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ABSTRACT

Recent advancements in large language models (LLMs) have demonstrated re-
markable progress in mathematical and coding reasoning. However, existing code
benchmarks are limited in their ability to evaluate the full spectrum of these capa-
bilities, especially at the level of top-tier human programming competitions. To
bridge this gap, we introduce OJBench, a novel and challenging benchmark de-
signed to assess the competitive-level code reasoning abilities of LLMs. OJBench
comprises 232 programming competition problems from NOI and ICPC, provid-
ing a rigorous test of models’ reasoning skills. We conducted a comprehensive
evaluation of 37 models on OJBench, including a mix of closed-source, open-
source, reasoning-oriented, and general-purpose models. Our results indicate that
even state-of-the-art reasoning models like o4-mini and Gemini-2.5-pro-exp strug-
gle with highly challenging, competition-level problems, highlighting the signifi-
cant challenges models face in this domain.

1 INTRODUCTION

With the emergence of long chain-of-thought (CoT) models such as OpenAI-o1, o4-mini (Jaech
et al., 2024), Gemini-2.5-pro-ex (Google, 2025), DeepSeek-R1 (Guo et al., 2025) and Qwen3 (Team,
2025a), large language models have demonstrated advanced reasoning capabilities across various
domains, including mathematics (Hendrycks et al., 2021), physics (Welbl et al., 2017), and formal
proof (Wang et al., 2025; DeepSeek-Prover, 2025). They have also shown significant progress in
applications such as code generation and software engineering (Fan et al., 2023). Math and code
are two domains commonly used to evaluate the reasoning abilities of models. Although the field of
mathematics has numerous competition-level benchmarks, such as Omni-Math (Gao et al., 2024),
and AIME, the field of code still lacks competition-level benchmarks that can pose a challenge to
models. Currently, researchers primarily evaluate models’ performance on complex algorithmic pro-
gramming tasks using LiveCodeBench (Jain et al., 2024). However, the scope of LiveCodeBench
problems is often limited, as they primarily evaluate a single knowledge point and can be addressed
with minimal coding effort. The observed performance saturation among various models on Live-
CodeBench suggests that the current benchmark is insufficient for distinguishing their capabilities.
This underscores the necessity for more complex benchmarks to reveal model limitations and inform
the development of more advanced code LLMs.

An ideal scenario is to use real competitive programming tasks, which are often designed for top-tier
programmers selected globally. Inspired by the practice of testing models’ coding abilities on the
CodeForces platform by models such as OpenAI-o1, o3 (openaiteam, 2024), and DeepSeek-R1 (Guo
et al., 2025), the recent study CodeElo (Quan et al., 2025) has explored how to evaluate the com-
petitive coding abilities of different models. However, this approach utilizes simulated CodeForces
submissions and lacks a standardized, transparent dataset. Consequently, the choice of problems
can introduce a significant bias into a model’s Elo rating, which hinders a robust evaluation of its
competition-level coding capabilities.

To bridge this gap, we propose OJBench, a competition-level code benchmark comprising 232 prob-
lems that can effectively assess models’ code reasoning abilities in competitive programming tasks.
Using OJBench, we evaluated 37 models, including the Coder models trained on large-scale code
corpora and reasoning-oriented models trained with reinforcement learning on a wide range of rea-
soning tasks. We found that reasoning-oriented models significantly outperformed general-purpose
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Figure 1: Overall data collection and filtering process of OJBench.

models in competitive coding tasks, and open-source models still lag behind closed-source models
in terms of code reasoning proficiency. Additionally, we found that for most long-CoT models, using
CPP proves more effective than Python. Lastly, these models can leverage execution environment
feedback to iteratively refine their solutions, which ultimately enhances their overall performance.

In summary, our main contributions are as follows:

1) We introduce OJBench, a competition-level code benchmark that encompasses 232 top-tier hu-
man programming competitions.

2) Utilizing OJBench, we evaluated 37 models and revealed the limitations of current models in
complex code reasoning tasks.

3) We evaluated how well large language models code in different programming languages in com-
plex programming tasks and examined their ability to self-correct buggy solutions by leveraging
environmental feedback. Our findings offer actionable insights for the future development of code-
centric LLMs.

2 OJBENCH

In Section 2.1, we introduced the sources of the problems in OJBench and the data collection pro-
cess. In Section 2.2, we demonstrated how we assigned difficulty labels to each problem. In Sec-
tions 2.3 and 2.4, we respectively elaborated on the evaluation methods employed by OJBench and
its support for dual-language assessment in both Python and CPP.

2.1 DATA SOURCE AND DATA COLLECTION

The overall data collection and data filtering process of OJBench is shown in Figure 1.

Data Source. First we reviewed existing benchmarks, such as USACO (Shi et al., 2024), contain
problems exclusively from the USA Computing Olympiad. LiveCodeBench (Jain et al., 2024) and
codeELO (Quan et al., 2025), on the other hand, utilize problems from the LeetCode and Codeforces
platforms respectively. To minimize overlap with existing benchmarks and incorporate more chal-
lenging competitive programming problems into our dataset, we selected problems from China’s
National Olympiad in Informatics (NOI) and International Collegiate Programming Contest (ICPC)
as our data sources. For detailed information on NOI and ICPC, please refer to Appendix H.

Data Collection. We collected NOI and ICPC questions from the Logu competition platform and
the ICPC official website respectively. Each data sample includes problem descriptions in Mark-
down format and the comprehensive test cases released by the competition organizers. These ex-
tensive test cases provides a solid foundation for our evaluation set, thereby ensuring its validity.
Subsequently, we conducted a simple data filtering process:

1) All collected test cases were validated against accepted contestant submissions; any sample that
failed the automated verdict was discarded, eliminating artifacts arising from incomplete or incorrect
test suites.
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Table 1: Statistics of problems collected in OJBench

Source Count Easy Medium Hard Average Tests

NOI 159 20 53 86 17.21
ICPC 73 16 26 31 63.60

Total 232 36 79 117 31.81

2) The original dataset contained tasks whose outputs are non-unique and whose correctness can
only be determined by bespoke special judges. Due to the frequent absence and non-trivial authoring
cost of such graders, we excluded every task that demands a custom judge.

Finally, we used GPT-4o to translate the problem descriptions of NOI into English, followed by man-
ual verification to ensure that the translated problems retained their original meaning and maintained
the correct format. The statistics of OJBench are presented in Table 1.

2.2 DIFFICULTY CLASSIFICATION

To enable a fine-grained assessment of the capability of the model, we stratified the OJBench tasks
into three ordinal difficulty tiers: Easy, Medium, and Hard.

NOI. For problems sourced from NOI, we utilized the difficulty ratings obtained from the compe-
tition platform for categorization. Specifically, the difficulty of each problem is annotated through
voting by contestants who successfully solved the problem. The difficulty of each problem is quan-
tified on a scale from 0 to 7, with higher values indicating greater difficulty. The difficulty range
of OJBench problems spans from 2 to 7. We categorized problems with a difficulty level of 2-3 as
Easy, 4-5 as Medium, and 6–7 as Hard.

ICPC. For problems sourced from ICPC,due to the lack of an official difficulty classification, we
crawled the ranking information from real competitions. For each problem, we considered four met-
rics: total submission count (total submission), total number of accepted solutions (total passed), to-
tal number of participating teams (total team), and the number of teams that attempted the problem
(attempted team). We calculated the difficulty score for each problem using the following formula:

score =

(
total passed

total submission

)
×

(
attempted team

total team

)
The ratio total passed

total submission measures the success rate of teams attempting to solve the problem. In real
programming contests, teams often assess the difficulty of a problem before deciding whether to
attempt it. Therefore, the ratio attempted team

total team indicates the perceived difficulty level of the problem by
the participating teams. This score effectively captures the true difficulty of the problem. Specifi-
cally, we classified problems with a score of 0.4 or higher as Easy, those with a score of 0.1 or lower
as Hard, and the rest problems as Medium.

2.3 EVALUATION METHOD

Judge Base on the test case. In programming competitions, test cases are commonly used to verify
the correctness of solution. In programming tasks, models are provided with problem descriptions
and input-output examples, and are required to generate correct solutions. The correctness of these
solutions is evaluated based on a set of test cases (input-output pairs). Previous research has in-
dicated that using a limited number of test cases for evaluation can easily lead to false positives
results (Yang et al., 2025). Similarly, in our experiments, we observed that using a small number
of test cases for validation tends to produce false-positive results. As shown in Figure 2, the per-
formance of all models decreases with an increasing number of test cases. This trend persists even
when evaluated on powerful, reasoning-oriented models. To rigorously validate the robustness of
the code, we assess the correctness of the programs generated by the models on the entire set of test
cases. A solution is considered correct only if it passes all test cases.
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Figure 2: Performance decline of models with increasing test case scale on OJBench.

2.4 DUAL PROGRAMMING LANGUAGE ASSESSMENT.

Existing code benchmarks, such as LiveCodeBench (Jain et al., 2024) and APPS (Hendrycks et al.,
2021), predominantly evaluate models solely on Python. However, competitive programming ex-
hibits a distinct linguistic landscape, where human contestants largely favor CPP over Python, es-
pecially for top-tier problems with stringent algorithmic time complexity requirements (Quan et al.,
2025). Sole reliance on Python for evaluation thus provides an incomplete assessment of model
performance in such contexts. To address this limitation, OJBench supports evaluation in both
Python and CPP. This dual-language capability facilitates a nuanced investigation into performance
disparities across languages. Our findings indicate that most reasoning-oriented models achieve su-
perior performance when utilizing CPP compared to Python. This observation aligns with human
experience, given CPP’s inherent efficiency advantages, which make it more suitable for solving
competitive-level problems.

3 EVALUATION ON EXISTING LLMS

3.1 EXPERIMENTAL SETUP

Metrics. We employ Pass@n (Kulal et al., 2019)as our evaluation metric. Which means that if a
model gives n answers to the same problem and at least one of the answers is correct, the model
is considered to have passed the problem. During evaluation, we assess the models using the hy-
per parameters officially recommended by each model, including temperature, top k, and top p.
For reasoning-oriented models, we set the maximum number of tokens (max tokens) to 64k. For
general-purpose models, we set max tokens to the default context length of the model.

Models. Our evaluation includes a diverse range of models. For open-source general-purpose
models, we selected models from the Qwen2.5-Coder-Instruct, DeepSeek-Coder-Instruct, and
CodeLlama-Instruct series, alongside DeepSeek-V3-0324 (Hui et al., 2024; Zhu et al., 2024; Guo
et al., 2024; Liu et al., 2024a; Grattafiori et al., 2024). For reasoning-oriented open-source models,
our selection covers the DeepSeek-R1 family (including its distilled variants), various Qwen3 mod-
els, QWQ-32B, and the Olympic-Coder series (Team, 2025b; openrl, 2025). Among closed-source
models, we assessed leading proprietary offerings, including multiple versions of the Claude-3,
Gemini-2, and o-series, as well as models from the GPT line (from GPT-3.5 to GPT-4o) (Hurst
et al., 2024; openaiteam, 2024).
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Table 2: The main results of different models on OJBench using Python and CPP. Pass@1@Py and
Pass@8@Py represent Pass@1 and Pass@8 in Python respectively, and the same is true for CPP.
The highest scores of open source general-purpose models, open source reasoning-oriented models,
and closed source models are marked in blue, green, and red respectively.

Model Pass@ Pass Rate @

1@Py 8@Py 1@CPP 8@CPP Easy Mid Hard

General-purpose Open-source LLM

Qwen2.5-Coder-7B 3.50 4.74 2.64 4.74 20.49 0.95 0.00
Qwen2.5-Coder-14B 6.30 10.34 4.53 8.62 35.07 2.53 0.00
Qwen2.5-Coder-32B 5.77 9.05 6.36 12.93 30.56 3.01 0.00

CodeLlama-7B 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CodeLlama-13B 0.59 1.29 0.86 1.29 3.82 0.00 0.00
CodeLlama-34B 0.11 0.86 0.48 0.86 0.69 0.00 0.00
CodeLlama-70B 2.53 4.74 0.92 3.02 13.54 1.27 0.00

DeepSeek-Coder-6.7B 1.99 3.88 1.19 3.45 10.07 1.27 0.00
DeepSeek-Coder-33B 2.64 6.47 2.59 6.47 14.24 1.27 0.00

DeepSeek-Coder-V2-Lite 4.80 7.76 4.04 7.76 26.04 2.22 0.00
DeepSeek-Coder-V2 8.24 11.21 8.67 14.22 44.79 3.80 0.00
DeepSeek-V3-0324 25.54 32.33 22.95 34.05 78.47 33.70 3.74

Reasoning-oriented Open-source LLM

QWQ-32B 19.02 30.17 19.77 31.90 69.10 20.89 2.35
Qwen3-32B 14.92 32.76 15.09 31.90 53.12 17.25 1.60

Qwen3-30B-A3B 15.84 29.31 12.98 25.00 55.21 19.78 1.07
Qwen3-235B-A22B 25.97 40.52 26.08 39.22 76.39 35.13 4.27
Olympic-Coder-7B 8.78 18.10 8.24 18.97 42.36 6.17 0.21

Olympic-Coder-32B 15.41 29.31 16.27 31.03 54.51 18.67 1.18
DeepSeek-R1-Distill-Qwen-1.5B 2.59 6.47 0.05 0.43 13.54 1.42 0.00
DeepSeek-R1-Distill-Qwen-7B 8.94 15.09 0.97 2.59 39.93 8.07 0.00

DeepSeek-R1-Distill-Qwen-14B 14.17 23.28 5.87 13.79 56.94 14.40 0.85
DeepSeek-R1-Distill-Qwen-32B 17.83 30.17 10.40 24.14 62.50 19.94 2.67
DeepSeek-R1-Distill-Llama-8B 8.46 16.38 1.72 6.47 40.28 5.54 0.64

DeepSeek-R1-Distill-Llama-70B 16.38 28.02 10.02 23.71 61.81 18.20 1.18
DeepSeek-R1 26.02 37.07 25.97 38.36 78.47 35.44 3.53

Closed-source LLM

Claude-3.5-sonnet-20241022 10.40 17.67 13.09 23.28 47.57 8.54 0.21
Claude-3.7-sonnet-20250219 4.24 7.76 15.41 23.71 19.79 1.62 0.93

Claude-3.7-sonnet-20250219-Thinking 18.27 25.00 14.71 23.28 68.75 20.41 1.28
GPT3.5-Turbo 5.60 9.05 4.26 8.62 31.25 1.74 0.32
GPT4-Turbo 9.97 16.81 9.70 18.53 46.18 7.28 0.64

GPT-4o-20241120 10.02 15.95 10.34 16.81 50.69 5.85 0.32
o1-mini 21.61 33.62 25.97 37.50 68.75 30.22 1.28

o1-20241217 26.45 35.78 33.24 47.84 81.94 35.92 2.99
o3-mini 31.79 46.12 40.25 52.16 84.03 44.94 6.84
o4-mini 33.30 48.71 46.12 61.21 83.33 51.27 5.77

Gemini-2.0-Flash-Thinking-exp 13.58 22.41 11.80 20.26 54.86 13.45 0.96
Gemini-2.5-pro-exp-03-25 38.91 48.71 44.26 56.47 83.68 61.71 9.48

3.2 MAIN RESULTS

Table 2 presents the overall performance of all models on OJBench, and the pass@1 scores of the
models using Python at different difficulty levels.
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Overall Performance. In general, closed-source models outperform open-source models. Among
open-source reasoning-oriented models, Qwen3-235B-A22B and DeepSeek-R1 demonstrate the
best performance, surpassing o1-mini and approaching the performance of o1-20241217. In
the closed-source category, previous models such as GPT3.5 and GPT4 showed limitations in
competition-level code reasoning tasks. However, models that underwent large-scale post-training
specifically for reasoning tasks, such as o4-mini and Gemini-2.5-pro-exp-03-25, exhibit state-of-the-
art performance. For models within the same family but of different sizes, performance improves
with an increase in parameter count. Overall, models designed for reasoning tasks consistently out-
perform general-purpose models, highlighting the significant advantages of post-training methods
like reinforcement learning and distillation in enhancing reasoning capabilities.

Pass@n. As the number of samples n increases, the pass@n of all models consistently rises.
Among open-source models, Qwen3-235B-A22B and DeepSeek-R1 exhibit a pass@8 improve-
ment of 14.55 and 11.05 in python, respectively, compared to pass@1, surpassing the performance
of o1-20241217 in the pass@8. For closed-source models, pass@8 also shows significant improve-
ment over pass@1. For instance, o3-mini, o4-mini, and Gemini-2.5-pro-exp-03-25 achieve absolute
improvements of 14.33, 15.41, and 9.8, respectively. This indicates that models are capable of
exploring diverse approaches to problem solving.

Pass Rate at Different Difficulty Levels. Table 2 also presents the pass rates of the models im-
plemented in Python across problems of varying difficulty levels in a single response. It is evident
that even problems of simple difficulty pose a challenge for the majority of models. For problems
at the Hard difficulty level, the pass rates of almost all general-purpose models are zero. Notably,
even the DeepSeek-V3-0324 model with an exceptionally large parameter scale of 671B achieved
a pass rate of only 3.74%. In contrast, most reasoning-oriented models perform well on problems
of easy difficulty. This indicates that merely relying on large-scale pretraining is insufficient to en-
hance models’ performance on competition-level coding problems. Instead, reinforcement learning
and distillation from powerful reasoning-oriented models hold significant potential for improving
models’ code reasoning capabilities. For most reasoning-oriented models, performance on medium
and hard problems is relatively lower but provides better differentiation. Hard problems effectively
distinguish the top reasoning-oriented models, such as o4-mini, Gemini-2.5-pro-exp-03-25, Qwen3-
235B-A22B, and DeepSeek-R1. These results indicate that OJBench can effectively evaluate mod-
els’ code reasoning abilities and is suitable for assessing the capabilities of future code LLMs.

4 ANALYSIS

4.1 ANALYSIS OF THE OVERALL DIFFICULTY OF OJBENCH

To provide an objective evaluation of the difficulty inherent in OJBench, a comparative analysis
was performed against an established external benchmark. We selected the widely-adopted Live-
CodeBench, as its public leaderboard provides performance metrics for state-of-the-art, reasoning-
focused models like o4-mini and Gemini-2.5-pro-exp-03-25. Our comparison leverages the of-
ficially reported scores for o4-mini (low), Gemini-2.5-pro, and Qwen3-235B-A22B, which were
evaluated on the data subset from January 1, 2025, to May 1, 2025.

The comparison results are shown in Table 3. While these three models perform excellently on Live-
CodeBench, their significantly reduced performance on OJBench reveals that the overall difficulty
distribution of OJBench is demonstrably more demanding than that of LiveCodeBench and indicates
that current reasoning models still have significant shortcomings and room for optimization In code
reasoning tasks at a competitive level.

4.2 COMPARISON BETWEEN CPP AND PYTHON

In addition to Python, we also evaluated the performance of the models using the CPP language on
OJBench, the resluts are displayed in Figure 3.

The results indicate that for advanced reasoning-oriented models, such as o4-mini, o1-20241217,
and Gemini-2.5-pro-exp-03-25, using CPP as the programming language yields significantly bet-
ter performance on OJBench compared to Python. We assume that this is due to the fact that
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Table 3: Comparison of OJBench and LiveCodeBench based on model performance.

Model Benchmark Pass@1 Easy-Pass@1 Mediun-Pass@1 Hard-Pass@1

o4-mini(low) LCB 63.70 97.80 76.40 36.60
o4-mini OJBench 33.30 83.33 51.27 5.77

Gemini-2.5-pro LCB 65.90 100 74.50 41.50
Gemini-2.5-pro-exp-03-25 OJBench 38.91 83.68 61.71 9.48

Qwen3-235B-A22B LCB 56.60 100 72.70 28.00
Qwen3-235B-A22B OJBench 25.97 76.39 35.13 1.07

Figure 3: The comparison between CPP and Python.

CPP is inherently a high-performance programming language, making it more suitable for solving
competition-level programming tasks than Python.

For the Qwen series models distilled from DeepSeek-R1, the performance of these models using
Python is much higher than that of CPP, while the performance of Olympic-Coder-7B/32B using
CPP and Python is not much different, with CPP slightly higher than Python. We attribute this to
differences in the training data. The former models were trained using a large amount of distilled
data from DeepSeek-R1, while the Olympic-Coder-7B/32B models were trained using CPP solu-
tions for competition-level problems from the same teacher model, enabling them to better leverage
CPP to solve tasks in OJBench. We provide more details on the pass rates of models using CPP and
Python in Appendix F.

4.3 REFINEMENT CAN IMPROVE THE PERFORMANCE OF THE MODEL

In real-world competitive programming scenarios, human participants have access to error messages
generated during code execution, which they use to debug and correct their code. Motivated by this,
we explored whether models could leverage error messages from code execution to rectify erroneous
solutions. Specifically, for erroneous model solutions, we directly utilize the solution code and its
error feedback (e.g., Compile Error (CE), Time Limit Exceeded (TLE), Wrong Answer (WA)) as
prompts to guide subsequent refinement. The results are shown in Figure 4.
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Figure 4: Refinement on OJBench. Among all types, TLE occurs most frequently and CE has no
direct correlation with the reasoning ability of the model. Therefore, we distinguish CE and TLE
from other error types (Others). This allows us to more clearly understand which error types the
model can reduce through refinement.

Figure 5: Case analysis on OJBench

We observed that through each round of refinement, the model can continuously improve the pass
rate of the solution. Among different types of errors, the proportion of CE errors decreased most
significantly. We assume that this is because CE are not directly related to the model’s ability to
solve competitive programming tasks but rather stem from the model’s oversight of certain details
during the coding process. Therefore, they can be easily corrected using the error messages.

However, we found that the model struggled to address TLE errors during the refinement process.
This is because resolving TLE requires the model to design more efficient algorithms and data
structures tailored to specific programming tasks, which is essential for solving complex competi-
tive programming problems. This shows that models still face significant challenges in designing
efficient algorithms to solve complex code reasoning tasks.
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4.4 ANALYSIS OF PROBLEMS THAT THE MODEL CANNOT SOLVE

To thoroughly investigate the problem-solving strategies of large language models with reasoning
capabilities, we selected Qwen3-235B-A22B for case analysis. This selection was made due to
the inaccessibility of the internal reasoning processes of closed-source models. Figure 5 presents a
detailed case analysis of the reasoning process of Qwen3-235B-A22B.

In this case, the model exhibited a significant amount of repetitive restatements of the problem
requirements during the reasoning process, rather than engaging in a deeper analysis. Subsequently,
the model developed a solution approach that was close to the correct line of reasoning. However, it
failed to accurately assess the feasibility of this approach in subsequent steps, ultimately leading to
an incorrect problem-solving strategy. Moreover, the code implemented by the model did not align
with the proposed solution approach.

5 RELATED WORK

Code Large Language Models. In recent years, numerous large language models specifically de-
signed for code-related tasks have emerged, such as AlphaCode (Li et al., 2022), StarCoder (Li
et al., 2023), and Qwen2.5-Coder (Hui et al., 2024). These models, trained on extensive code cor-
pora, have demonstrated remarkable capabilities in tasks related to code generation (Yu et al., 2024),
completion (Chai et al., 2024), and debugging (Liu et al., 2024b). However, while these code LLMs
have achieved significant improvements in simple code tasks, such as code completion and repair,
they exhibit limited reasoning abilities when dealing with complex programming problems.

Reasoning-oriented Large Language Models. Recently reasoning-oriented Large Language
Models have demonstrated formidable reasoning capabilities across various domains (Team et al.,
2025; Liu et al., 2025), particularly those trained with large-scale reinforcement learning, such as
OpenAI-o1, o3 (openaiteam, 2024), DeepSeek-R1 (Guo et al., 2025). These models have shown rea-
soning abilities comparable to those of human competitive programmers in complex tasks involving
mathematics and coding, rendering existing evaluation benchmarks insufficient for accurately as-
sessing model performance. This makes it more urgent to develop competition-level evaluation
datasets.

Code Generation Benchmarks. Previous code generation benchmarks, such as code generation
benchmarks, such as HumanEval (Chen et al., 2021), DS-1000 (Lai et al., 2023), have primar-
ily focused on evaluating models’ abilities to generate simple functions, perform data operations.
However, these benchmarks fail to provide a discriminative assessment for advanced Reasoning
Large Language Models. Additionally, there are benchmarks specifically designed to evaluate mod-
els’ performance on complex code generation problems, such as CodeELO (Quan et al., 2025),
Probench (Yang et al., 2025). These benchmarks are more complex than their predecessors and
place higher demands on models’ reasoning abilities. Nonetheless, the private test cases and opaque
datasets render them unsuitable for use as LLM benchmarks. OJBench, focusing on premier hu-
man programming competitions, fills a critical gap by providing demanding code-generation tasks
for contemporary reasoning models. It thus holds the potential to serve as a unified and equitable
benchmark, informing the advancement of code LLMs.

6 CONCLUSION

In this work, we introduce OJBench, a competition-level code reasoning benchmark. Our evaluation
of 37 models reveals that even state-of-the-art reasoning-oriented models face significant challenges
when tackling complex code reasoning tasks. Furthermore, we conducted in-depth experiments and
analyses on the models based on this dataset, with the aim of providing valuable insights for future
code LLM development.
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A ETHICS STATEMENT

We ensure that we comply with applicable laws and ethical standards during the data collection and
usage processes, and provide adequate compensation to all crowd workers. Since this benchmark
involves objective knowledge and reasoning in the field of programming, the annotation content is
not affected by geographical or cultural differences among annotators.

Furthermore, our dataset does not contain any personally identifiable information or offensive con-
tent. The authenticity and accuracy of OJBench have been thoroughly verified, providing a reliable
basis for evaluating LLMs. OJBench is intended solely for academic and research purposes. Any
commercial use or other misuse that deviates from this purpose is strictly prohibited. We will urge
all users to respect this regulation in order to maintain the integrity and ethical use of this valuable
resource.

B REPRODUCIBILITY STATEMENT

We are fully committed to the principles of reproducible research. To this end, we provide the
following resources and information.

Dataset. The complete OJBench benchmark, consisting of 232 competition-level problems, each
with C++ and Python variants, will be made publicly accessible. This includes problem descriptions,
canonical solutions, and test cases.

Codebase. Our full evaluation framework will be open-sourced. This repository will contain all
scripts required for executing the evaluation pipeline, from model querying to the final calculation
of performance metrics.

Experimental Details. As detailed in Section 3.1, this paper provides a comprehensive description
of our experimental setup. This includes all model hyperparameters (e.g., temperature, top-p, max
tokens), ensuring that our results can be precisely replicated.

C USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) were employed solely as linguistic aids; their function was strictly
limited to polishing pre-existing text, correcting grammar, and adjusting sentence structure so as
to enhance readability and fluency. All core research content, innovative insights, experimental
designs, data analyses, result interpretations, and scholarly viewpoints presented in this paper were
developed independently by the authors. The LLMs were not used for research conceptualization,
theoretical derivation, experimental planning, or the formulation of any principal conclusions.

D SUPPLEMENTARY DATASET

The complete benchmark dataset used in this research is provided as supplementary material in a
single compressed file named OJBench testdata.zip.

The dataset is organized as follows:

problems.jsonl: A JSON Lines file that contains detailed metadata for every problem, including
descriptions, difficulty levels.

/ICPC/ and /NOI/ folders: These two folders contain the full set of test cases.
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Figure 6: Pass rate at different difficulty levels of more models using CPP on OJBench

Figure 7: Pass rate at different difficulty levels of more models using Python on OJBench

E LIMITATIONS AND BROADER IMPACT

This paper introduces OJBench, which is used to evaluate the code reasoning abilities of LLMs and
provides guidance for the research field. However, this paper still has some limitations.

Limitations. (1) Limited coverage: The data of OJBench mainly comes from open-source pro-
gramming competition platforms and official open-source data from competitions, and it is of high
difficulty. Although our benchmark is relatively more difficult compared to other benchmarks, given
the breadth of the code specialization field, our evaluation cannot cover the entire scope of program-
ming competitions. (2) Insufficient diversity: The problem types of OJBench are mainly focused on
the field of algorithm competitions. For some emerging programming application scenarios, such
as the development combining artificial intelligence and code, Internet of Things programming, and
blockchain smart contract development, there is insufficient support for evaluating code reasoning
abilities.

Broader Impact. In the research field, OJBench is expected to play an important role in the field of
computer science. With the help of OJBench, researchers can accurately evaluate the performance
of LLMs in human programming competitions, thereby promoting the development of scientific
research.

F THE PASS RATES OF DIFFERENT DIFFICULTY LEVELS OF MODELS USING
PYTHON AND CPP ON OJBENCH

Figure 6 and 7 show the pass rates of different difficulty levels in OJBench for more models using
Python and CPP.
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G DETAILS ABOUT THE INFERENCE EXPERIMENTS ON THE OPEN SOURCE
MODELS

For inference experiments on all open source models with less than 72B parameters, we used two
computing clusters equipped with 8 NVIDIA A100-80GB GPUs. Inference for each model took
about two hours.

H DETAILS OF NOI AND ICPC

NOI. The National Olympiad in Informatics is one of the five major Olympiads in China. It is
characterized by its high level of difficulty, encompassing a wide range of knowledge areas such as
algorithms, data structures, combinatorial mathematics, and computational geometry. The problems
in NOI are highly flexible, focusing not only on the contestants’ grasp of fundamental computer
science knowledge but also on their logical thinking abilities in solving complex problems, as well
as the depth of their thinking and the breadth of their knowledge.

ICPC. The International Collegiate Programming Contest is one of the most influential collegiate
computer programming contests globally. This competition is conducted in teams, with each team
consisting of three participants who are required to solve a series of complex programming problems
within a specified time frame. The organizational structure of the ICPC includes regional contests
and a global final.
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