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Abstract

Langevin Dynamics is a Stochastic Differential Equation (SDE) central to sampling
and generative modeling and is implemented via time discretization. Langevin
Monte Carlo (LMC), based on the Euler-Maruyama discretization, is the simplest
and most studied algorithm. LMC can suffer from slow convergence - requiring
a large number of steps of small step-size to obtain good quality samples. This
becomes stark in the case of diffusion models where a large number of steps gives
the best samples, but the quality degrades rapidly with smaller number of steps.
Randomized Midpoint Method has been recently proposed as a better discretiza-
tion of Langevin dynamics for sampling from strongly log-concave distributions.
However, important applications such as diffusion models involve non-log concave
densities and contain time varying drift. We propose its variant, the Poisson Mid-
point Method, which approximates a small step-size LMC with large step-sizes.
We prove that this can obtain a quadratic speed up of LMC under very weak as-
sumptions. We apply our method to diffusion models for image generation and
show that it maintains the quality of DDPM with 1000 neural network calls with
just 50-80 neural network calls and outperforms ODE based methods with similar
compute.

1 Introduction

The task of sampling from a target distribution is central to Bayesian inference, generative modeling,
differential privacy and theoretical computer science [48, 20, 17, 25]. Sampling algorithms, based on
the discretization of a stochastic differential equation (SDE) called the Langevin Dynamics, are widely
used. The straightforward time discretization (i.e., Euler Maruyama discretization) of Langevin
dynamics, called Langevin Monte Carlo (LMC), is popular due to its simplicity. The convergence
properties of LMC have been studied extensively in the literature under various conditions on the
target distribution [8, 12, 11, 45, 15, 33, 7, 1, 6, 9, 16, 30, 53, 5]. LMC can suffer from slow
convergence to the target distribution, and often requires a large number of steps with a very fine time
discretization (i.e., small step-size), making it prohibitively expensive.

The Poisson Midpoint Method introduced in this paper approximates multiple steps of small step-size
Euler-Maruyama discretization with one step of larger step-size via stochastic approximation. In
the case of LMC, we show that our method (called PLMC) converges to the target as fast as LMC
with a much smaller step-size without any additional assumptions such as isoperimetry or strong log
concavity (up to a small additional error term). This is a variant of the Randomized Midpoint Method
(RLMC) studied in the literature [40, 18, 50] (see Section 1.1 for comparison).
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Diffusion models are state-of-the-art in generating new samples of images and videos given samples
[20, 43, 34]. These start with a Gaussian noise vector and evolve it through the time-reversal of
the SDE called the Ornstein-Uhlenbeck process. The time reversed process can be written as an
SDE (Langevin Dynamics with a time dependent drift) or as an ODE (see Section 2). The DDPM
scheduler [20], which discretizes the SDE, obtains the best quality images with a small step-size and
a large number of steps (usually 1000 steps). However, its quality degrades with larger step-sizes and
a small number of steps (say 100 steps). Schedulers such as DDIM ([42]), DPM-Solver ([28, 29]),
PNDM ([27]) which solve the ODE via numerical methods perform much better than DDPM with a
small number of steps. However, it is noted that they do not match the performance of DDPM with
1000 steps over many datasets ([42, 28, 41]). Poisson Midpoint Method gives a scheduler for the
time-reversed SDE which maintains the quality of DDPM with 1000 steps, with just 50-80 steps.

1.1 Prior Work

Euler Maruyama discretization of SDEs is known to be inefficient and many powerful numerical
integration techniques have been studied extensively ( [23, 32, 3, 26]). However, higher order methods
such as the Runge-Kutta method require the existence and boundedness of higher order derivatives
of the drift. The Randomized Midpoint Method for LMC (RLMC) was introduced for strongly log-
concave sampling [40] and was further explored in [50, 18]. It was shown that RLMC, under certain
conditions, can sample with a larger step size for fewer steps compared to Euler Maruyama and yet
obtain the same accuracy. RLMC is popular due to its simplicity, and ease of implementation and does
not require higher order bounded derivatives of the drift function. However, the current theoretical
results are restricted to the case of strongly log-concave sampling, whereas non-log-concave sampling
is of immense practical interest.

1.2 Our Contributions

(1) We design the Poisson Midpoint Method which discretizes SDEs by approximating K-steps of
Euler-Maruyama discretization with step-size α

K by just one step with step-size α. We show a strong
error bound between these two processes under general conditions in Theorem 1 (no assumption on
mixing, smoothness etc). This is based on a Central Limit Theorem (CLT) based method in [10] to
analyze stochastic approximations of LMC.

(2) We apply our method to LMC to obtain PLMC. We show that it achieves a speed-up in sampling
for both Overdamped LMC (OLMC) and Underdamped LMC (ULMC) whenever LMC mixes,
without additional assumptions such as isoperimetry or strong-log concavity.

(3) When the target obeys the Logarithmic Sobolev Inequalities (LSI), we show that PLMC achieves
a quadratic speed up for both OLMC and ULMC. Prior works on midpoint methods [40, 18, 50]
only considered strongly log-concave distributions. We also show an improvement in computational
complexity for ULMC from 1

ϵ2/3
to 1√

ϵ
to achieve ϵ error2.

(4) Empirically, we show that our technique can match the quality of DDPM Scheduler with 1000
steps with fewer steps, achieving up to 4x gains in compute. Over multiple datasets, our method
outperforms ODE based schedulers such as DPM-Solver and DDIM in terms of quality.

1.3 Notation:

X0:T denotes (Xt)0≤t≤T and XK(0:T ) denotes (XtK)0≤t≤T . I denotes identity matrix over Rk×k

whenever k is clear from context. For any vector x ∈ Rk, ∥x∥ denotes its Euclidean norm. For
any a, b ∈ Z and a > b, we take the

∑b
t=a to be 0, and the product

∏b
t=a to be 1. Underdamped

Langevin Dynamics happens in R2d. Here, we take vectors named X (along with subscripts and
superscripts) as X = [U V ]

⊺ where U, V ∈ Rd also carry the same subscripts and superscripts (e.g:
X̃4 corresponds to Ũ4, Ṽ4). In this case I represents identity matrix in R2d×2d and Id denotes the
identity matrix in Rd×d. For any random variable X , we let Law(X) denote its probability measure.
By TV(µ, ν) and KL

(
µ
∣∣∣∣∣∣∣∣∣∣∣∣ν) we denote the total variation distance and KL divergence (respectively)

between two probability measure µ, ν. O,Ω,Θ are standard Kolmogorov complexity notations

2The prior works considered the compexity for Wasserstein distance W2(output, target) ≲ ϵ whereas we
consider TV ≤ ϵ. This is a standard comparison in the sampling literature [53].

2



whereas Õ, Ω̃, Θ̃ are same as O,Ω,Θ up to poly-logarithmic factors in the problem parameters such
as 1

ϵ ,
1
α ,K, T, d.

2 Problem Setup

Given a random vector X0 ∈ Rd, consider an iterative, discrete time process (Xt)t∈N∪{0} over Rd,
with step-size α > 0 given by:

Xt+1 = AαXt +Gαb(Xt, tα) + ΓαZt (1)

Where Aα, Gα,Γα are d× d matrix valued functions of the step-size α and (Zt)t≥0
i.i.d.∼ N (0, Id).

b : Rd → Rd is the drift. Call this process S(A,G,Γ, b, α). We consider Overdamped Langevin
Monte Carlo (OLMC), Underdamped Langevin Monte Carlo (ULMC) and DDPMs as key examples.

Overdamped Langevin Monte Carlo: Consider Overdamped Langevin Dynamics for some
F : Rd → R:

dX̄τ = −∇F (X̄τ )dτ +
√
2dBτ (2)

HereBτ is the standard Brownian motion in Rd. Under mild conditions on F and X̄0, Law(X̄τ )
τ→∞→

π∗ where π⋆(X) ∝ exp(−F (X)) is the stationary distribution.

Picking Aα = I, Gα = αI, Γα =
√
2αI and b(x, tα) = −∇F (x) in Equation (1) gives us Euler-

Maruyama discretization of Overdamped Langevin Dynamics: Xt in (1) approximates X̄αt [38, 35].
OLMC is the canonical algorithm for sampling and has been studied under assumptions such as
log-concavity of π⋆ [8, 12, 11] or that π⋆ satisfies isoperimetric inequalities [45, 15, 33, 7, 1].

Underdamped Langevin Monte Carlo occurs in 2d dimensions. We writeXt = [Ut Vt]
⊺ ∈ R2d

where Ut ∈ Rd is the position and Vt ∈ Rd is the velocity. Fix a damping factor γ > 0. We take:

Ah :=

[
Id

1
γ (1− e

−γh)Id
0 e−γhId

]
, Gh :=

[ 1
γ (h−

1
γ (1− e

−γh))Id 0
1
γ (1− e

−γh)Id 0

]
b(Xt, tα) :=

[
−∇F (Ut)

0

]

Γ2
h :=

[
2
γ

(
h− 2

γ (1− e
−γh) + 1

2γ (1− e
−2γh)

)
Id

1
γ (1− 2e−γh + e−2γh)Id

1
γ (1− 2e−γh + e−2γh)Id (1− e−2γh)Id

]

This choice of Ah,Γh, Gh, b(, ) in Equation (1) gives the Euler-Maruyama discretization of Un-
derdamped Langevin Dynamics (a.k.a. the Kinetic Langevin Dynamics) studied extensively in
Physics[14]):

dŪτ = V̄τdτ ; dV̄τ = −γV̄τ −∇F (Ūτ ) +
√
2γdBτ (3)

The stationary distribution of the SDE is given by π⋆(U, V ) ∝ exp(−F (U)− ∥V ∥2

2 ) [13, 9]. ULMC is
popular in the literature and has been analyzed in the strongly log-concave setting [6, 9, 16] and under
isoperimetry conditions [30, 53]. We refer to [53] for a complete literature review.

Denoising Diffusion Models: In this case the stochastic differential equation is given by:

dX̄τ = (X̄τ + 2∇ log pτ (X̄τ ))dτ +
√
2dBτ (4)

This also admits an equivalent characteristic ODE given below:

dX̄τ

dτ
= X̄τ +∇ log pτ (X̄τ ) (5)

See [43, 5, 4] for further details. Here pτ is the probability density of e−tX∗ +
√
1− e−2tZ where

X∗ is drawn from the target and Z is drawn from N (0, I) independently. The drift ∇ log pτ is
learned via neural networks for discrete time instants τ0, . . . , τn−1 (usually n = 1000). In practice,
the iterations are written in the form 3: Xt+1 = atXt + bt∇ log pτt(Xt) + σtZt where at, bt, σt are
chosen for best performance. Aside from the original choice in [20], many others have been proposed
([2, 42]). Since Aα, Gα,Γα in Equation (1) are time independent, we provide a variant of the Poisson
Midpoint Method to suit DDPMs in Section A.1, along with a few other optimizations.

3The time convention in the DDPM literature is reverse: Xt−1 = atXt + bt∇ log pτn−1−t(Xt) + σtZt.
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2.1 Technical Notes

Scaling Relations: We impose the following scaling relations on the matrices Ah, Gh,Γh for every
h ∈ R+, n ∈ N, which are satisfied by both OLMC and ULMC. Whenever b(·) is a constant function,
these ensure that K steps of Equation (1) with step-size α/K is the same as 1 step with step-size α
in distribution.

(Ah)
n = Ahn; (

n−1∑
i=0

(Ah)
i)Gh = Ghn;

n−1∑
i=0

(Ah)
iΓ2

h(A
⊺
h)

i = Γ2
hn

Randomized Midpoint Method and Stochastic Approximation We first illustrate the Random-
ized Midpoint Method [40, 18, 50] by applying it to OLMC (to obtain RLMC) to motivate our
method (the Poisson Midpoint Method) and explain why we expect a quadratic speed up shown in
Section 3. Overdamped Langevin Dynamics (2) satisfies:

X̄(t+1)α = X̄tα −
∫ (t+1)α

tα

∇F (X̄s)ds+
√
2(B(t+1)α −Btα) (6)

Taking Xt as the approximation to X̄tα, LMC approximates the integral
∫ (t+1)α

tα
∇F (X̄s)ds with

α∇F (Xt), giving a ‘biased’ estimator to the integral (conditioned on Xt = X̄tα). This gives the
LMC updates Xt+1 = Xt − α∇F (Xt) +

√
2αZt; Zt ∼ N (0, I). RLMC chooses a uniformly

random point in the interval [tα, (t+ 1)α] instead of initial point tα as described below:

Let u ∼ Unif([0, 1]), Zt,1, Zt,2 ∼ N (0, I) be independent and define the midpoint Xt+u := Xt −
uα∇F (Xt) +

√
2uαZt,1 (notice Xt+u is an approximation for X̄(t+u)α). The RLMC update is:

Xt+1 = Xt − α∇F (Xt+u) +
√
2uαZt,1 +

√
2(1− u)αZt,2 .

Notice that
√
2uαZt,1 +

√
2(1− u)αZt,2|u,Xt ∼ N (0, I), and E[α∇F (Xt+u)|Xt, Zt,1, Zt,2] =

α
∫ 1

0
F (Xt+s)ds which is a better approximation of the integral than α∇F (Xt). Therefore

RLMC provides a nearly unbiased approximation to the updates in Equation (6).

Intuitively, we expect that reducing the bias leads to a quadratic speed-up. Let Z,Z ′ ∼ N (0, 1)
and independent. For ϵ small enough it is easy to show that, KL

(
Law(Z + ϵ)

∣∣∣∣∣∣∣∣∣∣∣∣Law(Z)) = Θ(ϵ2)

whereas KL
(
Law(Z + ϵZ ′)

∣∣∣∣∣∣∣∣∣∣∣∣Law(Z)) = Θ(ϵ4). We hypothesize that Zt+ error in integral is closer
to N (0, I) when the error term has a small mean and a large variance (as in RLMC) than when it has
a large mean but 0 variance (as in LMC). However, rigorous analysis of RLMC has only been done
under assumptions like strong log-concavity of the target distribution. This is due to the fact that Zt

is dependent on the error in the integral, disallowing the argument above.

Our method, PLMC, circumvents these issues by considering a discrete set of midpoints
{0, 1

K , . . . ,
K−1
K } instead of [0, 1]. It picks each midpoint with probability 1

K independently, al-
lowing us to prove results under more general conditions using the intuitive ideas described above.
Thus, our method is a variant of RLMC which is amenable to more general mathematical analysis.
The OPTION 2 of our method (see below) makes this connection clearer. PLMC is naturally suited
to DDPMs since the drift function is trained only for a discrete number of timesteps (see Section 2).

2.2 The Poisson Midpoint Method

We introduce the Poisson Midpoint Method (PLMC) which approximatesK steps of S(A,G,Γ, b, α
K )

with step-size α
K with one step of which has a step-size α. We denote this by PS(A,G,Γ, b, α,K)

and let its iterates be denoted by (X̃tK)t≥0 or (XP
t )t≥0. Suppose Ht,i ∈ {0, 1} be any binary

sequence and ZtK+i be a sequence of i.i.d. N (0, I) for t, i ∈ N ∪ {0}, 0 ≤ i ≤ K − 1. Given X̃tK ,
we define the interpolation:

ˆ̃XtK+i := Aαi
K
X̃tK +Gαi

K
b(X̃tK , tα) +

i−1∑
j=0

Aα(i−j−1)
K

Γ α
K
ZtK+j (7)
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Note that this interpolation is cheap since every one of ˆ̃XtK+i can be computed with just one
evaluation of the function b(). We then define the refined iterates for 0 ≤ i ≤ K − 1 for a given t as:

X̃tK+i+1 = A α
K
X̃tK+i +G α

K

[
b(X̃tK , tα) +KHt,i(b(

ˆ̃XtK+i,
(tK+i)α

K
)− b(X̃tK , tα))

]
+ Γ α

K
ZtK+i

(8)

We pick Ht,i based on the following two options, independent of ZtK+i, X̃0:

OPTION 1: Ht,i are i.i.d. Ber( 1
K ).

OPTION 2: Let ut ∼ Unif({0, . . . ,K − 1}) i.i.d. and Ht,i := 1(ut = i).
Remark 1. We call our method Poisson Midpoint method since in OPTION 1 the set of midpoints
{αt+ αi

K : Ht,i = 1} converges to a Poisson process over [αt, α(t+ 1)] as K →∞.

The Algorithm and Computational Complexity The algorithm PS(A,G,Γ, b, α,K) computes
X̃K(t+1) given X̃Kt in one step by unrolling the recursion given in Equation (8). For the sake of clar-
ity, we will relabel X̃tK to be XP

t to stress the fact that it is the t-th iteration of PS(A,G,Γ, b, α,K).

Step 1: Generate It = {i1, . . . , iN} ⊆ {0, . . . ,K − 1} such that Ht,i = 1 iff i ∈ It. Let
i1 < i2 · · · < iN hold. When N = 0, we take this to be the empty set.
Step 2: Let M0 := 0 and let Wt,k be a sequence of i.i.d. N (0, I) random vectors. For k =
1, . . . , N,N + 1, we take:

Mk = Aα(ik−ik−1)

K

Mk−1 + Γα(ik−ik−1)

K

Wt,k

We use the convention that i0 = 0, iN+1 = K − 1, A0 = I and Γ0 = 0.

Step 3: For k = 1, . . . , N , compute ˆ̃XtK+ik := Aαik
K

XP
t +Gαik

K

b(XP
t , αt) +Mk

Step 4: Corr := K
∑N

k=1G (K−1−ik)α
K

(b( ˆ̃XtK+i,
(tK+i)α

K )− b(XP
t , αt))

Step 5: XP
t+1 = AαX

P
t +Gαb(X

P
t , αt)+MN+1+Corr (9)

That is, the algorithm first generates the random mid-points Ht,i, computes the interpolation ˆ̃XtK+i

only when Ht,i = 1 and then computes b( ˆ̃XtK+i,
(tK+i)α

K ) for these points. These computations
are then combined to compute X̃(t+1)K . In most applications, it is computationally easy to generate
Gaussian random vectors and perform vector operations such as summation. However, the evaluation
of the drift function b() is expensive. Therefore, in this work, we consider the number of evaluations of
the drift function as the measure of computational complexity. The following proposition establishes
that each iteration of PLMC requires 2 evaluations of b() in expectation.

Proposition 1. When the scaling relations hold (Section 2.1), the trajectory (XP
t )t≥0 in Equation (9)

has the same joint distribution as the trajectory (X̃tK)t≥0 given in Equation (8). In expectation, one
step of PS(A,G,Γ, b, α,K) requires two evaluations of the function b(·).

We call PS(A,G,Γ, b, α,K) as PLMC whenever S(A,G,Γ, b, α
K ) is either OLMC or ULMC.

3 Main Results

Theorem 1 gives an upper bound for the KL divergence of the trajectory generated by
PS(A,G,Γ, b, α,K) to the one generated by S(A,G,Γ, b, α

K ). We refer to Section C for its proof.
We note that Theorem 1 does not make any mixing or smoothness assumptions on b(·) and that it can
handle time dependent drifts. We refer to Section 4 for a proof sketch and discussion.

Theorem 1. LetXt be the iterates of S(A,G,Γ, b, α
K ) andXP

t be the iterates of PS(A,G,Γ, b, α,K)

with OPTION 1. Suppose that XP
0 = X0. Let X̃tK+i be the iterates in Equation (8). Define random

variables:
BtK+i := Γ−1

α
K
G α

K
[b( ˆ̃XtK+i, tα+ iα

K
)− b(X̃tK+i, tα+ iα

K
)]

βtK+i := ∥KΓ−1
α
K
G α

K
[b( ˆ̃XtK+i, tα+ αi

K
)− b(X̃tK , tα)]∥
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Then, for some universal constant C and any r > 1:

KL
(
Law(XP

0:T )
∣∣∣∣∣∣∣∣∣∣∣∣Law((XKt)0≤t≤T )

)
≤

T−1∑
s=0

K−1∑
i=0

E[∥BsK+i∥2] + CE
[
β4
sK+i

K2
+
β10
sK+i

K3
+
β6
sK+i

K2
+
β2r
sK+i

K

]
(10)

We now apply Theorem 1 to the case of OLMC and ULMC under additional assumptions, with the
proofs in Sections E and F respectively.
Assumption 1. F : Rd → Rd is L-smooth (i.e., ∇F is L-Lipschitz). x∗ is its global minimizer.
Assumption 2. The initialization X0 is such that E∥X0 − x∗∥14 < C14

initd
7.

The assumptions above are very mild and standard in the literature. Specifically, Assumption 2
shows that the initialization is close to global optimum by O(

√
d) up to 14th moments. For instance,

this is satisfied when the initialization is a standard Gaussian variable with mean µ satisfying
∥µ − x∗∥ = O(

√
d). Specifically this is true when µ = 0 and ∥x∗∥ = O(

√
d). This is a weak

assumption which is implied from common initialization assumptions in the literature as listed below.
It can be replaced with the assumptions in [53, Appendix D and Lemma 27] which considers Gaussian
initializations with the right variance and mean. The original randomized midpoint method work [40]
considers initializing at x∗ whereas [45] considers a Gaussian initialization with the right variance at
a local minimum of F .

We do not make any assumptions regarding isoperimetry of the target distribution π⋆(x) ∝
exp(−F (x)).
Theorem 2 (OLMC). Consider the setting of Theorem 1 with OLMC under Assumptions 1 and 2.
There exists constants c1, c2 > 0 such that whenever αL < c1 and α3L3T < c2 then:

KL
(
Law(XP

0:T )
∣∣∣∣∣∣∣∣∣∣∣∣Law(XK(0:T ))

)
≤ CL4α4(E[F (X0)− F (x∗)] + 1)

+O(CL4α4Kd2T ) (11)

Remark 2. There are lower order terms hidden in the O() notation. These are explicated in
Equation (40) in the appendix. The next theorem gives a similar guarantee for ULMC and the lower
order terms are explicated in Equation 60 in the appendix.
Theorem 3 (ULMC). Consider the setting of Theorem 1 with ULMC under Assumptions 1 and 2.
Suppose that x∗ is the global minimizer of F . There exist constants C1, c1, c2 such that whenever
γ > C1

√
L, αγ < c1, T < c2γ

L2α3 .

KL
(
Law(XP

(0:T ))
∣∣∣∣∣∣∣∣∣∣∣∣Law(XK(0:T ))

)
≤ Cα6L4

γ2

[
EF (U0 +

V0

γ )− F (x∗) + E∥V0∥2 + 1
]

+O(Kα7L4T 2

γ (d+ logK)2) (12)

OLMC and ULMC are sampling algorithms which output approximate samples (XT and UT re-
spectively) from the distribution with density π⋆ ∝ e−F . Given ϵ > 0, prior works give upper
bounds on T and the corresponding step-size α as a function of ϵ to achieve guarantees such as
KL
(
Law(XT )

∣∣∣∣∣∣∣∣∣∣∣∣π⋆
)
≤ ϵ2 or TV(Law(XT ), π

⋆) ≤ ϵ. By Pinsker’s inequality TV2 ≤ 2KL therefore
we guarantees for KL ≤ ϵ2 to those for TV ≤ ϵ as is common in the literature.

Quadratic Speedup Let T = Θ̃(1/α) as is standard. Choosing K = Θ(1/α), our method applied
to OLMC achieves a KL divergence of O(α2) to OLMC with step-size α2. Similarly, our method
applied to ULMC achieves a KL divergence of O(α4) to ULMC with step-size α2. Whenever the KL
divergence of OLMC (resp. ULMC) output to π⋆, with step-size η is Ω̃(η) (resp Ω̃(η2)) Theorem 2
(resp. Theorem 3) demonstrates a quadratic speed up.

To show the generality of our results, we combine Theorems 2 and 3 with convergence results for
OLMC /ULMC in the literature ([45, 53]) when π⋆ satisfies the Logarithmic Sobolev Inequality with
constant λ (λ-LSI). We obtain convergence bounds for the last iterate of PLMC to π⋆ under the same
conditions. λ-LSI is more general than strong log-concavity (λ-strongly log-concave π⋆ satisfies
λ-LSI). It is stable under bounded multiplicative perturbations of the density [21] and Lipschitz
mappings. λ-LSI condition has been widely used to study sampling algorithms beyond log-concavity.
We present our results in Table 1 and refer to Section G for the exact conditions and results.
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Table 1: Comparison of LMC and PLMC guarantees. LMC complexity is the upper bound on the
number of drift (b()) evaluations to achieve the error guarantee in the referenced work. PLMC
complexity is the corresponding upper bound for PLMC. PLMC obtains a quadratic improvement in
ϵ, and improved dependence on L

λ , d. The bounds hold up to poly-log factors.
Algorithm Reference Conditions LMC complexity PLMC complexity

ULMC [53] λ-LSI, Assumptions 1, 2 L
3
2 d

1
2

λ
3
2 ϵ

for TV ≤ ϵ (Lλ )
17
12

d
5
12√
ϵ

for TV ≤ ϵ

OLMC [45] λ-LSI, Assumptions 1, 2 L2d
λ2ϵ2 for KL ≤ ϵ2 L

3
2 d

3
4

λ
3
2 ϵ

for TV ≤ ϵ

4 Proof Sketch

Sketch for Theorem 1 For the proof of Theorem 1, we follow the recipe given in [10] in order
to analyze the stochastic approximations of LMC - where only an unbiased estimator for the drift
function is known. The bias variance decomposition in Lemma 1, shows that the iterations of
PS(A,G,Γ, α,K) can be written in the same form of as the iterations of S(A,G,Γ, α

K ):

X̃tK+i+1 = A α
K
X̃tK+i +G α

K

[
b(X̃tK+i)

]
+ Γ α

K
Z̃tK+i

Where Z̃tK+i := ZtK+i +BtK+i + StK+i, BtK+i is the ‘bias’ with a non-zero conditional mean,
and StK+i is the variance with 0 conditional mean (conditioned on X̃tK+i). They are independent of
ZtK+i conditioned on X̃tK+i. Note that the sequence (Z̃tK+i)t,i is neither i.i.d. nor Gaussian. If it
was a sequence of i.i.d. N (0, I), then this is exactly same as S(A,G,Γ, α

K ).

The main idea behind the proof of Theorem 1 is that due to data-processing inequality, it is sufficient to
show that (Z̃tK+i)t,i is close to a sequence of i.i.d. Gaussian random vectors in KL-divergence. The
bias term can be shown to lead to an error bounded by

∑
t,i E∥BtK+i∥2, which roughly corresponds to

the KL divergence betweenN (BtK+i, I) andN (0, I). We then show that ZtK+i+StK+i|Z̃0:tK+i−1

is close in distribution to N (0, I). In order to achieve this, we first modify the Wasserstein CLT
established in [51] to show that ZtK+i + StK+i is close in distribution to N (0, I + Σt,i) when
conditioned on Z̃0:tK+i−1 where Σt,i is the conditional covariance of StK+i. This CLT step gives us

the error of the form
∑T−1

s=0

∑K−1
i=0 CE

[
β10
sK+i

K3 +
β6
sK+i

K2 +
β2r
sK+i

K

]
in Theorem 1.

We then use the standard formula for KL divergence between Gaussians to bound the distance
between N (0, I+Σt,i) to N (0, I). This accounts for the fact that the Gaussian noise considered has

a slightly higher variance than I. This leads to the leading term CE
[
β4
sK+i

K2

]
.

Sketch for Theorem 2 Applying Theorem 1 to OLMC , note that the term βtKi
depends on how far

the coarse estimate ˆ̃XtK+i is from the true value X̃tK+i. Indeed, under the smoothness assumption

on F we show that: β2p
tK+i ≤ (L

2αK
2 )p sup0≤j≤K−1 ∥

ˆ̃XtK+j − X̃tK∥2p. Thus:

E∥βtK+i∥2p ≲ L2pα3pKpE∥∇F (X̃tK)∥2p + L2pα2pKpdp .

Therefore, the proof reduces to bounding
∑T−1

t=0 E∥∇F (X̃tK)∥2p. We observe that X̃(t+1)K =

X̃tK − α(∇F (X̃tK) + ∆t) +
√
2αZt where ∆t is a small error term appearing due to Poisson

Midpoint Method. Notice that this is approximately stochastic gradient descent on F with a large
noise

√
2α. Therefore, using the taylor approximation of F , we can show that:

EF (X̃(t+1)K)− EF (X̃tK) ≲ −α∥∇F (X̃tK)∥2 + αd+ o(αd)

=⇒
T−1∑
t=0

E∥∇F (X̃tK)∥2 ≲
F (X0)− infx F (x)

α
+ LTd+ o(LTd)

The following sophisticated bound derived in this work is novel to the best of our knowledge:
T−1∑
t=0

E∥∇F (X̃tK)∥2p ≲ Lp−1E (F (X0)− infx F (x))p

α
+ TLpdp(1 + (αLT )p−1)
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Sketch for Theorem 3 This is similar Theorem 2, but requires us to bound E
∑

t ∥ṼtK∥2p and
E
∑

t ∥∇F (ŨtK)∥2p. We track the decay of two different entities across time: (1) ∥ṼtK∥2 and (2)
F (ŨtK+ ṼtK

γ ). Our proof shows via a similar taylor series based argument that PLMC does not allow

either ∥ṼtK∥2 or F (ŨtK + ṼtK

γ ) to grow too large. Letting Ψt := ŨtK + ṼtK

γ we show (roughly):

T−1∑
t=0

E∥∇F (ŨtK)∥2p ≲ γ2p

γα

[
E∥Ṽ0∥2p + E|F (Ψ0)− F (x∗)|p

]
+ T

[
γ4p

Lp + (γαT )p−1γ2p
]
dp

T−1∑
t=0

E∥ṼtK∥2p ≲ 1
γα

[
E∥Ṽ0∥2p + E|(F (Ψ0)− F (x∗)|p

]
+ T

[
γ2p

Lp + (γαT )p−1
]
dp

5 Experiments

We now present experiments to evaluate Poisson Midpoint Method as a training-free scheduler for
diffusion models. We consider the Latent Diffusion Model (LDM) [39] for CelebAHQ 256, LSUN
Churches, LSUN Bedrooms and FFHQ datasets using the official (PyTorch) codebase and checkpoints.
We compare the sample quality of the Poisson Midpoint Method against established methods such as
DDPM, DDIM and DPM-Solver, varying the number of neural network calls (corresponding to the
drift b(x, t)) used to generate a single image.

To evaluate the quality, we generate 50k images for each method and number of neural network calls
and compare it with the training dataset. We use Fréchet Inception Distance (FID) [19] metric for
LSUN Churches and LSUN Bedrooms. For CelebAHQ 256 and FFHQ, we use Clip-FID, a more
suitable metric as it is known that FID may exhibit inconsistencies with human evaluations datasets
outside of Imagenet [24]. We refer to Section A.3 in the appendix for further details.

We refer to the ODE based sampler with η = 0 (see [42]) setting as DDIM and use the implementation
in [39]. We generate images for number of neural network calls ranging from 20 to 500. For DPM-
Solver, we port the official codebase of [28] to generate images for different numbers of neural
network calls ranging from 10 to 100 using MultistepDPMSolver and tune the hyperparameter ‘order’
over {2, 3} and ‘skip_type’ over {‘logSNR’, ‘time_uniform’, ‘time_quadratic’} for each instance to
obtain the best possible FID score. This ensures that the baseline is competitive.

For the sake of clarity, we will call all SDE based methods, including DDIM with η > 0 (see
[42]) as DDPM. The DDPM scheduler has many different proposals for coefficients at, bt, ct (see
Section 2,[42, 2]), apart from the original proposal in the work of [20] . Based on these proposals,
we consider three different variants of DDPM in our experiments (see Section A.5 for exact details).
This choice can have a significant impact on the performance (See Figure 1 in the Appendix) for a
given number of denoising diffusion steps. For the Poisson Midpoint Method, we implement the
algorithm shown in Section A.1 for number of diffusion steps ranging from 20 to 500, corresponding
to 40 to 750 neural network calls (see Section A.2). This approximates K steps of the 1000 step
DDPM with a single step. For both Poisson Midpoint Method and DDPM, we plot the results from
the best variant in Table 2 for a given number of neural network calls and refer to Section A.5 for
the numbers of all variants. Poisson Midpoint Method incurs additional noise in each iteration due
to the randomness introduced by Hi. This can lead to a large error when K is large. When K is
large, we reduce the variance of the Gaussian noise to compensate as suggested in the literature (see
Covariance correction in [10] and [31, Equation 9]). We refer to Section A.5 for full details.

5.1 Results

We refer to the outcome of our empirical evaluations in Table 2. The first column compares the
performance against DDPM. We see that for all the datasets considered, Poisson Midpoint Method
can match the quality of the DDPM sampler with 1000 neural network calls with just 40-80 neural
network calls. Observe that for CelebA, LSUN-Church and FFHQ datasets, the performance of
DDPM degrades rapidly with lower number of steps, showing the advantage our method in this
regime. However, a limitation of our work is that the quality of our method degrades rapidly at around
40-50 neural network calls. We believe this is because our stochastic approximation breaks down
with larger step-sizes and further research is needed to mitigate this.
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The second column compares the performance of our method against ODE based methods. It is
known in the literature that DDPM with 1000 steps outperforms DDIM and DPM-Solver in terms of
the quality for a large number of models and datasets [41, 42]. Thus, in terms of quality, Poisson
midpoint method with just 50-80 neural network calls outperforms ODE based methods with a similar
amount of compute. Note that we optimize the performance of DPM-Solver over 6 different variants
as mentioned above to maintain a fair comparison. However, in the very low compute regime (~10
steps), DPM-Solver remains the best choice.

6 Conclusion

We introduce the Poisson Midpoint Method, which efficiently discretizes Langevin Dynamics and
theoretically demonstrates quadratic speed up over Euler-Maruyama discretization under general
conditions. We apply our method to diffusion models for image generation, and show that our method
maintains the quality of 1000 step DDPM with just 50-80 neural network calls. This outperforms ODE
based methods such as DPM-Solver in terms of quality, with a similar amount of compute. Future
work can explore variants of Poisson midpoint method with better performance when fewer than 50
neural network calls are used. An interesting theoretical direction would be to derive convergence
bounds for algorithms such as DDPM which have a time dependent drift function. Future work
can also consider convergence rates of PLMC under conditions such as the Poincare Inequality and
whenever ∇F is Hölder continuous instead of Lipschitz continuous.

7 Societal Impact

Our work considers an efficient numerical discretization schemes for making diffusion model infer-
ence more efficient. Publicly available, pre-trained diffusion models are very impactful and have
significant risk of abuse. In addition to theoretical guarantees, our work considers empirical experi-
ments to evaluate the inference efficiency on publicly available, widely used diffusion models over
curated datasets. We do not foresee any significant positive or negative social impact of our work.
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Table 2: Empirical Results for the Latent Diffusion Model [39], comparing the Poisson midpoint
method with various SDE and ODE based methods.

Dataset vs. SDE Based Methods vs. ODE Based Methods

CelebAHQ 256

LSUN
Churches

LSUN
Bedrooms

FFHQ 256
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A Details of Empirical Evaluations

A.1 Pseudocode

The Algorithm Let at, bt and σt be the coefficients of the DDPM denoising step at time t as per
Section 2. Let N denote the number of train steps. The main paper used notations and conventions
based on the LMC literature. Here we follow different conventions and notations to connect with the
diffusion model literature.

1. We take the dynamics to go backward in time (i.e., compute Xt−1 from Xt)
2. We use b(Xt, t) instead of b(Xt, αt) to denote the neural network estimate of
∇ log pτN−t−1

(Xt).

DDPM scheduler samples XN−1 ∼ N (0, I) and iteratively computes X0 as:
Xt−1 = atXt + btb(Xt, t) + σtZt; Zt ∼ N (0, I)

We take N = 1000 as is standard in the literature. The Poisson Midpoint Method approximates K
steps of the iteration above, with a single step. That is, it obtains an approximation for Xt−K directly
from Xt. The number of iterations deployed by Poisson Midpoint Method to sample X0 is N/K.
We compute the number of neural network calls required in Section A.2. The exact description of
Poisson Midpoint Method is given below.

PoissonMidpointMethod(X̃t, t,K, b(, ),OPTION):

1. Let (Ak, Bk, Ck)← InterpolationConstants(t, k), for every k ∈ [K].
2. If OPTION = 1:

Define Hi ∼ Ber(1/K) i.i.d for every i ∈ [K − 1].
Define p = K.

If OPTION = 2:
Define Hi ← 1(u = i) where u ∼ Unif({1, . . . ,K − 1}) i.i.d.
Define p = K − 1.

3. For every i ∈ [K], Zi ∼ N (0, I).
4. Perform the update:

X̃t−K = AKX̃t +

(
K∑
i=1

BK,i

)
b(X̃t, t) +

(
K∑
i=1

CK,iZi

)

+

K∑
i=1

pHiBK,i

(
b(X̂t−i+1, t− i+ 1)− b(X̃t, t)

)
where

X̂t−τ = Aτ X̃t +

(
τ∑

i=1

Bτ,i

)
b(X̃t, t) +

τ∑
j=1

Cτ,K−j+1Z[j], ∀τ ∈ [K − 1].

5. Return X̃t−K .

InterpolationConstants(t, k):

1. Ak ← at · at−1 · at−k+1.

2. Bk,i =

{
at−k+1 · · · at−i · bt−i+1, if i < k

bt−k+1, if i = k
for each i ∈ [k].

3. Ck,i =

{
at−k+1 · · · at−i · σt−i+1, if i < k

σt−k+1, if i = k
for each i ∈ [k].

4. Return (Ak, Bk, Ck).
Remark 3. In the theoretically analyzed algorithm given in Section 2.2, we take the midpoints to be
{0, 1

K , . . . ,
K−1
K }. But here, we take the midpoints to be { 1

K , . . . ,
K−1
K } since the X̂t = X̃t, making

the correction term pHiBK,i

(
b(X̂t−i+1, t− i+ 1)− b(X̃t, t)

)
= 0 when i = 0.
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A.2 Number of Neural Network Calls

While each step of Poisson Midpoint Method approximates K steps of DDPM, it can use more than
one neural network calls. Since neural networks calls are the most computationally expensive parts of
diffusion models (4 orders of magnitude larger FLOPs compared to other computations), we compute
the number of neural network calls for the Poisson Midpoint Method given K,N for both OPTION
1 and OPTION 2.

For OPTION 1, b(X̃t, t) is always computed. b(X̂t−i+1, t− i+1) needs to be computed iff Hi = 1.
It is easy to show that E|{i ∈ [K − 1] : Hi = 1}| = K−1

K . Thus, the expected number of neural
network calls per step is 2− 1

K . The total number number of neural network calls is N
K (2− 1

K ).

OPTION 2 always computes evaluates b() twice per step. Therefore, the number of neural network
calls is 2N

K .

A.3 FID Evaluation Details

FID scores between two image datasets can vary greatly depending on the image processing details
which do not have much bearing on visual characteristics (such as png vs jpeg) [37]. Thus, we utilize
the standardized Clean-FID codebase [37] to compute the scores for all the datasets. As is standard,
we generate 50k images for all our evaluations. For CelebAHQ 256, we evaluate the CLIP-FID scores
against the combined 30k training and validation samples of the CelebA 1024x1024 dataset [22],
where the CLIP-FID is invoked by using the flags model_name = clip_vit_b_32 and mode = clean
[37]. For FFHQ 256, we utilize the precomputed statistics of [37] on the 1024 resolution trainval70k
split with the flags dataset_split = trainfull and mode=clean. As for LSUN Churches [49], we utilize
the precomputed statistics of [37] with the flags dataset_split = trainfull and mode=clean to calculate
the FID. And for LSUN Bedrooms [49], we downloaded the training split of [39] which consists of
3,033,042 images and used the codebase of [37] to compute the FID between two folders.

A.4 Hardware Description and Execution Time

For our experiments, we utilized a high-performance computational setup consisting of 8 NVIDIA
A100-SXM4 GPUs, each with 40 GB of VRAM, an Intel Xeon CPU with 96 cores operating at 2.2
GHz, and 1.3 TiB of RAM. The experiments take about 16 hours to generate 50k images with 1000
neural network calls per image and batch size of 50. The time is proportionally lower when fewer
neural network calls are used.

A.5 DDPM Variant Details

We describe 3 different variants for DDPM, based on 3 different choices of coefficients at, bt, σt used
in Section A.1. Our observations indicate that each variant performs optimally for different datasets
and for different ranges of the diffusion steps. For example, consider the DDPM variants of LSUN
Churches in Figure 1b. Note that, Variant 3 outperforms Variant 2 for all steps less than or equal
to 125 and vice versa for larger steps. Similar phenomenon can be observed for CelebAHQ 256 as
shown in Figure 1a, Variant 2 outperforms the rest of the variants for steps smaller than 125, while
Variant 1 achieves the best performance for larger steps. For FFHQ 256, similar phase transitions can
be observed in Figure 1c at around 50-100 steps. For LSUN Bedrooms, we observed that Variant 2
outperforms 1 and 3 on all the regimes. Our experiments were carried out on all the variants and on
all the steps, and the best scores are considered for comparison with Poisson Midpoint Method in
Table 2. Let αt, βt, ᾱt be as defined in [20].

Variant 1: The first variant uses the following closed form expression to perform the update.

Xt+1 =
1
√
αt
Xt − 2 ·

(1−√αt)√
αt(1− αt)

· b(Xt, t) + σt · Zt where σ2
t =

βt
1− βt

. (13)

Variant 2: The second variant of DDPM uses the default coefficients of DDIM as provided in the
codebase of [39], with η = 1 and σ2

t = (1−αt)·βt+1

(1−αt+1)
.

Variant 3: The third variant of DDPM also uses the default coefficients of DDIM with η = 1, but
uses a modified lower variance σ2

t = (1− αt) · βt+1.
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(a) CelebAHQ 256 DDPM Variants (b) LSUN Churches DDPM Variants

(c) FFHQ 256 DDPM Variants

Figure 1: Comparison of different variants of DDPM

Poisson
Midpoint
Variant

Number of Diffusion Steps / Number of Neural Network Calls

OPTION 2 OPTION 1
20 /
40

25 /
50

40 /
80

50 /
97.5

100 /
190

125 /
234.375

200 /
360

250 /
437.5

500 /
750

Variant 1a 14.57 3.29 2.24 2.21 2.26 2.28 2.31 2.30 2.29
Variant 1b 11.85 2.75 2.47 2.15 2.48 2.54 2.52 2.50 2.44
Variant 1c 9.65 2.44 2.74 2.27 2.76 2.80 2.85 2.86 2.77
Variant 1d 7.72 2.40 3.13 2.45 3.11 3.15 3.21 3.19 3.12
Variant 2 12.34 2.90 2.53 2.23 2.52 2.55 2.61 2.59 2.47
Variant 3 12.99 3.27 2.56 2.60 2.55 2.51 2.49 2.47 2.38

Table 3: CelebAHQ 256 – Comparison of Poisson Midpoint Variants

A.6 Poisson Midpoint Variant Details

Similar to DDPM, we perform our experiments for different choice of coefficients at, bt, σt. Variants 2
and 3 of Poisson Midpoint are defined with the same coefficients of the corresponding DDPM
variants 2 and 3. Poisson Midpoint Method introduces additional noise due to the randomness
present in Hi. This becomes very large whenever K is large. Hence we reduce this randomness
by reducing the variance of the Gaussian as suggested by [31, 10]. Specifically, for Variant 1, we
consider four sub-variants 1a, 1b, 1c, 1d that respectively correspond to variances σ2

t = βt

1+i·βt
for

i = {−1, 0, 1, 2}, with the rest of the coefficients at, bt defined as in (13). Note that the variance is
inversely proportional to i.
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Poisson
Midpoint
Variant

Number of Diffusion Steps / Number of Neural Network Calls

OPTION 2 OPTION 1
20 /
40

25 /
50

40 /
80

50 /
100

100 /
200

125 /
250

200 /
360

250 /
437.5

500 /
750

Variant 1a 12.44 9.18 6.04 5.30 4.12 4.14 4.07 4.05 4.41
Variant 1b 12.60 9.52 6.38 5.50 4.47 4.31 4.24 4.27 4.69
Variant 1c 12.66 9.92 6.76 5.99 4.79 4.61 4.61 4.58 4.94
Variant 1d 13.04 10.39 7.22 6.45 5.09 4.91 4.93 4.85 5.27
Variant 2 11.18 8.21 5.45 4.75 3.81 3.77 3.77 3.75 4.22
Variant 3 3.59 3.33 3.58 3.65 3.75 3.71 3.77 3.84 4.45

Table 4: LSUN Churches – Comparison of Poisson Midpoint Variants

Poisson
Midpoint
Variant

Number of Diffusion Steps / Number of Neural Network Calls

OPTION 2 OPTION 1
20 /
40

25 /
50

40 /
80

50 /
100

100 /
200

125 /
250

200 /
360

250 /
437.5

500 /
750

Variant 1a 54.92 16.87 6.01 5.31 5.14 5.21 5.36 5.33 5.61
Variant 1b 47.03 13.46 4.98 4.78 4.69 4.79 4.72 4.81 4.97
Variant 1c 38.58 9.67 4.73 4.73 4.87 4.91 4.85 4.87 4.96
Variant 1d 31.33 7.57 5.07 5.47 5.58 5.65 5.50 5.58 5.57
Variant 2 46.52 12.47 4.69 4.46 4.52 4.51 4.56 4.56 4.81
Variant 3 39.82 9.17 4.39 4.40 4.55 4.60 4.66 4.65 4.98

Table 5: LSUN Bedrooms – Comparison of Poisson Midpoint Variants

We observe that lower variance leads to faster convergence when the number of diffusion steps is
small. However, higher variances yield slightly better scores at higher steps, better quality at the
expense of increased neural network evaluations. This phenomenon can be observed in Tables 3,4, 5
and 6 where the optimal score for each step-size/neural network calls is highlighted in bold. Therefore,
we evaluate samples on all of the above mentioned variants and choose the best variant for every
number of steps/neural network calls. We see that whenever K is small (2-4), then OPTION 1 uses
fewer neural network calls than OPTION 2. However, the without replacement sampling technique
in OPTION 2 incurs lower variance error in the updates, allowing better convergence with lower
number of steps (See Section A.2). Thus, we use OPTION 2 for smaller number of steps and
OPTION 1 for larger number of steps.

B DPM-Solver Variant Details

For unconditional image generation of high-resolution images, third order (order=3) Multistep DPM-
Solvers with uniform time steps are recommended. To ensure a competitive benchmark, we evaluate
the DPM-Solver on six different settings by tuning the parameters ‘order’ and ‘skip_type’. Our
evaluations are shown in Table 7, where the best score for every setting, highlighted in bold, are
chosen in our plots for comparison. We use the official code of [37] with parameters ‘algorithm_type
= dpmsolver’ ‘method = multistep’ and vary the parameters ‘order’ and ‘skip_type’ accordingly.
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Poisson
Midpoint
Variant

Number of Diffusion Steps / Number of Neural Network Calls

OPTION 2 OPTION 1
20 /
40

25 /
50

40 /
80

50 /
100

100 /
200

125 /
250

200 /
360

250 /
437.5

500 /
750

Variant 1a 16.08 5.27 2.96 2.82 2.83 2.82 2.89 2.90 2.97
Variant 1b 13.26 4.31 2.79 2.77 2.81 2.80 2.82 2.85 2.91
Variant 1c 11.07 3.53 2.80 2.88 2.90 2.95 2.94 2.95 3.01
Variant 1d 9.39 3.21 3.04 3.15 3.22 3.24 3.21 3.18 3.24
Variant 2 13.79 4.44 2.66 2.63 2.63 2.65 2.66 2.64 2.79
Variant 3 13.65 4.11 2.64 2.65 2.76 2.78 2.80 2.82 2.98

Table 6: FFHQ 256 – Comparison of Poisson Midpoint Variants

C Proof of Theorem 1

The proof relies on the Wasserstein CLT based approach introduced in [10] to compare two discrete
time stochastic processes. For the sake of clarity we consider the drift function b(x, t) to be b(x) (i.e.,
time invariant). However, the proof goes through for time varying drifts as well.

C.1 The Bias-Variance Decomposition:

In the Lemma below, we will rewrite the update equations for X̃tK+i given in Equation (8) in the
same form as the update equations for S(A,G,Γ, α

K ) given in Equation (1). The lemma follows by
re-arranging the terms in Equation (8).
Lemma 1. We can write

X̃tK+i+1 = A α
K
X̃tK+i +G α

K

[
b(X̃tK+i)

]
+ Γ α

K
Z̃tK+i

Where Z̃tK+i := ZtK+i +BtK+i + StK+i such that ‘bias’ BtK+i is defined as

BtK+i := Γ−1
α
K
G α

K
[b( ˆ̃XtK+i)− b(X̃tK+i)]

and the variance StK+i is defined as:

StK+i := K(Ht,i − 1
K )Γ−1

α
K
G α

K
[b( ˆ̃XtK+i)− b(X̃tK)]

C.2 Random Function Representation

By Equation (1), the iterates of S(A,G,Γ, α
K ) satisfy:

XtK+i+1 = A α
K
XtK+i +G α

K
[b(XtK+i)] + Γ α

K
ZtK+i (14)

By Lemma 1, we can write down the interpolating process as:

X̃tK+i+1 = A α
K
X̃tK+i +G α

K

[
b(X̃tK+i)

]
+ Γ α

K
Z̃tK+i (15)

Note that while ZtK+i are i.i.d. N (0, I) vectors, Z̃tK+i can be non-Gaussian and non-i.i.d. Below
we will show that the KL divergence between the joint laws of (XtK+i)t,i and (X̃tK+i)t,i can be
bounded by bounding the KL divergence between (ZtK+i)t,i and (Z̃tK+i)t,i. We now state the
following standard results from information theory.
Lemma 2 (Chain Rule for KL divergence). Let p, q be two probability distributions over X × Y
where X and Y are polish spaces. Let px, qx denote their respective marginals over X and let
py|x, qy|x denote the conditional distribution over Y conditioned on x ∈ X . Then,

KL
(
p
∣∣∣∣∣∣∣∣∣∣∣∣q) = KL

(
px
∣∣∣∣∣∣∣∣∣∣∣∣qx)+ Ex∼px

KL
(
py|x

∣∣∣∣∣∣∣∣∣∣∣∣qy|x)
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Table 7: Comparison of DPM Solver Variants

CelebAHQ 256

Order = 2 Order = 3
Neural Network

Calls Uniform logSNR Quadratic Uniform logSNR Quadratic
10 3.06 4.05 4.58 3.07 3.44 4.31
15 2.90 3.13 3.35 2.79 2.82 3.16
20 2.78 2.83 2.99 2.64 2.66 2.84
25 2.72 2.70 2.83 2.60 2.62 2.72
50 2.57 2.56 2.60 2.57 2.55 2.56

100 2.53 2.53 2.55 2.55 2.50 2.55

LSUN Churches 256

Order = 2 Order = 3
Neural Network

Calls Uniform logSNR Quadratic Uniform logSNR Quadratic
10 3.72 8.92 7.62 3.67 7.31 7.60
15 3.42 5.99 5.60 3.48 5.24 5.33
20 3.44 5.09 4.84 3.55 4.56 4.64
25 3.52 4.64 4.62 3.63 4.29 4.33
50 3.88 4.16 4.19 3.64 4.06 3.97

100 4.03 4.07 4.06 3.65 3.99 4.04

LSUN Bedrooms 256

Order = 2 Order = 3
Neural Network

Calls Uniform logSNR Quadratic Uniform logSNR Quadratic
10 5.85 10.90 9.58 6.40 9.50 9.36
15 5.80 7.07 6.82 5.91 6.44 6.50
20 5.78 6.07 5.90 5.51 5.63 5.64
25 5.65 5.68 5.55 5.35 5.31 5.33
50 5.40 5.07 5.08 5.02 4.95 5.01

100 5.13 4.98 4.98 4.82 4.93 4.93

FFHQ 256

Order = 2 Order = 3
Neural Network

Calls Uniform logSNR Quadratic Uniform logSNR Quadratic
10 4.41 4.62 6.05 4.19 4.12 5.73
15 4.23 3.77 4.48 3.80 3.62 4.26
20 4.03 3.55 3.98 3.61 3.44 3.78
25 3.93 3.49 3.77 3.53 3.43 3.61
50 3.68 3.40 3.47 3.37 3.38 3.43

100 3.50 3.37 3.40 3.28 3.37 3.37

We refer to [44, Lemma 4.18] for a proof.

Lemma 3 (Data Processing Inequality). Let F : Rk1 → Rk2 be any measurable function. Let P,Q
be any probability distributions over Rk1 . Then, the following inequality holds:

KL
(
F#P

∣∣∣∣∣∣∣∣∣∣∣∣F#Q
)
≤ KL

(
P
∣∣∣∣∣∣∣∣∣∣∣∣Q)

The lemma below follows from the fact that Equation (14) and Equation (15) have the same functional
form.
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Lemma 4. Suppose S(A,G,Γ, α
K ) and PS(A,G,Γ, α,K) are initialized at the same point X0. That

is, X0 = X̃0. Then, there exists a measurable function FT such that the following hold almost surely.

(Xτ )0≤τ≤T = FT (X0, Z0, . . . , ZT−1)

and
(X̃τ )0≤τ≤T = FT (X0, Z̃0, . . . , Z̃T−1)

By Lemma 3 and Lemma 4, we have:

KL
(
Law((X̃τ )0≤τ≤T )

∣∣∣∣∣∣∣∣∣∣∣∣Law((Xτ )0≤τ≤T )
)

≤ KL
(
Law(X0, Z̃0:T−1)

∣∣∣∣∣∣∣∣∣∣∣∣Law(X0, Z0:T−1)
)

= EX0
KL
(
Law(Z̃0|X0)

∣∣∣∣∣∣∣∣∣∣∣∣Law(Z0)
)
+

T−1∑
τ=1

E(X0,Z̃0:τ−1)
KL
(
Law(Z̃τ |Z̃0:τ−1, X0)

∣∣∣∣∣∣∣∣∣∣∣∣Law(Zτ )
)

(16)

In the last step, we have used the chain rule (Lemma 2).

C.3 Controlling KL Divergence via Wasserstein Distances

We now seek to control the individual KL-divergences in the RHS of Equation (16) via Wasserstein
distances. We re-state [10, Lemma 26]:
Lemma 5. Suppose Z ∼ N (0, σ2I). Let A and B be random variables independent of Z. Then,

KL
(
Law(Z+A)

∣∣∣∣∣∣∣∣∣∣∣∣Law(Z+B)
)
≤ 1

2σ2
W2

2 (A,B) .

The Lemma below follows from the triangle inequality for Wasserstein distance.
Lemma 6. Let A,B,C be random vectors over Rk with finite second moments. Then,

W2(Law(A), Law(B+C)) ≤ W2(Law(A), Law(B)) +
√

E∥C∥2

From Lemma 1, we show that Z̃τ = Zτ +Bτ + Sτ . Conditioned on Z̃0:τ−1, X0, Zτ ∼ N (0, I) and
is independent of Bτ , Sτ . We now use Gaussian splitting: if A1, A2 ∼ N (0, I) i.i.d, then A1+A2√

2
∼

N (0, I). Therefore, letting Zτ,1, Zτ,2 be i.i.d from N (0, I) independent of Z̃0:τ−1, X0, Sτ , Bτ , we
can write:

KL
(
Law(Z̃τ |Z̃0:τ−1, X0)

∣∣∣∣∣∣∣∣∣∣∣∣Law(Zτ )
)

≤ W2
2

(
Law(

Zτ,2√
2
), Law(

Zτ,2√
2
+ Sτ +Bτ |Z̃0:τ−1, X0)

)
=

1

2
W2

2

(
Law(Zτ,2), Law(Zτ,2 +

√
2(Sτ +Bτ )|Z̃0:τ−1, X0)

)
≤ W2

2

(
Law(Zτ,2), Law(Zτ,2 +

√
2Sτ |Z̃0:τ−1, X0)

)
+ 2E[∥Bτ∥2|Z̃0:τ−1, X0] (17)

In the second step, we have used the inequality in Lemma 5. In the third step we have used Lemma 6.

C.4 Bounding the Error Along the Trajectory:

In Equation (17), we note that Zτ,2 is Gaussian but Sτ need not be Gaussian (but has zero mean). In
the lemma stated below, we show that Zτ,2 +

√
2Sτ |Z̃0:τ−1, X0 is close to a Gaussian of the same

variance by adapting the arguments given in the proof of [51, Lemma 1.6]. The proof is defered to
Section D
Lemma 7. Suppose N is random vector such that the following conditions are satisfied:
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1. ∥N∥ ≤ β almost surely, EN = 0 and ENN⊺ = Σ.

2. N takes its value in a one dimensional sub-space almost surely.

Suppose Z ∼ N (0, I) is independent of N. Let P = Law(
√
I+ΣZ) and Q = Law(Z + N).

Denoting ν := Tr(Σ). Then,

(W2 (P,Q))
2 ≤ 3(1 + ν)

[
β4ν3 + β2ν2

]
exp( 3β

2

2 ) (18)

We also have the crude bound:
(W2 (P,Q))

2 ≤ 2ν (19)

The next lemma demonstrates the convexity of the Wasserstein distance, which is a straightforward
consequence of the Kantorovich duality [47].
Lemma 8 (Convexity of Wasserstein Distance). Suppose µ is a measure over Rd and Q(·, ·) be
a kernel over Rd with respect to some arbitrary measurable space Ω and let M be a probability
measure over Ω. That is Q(·, ω) is a probability distribution over Rd for every ω ∈ Ω.

W2

(
µ,

∫
Q(·, ω)dM(ω)

)
≤
∫
W2 (µ,Q(·, ω)) dM(ω)

Lemma 9 (Wasserstein Distance Between Gaussians, [36]).

W2
2 (N (0,Σ1),N (0,Σ2)) = Tr(Σ1 +Σ2 − 2(Σ

1
2
2 Σ1Σ

1
2
2 )

1
2 )

Lemma 10. Let
P̄ := Law(ZKt+i,2) = N (0, I) ,

Q̄ := Law(ZKt+i,2 +
√
2(SKt+i)|X0, Z̃0:Kt+i−1)

Define the random variable

β = ∥KΓ−1
α
K
G α

K
[b( ˆ̃XtK+i)− b(X̃tK)]∥

W2
2 (P̄ , Q̄) ≤ CE

[
β4

K2 + β10

K3 + β6

K2 + β2r

K

∣∣Z̃0:Kt+i−1, X0

]
(20)

Proof. Note that
E[
√
2StK+i|Z̃0:Kt+i−1, Y0:Kt+i−1, X0] = 0

Now, define the random variable β

β := ∥KΓ−1
α
K
G α

K
[b( ˆ̃XtK+i)− b(X̃tK)]∥ (21)

Clearly, β is measurable with respect to the sigma algebra of Z̃0:Kt+i−1, Z0:Kt+i−1, X0. By the
definition of StK+i, it is clear that ∥StK+i∥ ≤ β almost surely. Define the conditional covariance
(only in this proof) to be:

Σ := 2E[StK+iS
⊺
tK+i|Z̃0:Kt+i−1, Z0:Kt+i−1X0] (22)

Thus, almost surely:

Tr(Σ) ≤ 2β2

K
√
2StK+i takes its values in a one-dimensional sub-space almost surely when conditioned on

Z̃0:Kt+i−1, Z0:Kt+i−1, X0 . It is independent of ZtK+i conditioned on Z̃0:Kt+i−1, Z0:Kt+i−1, X0.

Let us now define the following random probability distributions measurable with respect to the
sigma algebra of Z̃0:Kt+i−1, X0

1. Q := Law(ZKt+i,2 +
√
2SKt+i|Z̃0:Kt+i−1, Z0,Kt+i−1, X0)
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2. P := Law(
√
I +ΣZKt+i,2|Z̃0:Kt+i−1, Z0,Kt+i−1, X0)

First, note that by Lemma 8 and Jensen’s inequality, we have:

W2
2

(
P̄ , Q̄

)
≤ E[W2

2

(
P̄ , Q

)
|Z̃0:Kt+i−1, X0]

≤ 2E[W2
2

(
P̄ , P

)
+W2

2 (P,Q) |Z̃0:Kt+i−1, X0] (23)

First considerW2
2

(
P̄ , P

)
. Conditioned on Z̃0:Kt+i−1, Z0,Kt+i−1, X0, Σ has at-most one non-zero

eigenvalue. Without loss of generality, we can take Σ = νe1e
⊺
1 for the calculations below. From

Lemma 9, we conclude that:

W2
2

(
P̄ , P

)
≤ Tr(2I+Σ− 2

√
I+Σ)

= 2 + ν − 2
√
1 + ν ≤ ν2

4
(24)

In the last step, we have used the following inequality which follows from the mean-value theorem:√
1 + ν ≥ 1 + ν

2 −
ν2

8 . We check that the conditions for Lemma 7 hold for P,Q (almost surely

conditioned on Z̃0:Kt+i−1, X0) and ν ≤ β2

K to conclude:

W2
2 (P,Q) ≤ C

[
β10

K3 + β6

K2

]
exp( 3β

2

2 )1(β ≤ 1) +
2β2

K
1(β > 1)

≤ C
[[

β10

K3 + β6

K2

]
1(β ≤ 1) +

β2

K
1(β > 1)

]
(25)

Combining this with Equation (24), we conclude that for any r ≥ 1:

W2
2 (P̄ , Q̄) ≤ C

[
β4

K2 +
[
β10

K3 + β6

K2

]
1(β ≤ 1) + β2

K 1(β > 1)
]

≤ C
[

β4

K2 + β10

K3 + β6

K2 + β2

K 1(β > 1)
]

≤ C
[

β4

K2 + β10

K3 + β6

K2 + β2r

K

]
(26)

C.5 Finishing The Proof

We combine Equations (16) and (17) with Lemma 10 to conclude the result of Theorem 1.

D Proof of Lemma 7

The crude bound in Equation (19) follows via a naive coupling argument. We will now sketch a proof
Equation (18) in Lemma 7 by showcasing how to modify the proof of [52, Lemma 1.6]. Our proof
deals with a specialized case compared to [51, Lemma 1.6]. This allows us to derive a stronger result.
In this section, by ‘original proof’, we refer to the proof in [52].

Since N is supported on a single dimensional sub-space almost surely, we take this direction to be e1
almost surely without loss of generality. We thus take the covariance matrix of N to be Σ = νe1e

⊺
1 .

We generate jointly distributed random vectors Z,Z′ ∈ Rd as follows: Let ⟨Z, ej⟩ are i.i.d. standard
normal random variables for j = 2, . . . , d and ⟨Z′, ej⟩ = ⟨Z, ej⟩ almost surely. We generate ⟨Z′, e1⟩
to be standard normal independent of (⟨Z, ej⟩)j≥2. Let ⟨N, e1⟩ be independent of Z′. We draw
⟨Z, e1⟩ to be standard normally distributed and Wasserstein-2 optimally coupled to ⟨Z′,e1⟩+⟨N,e1⟩√

1+ν
and

independent of all other random variables mentioned above. We can easily check that (
√
I+ΣZ,Z′+

N) as defined above is a coupling between P,Q.
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Via this coupling, we conclude that:

W2 (P,Q) ≤
√
E(
√
1 + ν⟨Z, e1⟩ − ⟨Z′, e1⟩ − ⟨N, e1⟩)2

=
√
1 + νW2

(
⟨Z, e1⟩,

⟨Z′, e1⟩+ ⟨N, e1⟩√
1 + ν

)
(27)

LetZ1 := ⟨Z, e1⟩ andZ ′
1 := ⟨Z′, e1⟩,N1 := ⟨N, e1⟩. We definem = 1+ 1

ν (and note throughout the

proof that a value of infinity can be easily handled). We see that Z′
1+N1√
1+ν

=
√
1− 1

mZ
′
1+
√

1− 1
mN1

Note that
√
1− 1

mN is denoted by Y in the original proof and the bound is ∥Y ∥ ≤ β√
n

instead of
∥N∥ ≤ β in this proof.

Consider the function f(x), which denotes the ratio of density function of Z′
1+N1√
1+ν

to that of Z1 at the
point x.

Ef(Z1)
2 = E

[
exp

(
−(N2

1 + (N ′
1)

2) + 2mN1N
′
1

2(m+ 1)
+

1

2(m2 − 1)
− r(m)

)]
(28)

Where N ′
1 is an i.i.d copy of N1 and r(n) := 1

2(n2−1) −
1
2 log(1 +

1
n2−1 ).

Define Q1 =
−(N2

1+(N ′
1)

2)+2mN1N
′
1

2(m+1) + 1
2(m2−1) − r(m). We modify the estimates in Lemma 4.4 and

Lemma 4.5 in the original proof in the following:

Lemma 11. 1. |Q1| ≤ m|N1N
′
1|

m+1 + β2

m+1 + 1
2(m2−1) almost surely

2. E[Q1] = − 1
2(m2−1) − r(m)

3. E[Q2
1] ≤

mβ2+2m2+1
2(m2−1)2

Proof. 1. Note that r(m) ≤ 1
2(m2−1) . By triangle inequality, we have:

|Q1| ≤
m|N1N

′
1|

m+ 1
+

β2

m+ 1
+

1

2(m2 − 1)
(29)

2. A direct calculation shows the identity for EQ1.

3. Now, consider EQ2
1. We follow the proof of [52, Lemma 4.5], to conclude the following

inequalities. Since EQ1 ≤ 0 and 1
2(m2−1) − r(m) ≥ 0, we have:

EQ2
1 ≤ E(Q1 −

1

2(m2 − 1)
+ r(m))2

=
m2

(m+ 1)2
EN2

1 (N
′
1)

2 +
1

4(m+ 1)2
E(N2

1 + (N ′
1)

2)2

=
m2

(m2 − 1)2
+

1

4(m+ 1)2
E(N2

1 + (N ′
1)

2)2

≤ mβ2 + 2m2 + 1

2(m2 − 1)2
(30)

Note that the parameter σi found in the original proof satisfies σi = 1 in our proof. We now proceed
with the proof of Lemma 7. Define R(Q) = exp(Q) − 1 −Q − Q2

2 . From the original proof, we
conclude via the Talagrand transport inequality that:
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[
W2

(
⟨Z, e1⟩,

⟨Z′, e1⟩+ ⟨N, e1⟩√
1 + ν

)]2
≤ 2[EeQ1 − 1] = 2

[
E[Q1] +

1

2
E[Q2

1] + E[R(Q1)]

]
(31)

From Lemma 11, and using the fact that r(m) ≥ 0, we note that:

E[Q1] +
1

2
E[Q2

1] ≤
3 +mβ2

4(m2 − 1)2

Now, let us bound ER(Q1). Via a straightforward application of the taylor series, we have almost
surely:

R(Q1) ≤
|Q1|3 exp(|Q1|)

6
(32)

From Lemma 11, we conclude that |Q1| ≤ β2+ 1
2(m2−1) . Since ν ≤ β2, we must havem = 1+ 1

ν ≥
1 + 1

β2 . Thus, we have |Q1| ≤ 3β2

2 almost surely. Using this in Equation (32), we have:

ER(Q1) ≤ E |Q1|3
6 exp

(
3β2

2

)
≤ β2

4
exp( 3β

2

2 )E|Q1|2

≤
[
mβ4 +m2β2

4(m2 − 1)2

]
exp( 3β

2

2 ) (33)

In the last step, we have used item 3 of Lemma 11 along with the fact that mβ2 ≥ 1.

Combining these estimates with Equation (31), we conclude:

[
W2

(
⟨Z, e1⟩,

⟨Z′, e1⟩+ ⟨N, e1⟩√
1 + ν

)]2
≤
[
mβ4 +m2β2

2(m2 − 1)2

]
exp( 3β

2

2 ) +
3 +mβ2

2(m2 − 1)2

Now, we use the fact that m = 1 + 1
ν , which implies 1

m2−1 ≤
1

(m−1)2 ≤ ν
2. Thus, we have:

[
W2

(
⟨Z, e1⟩,

⟨Z′, e1⟩+ ⟨N, e1⟩√
1 + ν

)]2
≤
[
β4ν3

2
+
β2ν2

2

]
exp( 3β

2

2 ) +
3ν4 + β2ν3

2
(34)

Using the fact that β2 ≥ ν, we have: 3ν4+β2ν3

2 ≤ 2β2ν3. Thus, 2(1 + ν)β2ν3 ≤ 2β2ν3 + 2β4ν3 ≤
2(1 + ν)(β2ν2 + β4ν3). Plugging this into Equation (27), we conclude the result.

E Overdamped Langevin Dynamics

In this section, we will prove Theorem 2 after developing some key results regarding OLMC. Recall

that in this case b(x, τ) = −∇F (x) for some F : Rd → R, G α
K

= α
K I and Γ α

K
=
√

2α
K I. Let

Nt :=
∑K−1

j=0 Ht,j . Throughout this section, we assume that ∇F is L-Lipschitz. We will assume
that T is a power of 2 in this entire section, which useful to apply Lemma 26. The results hold for
any T by considering the closest power of 2 above T instead.

Recall BtK+i from Theorem 1. Instantiating this for Overdamped Langevin Dynamics, we conclude
that for any t, i ∈ N ∪ {0} and 0 ≤ i ≤ K − 1, we must have:

∥BtK+i∥2 ≤
L2α

2K
sup

0≤j≤K−1
∥ ˆ̃XtK+j − X̃tK+j∥2 (35)
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Here, we have used the fact that∇F is L-Lipschitz.

Now, consider βtK+i in Theorem 1. For any p ≥ 1, t, i ∈ N ∪ {0} and 0 ≤ i ≤ K − 1, we have:

β2p
tK+i ≤ (L

2αK
2 )p sup

0≤j≤K−1
∥ ˆ̃XtK+j − X̃tK∥2p (36)

In order to apply Theorem 1, we will now proceed to bound the quantities in the RHS of Equations (35)
and (36)

E.1 Bounding the Moments

The following lemma gives us almost sure control over quantities of interest. We refer to Section I.1
for the proof.

Lemma 12. Suppose the stepsize αL < 1. Let Mt,k :=
√

2α
K sup0≤i≤k−1

∥∥∑i
j=0 ZtK+j

∥∥. Then
the following hold almost surely for every 0 ≤ k ≤ K

1.
sup

0≤i≤k−1
∥ ˆ̃XtK+i − X̃tK∥ ≤ α∥∇F (X̃tK)∥+Mt,k

2.
sup

0≤i≤k
∥ ˆ̃XtK+i − X̃tK+i∥ ≤ αLNt sup

i≤k−1
∥ ˆ̃XtK+i − X̃tK∥

3.
E[Mp

t,K ] ≤ C(p)(αd)
p
2

We will now prove the following growth estimate for the trajectory X̃tK . We refer to Section I.2 for
its proof.
Lemma 13. Let p ≥ 1 be fixed. There exists a large enough constant C̄p which depends only on p
such that whenever s− t ≤ 1

αLC̄p
, we have:

sup
t≤h≤s

[
E∥X̃hK − X̃tK∥p|X̃tK

] 1
p ≤ 3α(s− t)∥∇F (X̃tK)∥+ Cp

√
αd(s− t)

We apply Lemma 26 along with Lemma 13 to conclude the following result which is proved in
Section I.4.
Lemma 14. There exists a constant cp such that whenever αL ≤ cp, we have:

T∑
t=1

E∥∇F (X̃tK)∥2p ≤ CpL
pdpT + Cp(αL)

p−1E(
T∑

t=1

∥∇F (X̃tK)∥2)p (37)

While Lemma 14 controlled
∑T

t=1 E∥∇F (X̃tK)∥2p in terms of
∑T

t=1 ∥∇F (X̃tK)∥2, in the Lemma
below we control

∑T
t=1 ∥∇F (X̃tK)∥2. We refer to Section I.5 for its proof.

Lemma 15. Suppose p ≥ 1 be arbitrary. There exists cp > 0 small enough such that whenever
αL < cp, we have for some constant Cp > 0 depending only on p:

E(
T−1∑
t=0

∥∇F (X̃tK)∥2)p ≤ Cp

αp
E|(F (X0)− F (X̃KT ))

+|p + CpT
p−1L2pα2pE

T−1∑
t=0

∥∇F (X̃tK)∥2p

+ CpL
pdpT p +

Cp

αp
(38)

We combine the results of Lemma 14 and Lemma 15 to conclude the following result:
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Lemma 16. Given p ≥ 1 arbitrary, there exists a constant cp > 0 depending only p such that
whenever αL < cp and α3p−1L3p−1T p−1 < cp, we must have:

T∑
t=1

E∥∇F (X̃tK)∥2p ≤ CpL
pdpT (1 + (αLT )p−1) +

CpL
p−1

α

[
E|(F (X0)− F (X̃KT ))

+|p + 1
]

Lemma 17. 1.

E∥BtK+i∥2 ≤
CL4α5

K
E∥∇F (X̃tK)∥2 + CL4α4

K
d

2.
Eβ2p

tK+i ≤ Cp

[
L2pα3pKpE∥∇F (X̃tK)∥2p + L2pα2pKpdp

]
Proof. 1. Using Equation (35), we have:

E∥BtK+i∥2 ≤
L2α

2K
E sup

0≤j≤K−1
∥ ˆ̃XtK+j − X̃tK+j∥2

≤ L4α3

2K
EN2

t sup
0≤j≤K−1

∥ ˆ̃XtK+j − X̃tK∥2

≤ L4α3

K
E sup

0≤j≤K−1
∥ ˆ̃XtK+j − X̃tK∥2

≤ CL4α3

K

[
α2E∥∇F (X̃tK)∥2 + αd

]
(39)

2. We use Equation (36) and proceed as in item 1.

E.2 Finishing The Proof

For p ≥ 1, we define ∆(p) := E[(F (X0) − F (x∗))p]. Let ≲ denote ≤ up to a universal positive
multiplicative constant on the RHS. We now combine Lemma 17, Lemma 15 with Theorem 1 (taking
r = 7) to conclude the following bound:

KL
(
Law((XP

t )0≤t≤T )
∣∣∣∣∣∣∣∣∣∣∣∣Law((XKt)0≤t≤T )

)
≲ L4α4(∆(1) + 1) + L5α5K(∆(2) + 1) + L8α8K2(∆(3) + 1) + L14α14K3(∆(5) + 1)

+ L20α20K7(∆(7) + 1) + L4α4Kd2T + L7α7Kd2T 2 + L6α6K2d3T + L11α11K2d3T 3

+ L10α10K3d5T + L19α19K3d5T 5 + L14α14K7d7T + L27α27K7d7T 7 (40)

F Underdamped Langevin Dynamics

In this section, we will prove Theorem 3 after developing some key results regarding ULMC. We
will assume that T is a power of 2 in this entire section, which useful to apply Lemma 26. The results
hold for any T by considering the closest power of 2 above T instead. Recall that in the case of
ULMC, we have:

Ah :=

[
Id

1
γ (1− e

−γh)Id
0 e−γhId

]
, Gh :=

[ 1
γ (h−

1
γ (1− e

−γh))Id 0
1
γ (1− e

−γh)Id 0

]
b(Xt) :=

[
−∇F (Ut)

0

]

Γ2
h :=

[
2
γ

(
h− 2

γ (1− e
−γh) + 1

2γ (1− e
−2γh)

)
Id

1
γ (1− 2e−γh + e−2γh)Id

1
γ (1− 2e−γh + e−2γh)Id (1− e−2γh)Id

]
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Throughout this section, we assume that∇F (·) is L-Lipshitz. We let Nt :=
∑K−1

i=0 Ht,i. We let Π

be the projector to the first d-dimensions in the standard basis. That is, Π :=

[
Id 0
0 0

]
.

The 2d dimensional space can be decomposed into position (sub-space spanned by the first d standard
basis vectors) and velocity (sub-space spanned by the last d standard basis vectors) sub-spaces. We

use the convention that X ∈ R2d is such that X =

[
U
V

]
where U ∈ Rd is the position and V ∈ Rd is

the velocity. Throughout this section, we implicity let X̃τ =

[
Ũτ

Ṽτ

]
. With some abuse of notation, we

let U = ΠX and V = (I−Π)X .

The following lemma collects some useful bounds on Ah, Gh and Γh, and is proved in Section I.6
Lemma 18.

G⊺
hΓ

−2
h Gh ⪯

[
C h exp(2γh)

γ Id 0
0 0

]
For all 0 ≤ j ≤ K − 1,

∥ΠA jα
K
G α

K
∥ ≤ 3α2

2K
exp(γαK )

Analogous to the analysis of Overdamped Langevin Dynamics, we consider the following dynamics.

F.1 Bounding the Moments:

Using the scaling relations in Section 2.1, we write down the iteration of PS(A,G,Γ, b, α,K) for
Underdamped Langevin Dynamics as:

X̃(t+1)K = AαX̃tK +Gαb(X̃tK) + α∆t + ΓαȲt (41)

Where, α∆t :=
∑K−1

i=0 KHiAα(K−i−1)
K

G α
K

[
b( ˆ̃XtK+i)− b(X̃tK)

]
and ΓαȲt :=∑K−1

j=0 Aα(K−1−j)
K

Γ α
K
ZtK+j .

Applying the triangle inequality, we conclude the following lemma.
Lemma 19. Suppose that ∥ · ∥any is any semi-norm over Rd. Then the following hold almost surely
for every 0 ≤ k ≤ K

1.

∥ ˆ̃XtK+i − X̃tK∥any ≤ ∥(A iα
K
− I)X̃tK∥any + ∥G iα

K
b(X̃tK)∥any

+ ∥
i−1∑
j=0

Aα(i−1−j)
K

Γ α
K
ZtK+j∥any

2.

∥ ˆ̃XtK+i − X̃tK+i∥any ≤
i−1∑
j=0

KHj∥A (i−1−j)α
K

G α
K
(b( ˆ̃XtK+i)− b(X̃tK))∥any

Define ψt := ŨKt +
ṼKt

γ . The following Lemma, proved in Section I.7, gives the time evolution of
ψt.
Lemma 20.

ψt+1 − ψt = −
α

γ
∇F (ŨtK)−

K−1∑
i=0

Hiα

γ

[
∇F ( ˆ̃UtK+i)−∇F (ŨtK)

]
+ Ψ̃t

Where Ψ̃t ∼ N (0, 2αγ Id) is independent of X̃tK but not necessarily indepependent of ˆ̃UtK+i for
i > 0.
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Lemma 21. Consider the seminorm given by ∥x∥2Π = x⊺Πx. Let Mt,K :=

supj≤K−1 ∥
∑i−1

j=0Aα(i−1−j)
K

Γ α
K
ZtK+j∥Π. For any 0 ≤ i ≤ K − 1.

1.

∥ ˆ̃UtK+i − ŨtK∥2 ≤ Cα2∥ṼtK∥2 + Cα4∥∇F (ŨtK)∥2 + CM2
t,K (42)

2.

F (ψt+1)− F (ψt) ≤ −
α

4γ
(1− 6αL

γ )∥∇F (ŨtK)∥2 + ⟨∇F (ψt)−∇F (ŨtK), Ψ̃t⟩

+ ⟨∇F (Ut), Ψ̃t⟩+
3L

2
∥Ψ̃t∥2 +

3αL2∥ṼtK∥2

2γ3

+
N2

t αL
2

γ

(
1 +

3αL

2γ

)
sup

0≤i≤K−1
∥ ˆ̃UtK+i − ŨtK∥2 (43)

3. For any p ≥ 1, we have:

EMp
t,K ≤ C exp(

pγα

2
)γ

p
2α

3p
2 (d+ logK)

p
2

We refer to Section I.8 for the proof. Analogous to Section E, for any p ≥ 1, we define S2p(V ) :=∑T−1
t=0 ∥ṼtK∥2p, S2p(∇F ) :=

∑T−1
t=0 ∥∇F (ŨtK)∥2p. The following lemma, proved in Section I.9,

bounds the moments of these quantities.

Lemma 22. There exists a constant c0 such that whenever γα < 1, αL
γ < c0. Then the following

relationships hold:

1.

[E(S2(V ))p]
1
p ≤ C

γα
[E∥Ṽ0∥2p]

1
p +

6

γ2
[E(S2(∇F ))p]

1
p + Cp(T (d+ logK) + 1

γα )

+
L2T

1− 1
pα2

γ2
[ES2p(V )]

1
p +

L2T
1− 1

pα4

γ2
[ES2p(∇F )]

1
p (44)

2.

[E(S2(∇F ))p]
1
p ≤ γ

α
[E|(F (Ψ0)− F (ΨT ))

+|p]
1
p

+
CL2

γ2
[E(S2(V ))p]

1
p + Cp

[
L(d+ logK)T + γ

α

]
+ CpT

1− 1
pL2α2[ES2p(V )]

1
p + CpT

1− 1
pL2α4[ES2p(∇F )]

1
p (45)

Suppose additionally that γ ≥ C0

√
L for some large enough universal constant C0. Then, the bounds

above imply the following inequalities:

1.

[E(S2(V ))p]
1
p ≤ C

γα
[E∥Ṽ0∥2p]

1
p +

C

γα
[E|(F (Ψ0)− F (ΨT ))

+|p]
1
p

+ Cp(T (d+ logK) + 1
γα ) +

L2T
1− 1

pα2

γ2
[ES2p(V )]

1
p

+
L2T

1− 1
pα4

γ2
[ES2p(∇F )]

1
p (46)
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2.

[E(S2(∇F ))p]
1
p ≤ Cγ

α
[E∥Ṽ0∥2p]

1
p +

Cγ

α
[E|(F (Ψ0)− F (ΨT ))

+|p]
1
p

+ Cp

[
L(d+ logK)T + γ

α

]
+ CpT

1− 1
pL2α2[ES2p(V )]

1
p + CpT

1− 1
pL2α4[ES2p(∇F )]

1
p (47)

The following lemma gives a growth bound for Overdamped Langevin dynamics. We give the proof
in Section I.10.
Lemma 23. Let s, t ∈ N ∪ {0} such that s > t. There exists a constant cp > 0 such that whenever
αL(s−t)

γ ≤ cp, αγ(s− t) ≤ cp and α2L(s− t) ≤ cp, the following statements hold:

sup
t≤h≤s

[
E∥Ũhk − ŨtK∥p

] 1
p ≤ 8α(s− t)

[
E∥ṼtK∥p

] 1
p
+

8α(s− t)
γ

E
[
∥∇F (ŨtK)∥p

] 1
p

+ Cp

√
d+ logK

L
(48)

sup
t≤h≤s

[
E∥Ṽhk − ṼtK∥p

] 1
p ≤ 8γα(s− t)

[
E∥ṼtK∥p

] 1
p
+ 8α(s− t)E

[
∥∇F (ŨtK)∥p

] 1
p

+ Cpγ

√
d+ logK

L
(49)

We combine Lemma 23 with Lemma 26 to conclude:
Lemma 24. Let p ≥ 1 be given. There exists cp > 0 such that for any N which satisfies the following
conditions:

1. N is an integer power of 2 and N ≤ T .

2. αLN
γ ≤ cp, αγN ≤ cp and α2LN ≤ cp

The following satements hold:

1.

ES2p(∇F ) ≤ Cp(LαN)2pES2p(V ) + CpTL
p (d+ logK)

p
+

2p

Np−1
E(S2(∇F ))p

(50)

2.

ES2p(V ) ≤ Cp(αN)2pES2p(∇F ) + T

[
γ2

L
(d+ logK)

]p
+

2p

Np−1
E(S2(V ))p (51)

Proof. We consider at := ∇F (Ũ(t−1)K), bt := Ṽ(t−1)K . Let N satisfy the condition in the Lemma.
Since T is a power of 2, clearly, N divides T . Let Tk = {(k − 1)N + 1, . . . , kN} be as defined in
Lemma 26. Consider the following upper bound derived using the results of Lemma 23

T/N∑
k=1

∑
j,j′∈Tk

j′>j

E∥aj − a′j∥2p ≤ CpL
2pα2pN2p+1ES2p(V ) + Cp

L2pα2pN2p+1

γ2p
ES2p(∇F )

+ CpNTL
p (d+ logK)

p (52)
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Applying Lemma 26, we conclude:

ES2p(∇F ) ≤ Cp(LαN)2pES2p(V ) + CpTL
p (d+ logK)

p
+

2p

Np−1
E(S2(∇F ))p (53)

Similarly, we have:

T/N∑
k=1

∑
j,j′∈Tk

j′>j

E∥bj − b′j∥2 ≤ Cpγ
2pα2pN2p+1ES2p(V ) + Cpα

2pN2p+1ES2p(∇F )

+ CpNT
γ2p

Lp
(d+ logK)

p (54)

Applying Lemma 26, we conclude:

ES2p(V ) ≤ Cp(αN)2pES2p(∇F ) + T

[
γ2

L
(d+ logK)

]p
+

2p

Np−1
E(S2(V ))p (55)

Combining Lemmas 24 and 22 gives the following theorem.

Theorem 4. Fix p ≥ 1. There exist constants Cp, cp, c̄p > 0 such that whenever: γ ≥ Cp

√
L,

αγ < cp, α3p−1Tp−1L2p

γp+1 < c̄p, the following results hold:

S2p(∇F ) ≤ Cp
γ2p−1

α

[
E∥Ṽ0∥2p + E|(F (Ψ0)− F (ΨT ))

+|p + 1
]
+

CpT
[
γ4p

Lp + (γαT )p−1γ2p
]
(d+ logK)p

S2p(V ) ≤ Cp
1

γα

[
E∥Ṽ0∥2p + E|(F (Ψ0)− F (ΨT ))

+|p + 1
]

+ CpT
[
γ2p

Lp + (γαT )p−1
]
(d+ logK)p

F.2 Bounding the Bias:

Now, consider the following term in the statement of Theorem 1:

BtK+i := Γ−1
α
K
G α

K
[b( ˆ̃XtK+i)− b(X̃tK+i)]

Using Lemma 18, and under the conditions of Theorem 4 holding with p = 1, we have:

∥BtK+i∥2 ≤ C
αL2

Kγ
sup

0≤i≤K−1
∥ ˆ̃UtK+i − ŨtK+i∥2

≤ Cα
5L4N2

t

Kγ
sup

0≤i≤K−1
∥ ˆ̃UtK+i − ŨtK∥2 (56)

In the second step, we have used item 2 of Lemma 19 along with the bounds in Lemma 18.
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Applying item 1 from Lemma 21 and Theorem 4 we conclude:

T−1∑
t=0

K−1∑
i=0

E∥BtK+i∥2 ≤
Cα5L4

γ

T−1∑
t=0

EN2
t E sup

0≤i≤K−1
∥ ˆ̃UtK+i − ŨtK∥2

≤ Cα5L4

γ

T−1∑
t=0

E sup
0≤i≤K−1

∥ ˆ̃UtK+i − ŨtK∥2

≤ Cα5L4

γ

T−1∑
t=0

[
α2E∥ṼtK∥2 + α4E∥∇F (ŨtK)∥2 + EM2

t,K

]
≤ Cα5L4

γ

[
α2ES2(V ) + α4ES2(∇F ) + Tγα3(d+ logK)

]
≤ Cα7L3γT (d+ logK) +

Cα6L4

γ2

[
E∥Ṽ0∥2 + E(F (Ψ0)− F (ΨT ))

+ + 1
]

(57)

In the first step we have used the fact that Nt is independent of sup0≤i≤K−1 ∥
ˆ̃UtK+i − ŨtK∥2 and

the second step follows from the fact that EN2
t ≤ 2. In the third step we have used item 1 from

Lemma 21. In the fourth step, we have used item 3 of Lemma 21. In the final step we have used
Theorem 4.

F.3 Bounding the Variance:

Now consider βtK+i = ∥KΓ−1
α
K
G α

K
[b( ˆ̃XtK+i) − b(X̃tK)]∥. Using Lemma 18 and item 1 of

Lemma 21, we have:

β2
tK+i ≤

CKαL2

γ
sup

0≤i≤K−1
∥ ˆ̃UtK+i − ŨtK∥2

≤ CKαL2

γ

[
α2∥ṼtK∥2 + α4∥∇F (ŨtK)∥2 +M2

t,K

]
(58)

Therefore, we note that for any p ≥ 1, under the assumptions of Theorem 4, we must have:

T−1∑
t=0

K−1∑
i=0

Eβ2p
tK+i ≤ Cp

Kp+1αpL2p

γp

T−1∑
t=0

[
α2pE∥ṼtK∥2p + α4pE∥∇F (ŨtK)∥2p + EM2p

t,K

]
≤ Cp

Kp+1αpL2p

γp
[
α2pES2p(V ) + α4pES2p(∇F ) + Tγpα3p(d+ logK)p

]
≤ Cp

Kp+1α3p−1L2p

γp+1

[
E∥Ṽ0∥2p + E|(F (Ψ0)− F (ΨT ))

+|p + 1
]

+ Cp
Kp+1α3pL2pT

γp

(
γ2p

Lp
+ (γαT )p−1

)
(d+ logK)p (59)

F.4 Finishing the Proof

For p ≥ 1, we define ∆(p) = E(F (U0 +
V0

γ )−F (x∗))p +E∥V0∥2p +1. By LHS ≲ RHS we denote
LHS ≤ C.RHS for some universal positive constant C. We now apply Theorem 1 (with r = 7) along
with the bounds in Equations (57) and (59):
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KL
(
Law((XP

t )0≤t≤T )
∣∣∣∣∣∣∣∣∣∣∣∣Law((XKt)0≤t≤T )

)
≤ E[∥BsK+i∥2] + CE

[
β4
sK+i

K2
+
β10
sK+i

K3
+
β6
sK+i

K2
+
β2r
sK+i

K

]
≲
Cα6L4

γ2
∆(1) +

Kα5L4

γ3
∆(2) +

K2α8L6

γ4
∆(3) +

K3α14L10

γ6
∆(5) +

K7α20L14

γ8
∆(7)

+ Cα7L3γT (d+ logK) +Kα6γ2L2T (d+ logK)2 +
Kα7L4T 2

γ
(d+ logK)2

+K2α9L3γ3T (d+ logK)3 +
K2α11L6T 3

γ
(d+ logK)3 +K3α15L5γ5T (d+ logK)5

+
K3α19L10T 5

γ
(d+ logK)5 +K7α21L7γ7T (d+ logK)7

+
K7α27L14T 7

γ
(d+ logK)7 (60)

G Convergence Under Isoperimetry Assumptions

We now prove the results concerning convergence under the assumption that π⋆ satisfies the Logarith-
mic Sobolev Inequalities (LSI). We first define the LSI by following the discussion in [46] and refer
to this work for further details.

Definition 1. We say that a measure π⋆ over Rd satsifies λ-LSI for some λ > 0, if for every smooth
g : Rd → R such that EX∼π⋆g2(X) <∞, the following inequality is satisfied:

Eπ⋆g2 log g2 − Eπ⋆g2 logEπ⋆g2 ≤ 2

λ
Eπ⋆∥∇g∥2

We note that whenever the density π⋆(x) = e−F (x) and F is λ strongly convex, then π⋆ satisfies the
λ-LSI. It is well known that λ-LSI implies the Poincare inequality (PI) with parameter λ defined
below:

Definition 2. We say that a measure π⋆ over Rd satsifies λ-PI for some λ > 0, if for every smooth
g : Rd → R such that EX∼π⋆g2(X) <∞, the following inequality is satisfied:

Eπ⋆g2 − (Eπ⋆g)2 ≤ 1

λ
Eπ⋆∥∇g∥2

We note the following useful lemma:

Lemma 25. Let π⋆(x) ∝ exp(−F (x)) satisfy λ-PI or λ-LSI and let F be L-smooth. Then, L ≥ λ.

Proof. Let X,X ′ ∼ π⋆ be i.i.d. Applying integration by parts, we have: E∇F (X) = 0 and
E⟨X,∇F (X)⟩ = d. Note that LSI implies PI and under λ-PI, we must have for any unit norm vector
v ∈ Rd:

var(⟨X, v⟩) ≤ 1

λ

Let Σ be the covariance of X (it exists due to the assumption of PI). Therefore,

1

L
=

1

2dL
E⟨X −X ′,∇F (X)−∇F (X ′)⟩

≤ 1

2d
E∥X −X ′∥2 =

Tr(Σ)

d
≤ 1

λ
(61)

In the second step we have used the fact that whenever F is L-smooth, then F (x) − F (y) ≤
⟨∇F (y), x− y⟩+ L

2 ∥x− y∥
2 for all x, y ∈ Rd.
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We now state [45, Theorem 1] (adapting to our notation) which gives convergence guarantees for
OLMC under the assumption of λ-LSI.
Theorem 5. Suppose π∗(x) ∝ exp(−F (x)) satisfies the λ-LSI and that F is L-smooth. Consider
OLMC with set size η which satsifies 0 < η ≤ λ

2L2 . Then, LMC satisfies:

KL
(
Law(XN )

∣∣∣∣∣∣∣∣∣∣∣∣π⋆
)
≤ e−ληNKL

(
Law(X0)

∣∣∣∣∣∣∣∣∣∣∣∣π⋆
)
+

8dL2η

λ
.

Where X0, . . . , XN are the iterates of OLMC.

Whenever ϵ ≤ 1, we take α
K = λϵ2

16dL2 . T = 1
αλ log

(
2KL

(
Law(X0)

∣∣∣∣∣∣∣∣∣∣∣∣π⋆
)

ϵ2

)
. With the suggested

initialization in [45] i.eX0 ∼ N (x, I
L ) for any stationary point x of F we have KL

(
Law(X0)

∣∣∣∣∣∣∣∣∣∣∣∣π⋆
)
≤

Õ(d). Now, take α = c0 min

(
ϵ
√
λ

L
3
2 d

3
4
, λ

7
27 ϵ

2
27

L
20
27 d

7
54

)
, T = Õ(C1

λα ) and K = C2

αL
√
d

.

Let X0, . . . , XTK be the iterates of OLMC with step-size α
K with the parameters as chosen above.

Applying Theorem 5, we conclude: KL
(
Law(XTK)

∣∣∣∣∣∣∣∣∣∣∣∣π⋆
)
≤ ϵ2

8 .

Let XP
0 , . . . , X

P
T be the iterates of PS(A,G,Γ, α,K) with A,G,Γ corresponding to OLMC. Apply-

ing Theorem 3 (with the explicit lower order terms given in Equation (40)), we conclude that:

KL
(
Law(XP

T )
∣∣∣∣∣∣∣∣∣∣∣∣Law(XTK)

)
≤ ϵ2

8 .

Now, by Pinsker’s inequality and the triangle inequality for TV distance, we have:

TV(Law(XP
T ), π⋆) ≤

√
2KL

(
Law(XP

T )
∣∣∣∣∣∣∣∣∣∣∣∣Law(XTK)

)
+
√
2KL

(
Law(XTK)

∣∣∣∣∣∣∣∣∣∣∣∣π⋆
)
≤ ϵ (62)

This proves the result in Table 1 for OLMC.

We now consider the analogous result for ULMC below. The following result is a re-statement of [53,
Theorem 7]. We note that CLSI in this work is 1

λ in our work.
Theorem 6. Let X0, . . . , XN be the iterates of ULMC with step-size η. We make the following
assumptions:

1. F is L-smooth and that π⋆ satisfies λ-LSI.

2. Suppose x be any stationary point of F . Initialize X0 such that U0, V0 are independent with
U0 ∼ N (x, ζI) (ζ as given in [53]) and V0 ∼ N (0, I).

3. F (x)− F (x∗) = Õ(d) and EU,V∼π⋆∥U∥ ≤ Õ(d).

Let ϵ ≤ 1. Then, we let η = Θ̃( ϵ
√
λ

L
√
d
), c
√
L ≤ γ ≤ C

√
L, T = Θ̃(L

3
2
√
d

λ
3
2 ϵ

) then,

TV(Law(UN ), π⋆) ≤ ϵ

Let X0, . . . , XTK be the iterates of ULMC with step-size α
K . We take: α = Θ̃(

√
ϵ
L (

λ
Ld )

5
12 ),

K = Θ̃( 1
α

λ
1
3

d
1
3 L

5
6
) and N = Θ̃(

√
L

λα ). We now consider XP
0 , . . . , X

P
T to be the iterates of

PS(A,G,Γ, α,K) with A,G,Γ corresponding to ULMC, such that XP
0 and F satisfy the same

assumptions in Theorem 6. Applying Theorem 3 along with Pinsker’s inequality, we conclude that:

TV(Law(X
(P )
T ), Law(XTK)) ≤ ϵ

2
.

Now, using Theorem 6, along with the triangle inequality for TV, we conclude:

TV(Law(X
(P )
T ), π⋆) ≤ ϵ

This proves the bounds for ULMC in Table 1.
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H Some Technical Results

We state the following technical lemma which will be proved in Section I.3.
Lemma 26. Let a1, . . . , aT be random vectors in Rd. Consider the partitioning {1, . . . , T} =

∪⌈T/N⌉
k=1 Tk where Tk := {(k − 1)N + 1, . . . ,min(kN, T )}. Assume that N divides T and T ≥ N .

Then, we have:

T∑
j=1

E∥aj∥2p ≤
2p

N

T
N∑

k=1

∑
j∈Tk

∑
j′∈Tk

j′>j

E∥aj − aj′∥2p +
(

2

N

)p−1

E(
T∑

j=1

∥aj∥2)p

Lemma 27. Let Z1, . . . , ZT be i.i.d. standard Gaussian random variables, and a sequence of random
vectors g1, . . . , gT such that gt is independent of Zt, . . . , ZT . Then,

E|
T∑

s=1

⟨gs, Zs⟩|p ≤ Cp

√√√√E(
T∑

s=1

∥gs∥2)p

Proof. Let λ ∈ R. Consider the random variable Mt = exp(
∑t

s=1 λ⟨gs, Zs⟩ − λ2∥gs∥2

2 ). Mt is a
super martingale and hence, we have: E[MT ] ≤ 1. Applying the Chernoff bound, we conclude that
for anly λ, λ > 0 we must have:

P(|
T∑

s=1

⟨gs, Zs⟩| >
λ

2

T∑
s=1

∥gs∥2 +
h

λ
) ≤ 2 exp(−h) .

=⇒ P(|
T∑

s=1

⟨gs, Zs⟩|p > Cpλ
p(

T∑
s=1

∥gs∥2)p + h) ≤ 2 exp(−Cpλh
1
p )

Now, for any variable X , P(X+ > h) = P(X > h) whenever h ≥ 0. Now using the fact that:
EX ≤ EX+ =

∫∞
0

P(X+ > h)dh, and taking X = |
∑T

s=1⟨gs, Zs⟩|p − Cpλ
p(
∑T

s=1 ∥gs∥2)p:

E|
T∑

s=1

⟨gs, Zs⟩|p ≤ Cpλ
pE(

T∑
s=1

∥gs∥2)p +
∫ ∞

0

2 exp(−cpλh
1
p )dh ≤ Cpλ

pE(
T∑

s=1

∥gs∥2)p +
Cp

λp

We conclude the result by choosing λ2p = 1
E(

∑T
s=1 ∥gs∥2)p

.

Lemma 28. Let K be any positive integer. Consider G ∼ Bin(K, 1
K ). Then for any p ≥ 1, we must

have: EGp ≤ Cp for some constant depending only on p.

Proof. The proof is simple for K = 1. Assume K ≥ 2. For any 0 ≤ n ≤ K, let pn := P(G = n).
Then,

n!pn = (1− 1
K )K−n K!

Kn(K − n)!

≤ (1− 1
K )K−1 ≤ 2

e

In the second step we have used the inequality (1− 1
n )

n ≤ 1
e and the fact that K ≥ 2.

Note that 1
en! is the probability that the standard poisson random variable is n (denote this by p∗n).

Therefore, we must have: pn ≤ 2p∗n. Thus, we must have:

EGp ≤
∑
n∈N

2npp∗n ≤ Cp
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I Proofs of Technical Lemmas

I.1 Proof of Lemma 12

Proof. 1. This follows by applying the triangle inequality to the definition of ˆ̃XtK+i.

2. Consider:

∥ ˆ̃XtK+i − X̃tK+i∥ ≤ α
i−1∑
j=0

Ht,j∥∇F ( ˆ̃XtK+j)−∇F (X̃tK)∥

≤
i−1∑
j=0

Ht,jL∥ ˆ̃XtK+j − X̃tK∥

≤ αNtL sup
0≤j≤K−1

∥ ˆ̃XtK+j − X̃tK∥ (63)

3. This follows by a direct application of Doob’s inequality.

I.2 Proof of Lemma 13

Proof. We will use b() and∇F () interchangeably in the proof. Consider the update

X̃(t+1)K = X̃tK + αb(X̃tK) + α∆t +
√
2αȲt .

Where Ȳt = 1√
K

∑K−1
i=0 ZtK+i and ∆t =

∑K−1
i=0 Hi(b(

ˆ̃XtK+i)− b(X̃tK))

Therefore, we have for any s > t:

X̃sK − X̃tK =

s−1∑
h=t

αb(X̃hK) + α∆h +
√
2αỸh

= α(s− t)b(X̃tK) +

s−1∑
h=t

α(b(X̃hK)− b(X̃tK)) + α∆h +
√
2αỸh (64)

In this proof only, for any random variable U , we let Mp(U) := (E[∥U∥p|X̃tK ])
1
p . Using the

triangle inequality forMp, we conclude:

Mp(X̃sK − X̃tK) ≤ α(s− t)Mp(b(X̃tK)) +

s−1∑
h=t

[αMp(b(X̃hK)− b(X̃tK)) + αMp(∆h)]

+
√
2αMp(

s−1∑
h=t

Ỹh)

≤ α(s− t)∥b(X̃tK)∥+ α

s−1∑
h=t

[
LMp(X̃hK − X̃tK) +Mp(∆h)

]
+ Cp

√
2αd(s− t) (65)
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Now, consider ∆h =
∑K−1

i=0 Hi(b(
ˆ̃XhK+i)− b(X̃hK)). We must have

Mp(∆h) ≤Mp(

K−1∑
i=0

LHi∥ ˆ̃XhK+i − X̃hK∥) ≤Mp(LNh sup
0≤i≤K−1

∥ ˆ̃XhK+i − X̃hK∥)

= LMp(Nh)Mp( sup
0≤i≤K−1

∥ ˆ̃XhK+i − X̃hK∥)

≤ LCpαMp(∥b(X̃hK)∥) + LCpMp(Mh,K)

≤ LCpα∥b(X̃tK)∥+ L2CpαMp(X̃hK − X̃tK) + LCp

√
αd (66)

In the second line, we have used the fact that Nh is independent of sup0≤i≤K−1 ∥
ˆ̃XhK+i − X̃hK∥

and the fact thatMp(Nt) ≤ Cp for some constant Cp (Lemma 28 ). In the third step we have applied
item 1 from Lemma 12.

Putting this back in Equation 65, we conclude:

Mp(X̃sK − X̃tK) ≤ α(s− t)(1 + αLCp)∥b(X̃tK)∥+ αL(1 + αLCp)

s−1∑
h=t

[
Mp(X̃hK − X̃tK)

]
+ Cp(Lα

3
2
√
d(s− t) +

√
2αd(s− t)) (67)

Therefore, we must have:

sup
t≤h≤s

Mp(X̃hK − X̃tK) ≤ αL(s− t)(1 + αLCp)

[
∥b(X̃tK)∥

L + sup
t≤h≤s

Mp(X̃hK − X̃tK)

]
+ Cp(L

√
dα

3
2 (s− t) +

√
2αd(s− t)) (68)

Now, supposing s− t ≤ 1
C̄pαL

for some large enough constant C̄p which depends only on p. This

ensures that αL(s− t)(1 + αLCp) ≤ 1
2 in the equation above. Thus, we have:

sup
t≤h≤s

Mp(X̃hK − X̃tK) ≤ 3αL(s− t)∥b(X̃tK)∥
L

+ Cp

√
dα(s− t)

I.3 Proof of Lemma 26

Proof. āk := 1
|Tk|

∑
j∈Tk

aj Consider the following quantity:

T∑
t=1

∥at∥2p =
∑
k

∑
j∈Tk

∥aj∥2p

≤
T
N∑

k=1

∑
j∈Tk

(2p−1∥aj − āk∥2p + 2p−1∥āk∥2p)

= 2p−1
∑
k

∑
j∈Tk

(∥aj − āk∥2p) + 2p−1N
∑
k

∥āk∥2p

≤ 2p−1
∑
k

∑
j∈Tk

(∥aj − āk∥2p) + 2p−1N(
∑
k

∥āk∥2)p (69)

Now, by Jensen’s inequality, we must have: ∥āk∥2 ≤ 1
|Tk|

∑
j∈Tk

∥aj∥2. Therefore, we conclude:
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T∑
t=1

∥at∥2p ≤ 2p−1
∑
k

∑
j∈Tk

(∥aj − āk∥2p) + 2p−1N1−p(

T∑
j=1

∥aj∥2)p (70)

Now, consider ∑
j∈Tk

E∥aj − āk∥2p ≤
1

N

∑
j∈Tk

∑
j′∈Tk

E∥aj − aj′∥2p

=
2

N

∑
j∈Tk

∑
j′>j

E∥aj − aj′∥2p (71)

Using this with Equation (70), we conclude the statement of the lemma.

I.4 Proof of Lemma 14

Proof. We now apply Lemma 26 with at := b(X̃(t−1)K). Whenever αL ≤ cp for some small enough
constant cp, we can take N to be the largest integer power of 2 lower than ⌈ 1

αLC̄2p
⌉ for a large enough

constant C̄2p such that the result of Lemma 13 with s− t ≤ N . Applying Lemma 13, we conclude:

2

N

∑
j∈Tk

∑
j′>j

E∥aj − a′j∥2p ≤ 2
∑
j∈Tk

E(3αLN∥aj∥+ CpL
√
αdN)2p

≤ CpL
2p(αd)pNp+1 + Cp(αLN)2p

∑
j∈Tk

E∥aj∥2p (72)

Applying Lemma 26

T∑
t=1

E∥at∥2p ≤ 2p−1CpL
2p(αdN)pT + Cp(αLN)2p

∑
k

∑
j∈Tk

E∥aj∥2p + 2p−1N1−p(

T∑
j=1

∥aj∥2)p

(73)

Note that whenever the constant C̄2p defining N above is large enough, this implies

T∑
t=1

E∥at∥2p ≤ CpL
pdpT + Cp(αL)

p−1(

T∑
j=1

∥aj∥2)p (74)

I.5 Proof of Lemma 15

Proof. Since ∇F is L Lipschitz, we have:

F (X̃(t+1)K)− F (X̃tK) ≤ ⟨∇F (X̃tK), X̃(t+1)K − X̃tK⟩+
L

2
∥X̃(t+1)K − X̃tK∥2 (75)

Also note that:
X̃(t+1)K = X̃tK − α∇F (X̃tK) + α∆t +

√
2αȲt .

Where Ȳt = 1√
K

∑K−1
i=0 ZtK+i and ∆t = −

∑K−1
i=0 Ht,i(∇F ( ˆ̃XtK+i)−∇F (X̃tK))

Thus, summing Equation (75) from t = 0 to t = T − 1, we conclude:
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F (X̃TK)− F (X̃0) ≤
T−1∑
t=0

⟨∇F (X̃tK), X̃(t+1)K − X̃tK⟩+
T−1∑
t=0

L

2
∥X̃(t+1)K − X̃tK∥2

≤
T−1∑
t=0

⟨∇F (X̃tK), X̃(t+1)K − X̃tK⟩+
T−1∑
t=0

3Lα2

2
[∥∇F (X̃tK)∥2 + ∥∆t∥2] + 3Lα∥Ȳt∥2

≤
T−1∑
t=0

−(α− 3α2L
2 )∥∇F (X̃tK)∥2 + α⟨∇F (X̃tK),∆t⟩+ 3Lα2

2 ∥∆t∥2 + 3Lα∥Ȳt∥2

+
√
2α⟨∇F (X̃tK), Ȳt⟩

≤
T−1∑
t=0

−α
4 ∥∇F (X̃tK)∥2 + 3α∥∆t∥2 + 3Lα∥Ȳt∥2 +

√
2α⟨∇F (X̃tK), Ȳt⟩ (76)

In the last step, we have used the fact that 2|⟨∇F (X̃tK),∆t⟩| ≤ ∥∇F (X̃tK)∥2 + ∥∆t∥2 and the
assumption that αL ≤ cp for some small enough constant cp.

Therefore, we conclude:

(

T−1∑
t=0

∥∇F (X̃tK)∥2)p ≤ Cp

αp
|(F (X0)− F (X̃KT ))

+|p + Cp(

T−1∑
t=0

∥∆t∥2)p + CpL
p(

T−1∑
t=0

∥Ȳt∥2)p

+
Cp

α
p
2

∣∣ T−1∑
t=0

⟨∇F (X̃tK), Ȳt⟩
∣∣p (77)

The properties of Gaussians show that: E(
∑T−1

t=0 ∥Ȳt∥2)p ≤ CpT
pdp.

By Lemma 27 and the AM-GM inequality, we conclude that for any κ > 0 arbitrary, we have:

1

αp/2
E
∣∣ T−1∑
t=0

⟨∇F (X̃tK), Ȳt⟩
∣∣p ≤ Cp

αp/2

√√√√E(
T−1∑
t=0

∥∇F (X̃tK)∥2)p

≤ κCp

2αp
+
Cp

2κ
E(

T−1∑
t=0

∥∇F (X̃tK)∥2)p (78)

E(
T−1∑
t=0

∥∆t∥2)p ≤ T p−1
T−1∑
t=0

E∥∆t∥2p

≤ T p−1
T−1∑
t=0

E(Nt)
2pL2pE( sup

0≤i≤K−1
∥ ˆ̃XtK+i − X̃tK∥)2p

≤ CpT
p−1

T−1∑
t=0

L2pE( sup
0≤i≤K−1

∥ ˆ̃XtK+i − X̃tK∥)2p (79)

In the first step, we have used Jensen’s inequality. In the second step we have used the fact that ∇F
is L-Lipshcitz and that Nt is independent of ˆ̃XtK+i for 0 ≤ i ≤ K − 1. In the last step, we have
used the fact that E(Nt)

2p ≤ Cp for some constant Cp (Lemma 28).

By Lemma 12, we have:

E sup
0≤i≤k

∥ ˆ̃XtK+i − X̃tK∥2p ≤ Cpα
2pE∥∇F (X̃tK)∥2p + Cpα

pdp

Plugging all of these bounds, and taking κ in Equation (78) to be large enough, we conclude:
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E(
T−1∑
t=0

∥∇F (X̃tK)∥2)p ≤ Cp

αp
E|(F (X0)− F (X̃KT ))

+|p + CpT
p−1L2pα2pE

T−1∑
t=0

∥∇F (X̃tK)∥2p

+ CpL
pdpT p +

Cp

αp
(80)

I.6 Proof of Lemma 18

Proof. For the sake of clarity, define x = 1− exp(−γh). ρ = (1−x)2

γ
1√

2
γ (h− 2(1−x)

γ +
(1−x2)

2γ )(1−x2)

Algebraic manipulations show that:

ρ =

√√√√ (1− x)3

2(1 + x)
(
γh− (1− x)− (1−x)2

2

) (81)

Now note that γh = − log(1− (1− x)) =
∑∞

i=1
(1−x)i

i . Therefore, we conclude: γh− (1− x)−
(1−x)2

2 ≥ (1−x)3

3 + (1−x)4

4 . Therefore,

ρ ≤
√

1

2(1 + x)
(
1
3 + 1−x

4

)
≤
√

1

2 inft∈[0,1](1 + t)
(
1
3 + 1−t

4

) ≤√ 6
7 (82)

Now, we note that for scalars A,B > 0 and ρ ∈ [0, 1], we have:[
A2Id ρABId
ρABId B2Id

]
⪰
[
A2(1− ρ)Id 0

0 B2(1− ρ)Id

]
Thus, we conclude from the above computations that:

Γ2
h ⪰ c

[
2
γ

(
h− 2

γ (1− exp(−γh)) + 1
2γ (1− exp(−2γh))

)
Id 0

0 (1− exp(−2γh))Id

]

⪰ c
[

2
3γ2 (1− exp(−γh))3Id 0

0 (1− exp(−2γh))Id

]
=: Γ2

ub (83)

We have used the fact that:

2

γ

(
h− 2

γ
(1− exp(−γh)) + 1

2γ
(1− exp(−2γh))

)
≥ 2

3γ2
(1− exp(−γh))3

Using the fact that for PSD matrices A,B A ⪯ B implies B−1 ⪯ A−1, we have:

G⊺
hΓ

−2
h Gh ⪯ G⊺

hΓ
−2
ub Gh ⪯

[
C h exp(2γh)

γ Id 0
0 0

]
(84)

The second inequality follows easily by elementary manipulations.
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I.7 Proof of Lemma 20

Proof. Explicit computations show that:

ψt+1 = ψt −
α

γ
∇F (ŨtK) + α

[
Id

Id
γ

]
∆t +

[
Id

Id
γ

]
ΓαỸt

Now, note that
[
Id

Id
γ

]
Ah =

[
I Id

γ

]
and

[
Id

Id
γ

]
Gh =

[
h
γ Id 0

]
. Therefore, from the

definition of ∆t, we conclude that:

α
[
Id

Id
γ

]
∆t = −

K−1∑
i=0

Hiα

γ

[
∇F ( ˆ̃UtK+i)−∇F (ŨtK)

]

A straight forward calculation shows that: Ψ̃t :=
[
Id

Id
γ

]
ΓαỸt ∼M(0, 2hγ Id).

I.8 Proof of Lemma 21

Proof. 1. Note that

ˆ̃UtK+i − ŨtK = Π(A iα
K
− I)X̃tK +ΠG iα

K
b(X̃tK) +

i−1∑
j=0

ΠAα(i−1−j)
K

Γ α
K
ZtK+j

We bound each of the terms separately.

∥(A iα
K
− I)X̃tK∥Π ≤

iα

K
∥ṼtK∥ ≤ α∥ṼtK∥

∥G iα
K
b(X̃tK)∥Π ≤

α2i2

2K2
∥∇F (ŨtK)∥ ≤ α2

2
∥∇F (ŨtK)∥

Plugging these inequalities gives the result.

2. Since ∇F is L-Lipschitz, we have:

F (ψt+1)− F (ψt) ≤ ⟨∇F (ψt), ψt+1 − ψt⟩+
L

2
∥ψt+1 − ψt∥2

= ⟨∇F (ψt)−∇F (ŨtK), ψt+1 − ψt⟩+ ⟨∇F (ŨtK), ψt+1 − ψt⟩+
L

2
∥ψt+1 − ψt∥2

(85)
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Using Lemma 20 to evaluate ψt+1 − ψt, we conclude:

⟨∇F (ŨtK), ψt+1 − ψt⟩ = −
α

γ
∥∇F (ŨtK)∥2 + ⟨∇F (Ut), Ψ̃t⟩

−
K−1∑
i=0

Ht,iα

γ
⟨∇F (ŨtK),∇F ( ˆ̃UtK+i)−∇F (ŨtK)⟩

≤ −α
γ
∥∇F (ŨtK)∥2 + ⟨∇F (Ut), Ψ̃t⟩

+
NtαL

γ
∥∇F (ŨtK)∥ sup

0≤i≤K−1
∥ ˆ̃UtK+i − ŨtK∥

≤ −α
γ
∥∇F (ŨtK)∥2 + ⟨∇F (Ut), Ψ̃t⟩

+
α

2γ
∥∇F (ŨtK)∥2 + N2

t αL
2

2γ
sup

0≤i≤K−1
∥ ˆ̃UtK+i − ŨtK∥2

= − α

2γ
∥∇F (ŨtK)∥2 + ⟨∇F (Ut), Ψ̃t⟩

+
N2

t αL
2

2γ
sup

0≤i≤K−1
∥ ˆ̃UtK+i − ŨtK∥2 (86)

In the second step, we have use the fact that ∇F is L-Lipschitz along with the Cauchy-
Schwarz inequality. In the third step, we have used the AM-GM inequality which states that
for any a, b ≥ 0, we have 2ab ≤ a2 + b2

Similarly, we note that:

⟨∇F (ψt)−∇F (ŨtK), ψt+1 − ψt⟩ ≤
αL

γ2
∥∇F (ŨtK)∥∥ṼtK∥+ ⟨∇F (ψt)−∇F (ŨtK), Ψ̃t⟩

+
NtαL

2

γ2
∥ṼtK∥ sup

0≤i≤K−1
∥ ˆ̃UtK+i − ŨtK∥

≤ α

4γ
∥∇F (ŨtK)∥2 + 3αL2∥ṼtK∥2

2γ3
+ ⟨∇F (ψt)−∇F (ŨtK), Ψ̃t⟩

+
N2

t αL
2

2γ
sup

0≤i≤K−1
∥ ˆ̃UtK+i − ŨtK∥2 (87)

We have again used the AM-GM inequality in the second step above. Convexity of x→ x2

implies:

L

2
∥ψt+1 − ψt∥2 =

3L

2

[
α2

γ2
∥∇F (ŨtK)∥2 + N2

t α
2L2

γ2
sup

0≤i≤K−1
∥ ˆ̃UtK+i − ŨtK∥2 + ∥Ψ̃t∥2

]
(88)

Plugging these upper bounds into Equation (85), we have:

F (ψt+1)− F (ψt) ≤ −
α

4γ
(1− 6αL

γ )∥∇F (ŨtK)∥2 + ⟨∇F (ψt)−∇F (ŨtK), Ψ̃t⟩

+ ⟨∇F (Ut), Ψ̃t⟩+
3L

2
∥Ψ̃t∥2 +

3αL2∥ṼtK∥2

2γ3

+
N2

t αL
2

γ

(
1 +

3αL

2γ

)
sup

0≤i≤K−1
∥ ˆ̃UtK+i − ŨtK∥2 (89)

3. Using the scaling relations (Section 2.1), it is easy to show that for any i such that 0 ≤ i ≤
K − 1,

∑i−1
j=0 ΠAα(i−1−j)

K

Γ α
K
ZtK+j is a Gaussian with covariance matrix Σi such that

Σi ⪯ 2 exp(γα)γα3

3 Id.
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Applying Gaussian concentration for
∑i−1

j=0 ΠAα(i−1−j)
K

Γ α
K
ZtK+j along with the union

bound over all 0 ≤ i ≤ K − 1, we conclude:

P(Mt,K > C exp(γα2 )
√
γα3(

√
d+ β +

√
logK)) ≤ exp(−β2/2)

We conclude the moment bounds by integrating tail probabilities.

I.9 Proof of Lemma 22

Proof. 1. Let g := e−γα. Then, we have:

Ṽ(t+1)K = gṼtK −
1− g
γ
∇F (ŨtK) + (I−Π)(α∆t + ΓαỸt) (90)

Now, consider:

∥Ṽ(t+1)K∥2 = g2∥ṼtK∥2 +
(1− g)2

γ2
∥∇F (ŨtK)∥2 + ∥(I−Π)(α∆t + ΓαỸt)∥2

− 2
g(1− g)

γ
⟨∇F (ŨtK), ṼtK⟩+ 2g⟨ṼtK , (I−Π)(α∆t + ΓαỸt)⟩

− 2
(1− g)
γ
⟨∇F (ŨtK), (I−Π)(α∆t + ΓαỸt)⟩

≤ g∥ṼtK∥2 +
(1− g)
γ2

∥∇F (ŨtK)∥2 + ∥(I−Π)(α∆t + ΓαỸt)∥2

+ 2g⟨ṼtK , (I−Π)(α∆t + ΓαỸt)⟩

− 2
(1− g)
γ
⟨∇F (ŨtK), (I−Π)(α∆t + ΓαỸt)⟩

≤ √g∥ṼtK∥2 +
2(1− g)
γ2

∥∇F (ŨtK)∥2 + 4

1−√g
∥(I−Π)(α∆t)∥2

+ 2∥(I−Π)ΓαỸt)∥2 + 2g⟨ṼtK , (I−Π)(ΓαỸt)⟩

− 2
(1− g)
γ
⟨∇F (ŨtK), (I−Π)(ΓαỸt)⟩ (91)

In the second step, we have use the fact that | 2g(1−g)
γ ⟨∇F (ŨtK), ṼtK⟩| ≤ g(1 −

g)∥∇F (ŨtK)∥2

γ2 + g(1 − g)∥ṼtK∥2. In the third step, we have used the fact that:

2g⟨ṼtK , (I − Π)α∆t⟩ ≤ (
√
g − g)∥ṼtK∥2 + ∥(I−Π)α∆t∥2

1−√
g , − 2(1−g)

γ ⟨∇F (ŨtK), (I −
Π)α∆t⟩ ≤ 1−g

γ2 ∥∇F (ŨtK)∥2 + (1− g)∥(I− Π)α∆∥2 and ∥(I− Π)(α∆t + ΓαỸt)∥2 ≤
2∥(I−Π)(α∆t)∥2 + 2∥(I−Π)ΓαỸt∥2.

With extention of notation, let S2((I−Π)α∆) :=
∑T−1

t=0 ∥(I−Π)∆t∥2, S2((I−Π)ΓαỸ ) :=∑T−1
t=0 ∥(I−Π)ΓαỸt∥2. Using Equation (91), we conclude:

S2(V ) ≤ ∥Ṽ0∥
2 − ∥ṼtK∥2

1−√g
+

4

γ2
S2(∇F ) +

4

(1−√g)2
S2((I−Π)α∆)

+
2S2((I−Π)ΓαỸ )

1−√g
+

T−1∑
t=0

2
g

1−√g
⟨ṼtK , (I−Π)(ΓαỸt)⟩

− 2
(1− g)

γ(1−√g)
⟨∇F (ŨtK), (I−Π)(ΓαỸt)⟩ (92)

42



Note that (I−Π)ΓαỸt ∼ N (0, (1− e−2γα)Id). By properties of Gaussians, it is clear that

for any p ≥ 1, we must have E
(
S2((I−Π)ΓαỸ )

)p
≤ Cp(γαTd)

p. By Lemma 27, we
conclude:

E|
T−1∑
t=0

⟨ṼtK , (I−Π)ΓαỸt⟩|p ≤ Cp(γα)
p
2
√

E(S2(V ))p

E|
T−1∑
t=0

⟨∇F (ŨtK), (I−Π)ΓαỸt⟩|p ≤ Cp(γα)
p
2
√
E(S2(∇F ))p

By L smoothness of F , we have: ∥(I − Π)(α∆t)∥ ≤ LαNt sup0≤i≤K ∥
ˆ̃UtK+i − ŨtK∥.

Using the result in Lemma 21, we conclude:

E(S2((I−Π)α∆))p ≤ CpL
2pE(

T−1∑
t=0

α4N2
t ∥ṼtK∥2 + α6N2

t E∥∇F (ŨtK)∥2 + α2N2
t M

2
t,K)p

≤ CpL
2pT p−1E(

T−1∑
t=0

α4pN2p
t ∥ṼtK∥2p + α6pN2p

t E∥∇F (ŨtK)∥2p + α2pN2p
t M2p

t,K)

≤ CpL
2pT p−1α4pES2p(V ) + CpT

p−1L2pα6pES2p(∇F ) + CpL
2pT pα5pγp(d+ logK)p

(93)

In the second step, we have used jensen’s inequality to show that ( 1
T

∑
t a

2
t )

p ≤ 1
T

∑
t a

2p
t .

In the third step, we have used the fact that Nt is independent of X̃tK and that EN2p
t ≤ Cp

for some constant Cp (Lemma 28).

We now use the fact that for any two random variablesX,Y such that E∥X∥p,E∥Y ∥p <∞,
[E∥X+Y ∥p]

1
p ≤ [E∥X∥p]

1
p +[E∥Y ∥p]

1
p . Using the bounds established above and applying

them to Equation (91), we conclude:

[E(S2(V ))p]
1
p ≤ [E∥Ṽ0∥2p]

1
p

1−√g
+

4

γ2
[E(S2(∇F ))p]

1
p +

C(E(S2((I−Π)α∆))p)
1
p

(1−√g)2

+ Cp
γαTd

1−√g
+ Cp

√
γα [E(S2(V ))p]

1
2p

1−√g
+ Cp

√
α

γ
[E(S2(∇F ))p]

1
2p

≤ C

γα
[E∥Ṽ0∥2p]

1
p +

4

γ2
[E(S2(∇F ))p]

1
p +

C(E(S2((I−Π)α∆))p)
1
p

γ2α2

+ CpTd+ Cp
[E(S2(V ))p]

1
2p

√
γα

+ Cp

√
α

γ
[E(S2(∇F ))p]

1
2p

≤ C

γα
[E∥Ṽ0∥2p]

1
p +

4

γ2
[E(S2(∇F ))p]

1
p + CpTd+ Cp

[E(S2(V ))p]
1
2p

√
γα

+ Cp
L2T

1− 1
pα2

γ2
[ES2p(V )]

1
p + Cp

L2T
1− 1

pα4

γ2
[ES2p(∇F )]

1
p

+ Cp
TL2α3(d+ logK)

γ
+ Cp

√
α

γ
[E(S2(∇F ))p]

1
2p (94)
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Here, we have used that fact that 1 − √g ≥ Cγα whenever γα < 1. We now use the
AM-GM inequality to show that

Cp
[E(S2(V ))p]

1
2p

√
γα

≤ [E(S2(V ))p]
1
p

10
+
C ′

p

γα
.

Similarly, we have:

Cp

√
α

γ
[E(S2(∇F ))p]

1
2p ≤ [E(S2(∇F ))p]

1
p

2γ2
+ C ′

pγα .

Applying this to the RHS of Equation (94) and re-arranging, we conclude the statement of
the lemma.

2. Using similar methods as in item 1 above, we apply Lemma 27 and collect the following
moment bounds:

E|
T−1∑
t=0

⟨∇F (ψt)−∇F (ŨtK), Ψ̃t⟩|p ≤ Cp
Lpα

p
2

γ
3p
2

√
E(S2(V ))p

E|
T−1∑
t=0

⟨∇F (ŨtK), Ψ̃t⟩|p ≤ Cp
α

p
2

γ
p
2

√
E(S2(∇F ))p

By a calculation similar to that in item 1, we have:

E

(∑
t

N2
t αL

2

γ

(
1 +

3αL

2γ

)
sup

0≤i≤K−1
∥ ˆ̃UtK+i − ŨtK∥2

)p

≤ CpT
p−1L

2p

γp
[
α3pES2p(V ) + α5pS2p(∇F ) + Tα4pγp(d+ logK)p

]
(95)

Summing item 2 of Lemma 21 over t = 0 to t = T − 1 and applying the triangle inequality
for p-th moments, we have:

[E(S2(∇F ))p]
1
p ≤ γ

α
[E|(F (Ψ0)− F (ΨT ))

+|p]
1
p + Cp

√
γ
α [E(S2(∇F ))

p]
1
2p

+ CpL
√

1
γα [E(S2(V ))p]

1
2p +

CL2

γ2
[E(S2(V ))p]

1
p + CpLT (d+ logK)

+ CpT
1− 1

pL2α2[ES2p(V )]
1
p + CpT

1− 1
pL2α4[ES2p(∇F )]

1
p

+ CpTγL
2α3(d+ logK)

≤ γ

α
[E|(F (Ψ0)− F (ΨT ))

+|p]
1
p + Cp

√
γ
α [E(S2(∇F ))

p]
1
2p

+ CpL
√

1
γα [E(S2(V ))p]

1
2p +

CL2

γ2
[E(S2(V ))p]

1
p + CpLT (d+ logK)

+ CpT
1− 1

pL2α2[ES2p(V )]
1
p + CpT

1− 1
pL2α4[ES2p(∇F )]

1
p (96)

In the last step, we have use the fact that γα < 1 and Lα
γ < c0. Applying AM-GM inequality

to Cp

√
γ
α [E(S2(∇F ))

p]
1
2p and CpL

√
1
γα [E(S2(V ))p]

1
2p similar to item 1, we conclude

the result.
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I.10 Proof of Lemma 23

Proof.

X̃sK − X̃tK = (Aα(s−t) − I)X̃tK +

s−1∑
h=t

Aα(s−h−1)

[
Gαb(X̃hK) + α∆h + ΓαỸh

]

In this proof only, for any random variable W and any projection operator P over R2d we let

Mp(W ;P) := (E[∥PW∥p|X̃tK ])
1
p . We use the convention thatMp(W ) = (E∥W∥p)

1
p . Using the

triangle inequality forMp, we conclude:

Mp(X̃sK − X̃tK ,Π) ≤Mp((Aα(s−t) − I)X̃tK ,Π) +

s−1∑
h=t

Mp(Aα(s−h−1)Gαb(X̃hK),Π)

+

s−1∑
h=t

Mp(Aα(s−h−1)α∆h,Π) +Mp(

s−1∑
h=t

Aα(s−h−1)ΓαỸh,Π) (97)

Similarly, we have:

Mp(X̃sK − X̃tK , I−Π) ≤Mp((Aα(s−t) − I)X̃tK , I−Π) +

s−1∑
h=t

Mp(Aα(s−h−1)α∆h, I−Π)

+

s−1∑
h=t

Mp(Aα(s−h−1)Gαb(X̃hK), I−Π)

+Mp(

s−1∑
h=t

Aα(s−h−1)ΓαỸh, I−Π) (98)

By scaling relations given in Section 2.1, we have:
∑s−1

h=t ΠAα(s−h−1)ΓαỸh ∼ N (0,Π(Γ2
(s−t)α)Π)

and
∑s−1

h=t(I−Π)Aα(s−h−1)ΓαỸh ∼ N (0, (I−Π)(Γ2
(s−t)α)(I−Π)). Notice that Π(Γ2

α(s−t))Π ≲[
4α(s−t)

γ 0
0 0

]
and (I−Π)(Γ2

α(s−t))(I−Π) ≲

[
0 0
0 2γα(s− t)

]
Therefore, we conclude:

Mp(

s−1∑
h=t

Aα(s−h−1)ΓαỸh,Π) ≤ Cp

√
dα(s− t)

γ

Mp(

s−1∑
h=t

Aα(s−h−1)ΓαỸh, I−Π) ≤ Cp

√
dαγ(s− t)

Notice that ∥Π(Aα(s−t) − I)X̃tK∥ ≤ α(s− t)∥ṼtK∥ and ∥(I−Π)(Aα(s−t) − I)X̃tK∥ ≤ αγ(s−
t)∥ṼtK∥. This implies:

Mp((Aα(s−t) − I)X̃tK ,Π) ≤ α(s− t)Mp(ṼtK)

Mp((Aα(s−t) − I)X̃tK , I−Π) ≤ αγ(s− t)Mp(ṼtK)

45



Notice that: ∥ΠAα(s−h−1)Gαb(X̃hK)∥ ≤ α
γ ∥∇F (ŨhK)∥ and ∥(I− Π)Aα(s−h−1)Gαb(X̃hK)∥ ≤

α∥∇F (ŨhK)∥ . This implies:

Mp(Aα(s−h−1)Gαb(X̃hK),Π) ≤ α

γ
Mp(∇F (ŨhK)) ≤ αL

γ
Mp(X̃hK−X̃tK ,Π)+

α

γ
Mp(∇F (ŨtK))

Mp(Aα(s−h−1)Gαb(X̃hK), I−Π) ≤ αMp(∇F (ŨhK)) ≤ αLMp(X̃hK−X̃tK ,Π)+αMp(∇F (ŨtK))

Notice that: ∥ΠAα(s−h−1)α∆h∥ ≤ αLNh

γ sup0≤i≤K−1 ∥
ˆ̃UhK+i − ŨhK∥ and ∥(I −

Π)Aα(s−h−1)α∆h∥ ≤ αLNh sup0≤i≤K−1 ∥
ˆ̃UhK+i − ŨhK∥. Applying item 1 in Lemma 21, we

conclude:

∥ΠAα(s−h−1)α∆h∥ ≤
Cα2LNh

γ
∥ṼhK∥+

Cα3LNh

γ
∥∇F (ŨhK)∥+ CαLNh

γ
MhK (99)

Therefore, we conclude:

Mp(Aα(s−h−1)α∆h,Π) ≤ Cpα
2L

γ
Mp(ṼhK) +

Cpα
3L

γ
Mp(∇F (ŨhK)) +

CpαL

γ
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≤ Cpα
2L

γ
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Cpα
3L

γ
Mp(∇F (ŨtK)) +

Cpα
3L2

γ
Mp(X̃tK − X̃hk,Π)

+
CpαL

γ
Mp(MhK)

≤ Cpα
2L

γ
Mp(ṼhK) +

Cpα
3L

γ
Mp(∇F (ŨtK)) +

Cpα
3L2

γ
Mp(X̃tK − X̃hk,Π)

+
Cpα

5
2L
√
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√
γ

≤ Cpα
2L

γ
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Cpα
2L

γ
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Cpα
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γ
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+
Cpα

3L2
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Mp(X̃tK − X̃hK ,Π) +
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5
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√
γ
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In the first step, we have used the triangle inequality forMp along with the fact thatNh is independent
of Mh,K and X̃hK and the fact that its p-th moment is bounded by a constant Cp. In the second step,
we have controlled the norm of∇F (ŨhK) with that of∇F (ŨtK) using Lipschitzness. In the third
step, we have invoked item 3 of Lemma 21 to bound the moments of Mh,K . In the fourth step, we
have controlled the norm ṼhK in terms of X̃tK and X̃tK − X̃hK .

Similarly, we have:

Mp(Aα(s−h−1)α∆h, I−Π) ≤ Cpα
2LMp(X̃tK , I−Π) + Cpα

2LMp(X̃tK − X̃hK , I−Π)

+ Cpα
3LMp(∇F (ŨtK)) + Cpα

3L2Mp(X̃tK − X̃hK ,Π)

+ Cpα
5
2
√
γL
√

(d+ logK) (101)

Applying the estimates derived above to Equation (97), along with the assumption that αL(s−t)
γ ≤ cp,

αγ(s− t) ≤ cp and α2L(s− t) ≤ cp for some small enough constant cp which depends only on p,
we conclude:

sup
t≤h≤s

Mp(X̃hK − X̃tK ,Π) ≤ 2α(s− t)Mp(X̃tK , I−Π) + α sup
t≤h≤s

Mp(X̃tK − X̃hK , I−Π)

+
2α(s− t)

γ
Mp(∇F (ŨtK)) + Cp

√
(d+ logK)

L
(102)
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Similarly considering Equation (98), we have:

sup
t≤h≤s

Mp(X̃hK − X̃tK , I−Π) ≤ 2αγ(s− t)Mp(X̃tK , I−Π) + 2α(s− t)Mp(∇F (X̃tK))

+ 2αL(s− t) sup
t≤h≤s

Mp(X̃hK − X̃tK ,Π) + Cpγ

√
d+ logK

L

(103)

From Equations (102) and (103), we conclude:

sup
t≤h≤s

Mp(X̃hK − X̃tK ,Π) ≤ 8α(s− t)Mp(X̃tK , I−Π) +
8α(s− t)

γ
Mp(∇F (ŨtK))

+ Cp

√
d+ logK

L
(104)

sup
t≤h≤s

Mp(X̃hK − X̃tK , I−Π) ≤ 8γα(s− t)Mp(X̃tK , I−Π) + 8α(s− t)Mp(∇F (ŨtK))

+ Cpγ

√
d+ logK

L
(105)
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Answer: [Yes]
Justification: The contents of the paper match the claims made in the abstract and introduc-
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Guidelines:
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made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
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much the results can be expected to generalize to other settings.
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are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations in a separate section.
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• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
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technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.
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address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification:
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We explicitly reveal all the hyperparameters and open source models necessary
to reproduce our results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: We do not have institutional approval for code release. We provide detailed
descriptions of the algorithms and hyper-parameters.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: It is common in image generation literature to compute FID over 50k generated
images, without reporting error bars since the fluctuations are usually negligible.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Details regarding the GPU, CPU and the RAM are provided in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper is purely technical and we do not foresee any societal impact due to
this.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We use already open sourced models and datasets, widely used in the research
community.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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