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ABSTRACT

Spoken Language Processing tasks that extract information from speech signal,
have the advantage of using both speech and text modalities. In this paper, we
propose to combine pretrained speech and text encoders via cross-attention, and
we show the application of the proposed architecture in multiple spoken language
processing systems. Our results indicate that it’s more efficient to re-purpose previ-
ously trained independent modality encoders and learn only cross-attention from
scratch. This resultant architecture captures both acoustic and lexical information,
and performs text tagging while attending to speech encoder for improved results.
We use compact pretrained speech and text encoder which are resource efficient
and can be trained on a single consumer GPU card.

1 INTRODUCTION

Speech interfaces have seen wide adoption through virtual assistants such as Siri and Alexa which
have rapidly become a part of our everyday lives. To facilitate these applications, high quality
automatic systems which infer meaningful information from speech input are essential. This infer-
ence is primarily done in two forms, firstly, speech processing (asr, speaker identification, speaker
diarization) and secondly, spoken language understanding (text normalization, intent, sentiment).
Speech processing applications generally depend on acoustic information derived by functionals or
use of pretrained acoustic encoders, however, a typical SLU, the Automatic Speech Recognition
(ASR) system is used to convert speech into transcription hypotheses followed by a natural language
understanding (NLU) component which acts on those hypotheses to extract an actionable semantic
representation. However, in spoken language, organization of acoustic-prosodic cues within an
utterance and in-between utterances can resolve semantic, lexical and syntactic ambiguities Nagel
et al. (1996); Snedeker & Trueswell (2003); Frazier et al. (2006).

Several methods have been proposed to exploit acoustic-prosodic cues along with text for spoken
language inference. CITE show that feeding n-best to text classifiers instead of 1-best can boost
performance for utterance-level text inference Chuang & Wu (2004); Singla et al. (2018). Some
other works show that a speech encoder and text encoder can be concatenated for utterance-level
multi-modal SLU CITE. Alternatively features for speech segments aligned with word embeddings
are fed to text based classifier for multi-modal SLU. Recently X combine speech and text encoder
using cross-attention between transformer layers of randomly initialized encoder. However, their
work is limited to utterance-level SLU (in form of emotion annotations).

In recent work, these encoders are first pretrained on auxiliary tasks either taking speech or text
as input. They are then repurposed to further fine-tune using annotations on either modality. We
propose to pretrain speech and text encoders before fine-tuning them jointly used supervised data. We
show applying one-way cross attention between a text and speech encoder can perform continuous
multi-modal tagging of text stream provided by an ASR. As a result, every token in the text accounts
for speech variability surrounding it without the need for an explicit alignment. We also show
that combining pretrained encoders using two-way cross attention between encoders from multiple
modalities shows state of the results for utterance-level emotion and intent prediction.

In this context, pretrained self-supervised encoders, which directly take the continuous input in the
form of raw speech, have shown promising results when fine-tuned for transcription tasks. These
encoders have also been successfully fine-tuned end-to-end for a variety of SLU tasks Tzirakis
et al. (2017); Chen et al. (2018); Ghannay et al. (2018); Yadav et al. (2020). We start training
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from a pretrained Wav2vec2 model Baevski et al. (2020) for converting raw speech segments into
fixed-dimensional temporal embeddings. In addition, we use a pretrained text encoder to convert
text into token embeddings. We then apply a multi-headed attention between these embeddings in
both directions, similar to encoder-decoder attention Bahdanau et al. (2015). or text-based tagging
only one-way cross-attention is applied where text encoder attends to speech encoder for continuous
multi-modal tagging.

The contributions of our paper is as follows:

• We illustrate that off-the-shelf pretrained encoders when combined using cross-attention
shows state-of-the-art performance (2-6% over text-only models on utterance-level intent
and emotion identification.)

• We attend a speech encoder using one-way cross-attention for continous multi-modal text
tagging.

• We show that results for two text tagging tasks (punctuation insertion in ASR hypothesis
and speaker diarization based on ASR hypothesis) improve by 2-4% over text-only model.

2 RELATED WORK

We review methods for learning text and speech-based self-supervised encoders. We then highlight
a recent growing trend using pretrained speech encoders for high-quality SLU systems. Lastly, we
briefly discuss the benefits of our proposed method in relation to previously proposed multi-modal
SLU approaches.

2.1 PRE-TRAINED SPEECH AND TEXT ENCODERS

Recently, it has become common practice to first pretrain text encoders using large amounts of
unlabeled text before fine-tuning them for a target task Peters et al. (2017; 2018); Devlin et al. (2018).
A popular method of learning text-based, self-supervised encoders is to train a language model to
predict the next word in a sequence Mikolov et al. (2010); Radford & Narasimhan (2018). BERT
Devlin et al. (2018) introduced a Masked Language Model (MLM) objective, where tokens are
randomly masked or perturbed and the model must learn to reconstruct those portions, yielding
bidirectional representations. This type of ”self-supervision” has also been adopted to encode speech
signals Oord et al. (2018); Pascual et al. (2019); Chung et al. (2019); Baevski et al. (2019). These
encoders generally use training targets that are derived from the input signal. For example, the model
may be tasked to recover the original input signal given a version transformed through augmentation
techniques, recover masked inputs from the future or randomly in the sequence, or separate true
inputs from synthetic samples. However, unlike text-based encoders, speech encoders generally need
some amount of fine-tuning on a transcription task before being useful for SLU Chorowski et al.
(2015); Chan et al. (2016); Baevski et al. (2020).

2.2 SLU DIRECTLY FROM SPEECH

With the emergence of end-to-end ASR Chorowski et al. (2015); Chan et al. (2016) and the successful
pretraining of speech encoders, methods for SLU directly from the speech signal have recently shown
comparable performance to the conventional approach of cascading ASR and text-based components
in tasks such as named entity recognition (NER), translation, dialogue act prediction (DAP) Vila et al.
(2018); Dang et al. (2020), as well as inference tasks like emotion, intent or behavior understanding
Fayek et al. (2015); Price et al. (2020); Singla et al. (2020).

2.3 MULTI-MODAL SLU

The speech features for multi-modal systems are generally provided either at the level of words or
utterances based on the underlying SLU task. Combining speech and text features has led to improved
results for multiple tasks including: spoken text parsing, emotion extraction and also for automatic
understanding of psychological disorders and human behavior Yu et al. (2013); Kim & Shin (2019);
Fraser et al. (2013).
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The focus of this paper is to show benefits of cross-attention mechanism to perform fusion of
continuous speech and text input stream for multi-modal token-level or utterance-level fine-tuning.
An exploration of various self-supervised speech encoders Arora et al. (2021); Hsu et al. (2021); Liu
et al. (2021) was beyond the initial scope. Unlike previous multi-modal approaches Kim et al. (2021);
You et al. (2021) it only needs aligned corpora for fine-tuning, not for pre-training. Tsai et al. (2019)
uses cross-attention between transformer layers of speech and text encoders for emotion extraction
instead we use cross-attention on top of pre-trained off-the-shelf encoders. Also this paper is first in
performing efficient fusion for token-level multi-modal fusion. We also plan to publicly release our
models and setup.

In the past, similar token-level tagging approach has been proposed to spoken text parsing. They
perform feature fusion of text and speech features, where speech features are simple functionals
representing a word. sequence network for chunk-level multi-modal fusion methods Tran et al. (2017).
Additionally, this is the first work, which performs multimodal token-level tagging to improve over
speech only and text only approaches for diarization and rich transcription. Our proposed system can
transparently perform multi-modal token-level tagging of speech and text without any supervised
alignments. It learns to attend token from other modalities stream while performing tagging.

3 CROSS-STITCHED MULTI-MODAL ENCODER
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Figure 1: Cross-stitched encoding: Separately pretrained speech and text encoders are combined
using a two-way multi-head cross-attention. Output of the attention-level gives token-level speech and
text input which has attended to relevant information to decode a token by a supervised fine-tuning
task.

Cross-stitch1 is a tiled, raster-like pattern X used repeatedly to form a picture. It has become a
common trend to cross-stitch encoders for multi-modal inference CITE. We propose to combine
pretrained speech encoder embeddings with pretrained text encoder embeddings by applying cross-
attention on the top of the encoders, instead of in-between transformer layers as done by CITE.
Moreover, CITE don’t perform any pre-training thus, need a lot more data for pre-training. We apply
two-way multi-headed cross-modal attention between pretrained speech and text encoders. This
allows each encoder to attend to the other modality’s encoder in every time-step. Figure 1 gives an
overview of the architecture. Our pretrained speech encoder is first trained with Wav2vec2, then
fine-tuned using transcribed data for an ASR task with a CTC loss. The text input is encoded using a
pretrained MLM.

The speech and text encoders output KS and KT respectively. Keys Ki are either text or speech
tokens, and query Qj is output from the other modality. Following the typical Transformer decoder

1https://en.wikipedia.org/wiki/Cross-stitch
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approach, we first apply self-attention to the target query. Keys and queries are then connected using
cross-attention similar to encoder-decoder multi-headed attention Vaswani et al. (2017). Queries and
keys of dimension [dq, dk], and values of dimension dv become inputs to the attention function. We
compute the dot products of the query Qi with all keys Kj and divide each by

√
dk, where dkj

is
dimensionality of keys we are attending. We then apply a softmax function to obtain the weights on
the values.

Attention(Qi,Kj , Vj) = softmax(
Qi ∗KSj√

dkj

) ∗ Vj

We then perform the attention operation h times using different V values where queries, keys and
values are low-order projections using W , creating different representations at different positions in
the other modality. We employ h = 8 parallel attention heads. Multihead cross-attention is formally
defined as follows:

MultiHead(Qi,Kj , Vj) = [head1, .., headh] ∗Wj (1)

where

headn = Attn.(Qn ∗Wn
Q,Kn ∗Wn

K , Vn ∗Wn
V ) (2)

where Wn
i ∈ Rdmodel×dj are parameter matrices. All heads [1 : h] are concatenated to represent

each multi-headed token-level cross-attention output for both speech and text input. An additional
weight matrix Wj then filters the information from these cross-stitched representations. We use the
resultant multi-modal temporal outputs HS and HT for various token-level tagging and utterance
classification tasks. While performing text tagging, our system only uses HT and attends to speech
encoder via cross-attention. Thus enabling near real-time continous multimodal SLU. All of our
models and experiments are built with an open source library for model exploration and development
targeting NLP.

3.1 SPEECH ENCODER

For the speech encoder (SE), we use a Wav2vec2 model with 12 Transformer blocks with 12 attention
heads and a 768 dimensional hidden unit size, similar to the base model in Baevski et al. (2020). Our
convolutional feature encoder is adapted for speech data sampled at 8kHz. The model was pretrained
on approximately 9450 hours of anonymized speech data from a collection of conversational AI
applications where users interact with an intelligent virtual agent (IVA) for customer care over the
phone. The model was subsequently fine-tuned with a CTC loss on 900 hours of transcribed data 2.

Our initial testing showed that the lower layers of the architecture contributed most of the information
relevant to downstream applications in the multi-modal setting. We found that removing the final
4 Transformer layers from the fine-tuned speech encoder resulted in very little change in perfor-
mance, but significantly sped up training and inference, while reducing the overall memory footprint.
Subsequently, we dropped the final 4 layers of the speech encoder for all experiments.

3.2 TEXT ENCODER

For the text-based encoder (TE), we pretrained an 8-layer Transformer, with 8 attention heads using
an MLM loss on a corpus of online data including all of English Wikipedia, around 700 million
conversations from Reddit Al-Rfou et al. (2016); Henderson et al. (2019), 3.3 million online forums,
and 8.2 million online reviews for restaurants and hotels. The majority of the dataset contains full
conversations between multiple users, and the turns are demarcated with a special end-of-utterance
token. Following Shaw et al. (2018), we use relative positional representations which are not

2We saw consistent results with publicly available checkpoints.
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conditioned on the global position of the token but instead use a local relative offset embedding at
every layer as part of the self-attention computation. Previous literature has shown that placing the
layer norm at the front of each sub-layer in the Transformer simplifies training and can improve
performance Nguyen & Salazar (2019); Xiong et al. (2020); Wang et al. (2019), so we also follow
this approach in our model.

We empirically observed in initial testing that the last 4 layers of the text encoder could be dropped in
the downstream multi-modal application without significant performance degradation. As a result,
we truncate our text encoder to only the lower 4 of the original 8 layers.

3.3 TRAINING DETAILS

Our fine-tuning system is compact and lightweight and we are able to train with a single GPU – even
on a consumer card. For most experiments, we use a single NVIDIA GTX 1080ti GPU.

We use Adam with a fixed batch size of 2 with a fixed learning rate of 1.0e− 5, for all experiments
except for IVA intent detection, where we trained with a batch size of 16 on a single A100 GPU 3. For
all experiments, we keep the speech encoder frozen for the first 2000 steps of training. We calculate
the cross-entropy loss of a final projection to the number of labels. For tagging, this translates to
token-level (word-level in our experiments) loss. We use early stopping on a validation set for all
experiments.

4 TOKEN-LEVEL FINE-TUNING
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Figure 2: Word-level tagging using cross-attention mechanism. For each word-level prediction in text
it takes cross-attn over the corresponding speech segment, thus, doing a soft alignment

Our proposed cross-stitched network can be used for multi-modal token-level fine-tuning for both
text and speech based classification tasks. In this paper, we focus on doing token-level classification
of text tokens where it attends to temporal speech embeddings using multi-headed attention. Figure 2
portrays the multi-modal token-level tagging of text.

Rich transcription makes ASR results more readable and valuable for human users. We propose two
rich transcription tasks as post-processing on ASR output: 1) Punctuation insertion & capitalization
and 2) Speaker diarization in role-based conversations.

4.1 PUNCTUATION INSERTION & CAPITALIZATION

We gather data readily available data from Tatoeba4, which provides sentences with punctuation and
first-letter capitalization. It also includes speech for each sentence read by one or more speakers. In
total we gather approximately 165K English sentences along with speech representing each sentence.

3We used a larger batch size due to the large size of the dataset, to compare against internal benchmarks, and
because a grid search yielded significantly better results for that dataset.

4https://tatoeba.org/en/
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We train our multi-modal system to insert punctuation, specifically, comma (Cm), period (Pr) &
question-mark (Qus) and also perform first-letter capitalization (Cp) of words. We use 141K, 12K and
13K samples for training, validation and testing respectively. We hypothesize speech has information
which can help with punctuation insertion and word capitalization. In this work, our results are
limited to the Tatoeba corpus. Training data is created by adding word-level tags for punctuation
insertion and capitalization where input is the normalized text (see sample below).

Input thank you i understand do you
Word tags Cp:0 0:Pr Cp:0 0:Pr Cp:0 0:Qus
Output Thank you. I understand. Do you?

Our system predicts 8 different tags (shown in Table 1) for each word input. Table 1 shows word-level
F1-scores for this task and illustrates the improvement in scores using the multi-modal approach
(XSE) over text-only approach.

4.2 SPEAKER DIARIZATION FOR ROLE-BASED CONVERSATIONS

Speaker diarization includes predicting speaker change and clustering segments to identify speakers.
One widely adopted approach for unsupervised speaker diarization first segments the input speech
into fixed-length frames using a fixed step size. These frame embeddings are then clustered for a
session by performing hierarchical clustering using a pre-defined similarity measure. Supervised
approaches are also used to learn speaker boundaries or perform end-to-end speaker diarization based
on these speech frame embeddings.

We cast speaker diarization as a token-level speaker tagging task. For this paper, we limit our study
to conversations where speakers can have only two roles. We gather call-center conversation in the
food domain between an agent and a customer. We gather human transcriptions, and annotations
marking speaker boundaries and speaker roles for each segment. In all, we use 56 hours of speech
for training, 10 hours for validation and 10 hours for testing purposes. Our evaluation set of 198
conversations contains 3.6K total speaker turns and 19K words which are tagged by our model to
produce a diarizaed output. We hypothesize that because of assigned speaker roles there is a bias
between speakers in terms of language use. Below is a sample encoding for two-person role-based
conversations.

Here Agent (A0−A2) words are coded as 1 and client (C0− C4) words as 0. We train the system
to predict 0’s and 1’s in a continuous stream of words from ASR.

Speaker diarization performance is generally measured using Diarization Error Rate (DER), computed
as a sum of false alarms (FA): silence being recognized as speech, missed detections (MD): speech
being recognized as silence, and Speaker Error Rate (SER), the % of incorrect speaker tags. In our
speech-based results (upper part of Table 25), we report error rates using a typical state-of-the-art
speaker diarization approach. We first identify speech and non-speech regions using a Time Delay

5We ignore FA errors (at least 6%) as they only account for silence regions in speech.

Word-level tag % F1
Text XSE

Punctuation Capitalization
Yes 83 87Comma (,) No 86 88
Yes 97 98Period (.) No 100 100
Yes 90 94Qus (?) No 99 99

None Yes 100 100
None No 100 100

Macro-average 93 95

Table 1: Results for Punctuation insertion and capitalization task comparing text-only vs proposed
multimodal approach (XSE) on Toteba corpus.
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Mini-batch A0 A1 A2 C0 C1 C2 C3 C4 A0 A1
C0 C1 C2 A0 A1 A2 A3 C0 C1 C2

Word tags 1 1 1 0 0 0 0 0 1 1
0 0 0 1 1 1 1 0 0 0

Approach % Token error
SER+MD SER

Speech time-series clustering
VAD + Generic PLDA + AHC 17.1 14.4

VAD + Generic PLDA + Spectral 10.7 7.7
VAD + In-Domain PLDA + Spectral 7.4 4.5

In-Domain PLDA + Spectral∗ 5.4 2.9
Token-level role tagging

Text (TE) - Scratch 16.1
Text (TE) - Pretrained 8.1

XSE - Scratch 14.5
XSE - Pretrained 7.6

Table 2: Token error rates for speaker diarization in 2-person call-center conversations. * is the result
with speech vs non-speech segmentations provided by humans.

Neural Network (TDNN) classifier Bai et al. (2019). Each window of 1.5s length with an overlap
of 0.5s is converted into 128-dimensional X-vector Snyder et al. (2018) by passing through an
embedding network trained to classify the speakers of switchboard corpus Godfrey et al. (1992). We
then measure similarity between x-vectors using Probabilistic Linear Discriminant Analysis (PLDA)
Ioffe (2006); Prince & Elder (2007). We found using additional unsupervised in-domain corpora (460
hours) translates to improved diarization performance. After measuring the similarity score between
all pairs of x-vectors using PLDA, they are clustered until we arrive at two clusters, one for each
speaker in the recording. In our work, we found spectral clustering yields better performance than
using standard Agglomerative Hierarchical Clustering (AHC) Lin et al. (2019).

The last two rows of Table 2 shows results for our text-based speaker diarization approach using the
cross-stitched encoder which improves over text based role tagging. For token-level word tagging
based diarization, we treat word-level error as token error. Our cross-stitched multi-modal approach
(XSE) shows improvements over text only baseline. Our text based diarization system shows similar
performance when compared to a fully automated speech based unsupervised state-of-the-art approach
without any in-domain unsupervised data. Best results are achieved for speech-based approach when
human provided speech segment information is used instead of automatic voice activity detection
(VAD) system.

Figure 3: Comparison of multi-modal speaker diarization approach vs typical speech based diarization
approach.

Speech-based diarization performs global clustering of speech time frames versus token-level tagging
of words which only uses local context. Therefore, we are unable to compare thse approaches directly

7



Under review as a conference paper at ICLR 2023

at the token level. We propose a turn-level evaluation metric for two-person dialogues as high quality
transcriptions also implies accurately the whole turn correct. We define Recall (R) as a ratio of
number of correct turns to actual turns and Precision (P) is defined as the ratio of number of correct
turns to detected turns. F-score is defined as 2PR/(P + R) irrespective of length of the segment.
Figure 3 shows variation of annotated data (speaker role and boundary information) along with
turn-level diarization performance. Figure 3 shows results for multi-modal system using different
sizes of annotated corpora. Our proposed approach performs similar to speech-based unsupervised
PLDA approach with 14 hrs of annotated corpora. Text-only model shows 65% turn-level F-score
compared to 69% for XSE.

Below is a sample output for our cross-stitched embedding (XSE) which takes normalized text and
speech as input. It shows combined output of punctuation insertion & capitalization system and also
diarization output by performing token-level role tagging.

Input
may i start with your phone number um five one
four three eight three remo crescent road
nine yes um let’s see five one nine four two one
uh i don’t phone myself so i don’t know my damn
phone number um five three nine five three nine
four one two nine five three nine four one two
nine okay so is it pick up or delivery it’s a delivery
Output
A: May I start with your phone number?
C: Um five one nine.
A: Yes.
C: Um let’s see five one nine four two one. Uh I
don’t phone myself so I don’t know my damn
phone number. Um five three nine five three
nine.
A: Four one two nine five three nine four one
two nine. Okay, so is it pick up or delivery?
C: It’s a delivery.

5 UTTERANCE-LEVEL FINE-TUNING

For spoken utterance classification we compare two fusion methods. First we adopt shallow fusion
similar to Siriwardhana et al. (2020) by first pooling each individual encoder’s output (QS) for speech
and (QT ) for text. The speech and text pooled output is then concatenated along the embedding
dimension. For audio, we use max pooling, and for text, following BERT, we use the special start
token ([CLS]). Some datasets contain samples with only text. For these samples, we sum along
embedding dimension instead of concatenation to enable smooth training. SE-TE refers to shallow
fusion and XSE refers to the cross-stitched encoder model in Table 5. The unimodal systems using
pooling from either QS or QT .

We train three variants of cross-stitched encoders:

• XSE-P: Pretraining is done as described in section 3 before supervised fine-tuning.
• XSE-S: No pretraining is done. Speech and text encoder directly optimized from scratch on

supervised data.
• XSE-T: No pretraining and CITE proposed idea to put cross-attention between speech and

text transformer blocks.

5.1 EMOTION IDENTIFICATION

Creating a scalable general purpose solution for emotion extraction comes with the challenge of
limited data annotations. Emotion which captures behavioral information about a speaker has been
primarily studied in the form of continuous or discrete perceived sentiment (negative, positive, neutral)
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Zadeh et al. (2018); Chen et al. (2020), 7 discrete emotions (anger, disgust, fear, joy, sadness, surprise)
Li et al. (2017); Busso et al. (2008) or more granular annotations of behavioral emotion Demszky
et al. (2020).

Accuracy (%)

Maj. Speech (SE) Text (TE) SE-TE XSE-P XSE-S XSE-TDataset no-CTC with CTC
MOSEI 40.7 40.9 46.8 46.8 51.7 53.4 50.7

SwitchBoard 48.5 50.2 68.1 69.2 73.3 73.6 72.0
IVA 57 61.2 76.7 79.5 80.2 80.5 80.0

Table 3: Results on emotion identification comparing our text-only approach against proposed multi-
modal approaches.

In this paper, we study emotion as discrete annotations for spoken utterances which have both speech
and text available.

Youtube Monologues: We report results for widely used CMU-MOSEI Zadeh et al. (2018) dataset
which contains 23,453 annotated video segments from 1,000 distinct speakers and 250 topics, in
total approximately 65 hours of speech along with transcriptions. Final sentiment annotated corpora
contains 20k sentences annotated by 3 annotators marking discrete sentiment ranging from −3 to 3.
We follow the same data setup first as used by Tsai et al. (2019).

Two-sided telephony conversations: The Switchboard corpus (Godfrey et al., 1992) is a well studied
speech corpus composed of 2400 two-sided telephony conversations from 543 speakers around the
US. We mix both channels to make mono-channel audio. We use utterance segmenated annotaions
provided by LDC . We only use samples where all three annotators agree on a sentiment label between
{postive, negative, neutral}, discarding 15% of total samples. We use 44k segments for training,
2.5K samples each for development and test purposes.

Intelligent Virtual Assistant: We also use spoken utterances marked with discrete 7-way sentiment
annotated data from an Intelligent Virtual Assistant (IVA) system in the customer care domain.
We collect 10K unstructured spoken customer utterances from human-machine dialogue. These
utterances/sentences are then coded for sentiment by 3 human annotators, with an agreement of about
75%. We use 8K for training, 1K for development and 1K for testing purposes. We mix data from all
annotators for train and test.

Neutral (0) is the dominating label in all datasets, which is also the majority class performance
shown in Table 3. Our fusion approaches shallow fusion (SE − TE) and cross-stitched fusion
(XSE) both outperform text only baselines. XSE performs better than SE − TE for both the
MOSEI and IVA dataset. Our shallow fusion system SE − TE is similar to Siriwardhana et al.
(2020) as both concatenate the pooled encoder outputs before classification, however, we use a
conversationally-trained, compact MLM instead of the original BERT encoder. On MOSEI dataset
Tsai et al. (2019) report 50.4% vs 53.4% accuracy for our system on 7-way sentiment prediction.

5.2 INTENT DETECTION

Intent detection – attempting to understand a user’s goal in a task-oriented dialogue – is a typical
problem in SLU. It has primarily been treated as an unstructured prediction problem, applied
either independently, or jointly with a separate task to collect specific named entities specific to a
conversation (also referred to as slot-filling). For text modality, following Pressel et al. (2022) we
input text encoder a list of the top transcription hypotheses from the ASR system (referred to as
N-best lists). We found this yields better results results for text-only system which uses only 1-best
provided by an ASR.

We also perform an ablation study to see impact of using additional speech information for few-shot
SLU in the form of understanding emotions and intent prediction. We randomly sample N shots
for each intent type for training, and use the same development and test datasets. We perform 5
independent runs for both text-based and multimodal SE − TE setup and report avg. performance
in Table 4.
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Dataset Speech (SE) Text (TE) SE-TE XSE-P XSE-S
IVA 82.34 83.07 84.01 84.23

IVA-5shot 28.1 22.4 33.9 38.1
IVA-10shot 45.1 50.1 50.7 50.4

FSC 99.58 99.34 99.53 99.63
FSC-5shot 83.4 86.8

FSC-10shot 92.3 95.6

Table 4: Intent detection on IVA and FSC dataset with different modalities ADD: SOTA NUMBERS

Intelligent Virtual Assistant We use a large dataset collected from a real-world virtual assistant
applications in the customer care domain. It contains approximately 1.1 million anonymized utter-
ances for training. Due to the size of the training set and the cost associated with obtaining human
transcription of the spoken utterances and intent labels, N-best hypotheses for the spoken text are
taken from a production ASR system consisting of a hybrid DNN-HMM acoustic model and an
N-gram language model. Word accuracy of this ASR system is estimated to be in the mid to upper
80% range for this data. The intent labels for training come from two sources. The labels are either
generated automatically by an existing production SLU system when the confidence of the system
is very high, or the utterances are sent to a human agent in-the-loop to be manually labeled when
the confidence of the automated label is low. The test set consists of approximately 11K utterances
that are manually labeled and verified. A development set of approximately 38K noisily annotated
utterances is used for early stopping. The dataset has 2 sets of labels indicating intent and entity
predictions and, for classification, we use a multi-headed classifier to predict both. The joint accuracy
is used to indicate overall performance. For the text modality, the N-best hypotheses are concatenated
using a special end of utterance demarcation token (the same end-of-utterance token seen in text
pre-training) and passed into the text encoder. While the complete 120 different intent types, for
few-shot experiments (5shot, 10shot) we only use 30 most frequent intent types in the training set.

Fluent Speech Commands: We use the publicly available Fluent Speech Commands (FSC) dataset
Lugosch et al. (2019) to train and evaluate our model and compare with models tested on the same
dataset. The FSC corpus is the largest freely available spoken language understanding dataset that
has intent labels using a wide range of subjects to record the utterances. In total, there are 248
different distinct phrases in the FSC dataset and 5 distinct domains. The data are split into 23,132
training samples from 77 speakers, 3,118 validation samples from 10 speakers and 3,793 test samples
from 10 speakers. Using human transcriptions our text encoder alone can achieve 100% accuracy.
However automatically generated transcripts using ASR are generally noisy. We use the two most
likely transcripts generated using an end-to-end ASR model trained with NeMo toolkit 6. We then
use these transcriptions as input to our text encoder.

For the FSC dataset, we observe that, while simple concatenation of the embeddings does not
outperform the audio-only encoder, our cross-attention method does better despite a much lower
accuracy for the text-only modality (Table 4).

6 CONCLUSION

Our results show that cross-stitching speech and text encoders using multi-headed attention produces
strong results on a diverse set of datasets. Our proposed method supports continuous multi-modal
tagging for speech and text input streams. We believe our results can be improved further by including
task specific data into unsupervised pretraining of speech and text encoders and exploiting context in
dialogue for utterance classification. We plan to explore these directions and evaluate our approach
on additional tasks in the future.

We believe our system can be made more robust for near real-time streaming by training with longer
sequence lengths and/or by exploiting the context. We plan to extend our approach to more tasks
including inverse text normalization, named entity recognition and sentiment tree parsing.

6https://catalog.ngc.nvidia.com/orgs/nvidia/collections/nemo asr
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Laura Cross Vila, Carlos Escolano, José AR Fonollosa, and Marta R Costa-Jussa. End-to-end speech
translation with the transformer. In IberSPEECH, pp. 60–63, 2018.

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li, Derek F. Wong, and Lidia S. Chao.
Learning deep transformer models for machine translation. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pp. 1810–1822, Florence, Italy, July
2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1176. URL https:
//aclanthology.org/P19-1176.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tie-Yan Liu. On layer normalization in the transformer architecture.
ArXiv, abs/2002.04745, 2020.

Hemant Yadav, Sreyan Ghosh, Yi Yu, and Rajiv Ratn Shah. End-to-end named entity recognition
from english speech. arXiv preprint arXiv:2005.11184, 2020.

Chenyu You, Nuo Chen, and Yuexian Zou. Self-supervised contrastive cross-modality representation
learning for spoken question answering. arXiv preprint arXiv:2109.03381, 2021.

Zhou Yu, Stefen Scherer, David Devault, Jonathan Gratch, Giota Stratou, Louis-Philippe Morency,
and Justine Cassell. Multimodal prediction of psychological disorders: Learning verbal and
nonverbal commonalities in adjacency pairs. In Semdial 2013 DialDam: Proceedings of the 17th
Workshop on the Semantics and Pragmatics of Dialogue, pp. 160–169, 2013.

AmirAli Bagher Zadeh, Paul Pu Liang, Soujanya Poria, Erik Cambria, and Louis-Philippe Morency.
Multimodal language analysis in the wild: Cmu-mosei dataset and interpretable dynamic fusion
graph. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 2236–2246, 2018.

A APPENDIX

Dataset 1-shot 5-shot 10-shot 15-shot

Intent MOSEI
IVA

Emotion FSC
IVA 22.4 50.1

Table 5: Few-shot experiment results
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