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Abstract

We study Off-Policy Learning (OPL) of ranking policies, which enables us to learn
new ranking policies using only historical logged data. Ranking settings make
OPL remarkably challenging because their action spaces consist of permutations of
unique items, being extremely large. Existing methods, which primarily use either
policy- or regression-based approaches, suffer from high variance and bias respec-
tively. To circumvent these issues of existing methods, we propose a new OPL
method for ranking, named Ranking Policy Optimization via Top-k Policy Decom-
position (R-POD), which combines the policy- and regression-based approaches
in an effective fashion. Specifically, R-POD decomposes a ranking policy into a
first-stage policy for selecting top-k actions and a second-stage policy for choosing
the bottom actions given the top-k actions. It then learns the first-stage policy via
the policy-based approach and the second-stage policy via the regression-based
approach. In particular, we propose a new policy gradient estimator to learn the
first-stage policy via the policy-based approach. This method can substantially
reduce variance, since it applies importance weighting only to the top-k actions.
We also demonstrate that our policy-gradient estimator for the first-stage policy is
unbiased under a conditional pairwise correctness condition, which only requires
that the expected reward differences of pairs of rankings sharing the same top-k ac-
tions can be estimated correctly. Comprehensive experiments illustrate that R-POD
provides substantial improvements in OPL for ranking where existing methods fail
due to large action spaces.

1 Introduction

Intelligent systems in the real-world, such as recommender systems, search engines, and news
applications, often present items (e.g., products, hotels, news) in the form of rankings. In these
systems, our goal is to learn new ranking policies to improve outcomes, using only historical logged
data. This learning task is known as Off-Policy Learning (OPL). OPL is highly relevant in many
practical applications involving automated decision-making regarding ranking interface [25, 14].
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The main approaches to OPL include policy-based and regression-based methods [25]. The policy-
based approach learns new policies by estimating the policy gradient, often through importance-
weighting [21, 4]. Although this approach can be based on unbiased policy gradients and learns
effective policies with sufficient logged data, it can be sample-inefficient particularly under large
action spaces [19, 24]. In ranking settings, in particular, where the action space corresponds to
all possible permutations of items, most policy gradient estimators collapse due to extremely high
variance [12, 27, 26, 19]. To mitigate the variance issue caused by importance weighting in ranking
setups, several methods introduce assumptions about user behavior such as independence [14] and
cascade [18]. While these methods succeed in reducing variance, restrictive assumptions can lead
to large bias in policy gradient estimations [13, 12, 18]. On the other hand, the regression-based
approach, which learns the reward function and selects a ranking with the highest predicted reward,
can avoid variance issues but is known to suffer from high bias due to the difficulty of accurately
modeling the rewards of every unique ranking in the action space.

To address the bias and variance issues caused by ranking action spaces, we develop a novel OPL
algorithm for ranking called Ranking Policy Optimization via Top-k Policy Decomposition (R-POD).
The crux of R-POD is to decompose a ranking policy into a first-stage policy that chooses the best
top-k actions for each context and a second-stage policy that selects the best bottom actions given
the top-k actions. Leveraging this decomposition of a ranking policy, we learn the first-stage policy
through the policy-based approach with a novel policy gradient estimator, called the R-POD gradient
estimator. The R-POD gradient estimator includes importance weighting in the top-k action space to
account for the effect of top-k actions and a reward regression model to consider the effect of the
bottom actions. We demonstrate that the R-POD gradient estimator is unbiased under a conditional
pairwise correctness (CPC) condition, which only requires that the regression model accurately
preserves the relative expected reward differences of rankings sharing the same top-k actions. The
second-stage policy of R-POD is then learned by the regression-based approach. We show that the
second-stage policy can be based on a reward model that is used as a part of the R-POD gradient
estimator for the first stage-policy, since the CPC condition ensures that the second-stage policy
performs optimally in terms of choosing the bottom actions.

Compared to existing policy-based methods for ranking, our R-POD gradient estimator applies
importance weighting only to the top-k actions, substantially reducing variance, as we theoretically
demonstrate. In addition, R-POD avoids introducing large bias to achieve substantial variance
reduction, as it does not introduce any assumptions about user behavior. Moreover, compared to
existing regression-based approaches, R-POD relaxes the modeling requirement regarding the reward
function. Specifically, it only needs to accurately learn the relative value differences between pairs of
unique rankings that have the same top-k actions, a condition that is generally milder than learning
the global expected rewards for every unique ranking. Comprehensive experiments on both synthetic
and real-world ranking data illustrate that our R-POD algorithm performs more effectively than
existing policy- and regression-based methods for a variety of experiment settings.

2 Preliminaries

In our formulation of OPL for ranking, x ∈ X ⊆ Rdx denotes a dx-dimensional context vector (e.g.,
user demographics) drawn i.i.d. from an unknown distribution p(x). The finite set of discrete (unique)
actions is denoted as A, with a ∈ A corresponding to an action like a single movie, song, news
article, or product. Let a = (a1, a2, . . . , al, . . . , aL) be a ranking action vector, where L denotes
the length of the ranking. The function π : X → ∆(

∏
L(A)) is referred to as a ranking policy,

with
∏

L(A) indicating the set of L-permutations of A, i.e., the ranking action space. Furthermore,
r = (r1, r2, . . . , rl, . . . , rL) represents a reward vector, sampled from an unknown conditional
distribution p(r|x,a), where rl is the reward observed at the l-th position. The effectiveness of a
policy π is measured through its value, which is defined as follows.

V (π) := Ep(x)π(a|x)

[
L∑

l=1

αlql(x,a)

]
, (1)

where ql(x,a) := E [rl|x,a] represents the position-wise expected reward function. Here, αl is a non-
negative weight given to each position. This definition of policy value in Eq. (1) can represent various
types of ranking metrics. For instance, when αl := 1/ log2 (l + 1), it represents the discounted
cumulative gain (DCG).
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Figure 1: The R-POD algorithm leverages the concept of top-k policy decomposition in Eq. (6).

Let D := {(x(i),a(i), r(i))}ni=1 be the logged data we can use for performing OPL, which contains n
independent observations drawn from the logging policy π0 as (x,a, r) ∼ p(x)π0(a|x)p(r|x,a). In
OPL of ranking policies, using onlyD, we aim to optimize a ranking policy πθ, which is parameterized
by θ, to maximize the policy value as

θ∗ = argmax
θ∈Θ

V (πθ). (2)

3 Limitations of Existing Methods

This section reviews existing approaches and their limitations in the ranking setup.

Firstly, the policy-based approach aims to learn the policy parameter θ via iterative gradient ascent,
θt+1 ← θt + η∇θV (πθ), where

∇θV (πθ) := Ep(x)πθ(a|x)

[(
L∑

l=1

αlql(x,a)

)
∇θ log πθ(a|x)

]
(3)

is called the policy gradient (we can derive it via the log-derivative trick, i.e., ∇θπθ = πθ∇θ log πθ).
The problem here is that we do not know the true policy gradient∇θV (πθ) since we do not know the
true reward functions {ql(x,a)}Ll=1. Therefore, it needs to estimate the policy gradient with only
available logged data D. A standard approach to do it is to apply inverse propensity scoring (IPS) as

∇θV̂IPS(πθ;D) :=
1

n

n∑
i=1

w(x(i),a(i))

(
L∑

l=1

αlr
(i)
l

)
sθ(x

(i),a(i)), (4)

where w(x,a) := πθ(a|x)/π0(a|x) is called the ranking-level importance weight, which is defined
as the ratio of probabilities that a unique ranking a is chosen under two different policies. We also
use sθ(x,a) := ∇θ log πθ(a|x) to denote the policy score function in Eq. (4). It is widely known
that the IPS gradient estimator given above is unbiased under the full support condition.
Condition 3.1. (Full Support) The logging policy π0 is said to have full support if π0(a|x) > 0 for
all a ∈ ∆(

∏
L(A)) and x ∈ X .

Unfortunately, in ranking situations, the full support condition is often hard to guarantee due to a
large number of unique rankings [27], potentially resulting in substantial bias for the IPS gradient
estimator [23, 7, 26].

To deal with the variance issue of IPS, we can possibly apply the Doubly Robust (DR) estimator [5]
which uses a reward estimator f̂(x,a) ≈

∑L
l=1 αlql(x,a) as a control variate. However, DR still

suffers from extremely high variance due to the use of ranking-level importance weighting.

To address the high variance caused by ranking-level importance weighting, some methods introduce
assumptions about user behavior [14, 18, 12]. For instance, under a cascade assumption, which posits
that users interact with items one by one from the top position, a policy gradient estimator can be
defined as follows [18].

∇θV̂RIPS(πθ;D) :=
1

n

n∑
i=1

L∑
l=1

πθ(a
(i)
1:l|x(i))

π0(a
(i)
1:l|x(i))

αlr
(i)
l ∇θ log πθ(a

(i)
1:l|x

(i)), (5)

3



where π(a1:l|x) =
∑

a′∈
∏

L(A) π(a
′|x)I{a′

1:l = a1:l}. This RIPS gradient estimator is unbiased
under the cascade assumption and significantly reduces variance compared to IPS and DR. However,
the RIPS gradient estimator can exhibit high bias due to mismatches between actual user behavior
and its underlying assumption [13].

Secondly, the regression-based approach estimates the reward function as q̂l(x,a) ≈ ql(x,a), ∀l
using conventional supervised machine learning methods. It then converts the estimated reward
functions {q̂l(x,a)}Ll=1 into a ranking policy, for example, by applying the argmax operator as below.

π(a |x) :=
{

1 (a = argmaxa′∈ΠL(A)

∑L
l=1 αlq̂l(x,a

′))
0 (otherwise)

Regarding the variance, this approach is superior to the policy-based approach as it does not involve
importance weighting. However, it can suffer from high bias due to the difficulty of accurately
regressing the expected rewards for every unique ranking, i.e., ∀a ∈ ΠL(A), based only on partial
feedback in the logged data D.

As discussed above, classic approaches to OPL are considered ineffective in the ranking setup, which
is prevalent in the real-world. To achieve more efficient OPL of ranking policies, the following
develops a novel algorithm for ranking that circumvents the variance issue of the policy-based
approach and the bias issue of the regression-based approach simultaneously.

4 The “R-POD” Algorithm

This section introduces a novel OPL method called R-POD that addresses the issues of bias and
variance in ranking situations. The core concept of our proposed method involves decomposing a
ranking policy into two components: a first-stage policy and a second-stage policy, as follows.

The Top-k Policy Decomposition:
πoverall
θ,ϕ (a |x) = π1st

θ (a1:k |x) · π2nd
ϕ (ak+1:L |x,a1:k), (6)

where ak1:k2
:= (ak1

, ak1+1, · · · , ak2−1, ak2
). As depicted in Figure 1, the first-stage policy

is a segment of the overall policy responsible for selecting the top-k actions (a1:k). Conversely,
the second-stage policy is a segment to choose the bottom actions (ak+1:L), conditional on
the top-k actions already sampled by the first-stage policy.

Intuitively, higher-ranked items are considered more crucial for producing effective rankings. Hence,
we consider optimizing the first-stage policy using a method with low bias, and then the second-stage
policy using a method with low variance to control the overall variance of the algorithm. With this
idea in mind, our R-POD algorithm for ranking learns an overall policy in two separate stages. In the
first stage, it optimizes a first-stage policy through the policy-based approach within the top-k action
space. By applying importance weighting exclusively to the top-k action space, which is considerably
smaller than the entire ranking space, we can learn the first-stage policy with significantly reduced
variance, despite using the policy-based approach. In the second stage, we optimize the second-stage
policy through the regression-based approach. By applying the regression model only to the remaining
action space, conditional on a set of top-k actions, we can learn the second-stage policy with smaller
bias than the conventional regression-based approach while taking advantage of its low variance. In
the following, we describe how to learn first- and second-stage policies in order to improve the value
of the overall policy.

4.1 Optimizing the First-stage Policy π1st
θ

We first consider optimizing the first-stage policy π1st
θ , parameterized by θ, via the policy-based

approach given a second-stage policy π2nd
ϕ . We consider learning the first-stage policy under a pre-

trained second-stage policy because the overall policy is dependent both on the first- and second-stage
policies, and the optimal first-stage policy becomes different given a different second-stage policy, as
we will describe below.
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Given that our ultimate goal is training a better overall policy, we should train the first-stage policy so
that the overall policy is improved. Hence, given a second-stage policy π2nd

ϕ , we aim to update the
first-stage policy parameter θ as

θt+1 ← θt + η∇θV (πoverall
θ,ϕ ) (7)

The following derives the policy gradient for the overall policy regarding the first-stage policy
parameter, i.e.,∇θV (πoverall

θ,ϕ ).
Proposition 4.1. (The overall policy gradient) The policy gradient for the overall policy regarding
the first-stage policy parameter, i.e.,∇θV (πoverall

θ,ϕ ), is given as follows.

∇θV (πoverall
θ,ϕ ) = Ep(x)π1st

θ (a1:k|x)

[
qπ

2nd
ϕ (x,a1:k)sθ(x,a1:k)

]
, (8)

where qπ
2nd
ϕ (x,a1:k) := Eπ2nd

ϕ (ak+1:L|x,a1:k)

[∑L
l=1 αlql(x,a)

]
denotes the value of top-k actions

under π2nd
ϕ and sθ(x,a1:k) := ∇θ log π

1st
θ (a1:k|x) is the policy score function of the first-stage

policy. See Appendix C.1 for the proof.

Proposition 4.1 suggests that if the first-stage policy can choose the top-k actions that are evaluated
highly according to the function qπ

2nd
ϕ (x,a1:k), we can improve the effectiveness of the overall

policy. An interesting observation here is that the top-k actions that the first-stage policy should
choose are different given different second-stage policies as implied by the fact that the function
qπ

2nd
ϕ (x,a1:k) is dependent on π2nd

ϕ . This is indeed the reason why we are considering training the
first-stage policy given a second-stage policy.

As discussed, the true∇θV (πoverall
θ,ϕ ) would lead to an improved overall policy, however we do not

know the ground-truth policy gradient due to the inability to know qπ
2nd
ϕ (x,a1:k), so we have to

estimate it using logged data to train the first-stage policy. To achieve this, we propose a new policy
gradient estimator, called the R-POD gradient estimator, defined as follows.

∇θV̂RPOD(π
overall
θ,ϕ ;D) := 1

n

n∑
i=1

{
w(x(i),a

(i)
1:k)

(
L∑

l=1

αlr
(i)
l − f̂(x(i),a(i))

)
sθ(x

(i),a
(i)
1:k)

+ Eπ1st
θ (a1:k|x(i))

[
f̂π2nd

ϕ (x(i),a1:k)sθ(x
(i),a1:k)

]}
, (9)

where w(x,a1:k) :=
π1st
θ (a1:k|x)

π1st
0 (a1:k|x)

=
∑

a′ I{a′
1:k=a1:k}π1st

θ (a′|x)∑
a′ I{a′

1:k=a1:k}π1st
0 (a′|x) is the top-k importance weight.

Specifically, the first term of Eq. (9) estimates the value of top-k actions a1:k via importance
weighting and the second term deals with the value of bottom actions (ak+1:L) via the regression
model f̂(x,a). Since the top-k importance weight considers only the difference in probabilities of
choosing the top-k actions between policies, it is expected to have much lower variance than existing
gradient estimators such as IPS, DR, and RIPS. Additionally, it does not introduce any assumption on
user behavior such as independence [14] or cascade [18], so it does not produce large bias regarding
the violation of such assumptions when reducing variance. Note that we will discuss how we should
optimize the regression model f̂(x,a) based on the analysis of the R-POD estimator provided below.

As a theoretical analysis, we first characterize the bias of the R-POD gradient estimator under the
full “top-k” support condition, which is less restrictive than the full support condition needed for the
unbiasedness of IPS.
Condition 4.1. (Full top-k support) The logging policy π0 is said to have full top-k support if
π0(a1:k|x) > 0 for all a ∈

∏
L(A) and x ∈ X .

Theorem 4.1. (Bias of the R-POD gradient estimator) If Condition 4.1 is true, the R-POD gradient
estimator has the following bias for some given regression model f̂(x,a).

Bias(∇θV̂RPOD(π
overall
θ,ϕ ;D))

= Eπ1st
0 (x,c1:k)

[ ∑
a<b:a1:k=b1:k=c1:k

π2nd
0 (ak+1:L|x, c1:k)π2nd

0 (bk+1:L|x, c1:k)

× (∆q(x,a, b)−∆f̂ (x,a, b))

(
πθ(b|x, c1:k)
π0(b|x, c1:k)

− πθ(a|x, c1:k)
π0(a|x, c1:k)

)
sθ(x, c1:k)

]
, (10)
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where a, b ∈
∏

L(A). ∆q(x,a, b) := q(x,a) − q(x, b) represents the difference of the expected
rewards between a pair of rankings a and b given x, which we call the relative value difference of
rankings. ∆f̂ (x,a, b) := f̂(x,a)− f̂(x, b) is a relative value of rankings between a and b given x

estimated by the regression model f̂(x,a).

The most important factor in Eq. (10) is ∆q(x,a, b) − ∆f̂ (x,a, b), which implies that when a

regression model f̂(x,a) accurately preserves the relative value differences of rankings containing
the same top-k actions, the bias of the R-POD gradient estimator becomes small. Intuitively, the
R-POD gradient estimator already unbiasedly estimates the value of top-k actions via its top-k
importance weighting, and thus it is sufficient for the regression model to identify only relative
value differences of rankings given the same top-k actions to make the gradient estimator unbiased.
Moreover, Theorem 4.1 implies that the R-POD gradient estimator becomes unbiased under the
following condition.

Condition 4.2. (Conditional Pairwise Correctness; CPC) A regression model f̂(x,a) satisfies
conditional pairwise correctness if ∆q(x,a, b) = ∆f̂ (x,a, b) for all x ∈ X and a, b ∈

∏
L(A) s.t.

a1:k = b1:k.
Corollary 4.1. Under Conditions 4.1 and 4.2, the R-POD gradient estimator is unbiased, i.e.,
ED[∇θV̂RPOD(π

overall
θ,ϕ ;D)] = ∇θV (πoverall

θ,ϕ ).

Thus, the R-POD gradient estimator can be unbiased under a condition where the regression model
satisfies conditional pairwise correctness, which is less restrictive than aiming for correctly estimating
the global reward functions {ql(x,a)}Ll=1 like implicitly assumed for the regression-based approach.
The above bias analysis also implies that we should ideally optimize the regression model f̂(x,a) so
that it preserves the relative value differences to minimize the bias of the resulting gradient estimator.

Next, the following calculates the variance of R-POD to show its relation with the accuracy of the
regression model f̂(x,a).
Proposition 4.2. (Variance of the R-POD gradient estimator) Under Conditions 4.1 and 4.2, the
variance of the R-POD gradient estimator is given by

nVD(∇θV̂
(j)
RPOD(π

overall
θ,ϕ ;D)) = Ep(x)π0(a|x)

[(
w(x,a1:k)s

(j)
θ (x,a1:k)

)2
σ2(x,a)

]
+ Ep(x)

[
Vπ0(a|x)

[
w(x,a1:k)∆q,f̂ (x,a)s

(j)
θ (x,a1:k)

]]
+ Vp(x)

[
Eπ1st

θ (a1:k|x)

[
qπ

2nd
ϕ (x,a1:k)s

(j)
θ (x,a1:k)

]]
, (11)

where ∆q,f̂ (x,a) := q(x,a)− f̂(x,a) is the estimation error of f̂(x,a) against the global expected

reward function q(x,a), σ2(x,a) := V[(
∑L

l=1 αlrl)|x,a] is the conditional variance of the rewards,
and s

(j)
θ (x,a1:k) is the j-th dimension of the score function.

Proposition 4.2 suggests that, in terms of variance minimization, we should optimize the regression
model in a way that minimizes |∆q,f̂ (x,a)| compared to minimizing |∆q(x,a, b)−∆f̂ (x,a, b)|
for the bias. Based on the theoretical observations, an ideal strategy to optimize the regression
model f̂(x,a) would be a two-step procedure to directly optimize the bias and variance of the
R-POD gradient estimator in each step. Specifically, the first step focuses on minimizing the bias by
optimizing a pairwise regression function ĥϕ(x,a) towards accurately estimating the relative reward
differences |∆q(x,a, b) −∆f̂ (x,a, b)|, which needs pairwise logged data. The second step then
aims for variance minimization via minimizing |∆q,f̂ (x,a)|. More details of the ideal procedure of
two-step regression can be found in Appendix B.

However, we do not expect this ideal two-step procedure to be always feasible in practice due to its
need of pairwise logged data and implementation costs. Even if it is impractical, we can still employ
a conventional regression to estimate the expected absolute reward to construct the regression model.
This can be done by optimizing a parameterized function f̂ϕ : X ×ΠL(A)→ R via:

min
ϕ

∑
(x,a,r)∈D

ℓf
(
r, f̂ϕ(x,a)

)
, (12)
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and f̂ϕ(x,a) is used in Eq. (9). ℓf is a loss function to measure the accuracy of f̂ϕ(x,a), which can
be defined, for example, as ℓf

(
r, f̂ϕ(x,a)

)
=
(∑L

l=1 αlrl − f̂ϕ(x,a)
)2

. Even with this practical
and simple procedure, the R-POD gradient estimator retains advantages over existing policy gradient
estimators by its significant variance reduction. The following section empirically demonstrates that
R-POD performs more effectively than existing approaches with this practical regression procedure.

4.2 Optimizing the Second-stage Policy π2nd
ϕ

The objective of the second-stage policy π2nd
ϕ is to identify the bottom actions to optimize the value

given the top-k actions chosen by the first-stage policy π1st
θ . Specifically, the second-stage policy

should rank the bottom actions that yield the highest value among rankings containing the same
top-k actions. From the regression procedure mentioned earlier, we have already obtained f̂ϕ(x,a)
to estimate the reward function via the regression-based approach. This allows us to define the
second-stage policy based on f̂ϕ(x,a), for example, as follows.

π2nd
ϕ (ak+1:L|x,a1:k) :=

{
1 (a = argmaxa′:a′

1:k=a1:k
f̂ϕ(x,a

′))

0 (otherwise)
(13)

When the regression model satisfies the CPC condition, the above second-stage policy is optimal
because CPC ensures a regression model to accurately estimate the relative value of rankings that
share the same top-k actions. This is a more relaxed modeling requirement compared to the existing
regression-based approach.

4.3 The Overall R-POD Algorithm

The overall process of the R-POD algorithm is conducted as follows. First, we construct the regression
model f̂ϕ(x,a), for example, via performing Eq. (12). We then formulate the second-stage policy
π2nd
ϕ based on the regressor f̂ϕ(x,a) as in Eq. (13). We are also based on f̂ϕ(x,a) and optimize the

first-stage policy π1st
θ via iterative gradient ascent using the R-POD gradient estimator in Eq. (9).

Once we obtain first- and second-stage policies via the R-POD algorithm, for an incoming context x in
the inference phase, we first sample top-k actions from the 1st-stage policy as a1:k ∼ π1st

θ (a1:k |x).
We then apply the 2nd-stage policy to rank the bottom actions given the top-k actions as ak+1:K ∼
π2nd
ϕ (ak+1:L |x,a1:k). This procedure is equivalent to sampling a ranking from the joint distribution

induced by π1st
θ and π2nd

ϕ , i.e., a ∼ πoverall
θ,ϕ (a |x).

5 Empirical Evaluation

We first evaluate R-POD on synthetic data to identify the situations where R-POD enables more
effective OPL than the baseline methods. We then assess the applicability of R-POD in real-world
situations using public datasets. Note that our experiment code will be available upon publication.

5.1 Synthetic Data

To generate synthetic datasets, we randomly sample 5-dimensional contexts from the standard normal
distribution. Then, for each context-ranking pair, we first synthesize the position-wise expected
reward function for l-th position in a ranking as

ql(x,a) := q̃l(x, al) + F (x,a), (14)

where q̃l(x, al) depends only on the corresponding position-wise action al, while F (x,a) depends
on the whole ranking action a. Specifically, the former term is defined as q̃l(x, al) := θ⊤al

x+ bal
,

where θal
is a parameter vector sampled from the standard normal distribution and bal

is a bias term
defined for action al. F (x,a) =

∑
m ̸=l W(am, al)I{Xl ≤ λ} is called the interaction term, where

W(am, al) indicates the effect of action am on the reward of action al. Xl is a random variable
sampled from the standard uniform distribution, and λ ∈ [0, 1] is a parameter that controls the
probability of a position-wise reward affected from other actions within the same ranking. We then
sample the reward rl from a normal distribution with mean ql(x,a) and standard deviation σ = 0.5.
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(a) Training data size (n) (b) Number of unique actions
(|A|) (c) Probability affected from dif-

ferent positions (λ)

Figure 2: Comparing the test policy values (normalized by R-POD (tuning)) of the OPL methods,
with varying (a) training data sizes, (b) numbers of actions, and (c) probabilities affected from each
action.

Table 1: Comparison of the OPL methods on MSLR-WEB30K regarding DCG@5. f0(x, a) in the
logging policy uses either constant value (uniform), random forest regression, or ridge regression.
Values outside and inside the parenthesis are the mean and the standard deviation based on 5 random
seeds, respectively.

MSLR-WEB30K Logging Policy
OPL methods uniform random forest ridge
Reg-based 0.506 (0.083) 0.516 (0.064) 0.501 (0.064)
IPS-PG 0.456 (0.015) 0.500 (0.011) 0.506 (0.011)
RIPS-PG 0.495 (0.014) 0.514 (0.014) 0.517 (0.015)
DR-PG 0.490 (0.015) 0.514 (0.011) 0.517 (0.033)
R-POD (tuning, 10% estimation error) 0.522 (0.033) 0.528 (0.021) 0.527 (0.014)
R-POD (tuning, 5% estimation error) 0.528 (0.039) 0.535 (0.039) 0.530 (0.019)
R-POD (best) 0.531 (0.042) 0.539 (0.040) 0.532 (0.020)

We define the logging policy that produces the logged data based on the Plackett-Luce model [20] as
follows.

π0(a|x) =
L∏

l=1

π0(al|x) =
L∏

l=1

exp(f0(x, al))I[al /∈ a1:l−1]∑
a′∈A\a1:l−1

exp(f0(x, a′))
(15)

where f0(x, al) = θ̃⊤al
x+ b̃al

. We sample both θ̃al
and b̃al

from the standard uniform distribution.

Compared Methods. We compare R-POD with IPS-PG, DR-PG, RIPS-PG, and Regression-based
approach (Reg-based). To determine the hyperparameter k for R-POD, we perform grid-search in
range k ∈ [0, L] based on the policy value estimated by IPS. R-POD with data-driven tuning of k is
denoted as “R-POD (tuning)” in our experiment results. We also report the results of “R-POD (best)”,
which uses the hyperparameter k with the best ground-truth policy value among the possible values
of k and provides the best achievable value as a reference.

Results Figure 2 compares the value of policies learned by each OPL method over 100 simulations
with different random seeds. Each figure in Figure 2 compares the policy learning effectiveness
with varying data sizes, numbers of unique actions, and the probabilities of the position-wise reward
function (ql(x, al)) affected by the whole ranking (F (x,a)), where the default parameters are n =
1000, |A| = 5, L = 3, and λ = 1.0, respectively.

First, Figure 2a, which varies the training data size n from 250 to 2000, shows that R-POD (tuning)
performs consistently better than the baseline methods across various data sizes. The advantage
of R-POD over the baselines becomes particularly large when the data size is small, suggesting
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that R-POD effectively achieves a substantial reduction in variance regarding the policy gradient
estimation to enable a more data-efficient OPL for ranking policies. It would also be interesting to see
that R-POD (tuning) performs competitively compared to R-POD (best), particularly when the data
size is large, even though R-POD (best) always performs even better than R-POD (tuning) leveraging
its unfair access to the ground-truth policy value to identify the optimal value of k.

Next, when varying the numbers of unique actions |A| from 4 to 8 (this varies the number of unique
rankings from 24 to 336) in Figure 2b, we observe that R-POD outperforms the baseline methods in
all situations. This suggests that R-POD can perform satisfactory even when the number of candidate
rankings grows.

Finally, Figure 2c demonstrates that RIPS-PG degrades in performance with larger violations of the
cascade assumption (larger λ), because RIPS-PG completely ignores the interactions from actions
placed in lower positions in the ranking by assuming the cascade user behavior. In contrast, it is
much more robust to the violations of the cascade model than RIPS-PG because R-POD considers
the effect of lower positions using its regression model. R-POD also performs consistently better
than IPS-PG and DR-PG, which are unbiased irrespective of λ, but have extremely high variance.

5.2 Real-World Data

We then conduct real-world experiments on the learning-to-rank datasets, namely the Microsoft
Learning to Rank Challenge dataset (MSLR-WEB30K) [22]. MSLR-WEB30K has 124 documents
per query on average, and we randomly sample 100 documents per query.

This dataset contains 5-level relevance scores rel(x, a) ∈ {0, ..., 4} for all of their query(x)-
document(a) pairs and we define the position-wise expected reward function of the form: ql(x,a) =
rel(x, al)/4 + ηal

where ηal
is a noise parameter sampled separately for each al from a normal

distribution whose mean is 0 and standard deviation is 0.05. Then, we sample the position-wise
reward from a normal distribution with mean ql(x,a) and standard deviation σ = 0.05. We use the
Plackett-Luce logging policy defined in Eq. (15), the same logging policy as used in the synthetic
experiment. However, in the real-world experiment, f0(x, a) in the logging policy definition is either
a constant value (uniform) or a regression model (either random forest regression or ridge regression),
which is trained with 10 % of the training data. Note that we set L = 5. R-POD (tuning) tunes its
hyperparameter k by a noise-added ground-truth policy value where the noise (or estimation error) is
sampled from a uniform distribution of range (−∆max,∆max), and |∆max| is either 5% or 10% of the
ground-truth policy value V (πθ), varying the accuracy of the tuning of its hyperparameter k.

Results Table 1 reports the results with varying logging policies, including uniform, random forest,
svr, and ridge on MSLR-WEB30K. The results demonstrate that R-POD works better than the
baseline methods across varying logging policies. Specifically, we observe that R-POD outperforms
the policy-based methods (RIPS-PG, IPS-PG, and DR-PG) by a large margin, even when tuning the
hyperparameter k with 10% estimation error, resulting from effectively reducing variance without
inducing a significant bias. Moreover, comparing R-POD with Reg-based, we observe that Reg-based
underperforms R-POD by a large margin when the regression is inaccurate. This result suggests that
R-POD is more robust to the regression error than Reg-based, which is consistent with our theoretical
analysis. We can also see that R-POD (best) is always the best, which suggests the even higher
potential of R-POD (best) on the real-world dataset with a better procedure to tune its hyperparameter.

6 Conclusion

This work studies off-policy learning (OPL) for ranking policies. Existing methods often fail due
to substantial bias and variance. To facilitate more effective OPL for ranking, we develop a novel
algorithm called R-POD. R-POD optimizes the first-stage policy, responsible for selecting the
top-k actions in a ranking, through a new policy gradient estimator. This estimator is unbiased
under conditional pairwise correctness and exhibits lower variance compared to existing gradient
estimators. The second-stage policy, responsible for selecting the bottom actions, is learned via a
reward regression. This component of our algorithm is considered more robust to reward modeling
errors than traditional regression-based methods. Empirical evaluations demonstrate the effectiveness
of R-POD in optimizing ranking policies, particularly in challenging situations such as with small
sample sizes and large action spaces.
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A Related Work

This section summarizes notable related works.

A.1 General Off-Policy Evaluation

Off-policy evaluation (OPE), which aims to estimate the performance of a counterfactual policy using
historical data, has widely been acknowledged as a safe, ethical, and cost-effective alternative for
online A/B tests [25], and has attracted a lot of interest in both contextual bandits [5, 6, 11, 35] and
reinforcement learning [10, 16, 33]. There are three standard OPE methods to estimate the policy value
with context-action-reward tuples and two advanced estimators that leverage the action embeddings
for efficient OPE. First, Direct Method (DM) [1] learns the expected reward function via conventional
machine learning methods and then estimates the value of new policies with the estimated rewards.
DM has low variance, and enables accurate estimation when the regression model learns the expected
reward function q(x, a) accurately across context-action pairs. However, DM suffers from high
bias due to model misspecification and covariate shift [6, 34]. Second, Inverse Propensity Scoring
(IPS) [29] applies importance weighting to the observed rewards to estimate the value of new policies.
IPS is unbiased under the common support condition (π(a|x) > 0→ π0(a|x) > 0 ∀(x, a) ∈ X ×A).
However, the common support condition is frequently violated in large action spaces, and IPS incurs
bias under deficient support [23? ]. In contrast, satisfying the common support condition causes
severe variance because the logging policy π0(a|x) should allocate a small probability for every
context-action pair, leading to large importance weights. There are several techniques to reduce the
scale of the importance weight, such as clipping [31, 30] and self-normalization [32]. However, these
methods can still suffer from high variance and introduce high bias in the estimation. Third, Doubly
Robust (DR) [5] combines DM and IPS in a way to reduce variance while being unbiased. DR uses the
regression-based estimations as its baseline and applies importance weighting only to the difference
between the reward r and the estimated reward q̂(x, a). By doing so, DR can reduce the variance
of IPS under a reasonable assumption about the regression (|q(x, a)− q̂(x, a)| ≤ |q(x, a)|), while
being unbiased under the same common support condition as IPS. However, it has been demonstrated
that the variance reduction is limited and DR suffers from high variance when the action space is
very large [26]. This is because DR uses the same importance weights as IPS.

To mitigate the above variance issues, Marginalized IPS (MIPS) [26] leverages auxiliary informa-
tion called action embeddings. MIPS applies importance weighting only to embeddings. MIPS
significantly reduces variance, as the embedding space becomes smaller than the original action
space. Moreover, MIPS remains unbiased under the no direct effect assumption, which assumes that
embeddings fully mediate every possible effect of the actions on the rewards. However, this estimator
may have a nonnegligible bias when two actions that have the same embedding have dissimilar
rewards [27].

Off-policy evaluation estimator based on the Conjunct Effect Model (OffCEM) [27] aims to remove
the no direct assumption of MIPS by introducing the conjunct effect model (CEM), which decomposes
the expected reward function into cluster effects and residual effects. Based on this decomposition,
OffCEM estimates the cluster and residual effect in different ways as follows.

V̂OffCEM(π;D, f̂) = 1

n

n∑
i=1

{
w(xi, ϕ(xi, ai))(ri − f̂(xi, ai)) + f̂(xi, π)

}
,

where w(x, c) :=
∑

A∈a I{ϕ(x,a)=c}π(a|x)∑
A∈a I{ϕ(x,a)=c}π0(a|x) is the cluster importance weight. OffCEM deals with

the cluster effects through the cluster importance weight and the residual effects by the regression
model. OffCEM is unbiased under the local correctness assumption, which only requires that the
regression model preserves the relative expected reward differences between actions in the same
cluster. OffCEM can achieve lower variance, as the cluster importance weight becomes small like
MIPS. Moreover, OffCEM outperforms MIPS since OffCEM deals with the residual effects ignored
by MIPS. Thus, OffCEM provides substantial improvements for OPE in large action spaces.

Based on the OffCEM’s concept, our proposed gradient estimator deals with the effects of top-k
actions via importance weighting and the effects of the bottom actions via a reward regression model.
By doing so, our proposed gradient estimator can achieve low MSE in ranking settings.
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A.2 Off-Policy Evaluation for Ranking Policies

In ranking settings, the action spaces consist of permutations of unique items, thus we encounter
severe variance problems caused by large action spaces. To deal with the bias and variance issues
of DM, IPS, and DR, existing estimators have tried to reduce variance by leveraging sub-rewards
and some assumptions on user behavior in examining rankings based on click models [8, 3]. For
instance, Independent Inverse Propensity Scoring (IIPS) [14] assumes that users interact with items
independently across positions. IIPS applies the position-wise importance weights to the observed
position-wise rewards. Therefore, IIPS reduces variance substantially. However, when the indepen-
dent assumption does not hold, this estimator introduces high bias, as empirically demonstrated in
[18, 12]. Similarly, Reward interaction Inverse Propensity Scoring (RIPS) [18] is based on another
assumption called the cascade assumption, which assumes that users interact with items in a ranking
sequentially from the top position. RIPS is unbiased under the cascade assumption, which is weaker
and more reasonable than IIPS, while also reducing the variance compared to IPS. However, this
estimator still incurs considerable bias by ignoring the interactions from lower positions. Cascade-DR
[12] is also based on the cascade assumption, which introduces a baseline estimator as a control vari-
ate similar to DR. Cascade-DR can further reduce variance compared to RIPS. The estimators above
put a single assumption about user behavior for every user to deal with the variance issue in ranking
settings. However, in practice, user behavior is diverse among users [2, 36]. To conduct effective
estimations under diverse user behavior, Adaptive IPS (AIPS) [13] generalizes the idea of importance
weighting based on the user behavior, by considering adaptive importance weight depending on
each user (x). AIPS puts different user behavior assumptions for different users adaptively to deal
with diverse user behavior. Under diverse user behavior, AIPS provides substantial improvements
compared to other estimators, such as IIPS and RIPS. Unlike these estimators that rely on some
user behavior assumption, [37] views ranking settings as episodic RL settings by considering a click
model as a Markov Decision Process (MDP). This method enables us to leverage some estimators
from offline RL.

Our proposed OPL method depends on the intuitive idea that the effects of higher-ranked items largely
dominate the expected reward of a ranking. Although this idea is similar to the cascade assumption,
our proposed gradient estimator includes a reward regression model to consider the effect of the
bottom actions, ignored by the cascade assumption. By doing so, our proposed gradient estimator
provides substantial improvements in OPL without incurring extra bias under any user behavior.

A.3 Off-Policy Learning

Off-policy learning (OPL) for contextual bandits enables us to learn a new policy only using the
logged data. In OPL, two main approaches are the regression- and the policy-based approaches. The
regression-based approach learns the expected reward function via a familiar supervised learning
method and then chooses the highest predicted reward. A drawback of this approach is bias due to
the difficulty of accurately learning the expected rewards. In contrast, the policy-based approach
optimizes a new policy πθ, parameterized by θ, via iterative gradient ascent as θt+1 ← θt+η∇θV (πθ).
However, we do not know the true policy gradient∇θV (πθ)(= Ep(x)πθ(a|x) [q(x, a)∇θ log πθ(a|x)]),
so we need to estimate it from the historical logged data. A typical way to do so is to apply importance
weighting as follows.

∇θV̂IPS(πθ;D) =
1

n

n∑
i=1

w(xi, ai)risθ(xi, ai),

where w(x, a) = πθ(a|x)
π0(a|x) is the (vanilla) importance weight and sθ(x, a) = ∇θ log πθ(a|x) is the

policy score function. This policy gradient estimator is unbiased under the full support condition
(π0(a|x) > 0 for all a ∈ A, x ∈ X ). In large action spaces, it struggles with two critical issues. First,
the requirement is often violated, resulting in introducing substantial bias in gradient estimations[23,
7]. Second, the vanilla importance weight takes a large value when the requirement is satisfied. This
leads to serious variance. To tackle the variance issues in large action spaces, some OPL methods
utilize some regularization techniques [9, 17, 15]. These methods could avoid the variance issues by
imposing penalties on the difference between an optimized policy and the logging policy. However, it
might not improve the policy value, as a policy is likely to be close to the logging policy.

To deal with the limitations of existing approaches in large action spaces, a novel two-stage OPL
algorithm called Policy Optimization via Two-Stage Policy Decomposition (POTEC) [28] leverages
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the Conjunct Effect Model (CEM) from [27]. POTEC decomposes a policy into a first-stage policy
and a second-stage policy as follows.

πoverall
θ,ϕ (a|x) =

∑
c∈C

π1st
θ (c|x)π2nd

ϕ (a|x, c),

where c ∈ C denotes an action cluster. The first-stage policy π1st
θ chooses a promising cluster and

then the second-stage policy π2nd
ϕ chooses a best action within the cluster selected by the first-stage

policy. The POTEC algorithm optimizes the first-stage policy via the policy-based approach and
the second-stage policy via the regression-based approach. The POTEC gradient estimator for the
first-stage policy is defined as:

∇θV̂POTEC

(
πoverall
θ,ϕ ;D

)
=

1

n

n∑
i=1

{
w(xi, cai)(ri − f̂(xi, ai))sθ(xi, cai) + Eπ1st

θ

[
f̂π2nd

ϕ (xi, c)sθ(xi, c)
]}

,

where w(x, c) = π1st
θ (c|x)
π0(c|x) is the cluster importance weight and f̂π2nd

ϕ (x, c) = Eπ2nd
ϕ (a|x,c)

[
f̂(x, a)

]
.

The POTEC gradient estimator applies importance weight over the action cluster space, which is
much smaller than the original action space, so it provides a substantial reduction of variance rather
than conventional gradient estimators. Moreover, it is unbiased under the same local correctness
condition as OffCEM. The second-stage policy, on the other hand, should select the optimal actions
within a cluster selected by the first-stage policy. The second-stage policy is optimized based on
the regression model. To summarize, the POTEC algorithm applies a policy-based approach to the
first-stage policy to select promising clusters with low bias and variance using the cluster importance
weight. It then optimizes the second-stage policy via a regression-based approach with low variance
to identify the best actions within a cluster chosen by the first-stage policy.

Our OPL algorithm is inspired by the POTEC algorithm in terms of using both policy-based ap-
proaches and regression-based approaches. However, there are clear differences in that the proposed
R-POD algorithm decomposes a ranking policy by leveraging the unique structure inherent to rank-
ings, while the POTEC algorithm considers cluster spaces. Moreover, POTEC should optimize
clustering methods to conduct effective OPL. In contrast, what R-POD has to do is just choose
hyperparameter k. This suggests that we can control the bias and variance of R-POD easily. Thus,
our algorithm makes the most of ranking situations to deal with challenging OPL for ranking policies.

B Optimizing the regression model via a two-step procedure

We can optimize the regression model via a two-step procedure not the one-step procedure in Eq.12.
We show how to optimize and use the two-step procedure in the R-POD algorithm.

B.1 Two-step Procedure

Proposition 4.2 suggests that, in terms of variance minimization, we should optimize the regression
model in a way that minimizes |∆q,f̂ (x,a)| compared to minimizing |∆q(x,a, b)−∆f̂ (x,a, b)|
for the bias. Therefore, based on the theoretical observations, we should ideally optimize the
regression model via the following two-step procedure in order to optimize the bias and variance of
the R-POD gradient estimator.

1. Bias Minimization Step: Optimize a pairwise regression function ĥϕ, parameterized by ϕ, to
estimate the relative value differences of ranking sharing the same top-k actions.

min
ϕ

∑
(x,a,b,ra,rb)∈Dpair

ℓh (ra − rb, hϕ(x,a)− hϕ(x, b)) (16)

2. Variance Minimization Step: Optimize ĝω, parameterized by ω, to minimize ∆q,f̂ (x,a) given

f̂ = ĝω + ĥϕ.

min
ω

∑
(x,a,r)∈D

ℓg

(
r, ĝω(x,a) + ĥϕ(x,a)

)
(17)
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Algorithm 1 The R-POD Algorithm (w/ two-step procedure to optimize the regression model)

Require: logged data D, logging policy π0, hyperparameter k.
Ensure: first-stage policy π1st

θ (a1:k |x) and second-stage policy π2nd
ϕ (ak+1:L |x,a1:k)

1: Perform pairwise regression and obtain ĥϕ(x,a) as in Eq. (16), which works as the second-stage
policy as in Eq. (17) and also as a part of the regression model to help train the first-stage policy

2: Regress the reward residual from pairwise regression and obtain ĝω(x,a1:k+1) as in Eq. (17)
3: Perform policy-based learning of the first-stage policy based on the R-POD gradient estimator in

Eq. (9) and the regression model f̂ω,ϕ(x,a) = ĝω(x,a1:k+1) + ĥϕ(x,a)

ℓh, ℓg : R×R→ R≥0 are some appropriate loss functions such as squared loss. Note that Dpair is a
dataset augmented for performing pairwise regression to minimize the bias of the R-POD gradient
estimator, which is defined as

Dpair :=

{
(x,a, b, ra, rb) |

(xa,a, ra), (xb, b, rb) ∈ D
x = xa = xb,a1:k = b1:k

}
. (18)

As suggested in our analysis, ĥϕ(x,a) characterizes the bias of the R-POD gradient estimator, so the
first step focuses on minimizing its bias by optimizing it towards accurately estimating the relative
reward differences. The second step then aims for variance minimization by optimizing ĝω. Since
the bias of the R-POD gradient estimator does not depend on the top-k actions (as in Theorem 4.1),
the second step minimizes its variance without affecting its bias. After performing the two-step
regression procedure, we can construct a regression model as f̂ω,ϕ(x,a) = ĝω(x,a1:k) + ĥϕ(x,a)
that is to be used as a part of the R-POD gradient estimator.

Note that we do not expect that the two-step procedure described above is always feasible and
practical due to its need for pairwise data and implementation costs. If the two-step procedure is
impractical due to a lack of sufficient pairwise data, we can employ a regression for the expected
absolute reward in Eq. (12).

B.2 Optimizing the Second-stage Policy π2nd
ϕ

The objective of the second-stage policy π2nd
ϕ is to identify the bottom actions to optimize the value

given the top-k actions chosen by the first-stage policy π1st
θ . Specifically, the second-stage policy

should rank the bottom actions that yield the highest value among rankings containing the same top-k
actions. Fortunately, from the two-step regression procedure mentioned earlier, we have already
obtained ĥϕ aiming to preserve the relative value difference of rankings. This allows us to readily
define the second-stage policy based on the pairwise regressor ĥϕ as follows.

π2nd
ϕ (ak+1:L|x,a1:k) :=

{
1 (a = argmaxa′:a′

1:k=a1:k
ĥϕ(x,a

′))

0 (otherwise)
(19)

The second-stage policy is constructed solely based on pairwise regressor ĥϕ. Although optimized by
the regression-based approach, it only needs to learn the relative value difference of rankings, which
is easier than precisely learning the global reward function. Thus, the second-stage policy of our
method is expected to produce lower bias compared to regression-based approaches.

B.3 The Overall R-POD Algorithm

The overall process of the R-POD algorithm is given in Algorithm 1. First, we construct the regression
model f̂ω,ϕ through two-step regression in Eq. (16) and Eq. (17). We then formulate the second-
stage policy π2nd

ϕ based on the pairwise regressor ĥϕ (as in Eq. (19)). We are then be based on
f̂ω,ϕ(x,a) = ĝω(x,a1:k+1) + ĥϕ(x,a) to optimize the first-stage policy π1st

θ via iterative gradient
ascent using the R-POD gradient estimator in Eq. (9).
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Figure 3: The R-POD algorithm mixes policy- and regression-based approaches via its hyperparameter
k. When k = L, R-POD is reduced to the policy-based approach, while it is reduced to the regression-
based approach with k = 0.

B.4 The Role of Hyperparameter k in R-POD

The hyperparameter k plays a crucial role in deciding the effectiveness of the R-POD algorithm.
When k is large, the bias of the gradient estimator for the first-stage policy is expected to be small.
This is because decreasing the number of bottom actions given the top-k actions makes CPC milder.
In the extreme case where k = L, the R-POD gradient estimator becomes unbiased irrespective
of the accuracy of the regression model because CPC requires nothing. In contrast, the variance
of the R-POD gradient estimator may increase because a larger number of top-k actions leads to
higher variance in the top-k importance weight. Conversely, when k is small, the variance of the
R-POD gradient estimator decreases while its bias increases. It should be noted that when k = L, the
first-stage policy becomes identical to the overall policy and thus the R-POD algorithm is reduced
to the policy-based approach. In contrast, when k = 0, the second-stage policy becomes identical
to the overall policy and thus R-POD is reduced to the regression-based approach. Therefore, an
intriguing interpretation of the hyperparameter k is that it determines the mixture ratio of the policy-
and regression-based approaches in R-POD as described in Figure 3.

C Omitted Proofs

Here, we provide the derivations and proofs that are omitted in the main text.

C.1 Derivation of Eq. (8)

Proof. We derive the overall policy gradient in Eq. (8).

∇θV (πoverall
θ,ϕ ) = ∇θEp(x)πoverall

θ,ϕ (a |x)

[
L∑

l=1

αlql(x,a)

]

= ∇θEp(x)π1st
θ (a1:k |x)π2nd

ϕ (ak+1:L |x,a1:k)

[
L∑

l=1

αlql(x,a)

]

= ∇θEp(x)

∑
a1:k

∑
ak+1:L

π1st
θ (a1:k |x)π2nd

ϕ (ak+1:L |x,a1:k)

L∑
l=1

αlql(x,a)


= Ep(x)

∑
a1:k

∑
ak+1:L

∇θπ
1st
θ (a1:k |x)π2nd

ϕ (ak+1:L |x,a1:k)

L∑
l=1

αlql(x,a)


= Ep(x)

∑
a1:k

∑
ak+1:L

π1st
θ (a1:k |x)∇θ log π

1st
θ (a1:k |x)π2nd

ϕ (ak+1:L |x,a1:k)

L∑
l=1

αlql(x,a)
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= Ep(x)

∑
a1:k

∑
ak+1:L

π1st
θ (a1:k |x)sθ(x,a1:k)π

2nd
ϕ (ak+1:L |x,a1:k)

L∑
l=1

αlql(x,a)


= Ep(x)π1st

θ (a1:k |x)

sθ(x,a1:k)
∑

ak+1:L

π2nd
ϕ (ak+1:L |x,a1:k)

L∑
l=1

αlql(x,a)


= Ep(x)π1st

θ (a1:k |x)

[
sθ(x,a1:k)Eπ2nd

ϕ (ak+1:L |x,a1:k)

[
L∑

l=1

αlql(x,a)

]]
= Ep(x)π1st

θ (a1:k |x)

[
qπ

2nd
ϕ (x,a1:k)sθ(x,a1:k)

]
(20)

where we use Eπ2nd
ϕ (ak+1:L |x,a1:k)

[∑L
l=1 αlql(x,a)

]
:= qπ

2nd
ϕ (x,a1:k) and

∇θ log π
1st
θ (a1:k |x) := sθ(x,a1:k).

C.2 Derivation of Eq. (10)

Proof. We derive the bias of R-POD in Eq. (10).

Bias(∇θV̂RPOD(πoverall
θ,ϕ ;D))

= Ep(x)π0(a|x)

[
w(x,a1:k)

(
L∑

l=1

αlql(x,a)− f̂(x,a)

)
sθ(x,a1:k)

]
+ Ep(x)π1st

θ (a1:k |x)

[
f̂π2nd

ϕ (x,a1:k)sθ(x,a1:k)
]

− Ep(x)π1st
θ (a1:k|x)

[
qπ

2nd
ϕ (x,a1:k)sθ(x,a1:k)

]
= Ep(x)π1st

0 (a1:k|x)π2nd
0 (ak+1:L|x,a1:k)

[
w(x,a1:k)

(
L∑

l=1

αlql(x,a)− f̂(x,a)

)
sθ(x,a1:k)

]
− Ep(x)π1st

θ (a1:k|x)

[(
qπ

2nd
ϕ (x,a1:k)− f̂π2nd

ϕ (x,a1:k)
)
sθ(x,a1:k)

]
= Ep(x)π1st

0 (a1:k|x)

 ∑
ak+1:L

π2nd
0 (ak+1:L|x,a1:k)w(x,a1:k)

(
L∑

l=1

αlql(x,a)− f̂(x,a)

)
sθ(x,a1:k)


− Ep(x)

[∑
a1:k

π1st
θ (a1:k |x)

(
qπ

2nd
ϕ (x,a1:k)− f̂π2nd

ϕ (x,a1:k)
)
sθ(x,a1:k)

]

= Ep(x)π1st
0 (a1:k|x)

w(x,a1:k)sθ(x,a1:k)
∑

ak+1:L

π2nd
0 (ak+1:L|x,a1:k)

(
L∑

l=1

αlql(x,a)− f̂(x,a)

)
− Ep(x)

[∑
a1:k

π1st
0 (a1:k|x)

π1st
θ (a1:k |x)
π1st
0 (a1:k|x)

(
qπ

2nd
ϕ (x,a1:k)− f̂π2nd

ϕ (x,a1:k)
)
sθ(x,a1:k)

]

= Ep(x)π1st
0 (a1:k|x)

w(x,a1:k)sθ(x,a1:k)
∑

ak+1:L

π2nd
0 (ak+1:L|x,a1:k)

(
L∑

l=1

αlql(x,a)− f̂(x,a)

)
− Ep(x)π1st

0 (a1:k|x)

[
w(x,a1:k)sθ(x,a1:k)

(
qπ

2nd
ϕ (x,a1:k)− f̂π2nd

ϕ (x,a1:k)
)]

= Ep(x)π1st
0 (c1:k|x)

[
sθ(x, c1:k)

∑
a:a1:k=c1:k

w(x,a)π2nd
0 (ak+1:L|x, c1:k)

∑
b:b1:k=c1:k

π2nd
0 (bk+1:L|x, c1:k)

(
L∑

l=1

αlql(x, b)− f̂(x, b)

)]
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− Ep(x)π1st
0 (c1:k|x)

[
w(x, c1:k)sθ(x, c1:k)

∑
a:a1:k=c1:k

π2nd
ϕ (ak+1:L|x, c1:k)

(
L∑

l=1

αlql(x,a)− f̂(x,a)

)]
(21)

= Ep(x)π1st
0 (c1:k|x)

[
sθ(x, c1:k)

∑
a:a1:k=c1:k

w(x,a)π2nd
0 (ak+1:L|x, c1:k)

∑
b:b1:k=c1:k

π2nd
0 (bk+1:L|x, c1:k)

(
L∑

l=1

αlql(x, b)− f̂(x, b)

)]

− Ep(x)π1st
0 (c1:k|x)

[
sθ(x, c1:k)

∑
a:a1:k=c1:k

w(x, c1:k)π
2nd
ϕ (ak+1:L|x, c1:k)

(
L∑

l=1

αlql(x,a)− f̂(x,a)

)]

= Ep(x)π1st
0 (c1:k|x)

[
sθ(x, c1:k)

∑
a:a1:k=c1:k

w(x,a)π2nd
0 (ak+1:L|x, c1:k)

∑
b:b1:k=c1:k

π2nd
0 (bk+1:L|x, c1:k)∆q,f̂ (x, b)

]

− Ep(x)π1st
0 (c1:k|x)

[
sθ(x, c1:k)

∑
a:a1:k=c1:k

w(x, c1:k)π
2nd
ϕ (ak+1:L|x, c1:k)∆q,f̂ (x, b)

]

= Ep(x)π1st
0 (c1:k|x)

[
sθ(x, c1:k)

∑
a:a1:k=c1:k

w(x,a)π2nd
0 (ak+1:L|x, c1:k)(( ∑

b:b1:k=c1:k

π2nd
0 (bk+1:L|x, c1:k)∆q,f̂ (x, b)

)
−∆q,f̂ (x,a)

)]

where ∆q,f̂ (x,a) :=
∑L

l=1 αlql(x,a) − f̂(x,a). We use qπ
2nd
ϕ (x,a1:k) =

Eπ2nd
ϕ (ak+1:L |x,a1:k)

[∑L
l=1 αlql(x,a)

]
and

f̂π2nd
ϕ (x,a1:k) = Eπ2nd

ϕ (ak+1:L |x,a1:k)

[
f̂(x,a)

]
in Eq. (21). We use Lemma B.1 of [26] and then

get the following.

Ep(x)π1st
0 (c1:k|x)

[
sθ(x, c1:k)

∑
a<b:a1:k=b1:k=c1:k

π2nd
0 (ak+1:L|x, c1:k)π2nd

0

(bk+1:L|x, c1:k)
(
∆q,f̂ (x,a)−∆q,f̂ (x, b)

)
(w(x, b)− w(x,a))

]
= Ep(x)π1st

0 (c1:k|x)

[ ∑
a<b:a1:k=b1:k=c1:k

π2nd
0 (ak+1:L|x, c1:k)π2nd

0 .

(bk+1:L|x, c1:k)(∆q(x,a, b)−∆f̂ (x,a, b))sθ(x, c1:k)

(
πθ(b|x, c1:k)
π0(b|x, c1:k)

− πθ(a|x, c1:k)
π0(a|x, c1:k)

)]
,

where we use ∆q,f̂ (x,a)−∆q,f̂ (x, b)⇒ ∆q(x,a, b)−∆f̂ (x,a, b).

C.3 Derivation of Proposition 4.2

Proof. We derive the variance of R-POD under Condition 4.1 and Condition 4.2 by applying the law
of total variance several times.

nVD(∇θV̂
(j)
RPOD(πoverall

θ,ϕ ;D))

= Vp(x)π0(a|x)p(r|x,a)

[
w(x,a1:k)

(
L∑

l=1

αlrl − f̂(x,a)

)
s
(j)
θ (x,a1:k) + Eπ1st

θ (a1:k|x)

[
f̂π2nd

ϕ (x,a1:k)s
(j)
θ (x,a1:k)

]]

= Ep(x)π0(a|x)

[
Vp(r|x,a)

[
w(x,a1:k)

(
L∑

l=1

αlrl − f̂(x,a)

)
s
(j)
θ (x,a1:k) + Eπ1st

θ (a1:k|x)

[
f̂π2nd

ϕ (x,a1:k)s
(j)
θ (x,a1:k)

]]]

19



+ Vp(x)π0(a|x)

[
Ep(r|x,a)

[
w(x,a1:k)

(
L∑

l=1

αlrl − f̂(x,a)

)
s
(j)
θ (x,a1:k) + Eπ1st

θ (a1:k|x)

[
f̂π2nd

ϕ (x,a1:k)s
(j)
θ (x,a1:k)

]]]

= Ep(x)π0(a|x)

[(
w(x,a1:k)s

(j)
θ (x,a1:k)

)2
σ2(x,a)

]
+ Vp(x)π0(a|x)

[
w(x,a1:k)

(
L∑

l=1

αlql(x,a)− f̂(x,a)

)
s
(j)
θ (x,a1:k) + Eπ1st

θ (a1:k|x)

[
f̂π2nd

ϕ (x,a1:k)s
(j)
θ (x,a1:k)

]]

= Ep(x)π0(a|x)

[(
w(x,a1:k)s

(j)
θ (x,a1:k)

)2
σ2(x,a)

]
+ Ep(x)

[
Vπ0(a|x)

[
w(x,a1:k)

(
L∑

l=1

αlql(x,a)− f̂(x,a)

)
s
(j)
θ (x,a1:k) + Eπ1st

θ (a1:k|x)

[
f̂π2nd

ϕ (x,a1:k)s
(j)
θ (x,a1:k)

]]]

+ Vp(x)

[
Eπ0(a|x)

[
w(x,a1:k)

(
L∑

l=1

αlql(x,a)− f̂(x,a)

)
s
(j)
θ (x,a1:k) + Eπ1st

θ (a1:k|x)

[
f̂π2nd

ϕ (x,a1:k)s
(j)
θ (x,a1:k)

]]]

= Ep(x)π0(a|x)

[(
w(x,a1:k)s

(j)
θ (x,a1:k)

)2
σ2(x,a)

]
+ Ep(x)

[
Vπ0(a|x)

[
w(x,a1:k)∆q,f̂ (x,a)s

(j)
θ (x,a1:k)

]]
+ Vp(x)

[
Eπ0(a|x)

[
w(x,a1:k)∆q,f̂ (x,a)s

(j)
θ (x,a1:k)

]
+ Eπ1st

θ (a1:k|x)

[
Eπ2nd

ϕ (ak+1:L|x,a1:k)

[
f̂(x,a)s

(j)
θ (x,a1:k)

]] ]
= Ep(x)π0(a|x)

[(
w(x,a1:k)s

(j)
θ (x,a1:k)

)2
σ2(x,a)

]
+ Ep(x)

[
Vπ0(a|x)

[
w(x,a1:k)∆q,f̂ (x,a)s

(j)
θ (x,a1:k)

]]
+ Vp(x)

[
Eπ1st

0 (a1:k|x)π2nd
0 (ak+1:L|x,a1:k)

[
w(x,a1:k)∆q,f̂ (x,a)s

(j)
θ (x,a1:k)

]
+ Eπ1st

θ (a1:k|x)

[
Eπ2nd

ϕ (ak+1:L|x,a1:k)

[
f̂(x,a)s

(j)
θ (x,a1:k)

]] ]
= Ep(x)π0(a|x)

[(
w(x,a1:k)s

(j)
θ (x,a1:k)

)2
σ2(x,a)

]
+ Ep(x)

[
Vπ0(a|x)

[
w(x,a1:k)∆q,f̂ (x,a)s

(j)
θ (x,a1:k)

]]
+ Vp(x)

[
Eπ1st

θ (a1:k |x)

[
Eπ2nd

0 (ak+1:L|x,a1:k)

[
∆q,f̂ (x,a)s

(j)
θ (x,a1:k)

]]
+ Eπ1st

θ (a1:k|x)

[
Eπ2nd

ϕ (ak+1:L|x,a1:k)

[
f̂(x,a)s

(j)
θ (x,a1:k)

]] ]
= Ep(x)π0(a|x)

[(
w(x,a1:k)s

(j)
θ (x,a1:k)

)2
σ2(x,a)

]
+ Ep(x)

[
Vπ0(a|x)

[
w(x,a1:k)∆q,f̂ (x,a)s

(j)
θ (x,a1:k)

]]
+ Vp(x)

[
Eπ1st

θ (a1:k |x)

[
Eπ2nd

0 (ak+1:L|x,a1:k)

[
g(x,a1:k)s

(j)
θ (x,a1:k)

]]
+ Eπ1st

θ (a1:k|x)

[
Eπ2nd

ϕ (ak+1:L|x,a1:k)

[
(q(x,a)− g(x,a1:k)) s

(j)
θ (x,a1:k)

]] ]
(22)

= Ep(x)π0(a|x)

[(
w(x,a1:k)s

(j)
θ (x,a1:k)

)2
σ2(x,a)

]
+ Ep(x)

[
Vπ0(a|x)

[
w(x,a1:k)∆q,f̂ (x,a)s

(j)
θ (x,a1:k)

]]
+ Vp(x)

[
Eπ1st

θ (a1:k |x)

[
g(x,a1:k)s

(j)
θ (x,a1:k)

]
+ Eπ1st

θ (a1:k|x)

[
− g(x,a1:k)s

(j)
θ (x,a1:k)

+ Eπ2nd
ϕ (ak+1:L|x,a1:k)

[
q(x,a)s

(j)
θ (x,a1:k)

] ]]
= Ep(x)π0(a|x)

[(
w(x,a1:k)s

(j)
θ (x,a1:k)

)2
σ2(x,a)

]
+ Ep(x)

[
Vπ0(a|x)

[
w(x,a1:k)∆q,f̂ (x,a)s

(j)
θ (x,a1:k)

]]
+ Vp(x)

[
Eπ1st

θ (a1:k|x)

[
qπ

2nd
ϕ (x,a1:k)s

(j)
θ (x,a1:k)

]]
,

where we use the conditional pairwise correctness condition as g(x,a1:k) = q(x,a)− f̂(x,a) in
Eq. (22). s(j)θ (x,a1:k) is the j-th dimension of the score function.
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D Ablation Study about Hyperparameter Selection of R-POD

We study how the hyperparameter selection strategy affects the performance of R-POD. Specifically,
we compare R-POD (tuning, OPE) and R-POD (tuning, estimation error). R-POD (tuning, OPE)
selects the hyperparameter k by the policy value estimated by an unbiased OPE estimator, particularly
the IPS estimator. In contrast, R-POD (tuning, estimation error) selects the hyperparameter k by
a noise-added ground-truth policy value, where the noise (or estimation error) is sampled from a
uniform distribution of range (−∆max,∆max), where |∆max| is 10%∼ 90% of the ground-truth policy
value. For other configurations, we set n = 1000, |A| = 5, L = 3, λ = 1.0, and τ = 1.0.

Figure 4 shows that R-POD (tuning, estimation error) performs worse as it produces a larger bias
with increasing ∆max. R-POD (tuning, estimation error) outperforms R-POD(tuning, OPE) when the
estimation error is small, and becomes competitive when ∆max is around 50% of the ground-truth
policy value. This result suggests that there is room for improvement in terms of hyperparameter k
selection. Still, R-POD (tuning estimation error) outperforms the baseline estimators across varying
estimation errors and performs almost identically to the best-performing existing baseline (IPS-PG,
DR-PG) only when ∆max is more than 0.8. This result indicates R-POD’s robustness against the
estimation error in the MSE estimation and the choice of hyperparameter k.

Estimation errors (∆max)

Figure 4: Comparing the policy value (normalized by R-POD (tuning, OPE)) of the OPL methods,
with varying estimation errors in the hyperparameter selection process.
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