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Abstract

This paper investigates a novel lossy compression framework operating under loga-
rithmic loss, designed to handle situations where the reconstruction distribution
diverges from the source distribution. This framework is especially relevant for
applications that require joint compression and retrieval, and in scenarios involving
distributional shifts due to processing. We show that the proposed formulation
extends the classical minimum entropy coupling framework by integrating a bot-
tleneck, allowing for a controlled degree of stochasticity in the coupling. We
explore the decomposition of the Minimum Entropy Coupling with Bottleneck
(MEC-B) into two distinct optimization problems: Entropy-Bounded Information
Maximization (EBIM) for the encoder, and Minimum Entropy Coupling (MEC)
for the decoder. Through extensive analysis, we provide a greedy algorithm for
EBIM with guaranteed performance, and characterize the optimal solution near
functional mappings, yielding significant theoretical insights into the structural
complexity of this problem. Furthermore, we illustrate the practical application
of MEC-B through experiments in Markov Coding Games (MCGs) under rate
limits. These games simulate a communication scenario within a Markov Decision
Process, where an agent must transmit a compressed message from a sender to
a receiver through its actions. Our experiments highlight the trade-offs between
MDP rewards and receiver accuracy across various compression rates, showcasing
the efficacy of our method compared to conventional compression baseline.

1 Introduction

Consider the following Markov Chain modeling a general lossy compression framework
X

pT |X−−−→ T
qY |T−−−→ Y , where the input X with a marginal distribution pX , is encoded by the proba-

bilistic encoder p to generate the code T . Subsequently, the probabilistic decoder q reconstructs Y
from T . The objective is to identify the encoder and decoder that minimize the distortion between X
and Y , subject to an upper bound constraint on the expected code length H(T ) ≤ R.

It is common to measure the sample-wise distortion via direct comparison of (x, y) pairs through a
distortion function d(·, ·), and consider the expectation E [d(X,Y )] as a measure of average distortion.
Instead, we propose using the logarithmic loss (log-loss) H(X|Y ), or equivalently I(X;Y ), as an
alternative metric to enforce the distortion constraint. The log-loss distortion measure, commonly
employed in learning theory, was first explored within rate-distortion theory by Courtade and Wesel
[1] and Courtade and Weissman [2]. This measure is particularly suitable in scenarios where
reconstructions can be soft, meaning that the decoder produces a distribution rather than a distorted
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sample point [3]. Consequently, the optimization problem is formulated as follows:

min
pT |X , qY |T

H(X|Y )

s.t. X ↔ T ↔ Y,

H(T ) ≤ R,

P (X) = pX .

(1)

It is straightforward to check that the optimal solution of (1) is achieved when T = Y , with the
identity decoder. To address this issue of decoder collapse, we introduce a constraint on the output
marginal distribution, P (Y ):

Minimum Entropy Coupling with Bottleneck (MEC-B)

IMEC-B(pX , pY , R) = max
pT |X , qY |T

I(X;Y )

s.t. X ↔ T ↔ Y,

H(T ) ≤ R,

P (Y ) = pY ,

P (X) = pX

(2)

The addition of an output distribution constraint is a practical necessity, as in a lossy compression
setup the decoder needs to generate outputs following a desired distribution. For example, in image
restoration, the output consists of reconstructed images from the code adhering to a certain distribution,
possibly the same as the input distribution.

We explore two special cases of (2), where either the encoder or decoder is bypassed. This allows us
to optimize the encoder and decoder separately using these cases. First, consider the case where the
bottleneck is removed, meaning the constraint H(T ) ≤ R is relaxed, or R ≥ H(X). In this scenario,
X = T , and the optimization simplifies to:

Minimum Entropy Coupling (MEC)

IMEC(pX , pY ) = max
pY |X

I(X;Y )

s.t. P (Y ) = pY ,

P (X) = pX

(3)

This involves identifying the probabilistic mapping pY |X between the marginals pX and pY that
maximizes the obtained mutual information. This problem, as described in (3), has been extensively
studied in the literature as minimum entropy coupling (MEC), with early research conducted by
Vidyasagar [4], Painsky et al. [5], Kovačević et al. [6], Cicalese et al. [7], among others. Thus, we
define the original problem presented in (2) as minimum entropy coupling with bottleneck (MEC-B).
Next, consider the case where the decoder is removed, resulting from the relaxation of the output
distribution constraint in (2):

Entropy-Bounded Information Maximization (EBIM)

IEBIM(pX , R) =max
pT |X

I(X;T )

s.t. H(T ) ≤ R,

P (X) = pX

(4)

Similar to minimum entropy coupling, this problem identifies the joint distribution between two
random variables that maximizes their mutual information. However, rather than imposing a marginal
distribution constraint, it enforces a more flexible entropy constraint on one of the variables. Lemma 1
provides a decomposition for the mutual information between input and output I(X;Y ), given the
Markov chain X ↔ T ↔ Y .
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Lemma 1. Given a Markov chain X ↔ T ↔ Y :

I(X;Y ) = I(X;T ) + I(Y ;T )− I(T ;X,Y ). (5)

The proof follows multiple applications of the chain rule for mutual information. The following lower
bound on the MEC-B objective is attainable based on Lemma 1:

I(X;Y ) ≥ I(X;T ) + I(Y ;T )−R . (6)

In this work, we consider maximizing the lower bound (6) as a proxy to the main objective. This
allows a decomposition of the encoder and decoder for the MEC-B formulation in (2):

1. Encoder Optimization: The encoder is first optimized separately, according to Entropy-
Bounded Information Maximization in (4), IEBIM(pX , R), resulting in the marginal distribu-
tion p̂T on the code T .

2. Decoder Optimization: The decoder is then optimized by solving a minimum entropy
coupling in (3) between the code and output marginals, IMEC(p̂T , pY ).

Therefore, in terms of problems (2), (3), and (4):

IMEC-B(pX , pY , R) = max
pT |X , qY |T

I(X;Y ) (7)

≥ max
pT |X , qY |T

(
I(X;T ) + I(Y ;T )−R

)
(8)

≥ IEBIM(pX , R) + IMEC(p̂T , pY )−R . (9)

In this paper, we address the Entropy-Bounded Information Maximization problem in Section 3,
providing theoretical insights into the solution structure across the entire spectrum of rate limits. We
establish an upper bound on the objective and demonstrate that only deterministic mappings can
achieve this bound. Then, in Section 3.1, we introduce a greedy algorithm designed to identify deter-
ministic mappings with a guaranteed input-dependent gap from the optimal solution. Subsequently,
in Section 3.2, we describe a method to identify optimal mappings near any deterministic mapping,
effectively bridging the gap between discrete deterministic mappings and providing deeper theoretical
insights into the problem structure.

Following this theoretical groundwork, Section 4 applies the MEC-B framework to extend Markov
Coding Games (MCG) with communication bottlenecks between the source and the agent. Ex-
perimental results for MCGs with rate limits are detailed in Section 4.2, showcasing the practical
implications of our theoretical developments. The appendix sections complement these discussions
by including formal proofs for all theorems and lemmas, a concise overview of the original minimum
entropy coupling problem, and additional experimental results.

2 Related Work

Couplings and Minimum Entropy Coupling A fundamental problem in probability theory, known
as coupling, concerns determining the optimal joint distribution of random variables given their
marginal distributions. This problem has a long history, with early examples by Fréchet [8] seeking
the joint distribution that maximizes correlation subject to marginal constraints. References [9–12]
provide a broader treatment of these problem classes and their applications. Notably, optimal transport
(OT) emerges as a significant class within this framework, where optimality is defined as minimizing
the expected value of a loss function over the joint distribution. See [13] for an in-depth treatment of
the optimal transport problem.

The minimum entropy coupling (MEC) focuses on finding the joint distribution with the smallest
entropy given the marginal distribution of some random variables. This problem has been first studied
in [4–7], among others. While it is shown by Vidyasagar [4], Kovačević et al. [6] that MEC is
NP-Hard, the literature contains many approximation algorithms for this problem. One of the earliest
greedy algorithms for MEC was introduced by Kocaoglu et al. [14] in the context of causal inference,
achieving a local minimum with a gap of 1 + log n bits from the optimum, where n represents the
size of the alphabet. This bound was further improved in subsequent works [15, 16].
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Based on tools from the theory of majorization [17], Cicalese et al. [18] developed a new greedy
algorithm producing solutions 1 bit away from the optimal. Subsequent improvements by Li [19]
enabled the construction of a coupling whose entropy is within 2 bits of the optimal value, regardless
of the number of random variables involved. Despite these advances, Compton [15] identified a
majorization barrier that limits further improvements, while Compton et al. [16] introduced the
profile method offering stronger lower bounds for the coupling entropy.

Minimum entropy coupling finds innovative applications beyond causal inference [14, 20, 21]. For
instance, Sokota et al. [22] utilized it in Markov coding games to enable reinforcement learning
agents to communicate via Markov decision process trajectories. This application showcased MEC’s
utility in enabling efficient information transmission through constrained environments like video
game interactions. Similarly, de Witt et al. [23] applied MEC to securely encode secret information
in regular text, showing MEC corresponds to the maximally efficient secure procedure.

Lossy Source Coding While log-loss is widely used in prediction and learning, its application as a
distortion measure in the context of source coding has been less explored, with the earliest examples
appearing in [1] and [2]. Log-loss is particularly suited as a distortion measure in soft reconstructions,
meaning the decoder outputs a distribution. Shkel and Verdú [3] explored a single-shot lossy source
coding setting under logarithmic-loss, using a straightforward encoding scheme. Unlike the EBIM
formulation in (4) which imposes a direct entropy constraint on the code, this approach constrained
the code by the cardinality of its support.

Finally, Blau and Michaeli [24] introduced the Rate-Distortion-Perception (RDP) tradeoff in lossy
compression. The RDP framework does not fix the output distribution; instead, it imposes a softer
perceptual constraint on the generated outputs. Additionally, our work incorporates an entropy
constraint on T as a rate bottleneck, while in the RDP formulation, I(X;Y ) can be interpreted as
the rate bottleneck. In this line of research, the work of Liu et al. [25] is closest in spirit to our
approach, as the authors studied a lossy compression setting with different source and reconstruction
distributions. They demonstrated that their setting could be formulated as a generalization of optimal
transport with an entropy bottleneck. However, they used mean squared error (MSE) as the distortion
metric, while we consider log-loss. Therefore, the mathematical machinery required for our analysis
differs significantly from prior work.

3 Entropy-Bounded Information Maximization

Consider a discrete random variable X defined over the alphabet X = {1, . . . , n} with a given
marginal probability distribution pX . The following problem aims to establish a maximal information
coupling between X and another random variable T , defined over the alphabet T = {1, . . . ,m},
where the entropy of T is constrained to be no more than R bits. Unlike minimum entropy coupling,
the marginal distribution of the second random variable T is not predetermined; the only constraint
on T is its entropy.

IEBIM(pX , R) = max
pXT∈M

I(X;T ), (10)

where set M consists of all joint distributions pXT that satisfy the following conditions:

1.
∑

t pXT (x, t) = pX(x), ensuring that the marginal distribution of X is preserved.
2. H(T ) ≤ R ≤ H(X), ensuring the entropy of T is constrained to be no more than R.

We call this problem Entropy-Bounded Information Maximization (EBIM). Note that the objective in
(10) is upper-bounded by R, since:

IEBIM(pX , R) = max
pXT∈M

I(X;T )

≤ max
pXT∈M

H(T ) ≤ R. (11)

The following theorem establishes that only deterministic couplings can achieve this upper-bound.
Theorem 1. IEBIM(pX , R) = R if and only if there exists a function g : X → T such that
H(g(X)) = R.

The formal proof is presented in Section A.2. Note that the mutual information I(X;T ) is invariant to
permutations on T . Specifically, for any permutation π : T → T , we have I(X;T ) = I(X,π(T )).
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Given that problem (10) only constrains the entropy H(T ), the objective is indifferent to such
permutations. Let us define the permutation group of a joint distribution pXT as:

P(pXT ) = {P | P (x, π(t)) = pXT (x, t), ∀π : T → T } . (12)

Remark 1. Each partition of X is associated with a permutation group of a deterministic mapping.
Consequently, the total number of potential deterministic mapping groups, independent of the entropy
constraint on T , will be the total number of feasible partitions of X . The total number of ways to
partition a set of size n corresponds to the n-th Bell number, symbolized by Bn. The growth rate
of the Bell numbers is O(nn) [26], rendering brute force iteration of all deterministic mappings
infeasible.

In Figure 2 (left), a brute force method is applied to solve EBIM (10) for an input alphabet of
size three. As observed, there are five potential partitions on X , each corresponding to a point
where IEBIM(pX , R) = R. Given the impracticality of brute force search for large alphabet sizes,
in Section 3.1, we introduce a greedy search algorithm to identify deterministic mappings with a
guaranteed performance gap from the optimal. Following this, in Section 3.2, we explore optimal
mappings close to these deterministic mappings, providing a strategy to narrow the gap between the
identified deterministic mappings.

3.1 Proposed Search Algorithm for Deterministic Mappings

Since iterating over all deterministic mappings is not feasible, one should look for carefully con-
structed search algorithms to find such mappings with resulting H(T ) as close as possible to R.
Without the loss of generality, suppose pX = [p1, p2, · · · , pn] is arranged in a decreasing order.
Algorithm 1 presents a search approach for discovering a deterministic mapping T = g(X), resulting
in I(X;T ) that is at most h(p2) bits away from the optimal IEBIM(pX , R), where h(·) is the binary
entropy function: h(p) = −p log(p)− (1− p) log(1− p).

Algorithm 1 Deterministic EBIM Solver
Input: pX , R
Output: pXT

1: pXT ← diag(pX)
2: if R ≥ H(X) then
3: return pXT

4: for i← 1 to |pX | − 1 do
5: p

(i)
s ← Merge the two columns with the smallest sum in pXT .

6: I
(i)
s ← Mutual Information imposed by p

(i)
s .

7: p
(i)
l ← Merge the two columns with the largest sum in pXT .

8: I
(i)
l ← Mutual Information imposed by p

(i)
l .

9: if I(i)s ≤ R then
10: return p

(i)
s

11: else if I(i)l ≤ R < I
(i)
s then

12: return p
(i)
l

13: else
14: pXT ← p

(i)
l

The deterministic EBIM solver in Algorithm 1 has O(n log n) time complexity, where n is the
cardinality of the input alphabet. This is because the main loop of the algorithm runs for at most n
steps (as at each step we combine two elements of the input distribution) and finding min/max elements
can be done in O(log n) using a heap data structure. Also, the mutual information calculation at each
step can be done in constant time by only calculating the decrease in entropy after combining two
elements of the distribution.
Theorem 2. If the output of Algorithm 1 yields mutual information Î , then

IEBIM(pX , R)− Î ≤ h(p2), (13)

where h(·) is the binary entropy function, and p2 denotes the second largest element of pX .
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Let n = |pX |. The procedure outlined in Algorithm 1 establishes a series of deterministic mappings
p
(1)
s , p

(1)
l , · · · , p(n−1)

s , p
(n−1)
l , corresponding to a decreasing sequence of mutual information values

I
(1)
s , I

(1)
l , · · · , I(n−1)

s , I
(n−1)
l . The algorithm then picks the mapping with the highest mutual

information that does not exceed R. The proof involves establishing an upper bound on the gap
between these successive mutual information values. A formal proof is presented in Section A.3.

It is important to highlight that the gap described in Theorem 2 is bounded by one bit, i.e., h(p2) ≤ 1,
with equality achieved when pX = [0.5, 0.5]. Although the gap is capped at one bit, the maximal
mutual information in the EBIM formulation scales with R. Thus, the most natural interpretation of
this gap emerges in higher rate regimes. Furthermore, the gap described in Theorem 2 remains small
when p2 is small, specifically in cases where the input alphabet size is large and the distribution is not
heavily skewed toward a few elements.

3.2 Optimal Coupling Around Deterministic Mappings

Section 3.1 introduced a greedy search algorithm designed to identify deterministic mappings with a
guaranteed and input-dependent gap from the optimal. In this section, we find the optimal couplings
close to any deterministic mapping. This method allows us to close the gap between the mappings
identified by Algorithm 1, as will be demonstrated later.
Theorem 3. Let pXT denoted by a |X | × |T | matrix, defines a deterministic mapping T = g(X),
with I(X;T ) = H(T ) = Rg . We have IEBIM(pX , Rg) = Rg , and for small enough ϵ > 0:

1. IEBIM(pX , Rg + ϵ) is attained as follows:
Normalize the columns by dividing each column by its sum. Then, select the cell with the
smallest normalized value and move an infinitesimal probability mass from this cell to a new
column of pXT in the same row.

2. IEBIM(pX , Rg − ϵ) is achieved as follows:
Identify the columns with the smallest and largest sums in pXT . Select the cell with the
smallest value in the column with the lowest sum. Transfer an infinitesimal probability mass
from this cell to the column with the highest sum in the same row.

𝑅𝑔

𝑅!
0.4

+𝜖0.3−𝜖

0.2

0.1

0.4

0.3

0.2
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𝑝𝑋𝑇 

𝑝𝑋𝑇 + d𝑝!

𝑝𝑋𝑇 + d𝑝"

0.4

0.3

0.2

0.1

IEBIM(pX , R)

IEBIM(pX , R)

Figure 1: An example for Theorem 3.

Figure 1 on the right depicts an example of optimal so-
lutions in the neighborhood of a deterministic mapping.
While Algorithm 1 effectively identifies deterministic map-
pings that produce mutual information close to the budget
R, Theorem 3 can help bridge the remaining gap. More
specifically, one can begin with a deterministic mapping
and use two probability mass transformations outlined in
Theorem 3 to navigate across the I-R plane.

Figure 2 illustrates this strategy; for pX = [0.7, 0.2, 0.1],
identifying all 5 possible deterministic mappings is
straightforward. Applying the transformations from The-
orem 3 then yields various solutions across the I-R plane
(represented by dashed lines). Subsequently, one can se-
lect the solution that maximizes mutual information for
any given value of R (highlighted with a thick solid line),
thus producing a comprehensive solution for every value of R. As demonstrated in Figure 2, this
strategy recovers the optimal solutions, as determined by brute force, for the simple case of an input
alphabet of three. However, while effective, the optimality of this approach remains a conjecture.

4 Application: Markov Coding Game with Rate Limit

Markov Coding Games (MCGs), as introduced by Sokota et al. [22], represent a specialized type of
multi-player decentralized Markov Decision Processes (MDPs) involving several key components:
a source, an agent (sender), a Markov decision process, and a receiver. An MCG episode unfolds
in three stages: initially, the agent receives a private message from the source, which it must then
indirectly convey to the receiver. Next, the agent participates in an episode of the Markov decision
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X
,R
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R

Theorem 3

Figure 2: Solutions to the EBIM problem for pX = [0.7, 0.2, 0.1]. Left: brute force solution. Right:
application of the transformations from Theorem 3 to each deterministic mapping (dashed lines) and
selection of solutions with maximal mutual information for each R value (thick solid line). This
strategy effectively recovers optimal solutions, aligning with those found by brute force in this case.

process. Finally, the receiver attempts to decode the original message based on the observed MDP
trajectory. The overall reward is a combination of the MDP payoff and the accuracy with which the
receiver decodes the message. MCGs are particularly interesting due to their ability to generalize
frameworks like referential games [27] and source coding [28].

We will consider a natural extension to Markov Coding Games, where the link from the source to
the agent is rate-limited. This means, contrary to the original setting of Sokota et al. [22], the agent
does not fully observe the message at each MDP round, but will receive a compressed version of the
message iteratively, and in turn, encodes information about the message in the MDP trajectory for the
receiver.

Following Sokota et al. [22], we define a rate-limited MCG as a tuple ⟨(S,A, T ,R),M, µ, ζ, R⟩,
where (S,A, T ,R) is an MDP denoted by state and action spaces, and reward and transition functions,
respectively. M is a set of messages, µ is the prior distribution over messages M, ζ is a non-negative
real number we call the message priority, and finally, R is the communication rate limit between the
source and the agent. An MCG episode proceeds in the following steps:

1. Message M ∼ µ is sampled from the prior over messages at the source.
2. Based on the selected message M and the history of the MDP episode, the source generates

and transmits signal T to the agent, adhering to the rate limit R.
3. The Agent uses a conditional policy π|T , which takes current state s ∈ S and received signal

T as input and outputs distributions over MDP actions A, to generate the next action a.
4. After repeating steps 2 and 3, the agent’s terminal MDP trajectory Z is given to the receiver

as an observation.
5. The receiver uses the terminal MDP trajectory Z to output a distribution over messages M,

estimating the decoded message M̂ .

The objective of the agents is to maximize the expected weighted sum of the MDP reward and the
accuracy of the receiver’s estimate E[R(Z) + ζI[M = M̂ ]] [22]. Optionally, If a suitable distance
function exists, instead, the objective can also be adjusted to minimize the difference between the
actual message and the guess. A diagram of the structure MCG with rate limit is shown in Figure 3.

Agent MDP Receiver

𝐴

𝑅, 𝑆

𝑇

𝐴, 𝑆

Source
𝑍 			"𝑀 𝑀

Figure 3: The structure of a Markov Coding Game with Rate Limit.
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4.1 Method Description

Algorithm 2 Source

1: Input: π, µ, R, s0

2: Observe message m ∼ µ
3: Initialize message belief pM ← µ
4: Initialize state s← s0

5: while Source’s turn do
6: pMT ← compress(pM , R)
7: t ∼ pT |M (m)
8: Send t to the agent.
9: pT ←

∑
m′ pMT (m

′, ·)
10: pTA← min_ent_coupling(pT , π(s))
11: pMA ←

∑
t′ pMT (·, t′) pA|T (t

′)
12: a, s← Observe action and next state
13: pM ← pM|A(a)

Algorithm 3 Agent

1: Input: π, µ, R, s0

2: Initialize message belief pM ← µ
3: Initialize state s← s0

4: while Agent’s turn do
5: pMT ← compress(pM , R)
6: Receive t from the source.
7: pT ←

∑
m′ pMT (m

′, ·)
8: pTA← min_ent_coupling(pT , π(s))
9: π|T ← pA|T (t)

10: a ∼ π|T
11: s← Commit action a to MDP.
12: pMA ←

∑
t′ pMT (·, t′) pA|T (t

′)
13: pM ← pM|A(a)

Algorithm 4 Receiver

1: Input: z, π, µ, R, s0

2: Initialize message belief pM ← µ
3: Initialize state s← s0

4: for s, a ∈ z do
5: pMT ← compress(pM , R)
6: pT ←

∑
m′ pMT (m

′, ·)
7: pTA← min_ent_coupling(pT , π(s))
8: pMA ←

∑
t′ pMT (·, t′) pA|T (t

′)
9: pM ← pM|A(a)

10: return argmaxm′ pM (m′)

Marginal Policy Following Sokota et al. [22], be-
fore execution we first derive a marginal policy
π for the MDP, based on the Maximum-Entropy
reinforcement learning objective:

max
π

Eπ

[∑
t

R(St, At) + βH(At|St)

]
. (14)

The value of β in (14) needs to be determined in ac-
cordance with the message priority ζ of the MCG.
Note that this marginal policy does not depend on
the choice of message. By introducing stochas-
ticity into this policy, we can encode information
about the message into the selection of actions at
each step during runtime. For more details, see
Section C.1.

Step 1 - Source: Message Compression At the
beginning of each round, given the updated mes-
sage belief pM , the source compresses the message
to generate the signal T , adhering to the source-
agent rate limit R, by solving EBIM in (10). The
source then transmits the signal T to the agent. Sub-
sequently, after observing the action taken by the
agent, the source updates the message belief for the
next round. Algorithm 2 outlines the steps taken by
the source.

Step 2 - Agent: Minimum Entropy Coupling
As illustrated in Algorithm 3, at each round, upon
receiving the signal T , the agent constructs a condi-
tional policy π|T by performing minimum entropy
coupling between the action distribution from the
marginal policy π(s) with the signal distribution
pT . Subsequently, the next action is sampled from
the conditional policy, a ∼ π|T . Finally, the agent
updates the message belief based on the chosen
action.

Receiver: Decoding the Message Given the
agent’s final MDP trajectory, the receiver mirrors
the actions of the source and agent to update the
message belief at each step. As outlined in Algo-
rithm 4, the process begins with the receiver com-
pressing the message based on the current message
belief. This is followed by performing minimum entropy coupling between the marginal policy and
the distribution of the compressed message. The final message belief is used to estimate the decoded
message.

4.2 Experimental Results

This section presents the experimental results of the method described in Section 4.1, applied to
Markov Coding Games. For our experiments, we utilize a noisy Grid World environment for the
Markov Decision Process. Section C.2 provides more detail on the environment setup used in this
experiment.

The marginal policy is learned through Soft Q-Value iteration, as described in Algorithm 8. By
increasing the value of β in Equation (14), we induce more randomness into the marginal policy.
Consequently, higher values of β lead to an increase in the total number of steps taken by the agent to
reach the goal, resulting in a more heavily discounted reward. Conversely, as the entropy of actions at
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each state is increased, there is an increase in the mutual information between the actions and the
compressed message during the minimum entropy coupling at each step. This dynamic establishes a
fundamental trade-off between the MDP reward and the receiver’s decoding accuracy, through the
adjustment of β. Figure 8 shows policies learned by high and low values of β.

Algorithm 5 Uniform Quantizer Encoder
Input: pX , R
Output: pXT

1: n← length of pX
2: m← ⌊2R⌋
3: partition_size← ⌈n/m⌉
4: Initialize pXT as an n×m zero matrix
5: for i← 0 to m− 1 do
6: start← i× partition_size
7: end← min(start+ partition_size, n)
8: pXT [start : end, i]← pX [start : end]

9: return pXT

We compare our proposed compression method
in Algorithm 1 with a baseline of uniform quan-
tization. As detailed in Algorithm 5, given an
entropy budget R, the input symbols are uni-
formly partitioned into ⌊2R⌋ bins, and each bin
is encoded with the same code.

Figure 4 illustrates the trade-off between the av-
erage MDP reward and the receiver’s decoding
accuracy by varying β, using our deterministic
EBIM solver in Algorithm 1, and the uniform
quantization encoder in Algorithm 5. Here, the
compression rate is defined by the ratio of the
message entropy to the allowed code budget
H(T ).
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Figure 4: The trade-off between average MDP reward vs. receiver’s accuracy, navigated by varying
the value of β. Left: using our search algorithm for compression (Algorithm 1), Right: using uniform
quantization in Algorithm 5. The message size is 512 with a uniform prior, and each data point is
averaged over 200 episodes.

Figure 5 illustrates the evolution of message belief over time for various values of β and rate budgets.
A marginal policy optimized with a higher β prioritizes message accuracy over MDP payoff, as
higher entropy of actions at each state provides more room for the agent to encode information about
the message. Consequently, as observed, this leads to improved receiver accuracy in fewer steps. In
addition, a lower compression rate permits the agent to retain more information about the message,
enabling more effective encoding of information in the selected trajectory.
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Figure 5: Evolution of message belief over time, for various values of β and rate budget, using our
search algorithm for compression in Algorithm 1 vs. uniform quantization in Algorithm 5.

5 Conclusion

We investigated a lossy compression framework under logarithmic loss, where the reconstruction
distribution differs from the source distribution. This framework supports joint compression and
retrieval applications, or more generally, cases where distributional shifts occur due to processing.
We demonstrated that this framework effectively extends the classical minimum entropy coupling by
incorporating a bottleneck, which regulates the degree of stochasticity in the coupling.

Furthermore, we showed that separately optimizing the encoder and decoder decomposes the Min-
imum Entropy Coupling with Bottleneck (MEC-B) into two distinct problems: Entropy-Bounded
Information Maximization (EBIM) for the encoder, followed by Minimum Entropy Coupling (MEC)
for the decoder. We conducted an extensive study of the EBIM problem, provided a functional
mapping search algorithm with guaranteed performance, and characterized the optimal solution
adjacent to functional mappings, offering valuable theoretical insights into the problem structure. To
illustrate an application of MEC-B, we presented experiments on Markov Coding Games (MCGs)
with rate limits. The results demonstrated the trade-off between MDP reward and receiver accuracy,
with varying compression rates, compared to baseline compression schemes.

Future research could focus on quantifying the gap between the separate optimization of the encoder
and decoder and the optimal joint setting. Also, enabling fine-grained control over the entropy spread
in the coupling can be key in some applications. Additionally, the application of Entropy-Bounded
Information Maximization (EBIM) in watermarking language models [29] suggests a valuable
intersection with state-of-the-art AI applications. Moreover, extending this framework to continuous
cases could lead to the design of neural network architectures based on the proposed framework
and provide information-theoretic insights into a broad spectrum of deep learning problems. These
include unpaired sample-to-sample translation [30–32], joint compression and upscaling [25, 33],
and the InfoMax framework [34, 35], among others.

10



References

[1] Thomas A Courtade and Richard D Wesel. Multiterminal source coding with an entropy-based
distortion measure. In 2011 IEEE International Symposium on Information Theory Proceedings,
pages 2040–2044. IEEE, 2011.

[2] Thomas A Courtade and Tsachy Weissman. Multiterminal source coding under logarithmic
loss. IEEE Transactions on Information Theory, 60(1):740–761, 2013.

[3] Yanina Y Shkel and Sergio Verdú. A single-shot approach to lossy source coding under
logarithmic loss. IEEE Transactions on Information Theory, 64(1):129–147, 2017.

[4] Mathukumalli Vidyasagar. A metric between probability distributions on finite sets of different
cardinalities and applications to order reduction. IEEE Transactions on Automatic Control, 57
(10):2464–2477, 2012.

[5] Amichai Painsky, Saharon Rosset, and Meir Feder. Memoryless representation of markov
processes. In 2013 IEEE International Symposium on Information Theory, pages 2294–298.
IEEE, 2013.
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A Mathematical Proofs

A.1 Proof of Lemma 1

Lemma 1. Given a Markov chain X ↔ T ↔ Y :

I(X;Y ) = I(X;T ) + I(Y ;T )− I(T ;X,Y ). (5)

Proof. By multiple applications of the chain rule for mutual information, i.e. I(A;B,C) = I(A;B)+
I(A;C|B), we have:

I(X;Y ) = I(X;Y, T )− I(X;T |Y ) (15)
= [I(X;T ) + I(X;Y |T )]− [−I(T ;Y ) + I(T ;X,Y )] (16)
= I(X;T ) + I(Y ;T )− I(T ;X,Y ). (17)

Note that from the Markov chain property, we have I(X;Y |T ) = 0.

A.2 Proof of Theorem 1

Theorem 1. IEBIM(pX , R) = R if and only if there exists a function g : X → T such that
H(g(X)) = R.

Proof. If such g exists, let

p∗XT (x, t) =

{
pX(x) t = g(x)

0 otherwise

This joint distribution effectively sets T = g(X). Note that p∗XT ∈ M and we have I(X;T ) =
H(T )−H(T |X) = H(g(X)) = R. Since IEBIM(pX , R) ≤ R, we conclude that IEBIM(pX , R) = R
for pXT = p∗XT .

Conversely, if IEBIM(pX , R) = R, then there exists p∗XT ∈ M such that I(X;T ) = R. Therefore

H(T ) = I(X;T ) +H(T |X) = R+H(T |X) ≤ R

⇒ H(T |X) ≤ 0

As a result, H(T |X) = 0 and H(T ) = R, which means p∗XT defines a function g such that
T = g(X), and H(g(X)) = H(T ) = R.

A.3 Proof of Theorem 2

Before providing the formal proof, it is helpful to gain some insight into the structure of the solution
first.
Remark 2. Let n = |pX |. The procedure outlined in Algorithm 1 establishes a series of deterministic
mappings p(0)l , p

(1)
s , p

(1)
l , · · · , p(n−1)

s , p
(n−1)
l , corresponding to a decreasing sequence of mutual

information values I(0)l , I
(1)
s , I

(1)
l , · · · , I(n−1)

s , I
(n−1)
l . The algorithm then picks the mapping with

the maximum mutual information that does not exceed R. Therefore

R− I(X;T ) ≤ max
{
I
(0)
l − I(1)s , I(1)s − I

(1)
l , · · · , I(n−1)

s − I
(n−1)
l

}
≤ max

{
I
(0)
l − I

(1)
l , I

(1)
l − I

(2)
l , · · · , I

(n−2)
l − I

(n−1)
l

}
. (18)

Example. For pX = [0.4 0.3 0.2 0.1], Algorithm 1 traverses through the following deterministic
mappings, from left to right:
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p
(0)
l p

(1)
s p

(1)
l p

(2)
s p

(2)
l p

(3)
s p

(3)
l

pXT

0.4 0 0 0
0 0.3 0 0
0 0 0.2 0
0 0 0 0.1


0.4 0 0

0 0.3 0
0 0 0.2
0 0 0.1


0.4 0 0
0.3 0 0
0 0.2 0
0 0 0.1


0.4 0
0.3 0
0 0.2
0 0.1


0.4 0
0.3 0
0.2 0
0 0.1


0.40.3
0.2
0.1


0.40.3
0.2
0.1


I (X;T ) H (pX) H ([.4 .3 .3]) H ([.7 .2 .1]) H ([.7 .3]) H ([.9 .1]) 0 0

Definition 1. Let P ′ be a probability distribution resulted from merging two elements p > 0 and
q > 0 in an original distribution P , i.e. P = [· · · p · · · q · · ·] and P ′ = [· · · p+ q · · ·]. Then,
the amount of decrease in the entropy from this merge operation is characterized by:

∆H (p , q) = H (P )−H (P ′) (19)

= p log
1

p
+ q log

1

q
− (p+ q) log

1

p+ q
(20)

= p log

(
1 +

q

p

)
+ q log

(
1 +

p

q

)
. (21)

Lemma 2. The following properties hold for the function ∆H :

1. ∆H (· , ·) is monotonically increasing in both arguments.

2. ∆H (· , ·) is concave.

3. ∆H (p , 1− p) = h(p).

Proof. The properties are derived through straightforward derivative calculations:

1. ∂
∂p∆H = log(1 + q/p) ≥ 0, and ∂

∂q∆H = log(1 + p/q) ≥ 0.

2. The Hessian of ∆H is negative semidefinite:

H∆H
=

1

p+ q

[
−q/p 1
1 −p/q

]
, (22)

with eigenvalues λ1 = 0 and λ2 = −( qp + p
q )(

1
p+q ) < 0.

3. ∆H (p , 1− p) = −p log p− (1− p) log(1− p) = h(p).

Theorem 2. If the output of Algorithm 1 yields mutual information Î , then

IEBIM(pX , R)− Î ≤ h(p2), (13)

where h(·) is the binary entropy function, and p2 denotes the second largest element of pX .
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Proof. For the gap to the optimal objective, IEBIM(pX , R)− Î , we have:

▷ Equation (11) IEBIM(pX , R)− Î ≤ R− Î

▷ Remark 2 ≤ max
i∈{1,··· ,n−1}

I
(i−1)
l − I

(i)
l

▷ Algorithm 1, Line 8 = max
i∈{1,··· ,n−1}

H

(∑
x
p
(i−1)
l

)
−H

(∑
x
p
(i)
l

)
▷ Definition 1 = max

i∈{1,··· ,n−1}
∆H

(
i∑

k=1

pk , pi+1

)
▷ Lemma 2.1 ≤ max

i∈{1,··· ,n−1}
∆H

(
i∑

k=1

pk +
n∑

k=i+2

pk , pi+1

)
= max

i∈{1,··· ,n−1}
∆H (1− pi+1 , pi+1)

▷ Lemma 2.3 = max
i∈{1,··· ,n−1}

h (pi+1)

▷ p2, p3, · · · , pn ≤ 0.5 = h(p2).

Note that the above bound on the optimality of the proposed algorithm is by no means tight, as it
does not account for the intermediate distributions p(i)s .

A.4 Proof of Theorem 3

Theorem 3. Let pXT denoted by a |X | × |T | matrix, defines a deterministic mapping T = g(X),
with I(X;T ) = H(T ) = Rg . We have IEBIM(pX , Rg) = Rg , and for small enough ϵ > 0:

1. IEBIM(pX , Rg + ϵ) is attained as follows:
Normalize the columns by dividing each column by its sum. Then, select the cell with the
smallest normalized value and move an infinitesimal probability mass from this cell to a new
column of pXT in the same row.

2. IEBIM(pX , Rg − ϵ) is achieved as follows:
Identify the columns with the smallest and largest sums in pXT . Select the cell with the
smallest value in the column with the lowest sum. Transfer an infinitesimal probability mass
from this cell to the column with the highest sum in the same row.

Example. Figure 6 depicts an example of optimal solutions in the neighborhood of a deterministic
mapping.
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Figure 6: Optimal solutions in the neighborhood of a deterministic mapping.
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Proof. Let us view the joint distribution as a n×m matrix pXT . Note that:

pXT (x, t) =

{
pX(x) t = g(x)

0 otherwise
(23)

For example:

pXT =

0.4 0 0 0
0.3 0 0 0
0 0.2 0 0
0 0 0.1 0

 , g(x) =


1, x = 1, 2

2, x = 3

3, x = 4

(24)

Consider a perturbation dP ∈ Rn×m to pXT . For pXT + dP to be a valid distribution in M, we
need:

1.
∑
t

dP (x, t) = 0, ∀x ∈ X

2. dP (x, t) ≥ 0, ∀x, t s.t. t ̸= g(x)

3. dP (x, t) ≤ 0, ∀x, t s.t. t = g(x)

We define the set of all such perturbations as Ω ⊂ Rn×m. Next, let us define basis perturbations ∆x,t

for t ̸= g(x) as:

[∆x,t]ij =


−ε, if i = x, j = g(x)

+ε, if i = x, j = t

0, otherwise
(25)

Note that ∆x,t represents moving a probability mass of ε from non-zero cell (x, g(x)) to empty cell
(x, t). For the example in equation (24):

∆2,3 =

 0 0 0 0
−ε 0 +ε 0
0 0 0 0
0 0 0 0


The significance of these bases is that any perturbation in Ω can be represented as:

dP =
∑
x,t

t ̸=g(x)

αx,t ∆x,t, (26)

with coefficients αx,t ≥ 0. For example: 0 0 0 0
−3ε +2ε +ε 0
0 0 0 0
0 0 0 0

 = 2×∆1,1 +∆1,2.

Realizing IXT , HXT , and HT as functions of a joint distribution, we are interested in calculating the
ratio dIXT /dHT with respect to a perturbation dP ∈ Ω as ε → 0 at pXT . Note that since for any
dP ∈ Ω, dHX = 0, we have:

dIX,T

dHT
=

dHX + dHT − dHX,T

dHT
= 1− dHX,T

dHT
.
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Therefore

dIX,T

dHT
= 1− dHX,T (pXT , dP )

dHT (pXT , dP )

= 1−
dHX,T

(
pXT ,

∑
x

∑
t ̸=g(x)

αx,t ∆x,t

)
dHT

(
pXT ,

∑
x

∑
t̸=g(x)

αx,t ∆x,t

)

= 1−

∑
x

∑
t ̸=g(x)

αx,t dHX,T (pXT ,∆x,t)∑
x

∑
t̸=g(x)

αx,t dHT (pXT ,∆x,t)
. (27)

dHX,T (pXT ,∆x,t) represents the amount of change in the joint entropy, when an infinitesimal mass
of ε is moved from (x, g(x)) to (x, t). More precisely, from (23) and (25):

dHX,T (pXT ,∆x,t) = HX,T (pXT +∆x,t)−HX,T (pXT )

= [−(pX(x)− ε) log(pX(x)− ε)− ε log ε]− [−pX(x) log pX(x)]

= pX(x) log
pX(x)

pX(x)− ε
+ ε log

pX(x)− ε

ε

= ε+O(ε2) + ε log
pX(x)

ε
. (28)

The last line uses the fact that for small enough x, f(x) = a log a
a−x = x+O(x2). Similarly:

dHT (pXT ,∆x,t) = HT (pXT +∆x,t)−HT (pXT )

=
[
−
(
pT
(
g(x)

)
− ε
)
log
(
pT
(
g(x)

)
− ε
)
−
(
pT (t) + ε

)
log
(
pT (t) + ε

)]
−
[
− pT

(
g(x)

)
log pT

(
g(x)

)
− pT (t) log pT (t)

]
= pT

(
g(x)

)
log

pT
(
g(x)

)
pT
(
g(x)

)
− ε

+ pT (t) log
pT (t)

pT (t) + ε
+ ε log

pT
(
g(x)

)
− ε

pT (t) + ε

= ε+O(ε2)− ε+O(ε2) + ε log
pT
(
g(x)

)
pT (t) + ε

= log
pT
(
g(x)

)
pT (t) + ε

+O(ε2). (29)

Plugging (28) and (29) back to (27), we will get:

dIX,T

dHT
= 1−

∑
x

∑
t ̸=g(x)

αx,t

[
ε+ ε log

pX(x)

ε
+O(ε2)

]
∑
x

∑
t ̸=g(x)

αx,t

[
log

pT
(
g(x)

)
pT (t) + ε

+O(ε2)

]

= 1−

∑
x

∑
t ̸=g(x)

αx,t log
pX(x)

ε∑
x

∑
t̸=g(x)

αx,t log
pT
(
g(x)

)
pT (t) + ε

, (30)

18



where αx,t is normalized by:
αx,t =

αx,t∑
x

∑
t ̸=g(x)

αx,t
.

Let’s focus on the limit of (30) when ε → 0: If there is any t ∈ T with pT (t) = 0 and αx,t > 0,
the denominator of the second term will grow without bound, otherwise the denominator remains
bounded. Therefore, for the limit of (30) we have:

lim
ε→0

dIX,T

dHT
=


−∞ if αx,t = 0 ∀t s.t. pT (t) = 0

1−
(∑

x

∑
pT (t)=0

αx,t

)−1

if ∃t : αx,t > 0 and pT (t) = 0
(31)

For dHT > 0, we need to find a perturbation (i.e. coefficients αx,t) that maximizes dIXT /dHT .
From (31), this means ∃t ∈ T with αx,t > 0 and pT (t) = 0.

α = argmax
α

dIX,T

dHT
= argmax

α
1−

(∑
x

∑
pT (t)=0

αx,t

)−1

= argmax
α

∑
x

∑
pT (t)=0

αx,t

Therefore,
∑
x

∑
pT (t)=0

αx,t = 1 which means αx,t = 0 if pT (t) > 0. In other words, we should only

consider perturbations where masses are moved to all-zero columns. Continuing (30):

α = argmax
α

dIX,T

dHT

= argmax
α

1−

∑
x

∑
pT (t)=0

αx,t log
pX(x)

ε∑
x

∑
pT (t)=0

αx,t log
pT
(
g(x)

)
ε

= argmax
α

1−
− log ε+

∑
x

∑
pT (t)=0

αx,t log pX(x)

− log ε+
∑
x

∑
pT (t)=0

αx,t log pT
(
g(x)

)

= argmax
α

− 1

log ε

∑
x

∑
pT (t)=0

αx,t log
pT
(
g(x)

)
pX(x)


= argmin

α

∑
x

∑
pT (t)=0

αx,t log
pX(x)

pT
(
g(x)

) .
This is achieved by selecting

⇒ αx,t =

1, x = argmin
x′

pX(x′)

pT
(
g(x′)

) and pT (t) = 0

0, otherwise
(32)

In other words, first, normalize columns in pXT by their sum, then move an infinitesimal probability
mass from the cell with the smallest normalized value to an all-zero column. It is easy to confirm that
dHT > 0 for such a perturbation. For the example distribution in (24):

pXT + dP =

 0.4 0 0 0
0.3− ε 0 0 ε

0 0.2 0 0
0 0 0.1 0

 (33)
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On the other hand, for dHT < 0, we need to find a perturbation (i.e. coefficients αx,t) that minimizes
dIXT /dHT . From (31), this means αx,t = 0 for all t ∈ T that pT (t) = 0. Therefore, as in (30):

α = argmin
α

dIX,T

dHT

= argmin
α

1−

∑
x

∑
t ̸=g(x)

αx,t log
pX(x)

ε∑
x

∑
t ̸=g(x)

αx,t log
pT
(
g(x)

)
pT (t)

= argmin
α

1−
− log ε+

∑
x

∑
t ̸=g(x)

αx,t log pX(x)

∑
x

∑
t̸=g(x)

αx,t log
pT
(
g(x)

)
pT (t)

= argmin
α

∑
x

∑
t ̸=g(x)

αx,t log
pT
(
g(x)

)
pT (t)

.

This is achieved by selecting

⇒ αx,t =

{
1, x = argmin

x′
pT
(
g(x′)

)
and t = argmax

t′
pT (t

′)

0, otherwise
(34)

In other words, moving an infinitesimal probability mass from the smallest column to the largest
column of pXT . It is easy to confirm that dHT < 0 for such a perturbation. For the example
distribution of (24):

pXT + dP =

0.4 0 0 0
0.3 0 0 0
0 0.2 0 0
ε 0 0.1− ε 0

 (35)

B Minimum Entropy Coupling

Consider two discrete random variables X and Y , over alphabets X and Y with probability mass
functions pX and pY , respectively. The goal of minimum entropy coupling is to find the joint
distribution pXY that minimizes the joint entropy H(X,Y ):

min
pXY

H(X;Y )

s.t.
∑
y∈Y

pXY (x, y) = pX(x) ∀x ∈ X ,

∑
x∈X

pXY (x, y) = pY (y) ∀y ∈ Y

(36)

This is a concave minimization problem over a standard polyhedron [36]. Therefore, every vertex of
the polyhedron is a local minimum and the global minimum happens at a subset of the vertices.

Note that an standard polyhedron is defined as P = {x ∈ Rn| Ax = b, x ≥ 0}, where A ∈ Rm×n

with linearly independent rows. A point x∗ ∈ P is a vertex if and only if it has n−m zero elements
and columns of A corresponding to other m non-zero elements are linearly independent. Hence, to
exhaustively iterate all the vertices:
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1. Choose m linearly independent columns Aπ(1), · · · ,Aπ(m).

2. Let xi = 0 for all i ∈ π(1), ..., π(m)

3. Solve the system of m equations Ax− b = 0 for the unknowns xπ(1), · · · ,xπ(m)

Therefore a crude upper-bound on the number of vertices would be
(
n
m

)
. This can be enhanced

to
(
n−m/2
m/2

)
[37] which is still exponential in m. Next, we will show that the minimum entropy

coupling problem as defined in (36) is essentially NP-Hard. This is done by reduction from another
NP-complete problem, the k-Subset-Sum (see [6] for more details).
Remark 3. The minimum entropy coupling problem in (36) is NP-Hard [6].

Proof. To show an optimization problem is NP-Hard, we need to show the corresponding decision
problem is NP-Hard. Given an optimization problem, a decision version is whether or not any
target value t is achievable. Without the loss of generality, assume |X | > |Y|. We set t = H(Y ),
i.e. to decide if there exists a function f : X → Y such that Y = f(X). Let’s call this problem
Deterministic Matching.

Next, we show any instance of the k-Subset-Sum problem can be reduced to an instance of Determin-
istic Matching, by a polynomial-time procedure (denoted by the notation <p). Consider a general
instance of the k-Subset-Sum problem: Given set S of integers and target values {ti|1 ≤ i ≤ k},
decide if there exists a partition {Si|1 ≤ i ≤ k} of size k on S such that

∑Si = ti for all 1 ≤ i ≤ k.
Now, set pX(i) = si/

∑
(S),∀si ∈ S and pY (i) = ti/

∑
(tj). Then, clearly solving Deterministic

Matching for pX , pY will solve the original k-Subset-Sum problem. Therefore, k-Subset-Sum <p

Deterministic Matching and hence, Deterministic Matching is NP-Hard. Consequently, Minimum
Entropy Coupling is an NP-Hard optimization problem.

Finally, we introduce two linear-time approximate greedy algorithms for the minimum entropy cou-
pling problem, and numerically compare their achieved minima to a general approximate algorithm.

Algorithm 6 Max-Seeking Minimum Entropy Coupling
Input: marginal distributions pX , pY
Output: joint distribution pXY

1: pXY (x, y)← 0, ∀x, y ∈ X ,Y
2: while pX , pY ̸= 0 do
3: x∗ ← argmaxx pX(x)
4: y∗ ← argmaxy pY (y)
5: pXY (x∗, y∗)← min{pX(x∗), pY (y∗)}
6: pX(x∗)← pX(x∗)−min{pX(x∗), pY (y∗)}
7: pY (y∗)← pY (y∗)−min{pX(x∗), pY (y∗)}
8: return pXY

Algorithm 7 Zero-Seeking Minimum Entropy Coupling
Input: marginal distributions pX , pY
Output: joint distribution pXY

1: pXY (x, y)← 0, ∀x, y ∈ X ,Y
2: while pX , pY ̸= 0 do
3: (x∗, y∗)← argminx,y |pX(x)− pY (y)|
4: pXY (x∗, y∗)← min{pX(x∗), pY (y∗)}
5: pX(x∗)← pX(x∗)−min{pX(x∗), pY (y∗)}
6: pY (y∗)← pY (y∗)−min{pX(x∗), pY (y∗)}
7: return pXY

At each step, each algorithm selects a symbol from each random variable and connects them in the
joint distribution by assigning the higher probability of the two symbols, updating the marginals
accordingly. The max-seeking version targets the symbols with the largest remaining probability mass
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at each step, whereas the zero-seeking version pairs symbols with the most similar probability mass.
Furthermore, the greedy algorithm described by Kocaoglu et al. [14] resembles the max-seeking
version outlined in Algorithm 6.

As a simple baseline, we randomly generated 100 pairs of joint distributions and fed them to our
greedy solvers. We also used a general concave minimization method, Successive Linearization
Algorithm (SLA) [38], and compared the achieved joint entropy. Table 1 summarizes the average
joint entropy over 100 trials for each method.

Table 1: Minimum Entropy Coupling: average achieved joint entropy of 100 simulations of marginal
distributions.

Name Entropy
Independent Joint 5.443± 0.101
SLA 3.225± 0.141
Max-Seeking Greedy 2.946± 0.064
Zero-Seeking Greedy 2.937± 0.058

C Markov Coding Games

C.1 Backgrounds and Notations

Markov Decision Process MDPs are represented by the tuple notation (S,A,R, T ), where S
is the state space, A denoteds the action space, R : S × A → R defines the reward function,
and T : S × A → P(S) represents the transition function. The way an agent interacts with an
MDP is determined by its policy π : S → P(A), which assigns distributions over actions for each
state. Our main focus is on episodic MDPs, which terminate after a limited sequence of transitions.
The sequence of states and actions, called a trajectory, is recorded as z = (s0, a0, . . . , sT ). The
notation R(z) =

∑
t γ

tR(st, at) is used to represent the total rewards accrued throughout a sequence.
The primary aim of an MDP is to devise a policy that maximizes the expected cumulative reward
E[R(Z)|π].
Maximum Entropy Reinforcement Learning a policy that exhibits a high degree of randomness is
preferred in certain situations. Under these circumstances, the maximum-entropy RL objective

max
π

Eπ

[∑
t

R(St, At) + βH(At|St)

]
(37)

serves as a compelling substitute to the conventional goal of maximizing expected aggregate rewards
[39]. This objective trades off expected returns with conditional entropy of the selected policy,
modulated by the temperature hyperparameter β. A generalization of the Q-value iteration method for
maximum-entropy RL objective (also known as soft Bellman equation [40]) is shown in Algorithm 8.

Algorithm 8 Soft Q-Value Iteration
1: Input: MDP, β
2: Initialize: π0 to any policy
3: i← 0
4: repeat
5: Qi+1

soft (s, a)← R(s, a) + γ
∑

s′ Pr(s′|s, a) m̃axβ
a′

Qi
soft(s

′, a′)

6: i← i+ 1
7: until ∥Qi

soft(s, a)−Qi−1
soft (s, a)∥∞ ≤ ϵ

8: Extract policy: πgreedy(·|s) = softmax
(
Qi

soft(s, ·)/β
)

The soft maximum operator is defined as m̃axβ
a

Q(s, a) = β log
∑

a exp
(

Q(s,a)
β

)
.
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C.2 Environment Setup

For our experiments, we utilize a simple environment known as Grid World, for the Markov Decision
Process. In this setup, the agent is placed on an 8× 8 grid and, at each step, can move left, right, up,
and down. The primary objective for the agent is to navigate from the starting cell to the goal cell
to receive a reward of 1, while avoiding a trap cell with a reward of −1. Also, the environment is
noisy; even if the agent decides to move in a specific direction, the environment might, with a certain
noise probability, force a move in a direction 90◦ off the intended path. The rewards received are
discounted by a factor of 0.95. Finally, the receiver has to decode a message, uniformly chosen from
an alphabet of size 1024, given the final trajectory of the agent. Figure 7 illustrates the Grid World
used in this experiment and depicts a trajectory taken by the agent. The environment used in the
experiments is forked from the implementation of Hanselman [41].
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Figure 7: The Grid World Setup used in the experiments. The starting cell is depicted by a red circle,
while the goal, trap, and obstacle cells are colored green, red, and grey, respectively. Additionally, a
non-deterministic policy is demonstrated through the probabilities of actions in each direction within
each cell. The path taken by the agent is traced in black. Note that due to the noisy environment, the
agent may move in directions not explicitly suggested by the policy.

The marginal policy is learned through Soft Q-Value iteration, as described in Algorithm 8. By
increasing the value of β in Equation (14), we induce more randomness into the marginal policy.
Figure 8 shows two policies learned by high and low values of β.
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Figure 8: The Maximum Entropy policy learned through Soft Q-Value iteration of Algorithm 8, for
log β = −6 (left) and log β = −3 (right).

D Additional Experimental Results

D.1 Deterministic EBIM Solver vs. Shkel et al. (2017)

As discussed in Section 2, our proposed search method in Algorithm 1 is compared with the encoder
from Shkel and Verdú [3]. Our formulation directly imposes an entropy constraint on the code,
whereas the encoding scheme by Shkel et al. limits the code by its alphabet size. In their approach,
the encoder iterates over all input symbols, assigning each one to a message that has accumulated the
smallest total probability up to that point.

Figure 9 displays the mutual information obtained for each maximum allowed code rate value,
considering two different input distributions. As observed, the two methods yield comparable mutual
information in the high-rate regime. However, in the low-rate regime, our proposed algorithm
identifies more mappings and thus significantly outperforms the encoder described in [3].
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Figure 9: Obtained I(X;T ) vs. maximum allowed H(T ) for Binomial (left) and Truncated Geomet-
ric (right) input distributions.
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D.2 Visualizing Couplings from MEC-B

As discussed in Section 1, optimizing the encoder and decoder separately for the Minimum Entropy
Coupling with Bottleneck (MEC-B) problem, as outlined in (2), involves first designing the encoder
by solving the Entropy-Bounded Information Maximization (EBIM) in (10). This is followed by
optimizing the decoder using Minimum Entropy Coupling (MEC) between the code distribution
(derived from the previous step) with the output distribution.

To illustrate the couplings generated, we apply the MEC-B framework to inputs and outputs that are
uniformly distributed across an alphabet of size 30. For EBIM, we only search for deterministic map-
pings using Algorithm 1, while for MEC, we employ the max-seeking method outlined in Algorithm 6.
Figure 10 illustrates the generated couplings for varying encoder compression rates, defined by the
ratio of the entropy of the input H(X) to the allowed code budget H(T ). Greater compression rates
are observed to lead to larger entropy couplings; moving from completely deterministic mappings to
increasingly stochastic ones.
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Figure 10: Generated couplings in MEC-B formulation (2), for uniform input and output distributions.
The compression rate is defined as H(X)/R. Higher compression rates lead to more stochastic
couplings with increased entropy.
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E Unsupervised Image Restoration

This section introduces a preliminary formulation and initial results for a joint image compression
and upscaling task, intended to illustrate a practical application of our proposed MEC-B framework
and to suggest potential avenues for future research.

We consider two unpaired datasets, DX and DY , which contain low-resolution and high-resolution
images, respectively. Because the datasets are unpaired, there is no direct correspondence between
a specific low-resolution image in DX and a high-resolution image in DY . In this setup, the task
requires compressing a low-resolution image X into a compressed representation T , and then
reconstructing an upscaled version Y from T .

In applying our MEC-B framework in Eq. (2), we leverage the Variational Information Maximization
approach of Barber and Agakov [42]:

I(X;Y ) = H(X)−H(X|Y ) (38)

= H(X) + Ey∼pY

[
Ex∼pX|Y (·|y)

[
log pX|Y (x|y)

]]
(39)

= H(X) + Ey∼pY

[
Ex∼pX|Y (·|y) [log qγ(x|y)] +DKL

(
pX|Y (·|y) || qγ(·|y)

)]
(40)

≥ H(X) + Ey∼pY

[
Ex∼pX|Y (·|y) [log qγ(x|y)]

]
. (41)

Using the Lemma 5.1 from Chen et al. [43], we have:

I(X;Y ) ≥ H(X) + Ey∼pY

[
Ex∼pX|Y (·|y) [log qγ(x|y)]

]
(42)

= H(X) + Ex∼pX ,ŷ∼pY |X(·,x) [log qγ(x|ŷ)] (43)

In practical terms, by training the network qγ to model the degradation process Y → X and recon-
structing x from ŷ, we maximize a lower bound on the mutual information I(X;Y ). Simultaneously,
we enforce the output distribution constraint pY via an adversarial loss from a discriminator dρ. The
total loss is therefore composed of an information loss and an adversarial loss, L = Linfo + λLadv.
Figure 11 illustrates a block diagram of this framework. Note that we use a deterministic encoder fθ
that outputs the quantized code T , while the generator remains stochastic due to the addition of noise
z.
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Figure 11: Block diagram of the unsupervised image restoration framework.

Figures 12 and 13 present sample output results after training the networks to achieve 4×-upscaling
of the input images, using the MNIST [44] and SVHN [45] datasets. Observing Figure 13, we notice
some color discrepancies between the original and upscaled images. This discrepancy highlights an
inherent property of mutual information: for any invertible function f , I(X;Y ) = I(X; f(Y )). This
implies that the objective function is invariant to feature permutations, including transformations like
color rotations in image channels, which can manifest as color distortions in the output. To mitigate
such artifacts, careful architectural or design constraints are required to properly address feature
permutations.
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Figure 12: Output samples from the MNIST dataset, for different number of code dimensions and the
number of bits per dimension of the code.
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Figure 13: Input and output samples from the SVHN dataset.
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