1}{2} M_t^{-1}(\theta)(\partial_\theta M_t(\theta)) \text{f1ow}(x, t, \phi), \end{aligned}$$

where $\epsilon \sim \mathcal{N}(0, I)$.

Lemma 8. Assume curvature bound $\|\nabla^2 \text{f1ow}(x, t, \phi)\|_2 \leq C$. Then for all x, t, ϕ ,

1. $\mathbb{E}[\hat{v}(x, t, \phi)] = v(x, t, \phi)$.
2. $\mathbb{E}[\|\hat{v}(x, t, \phi) - v(x, t, \phi)\|_2] \leq 2Cd$

Proof. Recall that $\nabla^2 \text{f1ow}(x, t, \phi)$ is the second-derivative tensor. Then

$$\begin{aligned} &\mathbb{E}[\partial_r \partial_s \text{f1ow}(x + r\epsilon + s\partial_\theta M_t(\theta)\epsilon, t, \phi)] \\ &= \mathbb{E}[\epsilon^\top \nabla^2 \text{f1ow}(x, t, \phi) \epsilon] \\ &= \sum_{i,j} [\nabla^2 \text{f1ow}(x, t, \phi)]_{ij} \mathbb{E}[\epsilon_i \epsilon_j] \\ &= \sum_{i,j} [\nabla^2 \text{f1ow}(x, t, \phi)]_{ij} \mathbb{1}\{i = j\} \\ &= \sum_i [\nabla^2 \text{f1ow}(x, t, \phi)]_{ii} \\ &= \sum_i e_i^\top \nabla^2 \text{f1ow}(x, t, \phi) e_i \\ &= \frac{1}{2} \sum_{i=1}^d \partial_r \partial_s \text{f1ow}(x + re_i + s\partial_\theta M_t(\theta)e_i, t, \phi). \end{aligned}$$

This proves the first equality.

864 To prove the second inequality,
 865

$$\begin{aligned}
 & \mathbb{E} [\|\hat{v}(x, t, \phi) - v(x, t, \phi)\|_2] \\
 & \leq \mathbb{E} [\|\hat{v}(x, t, \phi)\|_2] + \mathbb{E} [\|\hat{v}(x, t, \phi) - v(x, t, \phi)\|_2] \\
 & \leq \mathbb{E} [\|\hat{v}(x, t, \phi)\|_2] + \sum_{i=1}^d \sup_{\|u\|_2 \leq 1} \|u^\top \nabla^2 \text{flow}(x, t, \phi) u\|_2 \\
 & \leq \mathbb{E} [\|\hat{v}(x, t, \phi)\|_2] + Cd \\
 & = \mathbb{E} [\epsilon^\top \nabla^2 \text{flow}(x, t, \phi) \epsilon] + Cd \\
 & \leq \mathbb{E} [\|\epsilon\|_2^2] \sup_{\|u\|_2 \leq 1} \|u^\top \nabla^2 \text{flow}(x, t, \phi) u\|_2 + Cd \\
 & \leq 2Cd
 \end{aligned}$$

877 where the first inequality is by triangle inequality, the second inequality is by $\|e_i\|_2 = 1$, the third
 878 inequality is by our assumption, the fifth line is by linearity, and the last line is by variance of
 879 standard Gaussian. This concludes the proof. \square
 880

881 E.2 EMPIRICAL VARIANCE BOUND

883 In the following, we evaluate the variance of estimating $\partial_\theta \text{flow}(x, t, \phi)$ using the Hutchinson Estimator.
 884 To be precise, let s denote the dimension of θ . In our experiment $g(t; \theta)$ is parameterized by
 885 its log-values at 32 nodes, so $s = 32$. Let $\nabla \in \mathbb{R}^s$ denote the true derivative of $L(\theta, \phi)$ wrt θ , and
 886 let $\tilde{\nabla} \in \mathbb{R}^s$ denote the stochastic estimate using the Hutchinson Estimator. We define the *relative
 887 gradient error* as

$$\delta(x, t, \phi) = \left\| \frac{\nabla}{\|\nabla\|_2} - \frac{\tilde{\nabla}}{\|\tilde{\nabla}\|_2} \right\|_2.$$

891 With only $g_t(\theta)$, we can compute the ground truth ∇ exactly by back-propagating through the net-
 892 work’s time embedding. In the following table, we show the error $\delta(t) := \mathbb{E}_x [\delta(x, t, \phi)]$, where
 893 t is fixed and x is sampled randomly 50 times. For each sample, we draw $\epsilon \sim \mathcal{N}(0, I)$ for the
 894 Hutchinson estimator.
 895

897 Table 2: Error in relative stochastic gradient estimate.

t	6.4	1280	2560	3840	5120	6400
$\delta(t)$	0.026	$2.07e^{-7}$	$3.84e^{-7}$	$5.59e^{-7}$	$3.76e^{-7}$	$1.96e^{-7}$

901 F ADDITIONAL EXPERIMENTS

902 F.1 REVISIONS TO THE ORIGINAL EXPERIMENTS

906 For clarity, we updated the presentation of the small-NFE (Table 3) and large-NFE results (Figure 5)
 907 in the main paper. The three separate small-NFE tables for CIFAR-10, AFHQv2, and FFHQ have
 908 been merged into a single unified table (Table 1). In this unified table, we additionally report the
 909 minimum FID across three random seeds for each method. The appendix reports results from a
 910 single representative random seed.
 911

912 All experimental settings for CIFAR-10 and FFHQ remain unchanged. The only minor adjustment
 913 is for AFHQv2, where we used a slightly larger regularization constant c in the flow-matching loss
 914 to improve numerical stability. The motivation and analysis behind this choice are provided in
 915 Section F.3. This modification does not alter conclusions.

916 Overall trends across NFE and the relative performance of all methods remain consistent with the
 917 original submission. All ablation studies reported below were conducted using the original setting,
 918 and thus remain fully comparable to the originally reported results.

918

919

Table 3: FID \downarrow vs. small NFE across datasets (50k samples).

Method	CIFAR-10					AFHQv2					FFHQ				
	9	11	13	15	17	9	11	13	15	19	9	11	13	15	19
EDM	35.55	14.44	6.80	4.32	3.11	27.98	13.66	7.59	4.75	2.99	57.28	29.48	15.98	9.94	5.26
g_w^{iso}	49.29	31.28	19.71	13.34	9.38	35.48	15.20	10.33	8.29	5.68	68.41	27.93	13.44	8.12	4.03
g_w^{iso}	5.19	14.08	6.94	2.63	2.59	4.80	3.85	2.97	2.56	2.50	6.74	4.36	3.94	3.56	3.12
(g_1^{ani}, g_2^{ani})	5.98	3.58	2.93	2.64	2.47	21.63	11.50	8.35	6.68	4.39	45.43	17.24	8.30	5.19	3.05
$(g_{1,w}^{ani}, g_{2,w}^{ani})$	4.69	6.06	5.75	2.77	2.54	4.86	3.54	2.90	2.47	2.38	6.05	4.33	3.45	3.21	2.90

925

926

927

928

Table 4: FID \downarrow of EDM and learned schedules across datasets.

CIFAR-10									
Model	Schedule	nfe 9	nfe 11	nfe 13	nfe 15	nfe 17	nfe 35	nfe 79	
Ours	g_w^{iso}	5.195	14.08	6.941	2.633	2.585	2.003	1.955	1.949
EDM	g_w^{iso}	4.943	12.97	6.434	2.588	2.508	2.018	1.945	1.944
Ours	g_w^{ani} (geom.)	4.687	6.060	5.753	2.769	2.536	2.078	2.082	2.039
EDM	g_w^{ani} (geom.)	5.607	5.911	6.174	3.095	2.699	2.027	1.964	1.956
AFHQv2									
Model	Schedule	nfe 9	nfe 11	nfe 13	nfe 15	nfe 19	nfe 39	nfe 79	nfe 119
Ours	g_w^{iso}	4.803	3.847	2.966	2.564	2.495	2.123	2.088	2.067
EDM	g_w^{iso}	4.715	3.847	3.028	2.613	2.482	2.119	2.103	2.070
Ours	g_w^{ani} (geom.)	4.859	3.542	2.897	2.472	2.376	2.087	2.055	2.035
EDM	g_w^{ani} (geom.)	4.572	3.633	3.060	2.609	2.457	2.120	2.106	2.068
FFHQ									
Model	Schedule	nfe 9	nfe 11	nfe 13	nfe 15	nfe 19	nfe 39	nfe 79	nfe 119
Ours	g_w^{iso}	6.737	4.365	3.935	3.558	3.122	2.418	2.335	2.346
EDM	g_w^{iso}	7.182	4.771	4.042	3.704	3.397	2.629	2.498	2.482
Ours	g_w^{ani} (geom.)	6.052	4.330	3.448	3.213	2.895	2.417	2.369	2.408
EDM	g_w^{ani} (geom.)	6.723	4.945	3.864	3.555	3.225	3.370	3.405	3.653

949

950

Figure 5: FID \downarrow vs. large NFE across datasets (50k samples).

960

F.2 EDM PERFORMANCE UNDER LEARNED SCHEDULES

963

We evaluate how the pretrained EDM model performs when used together with our learned schedules. Specifically, instead of sampling with the original EDM schedule, we replace it with either (1) our learned g_{iso} wrapper or (2) the geometric-mean anisotropic wrapper based on (g_{ani}, h_{ani}) . For each dataset, we report FID v.s. NFEs for: (i) the original EDM sampler, (ii) our model using the learned schedule, and (iii) the pretrained EDM model using the learned schedule.

964

965

966

967

968

969

970

971

As shown in Table 4, the pretrained EDM model exhibits a performance trend under our learned schedules that closely matches the trend observed when the same schedules are used with our model trained jointly with them. This consistency shows that the learned schedules not only benefit our own model but also improve the NFE performance of the pretrained EDM model, indicating that the schedules possess strong generalizability and transfer well across different network architectures.

972
 973 Table 5: FID \downarrow for different values of the flow-matching regularization constant c on FFHQ and
 974 AFHQv2.

AFHQv2									
c	Schedule	nfe 9	nfe 11	nfe 13	nfe 15	nfe 19	nfe 39	nfe 79	nfe 119
0.5	(g_1^{ani}, g_2^{ani})	21.94	11.66	8.574	6.953	4.605	2.325	2.180	2.155
0.5	$(g_{1,w}^{ani}, g_{2,w}^{ani})$	4.890	3.651	2.909	2.512	2.549	2.190	2.177	2.156
1	(g_1^{ani}, g_2^{ani})	21.63	11.50	8.352	6.684	4.387	2.183	2.051	2.032
1	$(g_{1,w}^{ani}, g_{2,w}^{ani})$	4.859	3.542	2.897	2.472	2.376	2.087	2.055	2.035
2	(g_1^{ani}, g_2^{ani})	22.20	11.67	8.498	6.755	4.406	2.167	2.039	2.023
2	$(g_{1,w}^{ani}, g_{2,w}^{ani})$	4.697	3.655	2.888	2.445	2.416	2.061	2.036	2.023

FFHQ									
c	Schedule	nfe 9	nfe 11	nfe 13	nfe 15	nfe 19	nfe 39	nfe 79	nfe 119
0.5	(g_1^{ani}, g_2^{ani})	43.12	16.37	7.963	5.046	3.040	2.388	2.381	2.423
0.5	$(g_{1,w}^{ani}, g_{2,w}^{ani})$	5.862	4.130	3.392	3.183	2.833	2.422	2.370	2.412
1	(g_1^{ani}, g_2^{ani})	45.43	17.24	8.297	5.192	3.052	2.376	2.376	2.414
1	$(g_{1,w}^{ani}, g_{2,w}^{ani})$	6.052	4.330	3.448	3.213	2.895	2.417	2.369	2.408
2	(g_1^{ani}, g_2^{ani})	42.51	16.06	7.788	4.964	3.023	2.400	2.389	2.426
2	$(g_{1,w}^{ani}, g_{2,w}^{ani})$	6.015	4.324	3.494	3.241	2.860	2.450	2.385	2.421

995 F.3 ABLATION ON THE REGULARIZATION CONSTANT c OF FLOW-MATCHING LOSS

996
 997 To understand the role of the regularization constant c in the flow-matching objective, we evaluate
 998 training performance under three values, $c \in \{0.5, 1, 2\}$, on FFHQ and AFHQv2. For each setting,
 999 we report both the raw model performance (g_1^{ani}, g_2^{ani}) and the corresponding performance of
 1000 $(g_{1,w}^{ani}, g_{2,w}^{ani})$ across NFEs (Table 5).

1001 The results show a clear dataset-dependent pattern. For AFHQv2, $c = 2$ achieves the best performance
 1002 consistently across NFEs for both the model and the wrapper. AFHQv2 exhibits substantially
 1003 higher variation and more heterogeneous structures, so a stronger regularization term provides more
 1004 stable gradients and improves training stability at low t . In contrast, FFHQ attains its best overall
 1005 performance with $c = 1$, which offers a moderate level of stabilization while preserving flexibility
 1006 in the learned flow. The $c = 0.5$ setting provides weaker regularization and underperforms on both
 1007 datasets.

1008 F.4 ABLATION OF BASIS CHOICE

1009
 1010 We evaluate the effect of the underlying basis used for anisotropic noise decomposition by training
 1011 the wrapper $(g_{1,w}^{ani}, g_{2,w}^{ani})$ under three commonly used orthonormal bases: DCT, Haar wavelets, and
 1012 PCA (computed from each dataset). All training and sampling settings are kept fixed to enable a
 1013 controlled comparison.

1014 Table 6 reports FID for CIFAR-10, AFHQv2, and FFHQ. For AFHQv2 and FFHQ, PCA performs
 1015 slightly better at very small NFEs (e.g., 9–13), while DCT performs better as NFE increases. For
 1016 CIFAR-10, the behavior is reversed: DCT performs best at small NFEs, whereas PCA becomes
 1017 slightly better at larger NFEs. Haar underperforms across all settings. Although PCA can offer
 1018 marginal improvements in certain low- or high-NFE regimes depending on the dataset, the DCT
 1019 basis remains the most stable and reliable choice.

1020 F.5 ABLATION ON THE NUMBER OF IMAGE PASSES IN TRAINING FOR $(g_{1,w}^{ani}, g_{2,w}^{ani})$

1021
 1022 We study how many image passes are needed to learn the anisotropic schedule $(g_{1,w}^{ani}, g_{2,w}^{ani})$ by
 1023 training it under two settings: one with 100k/500k image passes per epoch and one with 2000k
 1024 image passes per epoch, while keeping all other training configurations fixed. As shown in Table 7,
 1025 the schedule obtained with the significantly smaller number of image passes (100k/500k) achieves

Table 6: FID \downarrow of $(g_{1,w}^{ani}, g_{2,w}^{ani})$ using different bases (DCT, Haar, PCA) across datasets.

CIFAR-10									
Basis	Schedule	nfe 9	nfe 11	nfe 13	nfe 15	nfe 17	nfe 35	nfe 59	nfe 79
DCT	$(g_{1,w}^{ani}, g_{2,w}^{ani})$	4.687	6.060	5.753	2.769	2.536	2.078	2.082	2.039
Haar	$(g_{1,w}^{ani}, g_{2,w}^{ani})$	6.022	14.90	14.31	3.494	3.265	2.135	2.126	2.057
PCA	$(g_{1,w}^{ani}, g_{2,w}^{ani})$	5.214	11.84	9.989	3.189	2.844	2.105	2.046	2.019
AFHQv2									
Basis	Schedule	nfe 9	nfe 11	nfe 13	nfe 15	nfe 19	nfe 39	nfe 79	nfe 119
DCT	$(g_{1,w}^{ani}, g_{2,w}^{ani})$	4.859	3.542	2.897	2.472	2.376	2.087	2.055	2.035
Haar	$(g_{1,w}^{ani}, g_{2,w}^{ani})$	7.276	3.744	3.026	2.478	2.299	2.286	2.234	2.267
PCA	$(g_{1,w}^{ani}, g_{2,w}^{ani})$	4.598	3.101	2.588	2.383	2.330	2.117	2.070	2.079
FFHQ									
Basis	Schedule	nfe 9	nfe 11	nfe 13	nfe 15	nfe 19	nfe 39	nfe 79	nfe 119
DCT	$(g_{1,w}^{ani}, g_{2,w}^{ani})$	6.052	4.330	3.448	3.213	2.895	2.417	2.369	2.408
Haar	$(g_{1,w}^{ani}, g_{2,w}^{ani})$	8.558	6.539	4.717	3.337	4.490	2.898	2.391	2.447
PCA	$(g_{1,w}^{ani}, g_{2,w}^{ani})$	5.448	3.818	3.382	3.162	3.016	2.647	2.656	2.733

Table 7: FID \downarrow of $(g_{1,w}^{ani}, g_{2,w}^{ani})$ with different image passes across datasets.

CIFAR-10									
kimgs	Schedule	nfe 9	nfe 11	nfe 13	nfe 15	nfe 17	nfe 35	nfe 59	nfe 79
2000	$(g_{1,w}^{ani}, g_{2,w}^{ani})$	4.687	6.060	5.753	2.769	2.536	2.078	2.082	2.039
500	$(g_{1,w}^{ani}, g_{2,w}^{ani})$	4.778	6.951	5.641	2.956	2.542	2.124	2.078	2.050
AFHQv2									
kimgs	Schedule	nfe 9	nfe 11	nfe 13	nfe 15	nfe 19	nfe 39	nfe 79	nfe 119
2000	$(g_{1,w}^{ani}, g_{2,w}^{ani})$	4.859	3.542	2.897	2.472	2.376	2.087	2.055	2.035
100	$(g_{1,w}^{ani}, g_{2,w}^{ani})$	4.571	3.429	2.722	2.624	2.380	2.115	2.057	2.037
FFHQ									
kimgs	Schedule	nfe 9	nfe 11	nfe 13	nfe 15	nfe 19	nfe 39	nfe 79	nfe 119
2000	$(g_{1,w}^{ani}, g_{2,w}^{ani})$	6.052	4.330	3.448	3.213	2.895	2.417	2.369	2.408
100	$(g_{1,w}^{ani}, g_{2,w}^{ani})$	5.789	4.064	3.461	3.259	2.841	2.430	2.376	2.409

FID scores that closely match the results of the 2000k setting across all datasets and NFEs. This indicates that $(g_{1,w}^{ani}, g_{2,w}^{ani})$ can be learned very efficiently, requiring only a relatively small number of image passes to reach strong performance.