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ABSTRACT

Image completion is a task that aims to fill in the missing region of a masked image
with plausible contents. However, existing image completion methods tend to
fill in the missing region with the surrounding texture instead of hallucinating a
visual instance that is suitable in accordance with the context of the scene. In this
work, we propose a novel image completion model, dubbed Refill, that hallucinates
the missing instance that harmonizes well with - and thus preserves - the original
context. Refill first adopts a transformer architecture that considers the types,
locations of the visible instances, and the location of the missing region. Then, Refill
completes the missing foreground and background semantic segmentation masks
within the missing region, providing pixel-level semantic and structural guidance
to generate missing contents with seamless boundaries. Finally, we condition
the image synthesis blocks of Refill using the completed segmentation mask to
generate photo-realistic contents to fill out the missing region. Experimental results
show the superiority of Refill over state-of-the-art image completion approaches on
various natural images.

1 INTRODUCTION

Image completion is the task of restoring the masked regions in an image, which requires an
understanding of the unmasked instances and the various relationships among them. Researchers
have worked to develop image completion models for practical applications, such as image editing (Jo
& Park, 2019; Ling et al., 2021), restoration (Wan et al., 2020; Liang et al., 2021), and object
removal (Shetty et al., 2018). Most previous models, however, focus on filling in the missing region
realistically without considering the instance that needs to be restored. For example, we observe that
even the cutting-edge image inpainting model (Li et al., 2022) tends to complete the missing region
with surrounding textures rather than attempting to restore the lost instance; this limits the usage of
image completion models in real-world applications.

Removal of a focal instance in a scene can lead to substantial context change. For example, the
removal of the horse in the image of Figure 1 changes the local context around the missing region
from “a person riding a horse on the beach” to “a boy walking on the beach”. HVITA (Qiu et al.,
2020) is the only work that tackles such substantial context change, which occurs from the complete
removal of a visual instance from the scene. However, HVITA has three major limitations: (1) HVITA
mainly targets rectangle masks and thus lacks generalization to other mask forms, (2) the completed
image produced by HVITA exhibits abrupt changes along the boundaries between the generated and
original regions, and (3) HVITA has a heavy reliance on a refinement network to produce realistic
images. To alleviate these issues, we propose a new framework called Refill that leverages a predicted
semantic segmentation mask as guidance for image completion.

Refill performs image completion in three steps: 1) predicting the class of the missing instance, 2)
generating a semantic segmentation mask of the missing region, and 3) completing the masked image
using the segmentation guidance. Specifically, Refill predicts the class of the missing instance based
on the context of the image, which is determined by mining the inter-instance co-occurrence using a
transformer network. Then, Refill generates the segmentation masks of both the missing instance and
the background area of the missing region individually using a conditional GAN and transformer
body reconstruction network. Finally, by taking the generated segmentation mask as input, our
framework generates a context-friendly instance and its background, which fills in the masked image
to finally produce a realistic natural image. The proposed context-aware, segmentation-guided
image completion framework enables Refill to handle missing regions with arbitrary shapes (such
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Figure 1: From the first column, Input image with a missing region, results of state-of-the-art image
completion approaches, such as MAT (Li et al., 2022) and HVITA (Qiu et al., 2020), Our result (Refill),
and the target image. We compute CLIPScore around the generated part using the query text. As
our approach generates a horse to complete the image rather than fills using background textures,
CLIPScore of our result exhibits the best performance among the other models.

as scribbles), unlike HVITA (Qiu et al., 2020) which is best suited for missing rectangular regions.
Note that Refill avoids the need for a refinement network, unlike HVITA, which heavily relies on the
performance of its refinement network.

To evaluate and compare our model against existing methods, we first employ an off-the-shelf image
captioning network, OFA (Wang et al., 2022), to produce a caption for each missing region of the
masked images. We propose to use the produced caption as the context query, which represents
the context of the missing regions. To measure how much the context of the image changes after
completion, we propose to use two evaluation metrics: (1) CLIPScore (Schönfeld et al., 2021),
which employs CLIP visual and textual encoders to determine whether the generated image region
is well aligned with the context query, and (2) Visual Grounding Accuracy (VGA), which uses a
pretrained visual grounding model (Wang et al., 2022) to determine whether the context query can
successfully ground the generated image region. We also evaluate our method using conventional
image quality assessment metrics, including FID (Heusel et al., 2017) and LPIPS (Zhang et al., 2018).
On COCO-panoptic (Lin et al., 2014)/Visual Genome (Krishna et al., 2017) datasets, Refill shows
comparable visual quality (FID=7.284/5.849) to the state-of-the-art image completion approach such
as MAT (Li et al., 2022), while Visual Grounding Accuracy and CLIPScore are 12.472/14.107%
and 0.027/0.029 better than HVITA. These results demonstrate that our approach can complete the
missing regions of masked images in a context-friendly manner to yield high-quality images.

Our contributions are summarized as follows:

• We propose a novel framework called Refill which completes the missing region of masked
images in a context-friendly manner, preserving the original context by leveraging a seg-
mentation mask to encourage visual consistency between the generated and unmasked areas
without relying on a refinement network.

• We present a novel combination of two transformer-based modules which facilitates our
context-aware image completion pipeline. The missing instance inference transformer
predicts the class of the missing instance effectively. The transformer-body background
segmentation completion network shows better-recovered segmentation masks, especially
under the presence of large missing regions.

• We propose to adopt CLIPScore and VGA to evaluate the context consistency between the
original image and the completed image.

• Refill produces new visual instances in missing regions that are visually consistent with
the unmasked areas. Refill also shows better performance in CLIPScore and VGA metrics
compared to the baselines and exhibits comparable FID performance compared to the
state-of-the-art approaches.
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2 RELATED WORK

Traditionally, image completion task has been solved using approaches based on diffusion-based
methods (Bertalmio et al., 2000; Ballester et al., 2001) and patch-based methods (Criminisi et al.,
2003; 2004; Ding et al., 2018; Hays & Efros, 2007; Le Meur et al., 2011; Lee et al., 2016; Sun et al.,
2005). The fundamental assumption of these models is that the missing parts of an image can be
found and replaced with the remaining regions, making the model complete the missing region with
only low-level features and repetitive patterns in the image.

With the advancement of deep learning, image completion models based on deep generative models
have become the mainstream of photo-realistic image completion. Context encoder (Pathak et al.,
2016) benefits from adversarial training inspired by Generative Adversarial Network (GAN) (Good-
fellow et al., 2014) and shows perceptually more plausible results. VQGAN (Esser et al., 2021)
and Palette (Saharia et al., 2022) introduce more advanced generative models: auto-regressive and
denoising diffusion probabilistic modeling, and the approaches show compelling outputs. Along
with efforts to introduce better generative models, there have been studies to improve the completion
performance by revising existing architectures and convolution operations. Song et al. (2018a); Yan
et al. (2018); Yu et al. (2018); Liu et al. (2019) propose contextual attention layers for long-range
contextual encoding and image completion. Liu et al. (2018) propose a partial convolution layer
to alleviate color discrepancy and blurriness in completed images. Yu et al. (2019) generalizes the
partial convolution by introducing a dynamic feature selection mechanism at each spatial coordinate.
Recent works tackle large-scale missing regions in masked images, a more challenging setting. Zhao
et al. (2021) propose a modulation technique to handle this setting. Li et al. (2022) devises new
transformer blocks to take advantage of long-range context interaction to complete images.

Generating photo-realistic images from semantic segmentation masks is also relevant work for image
completion. The main goal is to condition the segmentation mask while preserving its spatial semantic
information. To solve this issue, the authors of SPADE (Park et al., 2019) propose a spatially-adaptive
(de)normalization layer by modulating pixel-wise features. Moreover, OASIS (Schönfeld et al.,
2021) strengthens the discriminator by replacing conventional real or fake discriminator with a
segmentation-based architecture. This mechanism improves the generator to synthesize realistic
images well aligned with semantic layout. These works are originally not intended to complete
masked images but designed to generate photo-realistic images from the noise vector conditioned on
semantic segmentation masks. We bring SPADE and OASIS and give segmentation mask guidance
for the missing region completion.

Other works employ semantic/structural information rather than directly complete the corrupted
images. EdgeConnect (Nazeri et al., 2019) and E-CE (Liao et al., 2018) propose models that recover
edge details first then fill out color next. Beyond using structural information, SPG-Net (Song et al.,
2018b) and SG-Net (Liao et al., 2020) use semantic segmentation maps to contain more informative
guidance than just edge. Our approach is close to SPG-Net and SG-Net, in that we recover the
segmentation masks and generate the content. However, our method differs in that we handle more
challenging scenarios where the instances are entirely removed. To our best knowledge, the only
work for the context-aware image completion is HVITA (Qiu et al., 2020), where a target instance
is wholly removed from an image. HVITA consists of four steps: (1) detecting visible instances,
(2) constructing a graph using detected instances to understand the scene context, (3) generating
a missing instance and placing it on the missing region, and (4) refining the inserted image. Yet,
HVITA is the best suited for rectangular mask and show poor image quality, especially around the
boundaries. In contrast, we are free to handle masks with arbitrary shapes since we directly generate
new instances within missing regions guided by a completed segmentation map, unlike HVITA.
The completed segmentation map helps to understand the context of images and encourages visual
continuity on the boundaries between generated and unmasked regions. It also avoids relying on the
refinement networks that is used in HVITA.

3 METHOD

Given an uncorrupted image I , we create a corrupted image IM using a binary mask M . The
corrupted image can be expressed as IM = I ⊙M , where ⊙ is element-wise multiplication. Our
framework aims to complete the corrupted image IM , where the visual instance is completely
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Figure 2: Overview of the proposed approach, called Refill. Refill completes the image in three steps:
(1) infer the missing instance class, (2) complete a segmentation map in the missing region, and (3)
translate the segmentation map to an image to hallucinate the missing region.

removed. This problem is challenging since the model should generate a target instance. At the same
time, the generated instance should keep visual continuity with the existing parts.

Our framework (Refill) completes masked images in three steps. First, we infer a contextually
appropriate instance by figuring out the category of the missing instance (Sec. 3.1). Second, we
complete the missing semantic segmentation map based on the inference result from the previous step
(Sec. 3.2). Finally, we transform the masked image with semantic segmentation into a realistic color
image (Sec. 3.3). The framework enables each module to concentrate on the individually assigned
task (instance inference, missing segmentation map completion, and image generation) instead of
doing these in one shot. This is the key difference from most existing image completion approaches
that mainly focus on the realism of completion results but do not consider semantics or which instance
should be painted there. The overview figure of our framework is shown in Figure 2.

3.1 MISSING INSTANCE PREDICTION

To obtain the relationship information between instances in a given scene, Refill first predicts instance
bounding box coordinates, instance classes, and a semantic segmentation map using the pre-trained
DETR (Carion et al., 2020). Let the panoptic segmentation map SM = DETR(IM ), then we can
extract box coordinates of the visible instances B = [b1, ..., bk] and object classes c = [c1, ..., ck]

⊤

from SM, where k is the number of predicted instances. Then, to infer the class of the missing
instance ytarget, Refill inputs the predicted classes of the visible instances along with a missing region
token into a transformer network, called missing instance inference transformer. We first convert the
visible instances’ classes into learnable input tokens using a single linear layer. A quick approach is
to utilize object queries from DETR as input tokens directly, but we observe such a method showed
a worse performance compared to employing new learnable class embeddings. Furthermore, to
inject the location information of the visible instances, we convert their bounding box coordinates
into positional encoding vectors and sum them to the learnable class embeddings. To acquire the
positional encoding vectors, we input the normalized center coordinate (Cx, Cy), width (W ), and
height (H) of the bounding box to a single linear layer where the activation is a sigmoid function. We
also apply the same procedure for the missing region token, creating an embedding for missing region
estimation. In addition, we also explore different ways to develop the positional encoding vectors and
show that the adopted positional embedding mechanism provides the best missing instance estimation
performance in Sec. 4.5.1. Below formulations are mathematical expressions of how our missing
instance infer transformer works.

z0 = Eclass + Epos = MLP(c′) + σ(MLP(B′)), z0 ∈ R(k+1)×d (1)

z′
l = MSA(LN(zl−1)) + zl−1, l = 1, ..., L (2)

zl = MLP(LN(z′
l)) + z′

l, l = 1, ..., L (3)

y = LN(z0
L), (4)
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where MLP is a multi-layer perceptron, σ is a sigmoid activation, d is the dimension of embedding
vectors, B′ = [b0] ∪B where b0 is the missing region bounding box coordinate, and c′ = [c0] ∪ c
where c0 is a null class for missing region classification. The missing instance inference transformer
consists of 12 transformer encoder layers (L = 12) with 8 heads. The missing region token interacts
with the visible region tokens via the self-attention mechanism in the network. Thus, the network can
predict the plausible class of the missing instance based on the detected instances and their location
information. More details are in Appendix A.3.1.

3.2 SEMANTIC SEGMENTATION MAP GENERATION

Utilizing the predicted class of the missing instance from the previous step, we aim to generate
the semantic segmentation map of the missing region. We create the segmentation map of both
the instance and the background area individually with separate modules (instance segmentation
generator and background segmentation completion network) and obtain the final segmentation
map by inserting the missing instance segmentation into the background segmentation as shown in
Figure 2.

We perform the missing instance segmentation generation using two modules: generator and discrim-
inator, for the instance segmentation. The segmentation completion net aims to create a plausible
segmentation map corresponding to the predicted instance class. For the implementation, we use
the architecture from BigGAN (Brock et al., 2019), one of the most successful conditional GANs,
with slight modification. We input the predicted missing instance class from the previous step
and the box coordinates of the missing region to the Conditional Batch Normalization (De Vries
et al., 2017) module in the instance segmentation generator. We train the model by using spectral
normalization (Miyato et al., 2018) and hinge loss (Lim & Ye, 2017).

Second, the background segmentation completion network produces the segmentation map of the
remaining region without attempting to generate the missing instance. To do this, we randomly
scribble the ground truth segmentation map and let the background segmentation completion network
restore it using cross-entropy loss. We experimentally found that this procedure can reconstruct
background segmentation maps successfully. This module consists of convolution heads and tails
with a transformer body. We explore that the transformer body helps to reconstruct the missing
background segmentation map, especially large hole setting (See Sec. 4.5.2). Finally, we obtain
the overall segmentation map of the missing region by inserting the instance segmentation into the
background segmentation. More details are in Appendix A.3.3.

3.3 SEGMENTATION-GUIDED IMAGE COMPLETION

Using the predicted missing region segmentation map as guidance, a UNet (Ronneberger et al.,
2015)-like completion model reconstructs the missing region of the masked image. The model takes
in the masked image as input and outputs the restored version where SPADE (Park et al., 2019)/
OASIS (Schönfeld et al., 2021) blocks force the model to reflect the semantics of the segmentation
map. The details about the hyperparameters, objective function, and the model architecture are
available in Appendix A.3.3. Since Refill can complete a masked image using any segmentation map,
we can reconstruct diverse target instances of the same class by feeding different segmentation maps
into the completion model. Figure 4 shows an example.

4 EXPERIMENT

4.1 DATASETS

We use two datasets called COCO-panoptic (Lin et al., 2014) and Visual Genome (Lin et al., 2014),
which HVITA (Qiu et al., 2020) adopted to evaluate performance.

COCO-panoptic. COCO-panoptic (Lin et al., 2014) dataset contains 118K images for the train
set and 5K images for the validation set with 80 things classes and 91 stuff classes. The dataset
consists of natural images with multiple instances and has been hardly studied than center-aligned
datasets (e.g., FFHQ (Karras et al., 2019), CelebA-HQ (Liu et al., 2015), and ImageNet (Deng
et al., 2009)) in terms of image completion. For the experiment, we create a missing region using
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two procedures: (1) first selecting a missing rectangular region that contains an instance, then (2)
randomly cropping the image to be from 10% to 50% of the whole image, including the missing
rectangular region. We randomly picked 50 points around the bounding box and drew thick lines
between those points to make irregular regions. We select 30 classes from the things classes that are
frequently observed in the images for the demonstration.

Visual Genome. We adopt Visual Genome (Krishna et al., 2017) to check the generalization ability
of the proposed approach (Refill). The dataset contains 110k images with fine-grained 34k object
categories. Due to the category mismatch between COCO-panoptic and Visual Genome, we use the
DETR-predicted results as an annotation. Then, we make missing regions using the detected object
boxes with the same size limitation used for creating the COCO-panoptic dataset.

4.2 BASELINE

HVITA (Qiu et al., 2020) is closely related work considering our problem setting. HVITA hallucinates
the visual instance in three steps. First, the detection module detects visible instances, and the graph
module predicts the features of a missing instance. Second, a conditional GAN generates a square-
shaped RGB visual instance by conditioning the missing instance features and inserting them into
the missing region. Finally, the refinement network improves visual continuity between the inserted
part and the existing part. However, HVITA is originally designed to handle a rectangular mask and
still suffers from abrupt discontinuity on the boundaries due to the object insertion step, as shown in
Figure 3. We could not find any publicly available code, so we implemented HVITA carefully by
referring to the details in the paper (Qiu et al., 2020).

MAT (Li et al., 2022) is one of the cutting-edge image completion models built on GAN framework.
It consists of newly designed transformer blocks with a style manipulation module. We use the
official author’s implementation for training and evaluation.

4.3 METRICS

LPIPS and FID. There are several metrics for image quality measurement. L1, MSE, and PSNR
quantify a pixel-wise error, and SSIM calculates the similarity between a generated image and the
original one using luminance, contrast, and structure information. These metrics, however, are
known to be inconsistent with human perception (Zhang et al., 2018). In addition, since there are
various possible answers to complete the missing region, L1, MSE, and PSNR may give a high value,
although completion results are plausible. To overcome this issue, we use LPIPS (Zhang et al., 2018),
which is well known to agree with human perception by computing L2 distance on learned feature
space (ImageNet-trained VGG). Moreover, we utilize Fréchet Inception Distance (FID) (Heusel et al.,
2017) to assess the realism of completed images.

CLIPScore. To assess whether the hallucinated instance is perceptually well-aligned with the given
text description, we employ CLIPScore computed using pretrained CLIP ViT-B/32 (Radford et al.,
2021) visual and textual encoders. CLIPScore computes the cosine similarity between hallucinated
instance embedding and the query text embedding. For the given hallucinated instance embedding h
and text description embedding t, we can compute CLIPScore(h, t) = 2.5max(cos(h, t), 0). This
formulation is originally devised to evaluate image captioning performance in a reference-free
manner (Hessel et al., 2021), but we use it to assess the perceptual alignment of hallucinated instances
or entire generated images.

In contrast to LPIPS, which trims feature space using a uni-modal dataset with cross-entropy loss,
CLIP organizes its feature space by optimizing Info-NCE loss (Sohn, 2016) on a cross-modal
dataset made up of 400M (image and caption) pairs. Specifically, while the VGG backbone used
for computing LPIPS gets supervision from pre-defined ImageNet classes Deng et al. (2009), CLIP
encoders get strong feedback from vast amounts of natural images and texts on the internet. As the
CLIP encoders show the capability of producing general representations via their superior zero-shot
transfer ability (Radford et al., 2021), they can extract distinguishable features even in unseen classes.

Visual Grounding Accuracy (VGA). Locating the bounding box for a given query sentence in
the image is the goal of visual grounding. If the model hallucinates a plausible instance similar to
the original one, visual grounding model can place a bounding box around the hallucinated image
given the text. For the evaluation, we adopt OFAgrounding (Wang et al., 2022) trained on Visual
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Table 1: Comparison of image synthesis quality on COCO-panoptic and Visual Genome datasets.
All models are trained/finetuned on COCO-panoptic and evaluated on COCO-panoptic and Visual
Genome (Zero-shot) images. We compare the quality of generated images using 4 metrics: CLIPScore,
VGA, LPIPS and FID. MATpre is pretrained on Places365-Standard (Zhou et al., 2017) that contains
8M images and is finetuned with our modified COCO dataset. MATscratch and the other models
are trained from scratch only using the modified COCO. We mark the best, the second-best in
normal yellow and light yellow respectively.

Metric
COCO-panoptic Visual Genome (Zero-shot)

CLIPscore ↑ VGA (%) ↑ LPIPS ↓ FID ↓ CLIPscore ↑ VGA (%) ↑ LPIPS ↓ FID ↓
MATpre (Li et al., 2022) 0.614 3.320 0.087 7.192 0.615 3.237 0.087 6.488
MATscratch (Li et al., 2022) 0.606 3.216 0.093 7.895 0.608 3.141 0.093 7.302
HVITA (Qiu et al., 2020) 0.567 17.873 0.132 10.496 0.568 18.606 0.129 9.311
Refillspade 0.626 26.107 0.122 8.519 0.628 28.181 0.120 6.658
Refilloasis 0.641 30.345 0.119 7.284 0.644 32.713 0.116 5.849

Input MAT HVITA Ours Target DETR Seg. Our Seg. Target Seg.

Figure 3: From 1st column to 5th column: Input, MAT (Li et al., 2022), HVITA (Qiu et al., 2020),
Ours, GT. From 6th column to last column: DETR (Carion et al., 2020) seg, Our Seg and GT
Seg. Refill restore the segmentation as shown in 6th column. We leave out more results on the
Appendix A.4.

Genome Captions (Krishna et al., 2017), RefCOCO (Mao et al., 2016), and variants of RefCOCO,
such as RefCOCO+ and RefCOCOg. The purpose of using VGA is similar to CLIPScore, but the
core difference is the way how the feature space is annealed. The visual grounding model is trained
using the 0.1M scale datasets, which is much smaller than the dataset used for CLIP, but the dataset
contains high-quality and dense annotations.

Due to the lack of ground truth text descriptions for CLIPScore and VGA, we generate plausible
sentences using a pretrained grounded image captioning network from OFAcaptioning (Wang et al.,
2022). We measure VGA by setting mIoU threshold as 0.5.

4.4 EVALUATION RESULTS

To show the strengths of Refill, we perform the image completion task on the modified COCO-panoptic
dataset (Sec. 4.1). We train MATpre (Li et al., 2022), MATscratch (Li et al., 2022), HVITA (Qiu et al.,
2020), and our model using the dataset and evaluate the models using a test-split of COCO-panoptic
dataset. The results are summarized in Table 1. MATpre shows the lowest LPIPS and FID scores
of 0.087 and 7.192, respectively. But it exhibits inferior results in CLIPscore and VGA on which
Refill gives the best results (CLIPscore is 0.641, and VGA is 30.345%). In the case of HVITA, the
most relevant baseline with our model, it can generate the target instance better than MATpre and
MATscratch. Still, the generated instances are less realistic than the other models, as seen in Table 1
and Figure 3. Refill is the model that compensates for the shortcomings of HVITA but reinforces the
strengths. Refill attains comparable FID of 7.284 with the number of MATpre(7.192). At the same
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Figure 4: Example of diverse completion results of the proposed approach.

Input TargetOurs Input TargetOurs

Figure 5: Failure cases. The proposed approach may fail to predict the same class of the target image,
which may harm the evaluation scores. However, the generated images still follow the scene context.
There are more failure cases in the Appendix A.4

time, Refill yields 0.027 and 12.472% better CLIPscore and VGA than the second best models. Note
that MATpre is trained on Places365-Standard, which is 80 times larger than the COCO-panoptic.
The scale of the training data causes unfair evaluation between our model and MATpre, and the
comparison with MATscratch indicates better performance of Refill among the other completion
models adopted in our experiments.

To test the generalization ability of each model, we evaluate the COCO-trained completion models
on Visual Genome in the zero-shot fashion. As can be seen in Table 1, Refill proves the excellence
in FID, CLIPscore, and VGA metrics except for LPIPS. Note that high LPIPS does not necessarily
indicate low-fidelity results, where the results may include instances that differ from those of the
original images as shown in Figure 4 and 5. Since LPIPS uses pixel-wise evaluation in the feature
space, the model must generate an inpainting similar to the original image to obtain a low LPIPS
score. However, our model completes the missing regions with visual instances of various shapes
and classes, which are likely to differ from the original instance. Such diverse outputs result in
comparatively higher LPIPS scores.

4.5 ABLATION STUDY

4.5.1 POSITIONAL ENCODING FOR MISSING-INSTANCE PREDICTION
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Figure 6: Comparison of the 6 posi-
tional encoding variants in missing
instance infer transformer and GCN
module in HVITA (Qiu et al., 2020)
on COCO-panoptic

Since instances’ location information is as important as the
class of instances to understand the scene, we devise six posi-
tional encoding variants. Let’s denote relative bounding box
coordinate as follow: Rx = Cx − Mx and Ry = Cy − My,
where (Mx,My) and (Cx, Cy) are missing region center coor-
dinate and detected instances’ bounding box center coordinate,
respectively. H and W indicate the width and height of the
bounding box. All the variables mentioned above are normal-
ized to [0, 1]. ABS4C represents using Cx, Cy, H,W . ABS2C
only uses Cx and Cy . REL4C represents using Rx, Ry, H and
W . REL2C only uses Rx, Ry. No PE represents not using
any positional encoding methods. Learnable means using the
learnable positional encoding method. GCN indicates graph
classification module in HVITA (Qiu et al., 2020).

Among six methods, using the ABS4C method shows the best performance. Also, our missing
instance inference transformer with ABS4C positional encoding shows 4.5% increase in classification
accuracy performance compared to the No PE model. Moreover, using our transformer with ABS4C
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Figure 7: Predicting semantic masks given the severe missing regions. Transformer-based background
completion network is more robust to the hole size than the Convolution-based version that often
shows unwanted artifacts, as highlighted in yellow dotted boxes. The hole sizes of the first and the
second row examples are 76.4% and 71.3%, respectively.

positional encoding significantly improves the performance of the GCN module in HVITA at 17%.
See the details of six variants and their performance comparison in Figure 6.

4.5.2 BACKGROUND COMPLETION NETWORK

Inspired by MAT (Li et al., 2022), which uses a transformer architecture in the body of the network
to complete large-scale masked images, we also adopt the transformer architecture in the body of
the background segmentation completion network. Here, we use the Transformer body to complete
missing background segmentation, not an image. As shown in Figure 7, transformer architecture helps
reconstruct background semantic labels, especially for the large hole in the segmentation. As the hole
size in segmentation from DETR increases, the mIoU performance gap between Transformer- and
Conv-Based background segmentation completion network becomes more prominent. We also find
that the Conv-based one generates artifacts on missing background segmentation in large hole settings,
as shown in Figure 7. This demonstrates that Transformer architecture is better for recovering missing
segmentation by leveraging global-range context interaction in a large hole setting. Both networks
used the same number of parameters (44M) and were trained from scratch for this experiment.

4.6 FAILURE CASES

Refill may fail to generate correct class instances due to the wrong predicted class from the missing
instance inference transformer. However, as shown in Figure 5, the generated instances are well
harmonized with the remaining parts. In particular, Refill generates a cup and a fire hydrant instead of
a cake and a horse. The images are still convincing.

5 CONCLUSION

This paper presents a novel framework called Refill for image completion, which hallucinates context-
friendly visual instances instead of filling the missing region with surrounding textures. Through
extensive experiments, we demonstrate the superiority of Refill in terms of CLIPScore and VGA
metrics while achieving comparable FID scores over the baseline models. This work could be
extended to more general scenarios, such as image completion for images with multiple missing
regions or hallucinating multiple context-friendly instances within a single missing region.

Limitation The generation quality of our approach heavily depends on semantic image synthesis
blocks (SPADE and OASIS), Refill inherits their shortcomings, especially generation diversity, as
can be seen in Figure 4. Moreover, Refill is not aware of “no instance” and high-order geometry
such as occlusion order and instance’s orientation. Our approach is demonstrated with the 30 classes
of COCO-panoptic things classes. Rather than using pre-defined categories, open-set segmentation
and text-to-image translation would be intresting approaches. Solving these limitations could be
interesting future works.
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A APPENDIX

A.1 ADDITIONAL EXPERIMENTS ON THE PROPERTIES OF MISSING INSTANCE INFERENCE
TRANSFORMER

In this section, we perform diverse experiments to identify the effectiveness and the generalizability
of the proposed missing instance prediction module. We first visualize the intermediate self-attention
layers to verify the dependency between surrounding instances and the predicted instance. As
shown in Figure 8, when our module predicts a missing class, the module gives more weight to
the semantically related surroundings. We then perform another experiment to check whether our
module’s prediction also depends on the position of the missing region. Figure 9 describes how
predicted classes change over different missing regions. From these two observations, we empirically
conclude that our module rationally produces missing instance’s class depending on the category and
position of surrounding instances.

For the generalizability of our missing instance inference transformer, we adopt zero-shot setting
and see if our module trained on COCO-panoptic dataset succeeds to produce accurate prediction
class label of the unseen dataset, Visual Genome. Experiment results in Table 2 show that prediction
accuracies in unseen dataset matches that of the seen dataset regardless of the choice in bounding box
representation. Thus, we conclude our missing instance inference transformer well generalizes to
unseen datasets as long as they share same class labels with the training set.

A.2 ADDITIONAL EXPERIMENTS ON THE OBJECT REMOVAL TASK

While our work primarily focuses on generating a plausible instance in the missing region, the task
of object removal, which focuses on overwriting the region with natural background, is also widely
studied in the field of image inpainting. Here, we perform experiments to verify if our model is
capable of object removal through small change in the pipeline. From the main framework in Figure 2,
we omit pipeline for predicting and generating segmentation mask in Step 2 and use only background
segmentation completion network. Experiment results from Table 3, suggest that object “removed”
images look as realistic as instance “inserted” images which are generated according to original
framework in this paper. Qualitative results can be found in Figure 10.

Table 2: Missing instance infer transformer performance on COCO-panoptic and VG (Zero-shot).
The explanation of each methods including ABS4C, REL4C, ABS2C, REL2C, Learnable, No PE
and GCN are described in Sec. 4.5.1.

COCO-panoptic Visual Genome (Zero-shot)

ABS4C 67.548 67.236 (↓ 0.312)
REL4C 66.466 66.283 (↓ 0.183)
ABS2C 65.204 66.055 (↑ 1.149)
REL2C 65.865 66.370 (↑ 0.505)
Learnable 62.981 65.701 (↑ 2.720)
No PE 63.041 65.047 (↑ 2.006)
GCN 50.661 49.178 (↓ 1.483)
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Figure 8: Self-attention visualization from the missing instance inference transformer. We visualize
the self-attention of the missing instance token in the intermediate layer (Layer 1, Layer 4, Layer 7
and Layer 10) of the missing instance inference transformer. The missing region of each images is
denoted by semi-transparent red mask.
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Figure 9: Missing instance class prediction changes depending on the position of each missing region.
Each missing region in the images is denoted by different colors of masks. Predicted classes of each
missing region are indicated with arrow.
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Table 3: FID comparison between vanilla model in Refill and “no instance” version proposed in
Appendix A.2. The vanilla model generates context-friendly visual instances in the missing region
while the “no instance” version fills the missing region with surrounding textures by simply skipping
the foreground instance prediction.

Dataset vanilla “no instance”

COCO-panoptic 7.284 7.874 (↑ 0.590)
Visual Genome (Zero-shot) 5.849 6.887 (↑ 1.038)

Input OriginalOurs

Figure 10: Qualitative results of Refill’s “no instance” version.

A.3 NETWORK ARCHITECTURES AND TRAINING DETAILS

We implement our completion model for experiments using PyTorch (Paszke et al., 2019) library. We
use PyTorch functions and define some necessary notations here to provide the architectural details
of Refill.

EMBEDDING (dimout) indicates PyTorch embedding function. TRANSEN-
CLAYER (dimtoken, dimhidden, headnumb) is a vanilla transformer encoder layer.
FC (diminput, dimoutput) is a single linear layer. CONV (kernelsize, stride, padding)
is a convolution layer. DBLOCK (channelin, channelout, downsampling) and BIGG-
BLOCK (channelin, channelout, upsampling, dimzsplit , dimshared) are BigGAN blocks
implemented in StudioGAN libary (Kang et al., 2022). SELF-ATTENTION is a self-attention block
implemented in StudioGAN. BN and LN indicate a batch normalization and layer normalization
layer, respectively. SPADERESNETBLOCK is a SPADE block (Park et al., 2019). RESBLOCK-UP
and -DOWN indicate ResNet blocks implemented in StudioGAN. UP(size) indicates a upsampling
function PyTorch provides. N is the number of classes in the segmentation mask. m and k indicate
the batch size and the number of visible instances for a given masked image.
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A.3.1 MISSING INSTANCE INFERENCE TRANSFORMER

Missing instance inference transformer consists of 12 layers of transformer encoder layers (Vaswani
et al., 2017) with 8 heads. The architectural details are described in Table 4. We use Adam
optimizer (Kingma & Ba, 2015) with β1 and β2 of 0.9 and 0.999, respectively. The learning rates
linearly increase until 50 epochs and linearly decrease until the end of the training (250 epochs).

A.3.2 INSTANCE SEGMENTATION GENERATOR AND DISCRIMINATOR

We use BigGAN architecture (Brock et al., 2019) implemented in the StudioGAN library (Kang
et al., 2022). The detailed BigGAN structure can be summarized in Tables 5 and 6, respectively.
We use Adam optimizer with β1 and β2 of 0.0 and 0.999, respectively. The learning rates for the
generator and discriminator are set to 5.0× 10−5 and 2.0× 10−4.

A.3.3 BACKGROUND SEGMENTATION COMPLETION NETWORK

For the convolution-body background segmentation completion network, we use a UNet (Ronneberger
et al., 2015) architecture. For the Transformer-body background segmentation completion network,
we build 8 layers of the Transformer encoder and add 3 convolution layers and 3 ResNet blocks
before and after the Transformer encoder layers. The details of the Transformer-body version are
shown in Table 7. We optimize the whole segmentation completion network with Adam optimizer
with a learning rate of 1.0× 10−4 and weight decay of 1.0× 10−4. β1 and β2 for Adam are set to
0.9 and 0.999, respectively.

A.3.4 SEGMENTATION-GUIDED COMPLETION NETWORK

We use a UNet-like architecture for the segmentation-guided completion network. We apply
SPADERESNETBLOCK to the decoder part to condition the completed segmentation mask into the
UNet-like completion network. The architectural details of OASIS (Schönfeld et al., 2021) version
of segmentation-guided completion network are explained in Tables 8 and 9. We follow the same
training details as the original OASIS paper used with a single exception of the objective function. In
order to preserve the unmasked region’s data and generate contents only in the masked region, we
apply the OASIS generator and discriminator loss only to the masked region and use additional L2
loss only on the unmasked region. We also add perceptual loss computed on the pre-trained VGG-19
recognition model to encourage fast convergence. For the SPADE (Park et al., 2019) version, we
change the OASIS discriminator into the SPADE discriminator. Then, we follow the same training
scheme described in the original SPADE paper.

Table 4: Architecture of missing instance inference transformer.

Layer Input Output Operation
Input Layer (m, k+1, 1) (m, k+1, 256) EMBEDDING(1,256)

Hidden Layer (m, k+1, 256) (m, k+1, 256) TRANSENCLAYER(256, 2048, 8)
Hidden Layer (m, k+1, 256) (m, k+1, 256) TRANSENCLAYER(256, 2048, 8)
Hidden Layer (m, k+1, 256) (m, k+1, 256) TRANSENCLAYER(256, 2048, 8)
Hidden Layer (m, k+1, 256) (m, k+1, 256) TRANSENCLAYER(256, 2048, 8)
Hidden Layer (m, k+1, 256) (m, k+1, 256) TRANSENCLAYER(256, 2048, 8)
Hidden Layer (m, k+1, 256) (m, k+1, 256) TRANSENCLAYER(256, 2048, 8)
Hidden Layer (m, k+1, 256) (m, k+1, 256) TRANSENCLAYER(256, 2048, 8)
Hidden Layer (m, k+1, 256) (m, k+1, 256) TRANSENCLAYER(256, 2048, 8)
Hidden Layer (m, k+1, 256) (m, k+1, 256) TRANSENCLAYER(256, 2048, 8)
Hidden Layer (m, k+1, 256) (m, k+1, 256) TRANSENCLAYER(256, 2048, 8)
Hidden Layer (m, k+1, 256) (m, k+1, 256) TRANSENCLAYER(256, 2048, 8)
Hidden Layer (m, k+1, 256) (m, k+1, 256) TRANSENCLAYER(256, 2048, 8)
Hidden Layer (m, k+1, 256) (m, k+1, 256) TRANSENCLAYER(256, 2048, 8)

Output Layer (m, k+1, 256) (m, k+1, 256) FC(256, 256), GELU, LN(256)
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Table 5: Architecture for instance segmentation generator.

Layer Input Output Operation
Input Layer (m,20) (m,20480) FC(20, 20480)

Reshape Layer (m,20480) (m,4,4,1280) RESHAPE
Hidden Layer (m,4, 4, 1280) (m,8, 8, 640) BIGGBLOCK(1280, 640, True, 20, 128)
Hidden Layer (m,8, 8, 640) (m,16, 16, 320) BIGGBLOCK(640, 320, True, 20, 128)
Hidden Layer (m,16, 16, 320) (m,32, 32, 160) BIGGBLOCK(320, 160, True, 20, 128)
Hidden Layer (m,32, 32, 160) (m,32, 32, 160) SELF-ATTENTION
Hidden Layer (m,32, 32, 160) (m,64, 64, 80) BIGGBLOCK(160, 80, True, 20, 128)
Hidden Layer (m,64, 64, 80) (m,64, 64, 1) BN, RELU, CONV(80,3, 3, 1)

Output Layer (m,64, 64, 1) (m,64, 64, 1) TANH

Table 6: Architecture for instance segmentation discriminator.

Layer Input Output Operation
Input Layer (m, 64, 64, 1) (m, 32, 32, 80) DBLOCK(3, 80, True)

Hidden Layer (m, 32, 32, 80) (m, 32, 32, 80) SELF-ATTENTION
Hidden Layer (m, 32, 32, 80) (m, 16, 16, 160) DBLOCK(80, 160, True)
Hidden Layer (m, 16, 16, 160) (m, 8, 8, 320) DBLOCK(160, 320, True)
Hidden Layer (m, 8, 8, 320) (m, 4, 4, 640) DBLOCK(320, 640, True)
Hidden Layer (m, 4, 4, 640) (m, 4, 4, 1280) DBLOCK(640, 1280, False)
Hidden Layer (m, 4, 4, 1280) (m, 1280) RELU, GSP

Output Layer (m, 1280) (m, 1) FC(1280, 1)

Table 7: Architecture for transformer-body background segmentation completion network.

Layer Input Output Operation
Input Layer (m, 256, 256, 1) (m, 256, 256, 64) EMBEDDING

Hidden Layer (m, 256, 256, 64) (m, 128, 128, 128) CONV(4, 2, 1)
Hidden Layer (m, 128, 128, 128) (m, 64, 64, 256) CONV(4, 2, 1)
Hidden Layer (m, 64, 64, 256) (m, 32, 32, 512) CONV(4, 2, 1)
Hidden Layer (m, 32, 32, 512) (m, 32, 32, 512) TRANSENCLAYER(512, 2048, 8)
Hidden Layer (m, 32, 32, 512) (m, 32, 32, 512) TRANSENCLAYER(512, 2048, 8)
Hidden Layer (m, 32, 32, 512) (m, 32, 32, 512) TRANSENCLAYER(512, 2048, 8)
Hidden Layer (m, 32, 32, 512) (m, 32, 32, 512) TRANSENCLAYER(512, 2048, 8)
Hidden Layer (m, 32, 32, 512) (m, 32, 32, 512) TRANSENCLAYER(512, 2048, 8)
Hidden Layer (m, 32, 32, 512) (m, 32, 32, 512) TRANSENCLAYER(512, 2048, 8)
Hidden Layer (m, 32, 32, 512) (m, 32, 32, 512) TRANSENCLAYER(512, 2048, 8)
Hidden Layer (m, 32, 32, 512) (m, 32, 32, 512) TRANSENCLAYER(512, 2048, 8)
Hidden Layer (m, 32, 32, 512) (m, 64, 64, 256) UP(2), ResBlock(3, 1, 1)
Hidden Layer (m, 64, 64, 256) (m, 128, 128, 128) UP(2), ResBlock(3, 1, 1)
Hidden Layer (m, 128, 128, 128) (m, 256, 256, 64) UP(2), ResBlock(3, 1, 1)

Output Layer (m, 256, 256, 64) (m, 256, 256, 64) RESHAPE, FC(64, 64), GELU, LN(64)
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Table 8: Architecture for segmentation-guided image completion generator (OASIS).

Operation Input Size Output Size
CONCATENATE IM (m, 256, 256, 3) IMcat

(m, 256, 256, 4)
M (m, 256, 256, 1)

CONV(4,1,1) IMcat
(m, 256, 256, 4) inter0 (m, 256, 256, 32)

CONV(3,2,1) inter0 (m, 256, 256, 32) inter1 (m, 128, 128, 64)
CONV(3,2,1) inter1 (m, 128, 128, 64) inter2 (m, 64, 64, 128)
CONV(3,2,1) inter2 (m, 64, 64, 128) inter3 (m, 32, 32, 256)
CONV(3,2,1) inter3 (m, 32, 32, 256) inter4 (m, 16, 16, 512)
CONV(3,2,1) inter4 (m, 16, 16, 512) inter5 (m, 8, 8, 512)
CONV(3,2,1) inter5 (m, 8, 8, 512) inter6 (m, 4, 4, 512)
RESHAPE, FC(4*4*512,256) inter6 (m, 4, 4, 512) mu (m, 256)
RESHAPE, FC(4*4*512,256) inter6 (m, 4, 4, 512) sigma (m, 256)
NOISE SAMPLING, FC, RESHAPE mu (m, 256) z (m, 8, 8, 1024)

sigma (m, 256)
CONCATENATE z3D (m, 64, 256, 256) zy (m, 64+N+1, 256, 256)

y (m, N, 256, 256)
M (m, 1, 256, 256)

SPADERESNETBLOCK, CONV(3, 1, 1) z (m, 8, 8, 1024) up0 (m, 8, 8, 512)
zy (m, 64+N+1, 256, 256)

CONCATENATE up0 (m, 8, 8, 512) up0cat (m, 8, 8, 1024)
inter5 (m, 8, 8, 512)

UP(2), SPADERESNETBLOCK up0cat (m, 8, 8, 1024) up1 (m, 16, 16, 512)
zy (m, 64+N+1, 256, 256)

CONCATENATE up1 (m, 16, 16, 512) up1cat (m, 16, 16, 1024)
inter4 (m, 16, 16, 512)

UP(2), SPADERESNETBLOCK, CONV(3, 1, 1) up1cat (m, 16, 16, 1024) up2 (m, 32, 32, 256)
zy (m, 64+N+1, 256, 256)

CONCATENATE up2 (m, 32, 32, 256) up2cat (m, 32, 32, 512)
inter3 (m, 32, 32, 256)

UP(2), SPADERESNETBLOCK, CONV(3, 1, 1) up2cat (m, 32, 32, 512) up3 (m, 64, 64, 128)
zy (m, 64+N+1, 256, 256)

CONCATENATE up3 (m, 64, 64, 128) up3cat (m, 64, 64, 256)
inter2 (m, 64, 64, 128)

UP(2), SPADERESNETBLOCK, CONV(3, 1, 1) up3cat (m, 64, 64, 256) up4 (m, 128, 128, 64)
zy (m, 64+N+1, 256, 256)

CONCATENATE up4 (m, 128, 128, 64) up4cat (m, 128, 128, 128)
inter1 (m, 128, 128, 64)

UP(2), SPADERESNETBLOCK, CONV(3, 1, 1) up4cat (m, 128, 128, 128) up5 (m, 256, 256, 32)
zy (m, 64+N+1, 256, 256)

CONCATENATE up5 (m, 256, 256, 32) up5cat (m, 256, 256, 64)
inter0 (m, 256, 256, 32)

CONV(3,1,1), TANH up5cat (m, 256, 256, 64) IF (m, 256, 256, 3)
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Table 9: Architecture for segmentation guided image completion discriminator (OASIS).

Operation Input Size Output Size
RESBLOCK-DOWN I (m, 256, 256, 4) down1 (m, 256, 256, 32)
RESBLOCK-DOWN down1 (m, 128, 128, 128) down2 (m, 64, 64, 128)
RESBLOCK-DOWN down2 (m, 64, 64, 128) down3 (m, 64, 64, 128)
RESBLOCK-DOWN down3 (m, 32, 32, 256) down4 (m, 32, 32, 256)
RESBLOCK-DOWN down4 (m, 16, 16, 256) down5 (m, 16, 16, 512)
RESBLOCK-DOWN down5 (m, 8, 8, 512) down6 (m, 4, 4, 512)
RESBLOCK-UP down6 (m, 4, 4, 512) up1 (m, 8, 8, 512)
CONCATENATE down5 (m, 8, 8, 512) up1cat (m, 8, 8, 1024)

up1 (m, 8, 8, 512)
RESBLOCK-UP up1cat (m, 8, 8, 1024) up2 (m, 16, 16, 256)
CONCATENATE down4 (m, 16, 16, 256) up2cat (m, 16, 16, 512)

up2 (m, 16, 16, 256)
RESBLOCK-UP up2cat (m, 16, 16, 512) up3 (m, 32, 32, 256)
CONCATENATE down3 (m, 32, 32, 256) up3cat (m, 32, 32, 512)

up3 (m, 32, 32, 256)
RESBLOCK-UP up3cat (m, 32, 32, 512) up4 (m, 64, 64, 128)
CONCATENATE down2 (m, 64, 64, 128) up4cat (m, 64, 64, 256)

up4 (m, 64, 64, 128)
RESBLOCK-UP up4cat (m, 64, 64, 256) up5 (m, 128, 128, 128)
CONCATENATE down1 (m, 128, 128, 128) up5cat (m, 128, 128, 256)

up5 (m, 128, 128, 128)
RESBLOCK-UP up5cat (m, 128, 128, 256) up6 (m, 256, 256, 64)
CONV(3,1,1) up6 (m, 256, 256, 64) IF (m, 256, 256, N+1)
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A.4 ADDITIONAL QUALITATIVE RESULTS

Input DETR Seg. Our Seg. Target Seg. Ours Target

Figure 11: Image completion results.
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Input DETR Seg. Our Seg. Target Seg. Ours Target

Figure 12: Image completion results.
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Input DETR Seg. Our Seg. Target Seg. Ours Target

Figure 13: Failure case of Refill. From the first to the fourth row, Refill generates instances different
from the target class. Refill does not aware the order of occlusions as shown in the fifth to the seventh
row. Moreover, the eighth and ninth row shows our model suffers from reasoning the right scale
and orientation. From the last row, the results show that segmentation mask is also crucial for the
performance of generation ability.
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