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Abstract

Humans excel at isolating relevant information from noisy data to predict the behavior of
dynamic systems, effectively disregarding non-informative, temporally-correlated noise. In
contrast, existing reinforcement learning algorithms face challenges in generating noise-free
predictions within high-dimensional, noise-saturated environments, especially when trained
on world models featuring realistic background noise extracted from natural video streams.
We propose a novel information-theoretic approach that learn world models based on min-
imising the past information and retaining maximal information about the future, aiming
at simultaneously learning control policies and at producing denoised predictions. Utilizing
Soft Actor-Critic agents augmented with an information-theoretic auxiliary loss, we val-
idate our method’s effectiveness on complex variants of the standard DeepMind Control
Suite tasks, where natural videos filled with intricate and task-irrelevant information serve
as a background. Experimental results demonstrate that our model outperforms nine state-
of-the-art approaches in various settings where natural videos serve as dynamic background
noise. Our analysis also reveals that all these methods encounter challenges in more complex
environments.

1 Introduction

Figure 1: Top Row: Ground truth data from a ran-
dom sequence. Bottom Row: Reconstruction from
DP.

A major open problem in Reinforcement learn-
ing (RL) is to learn the dynamics and control poli-
cies from the high-dimensional observations such
as images (Ha & Schmidhuber, 2018; Lillicrap
et al., 2016; Hafner et al., 2020a; 2021a; Hansen
et al., 2022). Conventionally, it is assumed that
the observations in the environment, often derived
through hand-engineered features, consist exclu-
sively of task-relevant information. This allows RL
algorithms to operate in a controlled setting with
optimal efficiency, primarily due to the absence of
exogenous noise (unrelated or uncontrollable exter-
nal variables such as weather variations or random
background movements), that could potentially hin-
der the learning process.
In the real world, the landscape is vastly different,
brimming with a plethora of information, much of
which is irrelevant to a specific task. The challenge lies in accurately identifying task-relevant information
and avoid the modeling of temporally correlated dynamics of the background noise. Prior RL methodolo-
gies (Yarats et al., 2021; Hafner et al., 2020a; Ha & Schmidhuber, 2018) that derive representations directly
from observations, often integrate task-irrelevant information into their representations. They struggle to dis-
entangle the noise from relevant information, unnecessarily modeling noise dynamics, leading to sub-optimal
performance under noise (see Figure 4).
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The process of computing representations relies on the past inputs, while the imagination and exploration
are directed towards future (Hafner et al., 2020b). Our objective is to develop a cohesive perspective on how
an agent formulates its current representation after observing past input and before observing future. Could
it be feasible to model this process as an information flow, transitioning from past to future, mediated by
the current state?

We introduce Denoised Predictions (DePre), a model-based reinforcement learning approach that lever-
ages information theory to learn robust and meaningful representations. DePre models Predictive Informa-
tion (Bialek & Tishby, 1999), the mutual information between the past and the future, and employs the
Information Bottleneck principle (Tishby et al., 2000) to derive a compact representation of the current
state from historical observations, while preserving maximal predictive information about future outcomes.
Essentially, DePre focuses on learning a concise abstraction of the system dynamics and leverages it to learn
control policies and generate noise-free future predictions. This is achieved through deriving an objective
integrating two central ideas: minimization of mutual information about past and the maximization of pre-
dictive ability for future. This dual objective consists of two contrastive losses and is formulated as a single
optimization problem. While in this paper we focus on the algorithmic derivation and the performance of
DePre, the information theoretic nature of it enables future investigations of generalization, stability and
robustness aspects. The primary contributions of our work are as follows:

1. Our work is the first to illustrate that denoised state representations can be derived effectively
through the preservation of predictive information.

2. Implicitly integrating a variety of methodologies from previous works, the paper presents a theoretical
generalized framework for world model learning in the context of bottleneck methods.

3. DePre outperforms nine existing approaches on a majority of modified DeepMind control (DMC)
tasks. We also show that along with learning dynamics, it can also produce better noise-free predic-
tions than its counterparts.

2 Related Work

In this section, we delve into related work on reinforcement learning from visual input, focusing specifically
on model-based approaches and representation learning concepts.

2.1 Model-based Reinforcement Learning.

These models simultaneously learn policy and transition dynamics, which can be used for planning, and are
often sample efficient due to their ability to handle rich observations (Kaiser et al., 2020; Chua et al., 2018;
Hafner et al., 2019; Ebert et al., 2018; Lowrey et al., 2019; Gelada et al., 2019; Lee et al., 2020a). World
Models Ha & Schmidhuber (2018) uses recurrent latent model to imagine future frames. Stochastic Optimal
control with Latent Representations (SOLAR) Zhang et al. (2019) model dynamics with linear-quadratic
regulator. In particular, Dreamer Hafner et al. (2020a) optimises policies via backpropogating through
latent dynamics and uses recurrent state-space model for planning in latent space. These reconstruction-
based methods perform effectively in standard environments. However, when exposed to environments with
noise distractors, they struggle to bifurcate between information they should reconstruct and what they
should disregard.

2.2 Learning Representations and RL.

Recent works (Chen et al., 2020; Henaff, 2020; Tian et al., 2020) have demonstrated progress in learning
representations from unlabeled data. These concepts have been integrated into reinforcement learning by
works like (Laskin et al., 2020; Oord et al., 2018; Shu et al., 2020; Ma et al., 2021; Oord et al., 2018; Ma et al.,
2021; Hjelm et al., 2019). Learning invariant representations with Information-theoretic constraints have been
extensively used in the literature. However, the challenge of identifying and effectively utilizing task-relevant
information, which necessitates not only the preservation of predictive information but also the generation
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of noise-free predictions, remains largely unaddressed by most existing methods that predominantly rely on
auxiliary decoders. Our concept shares similarities with PI-SAC (Lee et al., 2020b), whose objective is also
centered around Predictive Information. PI-SAC aims to identify a latent representation of the current state
that reduces the MI between past observations and actions I(ot− ; zt− |at−), while simultaneously maximising
the MI between all future observations and rewards, represented as I(ot+ ; rt+). Notably, the authors of
PI-SAC present this objective straightforwardly, without an underlying mathematical derivation of selection
of the variables. In contrast, our method is underpinned by a solid theoretical foundation, where objectives
related to latent representations and actions emerge implicitly. Furthermore, we incorporate a historical
variable that circumvents the need to consider the entire trajectory by accumulating all the information in
that variable, which solves the problem of considering the entire trajectory. Empirically, it has been shown in
numerous previous papers that PI-SAC underperforms in scenarios involving distractors Wang et al. (2022);
Liu et al. (2024), underscoring the robustness and effectiveness of our approach in such complex environments.
Unlike strategies such as Dynamic Bottleneck (DB) Bai et al. (2021) and Sequential Information Bottleneck
(SIBE) You et al. (2022), our approach not only seeks compact representations under noisy conditions, but
also emphasizes on achieving noiseless future predictions and treating temporal noise along representations.

2.3 Learning Control from pixels with distractors.

Recent developments in model-based RL (Zhang et al., 2021; Ma et al., 2021; Nguyen et al., 2021; Fu et al.,
2021; Bai et al., 2021; You et al., 2022; Bharadhwaj et al., 2022; Wang et al., 2022; Islam et al., 2022; Tomar
et al., 2023; Liu et al., 2024) have put forward a variety of innovative ideas aimed at extracting relevant
information from observations. Contrastive Variational Reinforcement Learning (CVRL) Ma et al. (2021)
aims at maximises the MI between observations and representations i.e. I(ot, zt), which is exactly similar
to our objective "Predictive Observation Model" in Equation 3 (except we consider it for all the timesteps
and not just a single instance) and leverages InfoNCE contrastive loss Oord et al. (2018) to optimise the
objective. However, it does not address any objective related to generating noise-free dynamics or predictions,
which can be observed via the reconstruction results in the original paper Ma et al. (2021) (Figure 3, Page
7). MIRO Ding et al. (2020) is another method that bears a close resemblance to CVRL. However, unlike
CVRL, MIRO focuses on maximizing the mutual information (MI) between the state and observation,
conditioned on the given action and constrained by dynamic predictions. Deep Bisimulation for Control
(DBC) Zhang et al. (2021) learns control policies by learning representations of the states that preserve the
bisimulation metric. Temporal Predictive Coding (TPC) Nguyen et al. (2021) shares conceptual similarities
with our approach, striving to eliminate temporal noise while focusing only on the relevant aspects. The
goal of TPC is to maximize the MI between future latent codes and the combination of prior latent codes
and action tuples. This objective is achieved through contrastive learning, which exhibits a mathematical
resemblance to Equation 10. More recent methods such as Task Informed Abstractions (TIA) Fu et al.
(2021) maintain two separate latent models, one for tasks and another for distractors, bifurcating noise and
signal. TIA falters in achieving better rewards when the grayscale background is replaced with RGB (see
the experimental section). InfoPower Bharadhwaj et al. (2022) Iso-Dreamer Pan et al. (2022) learns inverse
dynamics model to understand the controllable and non-controllable state-action relationship. It then aims
to decouple these dynamics by rolling out their latent representations into the future to understand how
these dynamics influence current behavior. Our work bypasses the need for explicitly defining these types
of model rules and instead builds on a general information-theoretic model wherein these types of features
implicitly emerge.

2.4 Relation to Human Psychology

Predictive Information is maximized by the brain at a higher, more abstract level as a strategy to prevent
sensory overload (Friston, 2005; Rao & Ballard, 1999). Imagine a scenario where you’re driving a vehicle
and nearing a bend in the road, beyond which visibility is limited. Based on the experience of having faced
congested traffic thus far (for say), you may anticipate a similar traffic configuration beyond the bend. In
these instances, you mentally simulate future possibilities based on the historical experience and using the
current location as a reference point. Notably, during this mental forecast, you instinctively disregard exoge-
nous noise like vehicle’s number plate, cloud formations in the sky, or roadside billboards. This subconscious
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omission of inconsequential details significantly influences the agent’s decision-making process (Nasr et al.,
2008). While maintaining scholarly modesty, it’s essential to clarify that our contribution in this paper does
not constitute an ultimate solution to the challenges described. Instead, our work introduces alternative
ideas, traversing similar territory and contributing fresh perspectives to the existing discourse.

3 Notation and Preliminaries

3.1 Reinforcement Learning.

An agent operates in a Markov Decision Process (MDP), which is characterised by a tuple M =
(O,A,P,R, γ), consisting of the observation space O with observations o (we interchangeably use “states"
and “observations"), action space A with actions a, transition dynamics P, Reward space R and discount
factor γ ∈ [0, 1]. The encoder ϕ(z|o) produces a latent representation z from observations, and then the
policy π(a|z) decodes this latent representation into actions. The goal of RL is to learn a policy π∗(a|z) that
maximizes the expected cumulative discounted rewards Ep

[ ∑
t γ

trt
]
.

3.2 Predictive Information.

Predictive Information (PI) is a quantity that measures how much our observations from the past can inform
us about the future Bialek & Tishby (1999) . Mathematically, it can be defined as the mutual information
(MI) between the past (xpast) and the future (xfuture), denoted as I(xpast; xfuture). Assuming temporal
invariance (any fixed time length is expected to have the same entropy), PI becomes a subextensive quantity,
as expressed by limT→∞ I(T )/T = 0, where I(T ) is the predictive information over a time window of length
2T (with T steps of the past predicting T steps into the future), see Equation 3.1 in Bialek et al. (2001). As
the time frame increases, the past contains a diminishing predictive value for the future. In order to capture
only the necessary information from xpast for predicting xfuture, a compressed representation of xpast is
required.

3.3 Information Bottleneck.

For learning this compressed representation, we utilize the Information Bottleneck (IB) principle Tishby et al.
(2000). IB aims at learning a representation z that aims to optimally compress the information provided
by the input x ∈ X, i.e. minimize I(x; z), while still maintaining enough knowledge to predict the outcome
y ∈ Y , i.e. maximize I(z; y). This objective is unified with the inclusion of a Lagrangian multiplier and
formalized as max I(z; y)−βI(x; z). The parameter β controls the information flow from the input x to the
latent representation, balancing the trade-off between information preservation and compression.

4 Denoised Predictions

Denoised Predictions (DePre) is an information theory-based approach, that encapsulates the notions of
predictive information and the information bottleneck. This core idea enables the learning of a compressed
representation from high-dimensional observations, distilling task-relevant details from past observations, and
leveraging this refined knowledge for future predictions while effectively filtering out noise. We hypothesise
that the current state should encapsulate the requisite and meaningful information essential to perform
the task. If the information is insufficient, the latent representations may fail to capture all the task-
relevant information, leading to sub-optimal learning outcomes. On the other hand, if we incorporate an
overabundance of information, our representations could become encumbered with noise-related artifacts
that results in a dilution of task-relevant data and in a performance decrease.

We denote the latent representations for the past observations by ot− , current observation by ot, and the
future observations by ot+ . We use zt− , zt and zt+ respectively for the latent space. For consistency and
clarity, we establish that the episode initiates at time t = 1 and terminates at the horizon t = T . The
objective is to encode observations (ot− , ot) into latent representations (zt− , zt), transform them to next
state representations zt+ , and decode into future observations ot+ (Figure 2). Consequently, this process
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creates a two-fold bottleneck: one while transforming observations into latent representations and vice-versa
(ot ←→ zt), and another when acquiring the latent representation itself from other latent representations
(zt−1 −→ zt −→ zt+1). In this context, our transition function can be conceptualized as a model operating
simultaneously as an encoder and a decoder, encoding zt from zt− and decoding zt to yield zt+ , with
bottleneck being zt.

Intuitively, we obtain task-relevant information from raw observations into our latent representations by
minimising mutual information I(ot− , ot; zt− , zt) while maximising the mutual information I(ot, ot+ ; zt, zt+),
which preserves the predictive information for the reverse scenario. This can be written as,

min I(ot−,t; zt−,t)− β1I(ot,t+ ; zt,t+). (1)

In order to learn temporal abstractions and compressed representations from a sequence of past states and
acquire relevant predictions, we employ the principle of Information Bottleneck, aiming to minimize I(zt− ; zt)
and maximize I(zt; zt+),

min I(zt− ; zt)− β2I(zt; zt+). (2)

Merging objectives from equation (1) and (2), we obtain a unified optimizing problem,

min
[
I(ot−,t; zt−,t)︸ ︷︷ ︸

Historical
observation model

+ I(zt− ; zt)︸ ︷︷ ︸
Historical latent
space dynamics

]
−

[
β1I(ot,t+ ; zt,t+)︸ ︷︷ ︸

Predictive
observation model

+ β2I(zt; zt+)︸ ︷︷ ︸
Predictive latent
space dynamics

]
, (3)

where β1 and β2 can be seen as Lagrangian multipliers as mentioned in (Tishby et al., 2000). This implies
that the problem can be optimised by minimizing the upper bound associated with the past, as represented
by the first two terms, and simultaneously maximizing the lower bound related to the future, embodied in the
final two terms. The objective of our DePre considers action dependencies implicitly through the latent space
representations, p(zt|zt− , at−), thereby reflecting the innate characteristics of system transitions. This com-
patibility with RL principles facilitates a seamless integration of our approach into existing RL algorithms,
where DePre can serve as an auxiliary function, significantly enhancing the learning of representations.

4.1 State Space Model

Figure 2: State-space model. The variable zt acts
as a bottleneck for the model, serving as a critical link
between the historical (white circles) and predictive el-
ements (grey circles). Solid edges designate the inputs
required for inference, while the dotted edges represent
the generative components.

We use the state-space model described in Figure 2
with,

Encoder Representation: zt ∼ pφ(zt | ot)
Transition dynamics: zt+1 ∼ qθ(zt+1 | zt, at, ht)
Observation model: ot ∼ rψ(ot | zt)
History model: ht ∼ p(ht | ht−1, at−1). (4)

The conditional p(ht | ht−1, at−1) denotes the his-
tory model, that encapsulates the past variables into
a single history variable i.e.,

ht = {zt−1, at−1, ..., z1, a1},
= {zt−1, at−1, ht−1}. (5)

This is a crucial modelling component that is dis-
cussed and used in the next subsections.

4.2 Minimising the upper bound of the Past Mutual Information

This subsection discusses the minimization of the first two terms of DePre in Equation 3.
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4.2.1 Upper bound of historical latent space dynamics.

We aim at minimising the tractable upper bound on the mutual information I(zt− ; zt). The mutual infor-
mation can be represented as,

I(z1; ...; zt) = Ep(z1,...,zt)

[
log p(z1, ..., zt)∏t

k=1 p(zk)

]
,

We incorporate actions into the model by introducing a conditional probability distribution p(zt− , zt|at−),

I(z1:t) = Ep(z1:t,a1:t−1)

[
log p(z1:t)p(z1:t|a1:t−1)

p(z1:t|a1:t−1)
∏t
k=1 p(zk)

]
≤ Ep(z1:t,a1:t−1)

[
log p(z1:t|a1:t−1)∏t

k=1 p(zk)

]
.

(6)

Utilising the chain rule in conditional probability and for every t, substituting {zt−1, at−1, ht−1} as ht like
Equation (5), we can write Equation (6) as

I(z1:t) ≤
t−1∑
k=1

Ep(zk,ak)

[
log p(zk+1|zk, ak, hk)

p(zk+1)

]
=

t−1∑
k=1

I
(
zk+1; zk, ak, hk

)
. (7)

In essence, this implies that we can optimize the mutual information between the past latent representa-
tions and the present state’s representation by minimising the upper bound of the MI for each individual,
independent transition in a Markovian manner.

4.2.2 Upper bound of the historical observation model.

As in the previous section, it can be shown that an upper bound for I(o1:t, z1:t) can be derived by introducing
the conditional distribution p(zt− , zt|at−),

I(o1:t; z1:t) ≤ Ep(z1:t,o1:t)

[
log p(z1:t|o1:t)

p(z1:t|a1:t−1)

]
.

Taking this further, we employ the same tractable variational distribution drawn from our transition function,

I(o1:t; z1:t) ≤
t−1∑
k=1

Ep(zk,ok,ak)

[
log p(zk+1|ok+1)

qθ(zk+1|zk, ak, hk)

]
= ILTC . (8)

This term is an upper-bound for I(o1:t, z1:t), quantifying the ratio between the latent representation derived
from the encoder and the transitioning state obtained from a past representation when a specific action is
applied. Intuitively, this constrains the latent dynamical model (transition function) to diverge minimally
from the latent representations obtained from the observation encoder. Hence, we refer to this term as the
Latent Consistency Loss LLTC.

4.3 Maximising the lower bound of the Predictive Mutual Information

This subsection discusses the maximization of the last two terms in the formulation of DePre in Equation 3.

4.3.1 Lower bound of the predictive latent space dynamics.

In order to obtain the lower bound on this MI term, we factorise the transition model by applying the chain
rule,

I(zt:T ) = Ep(zt:T )

[
log p(zt:T )∏T

k=t p(zk)

]
= Ep(zt:T )

[
log

T−1∏
k=t

p(zk|zk+1:T )
p(zk)

]
,
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(a) Latent transition consistency loss Model (b) NCE loss Model

Figure 3: Representation of models used for calculating auxiliary losses (a) LTC loss LLTC and NCE
loss (LNCE). Encoder and target encoder parameters are defined as φ0 and φm respectively. a) Once
the current representation is obtained, it is passed through the transition function qθ to obtain the next
latent representation, from which the LLTC is finally calculated (Algorithm 2 in Supplementary material).
b) Next latent representation and current action is passed via concatenation function c to obtain unified
representation, then compared with current state representation via contrastive learning.

≥
T−1∑
k=t

Ep(zk,ak)

[
log p(zk|zk+1, ak)

p(zk)

]
=
T−1∑
k=t

I
(
zk+1, ak; zk

)
. (9)

The mutual information objective I(zk+1, ak; zk) can be decomposed using the chain rule for mutual in-
formation, yielding I(zk; zk+1) + I(zk; ak|zk+1). The first component, solely depends on state-transitions.
It is closely related to the predictive coding objective (Oord et al., 2018; Anand et al., 2019). Omitting
actions could impair the model’s capability to determine the optimal actions (Rakelly et al., 2021). The
second term can be represented in terms of conditional entropy as H(ak|zk) − H(ak|zk, zk+1). The term
H(ak|zk, zk+1) effectively characterizes the entropy of the inverse dynamics, conceptually aligns closely with
an extensive spectrum of prior studies that have focused on exploration and unsupervised learning of rep-
resentations (Zhang et al., 2018; Pathak et al., 2017; Chandak et al., 2019; Bharadhwaj et al., 2022). Also,
this term is the empowerment objective used in InfoPOWER Bharadhwaj et al. (2022). From an intuitive
perspective, inverse models operate as an agreement mechanism between the actual and the ground truth
action representations. This mechanism enables the representation to capture only those aspects of the
state that are essential for predicting the action, thereby discarding potentially irrelevant information. The
MI term in Equation 9 can be viewed as a combined objective that optimises state transitions with the
regularization of action representations.

For optimising this lower bound, we will utilise contrastive learning (Oord et al., 2018), which yields a
variational lower bound of the mutual information in Equation 9. Strategies employed by He et al. (2020);
Laskin et al. (2020) relies on data augmentation to generate positive and negative samples. Contrary to
them, we take inspiration from Bai et al. (2021) that incorporate policy transitions to obtain these samples.
Positive samples are directly acquired by sampling transitions (zt, at, zt+1), while the construction of negative
samples involves randomly sampling z∗

t and concatenating it with (at, zt+1). As a result, we produce samples
(z∗
t , at, zt+1) that deviate from the transition dynamics. Thus we obtain MI objective as,

I(zk+1, ak; zk) ≥ Ep,N

[
log eσ(zk,ak,zk+1)∑

z∗
k

∈N−∪zk
eσ(z∗

k
,ak,zk+1)

]
≜ INCE , (10)

where N is the set of negative samples and σ is the score function. Score function distinguishes between
positive samples (those following the actual transition dynamics) and negative samples (those deviating from
these dynamics). It providing high score to the positive examples and low score to the negative examples.
It tells how well an action ak leads to a transition from a latent state zk to a subsequent latent state zk+1.
This evaluation is based on the degree to which the action and the resultant state change are congruent with
the expected dynamics of the system. We opt for bilinear products as our score function (Oord et al., 2018;
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Laskin et al., 2020; Henaff, 2020), which is mathematically defined as σ(zk, ak, zk+1) = c(at, zt+1)TWzt.
The concatenation function c( · , · ) is parameterised by a neural network that merges the action at with the
subsequent latent state zt+1 into a single vector (as shown in Figure 3) andW is the learnable weight matrix.

4.3.2 Lower bound of the predictive observation model.

Directly maximizing I(zt,t+ ; ot,t+) is infeasible due to its marginal’s intractability. Similar to (Alemi et al.,
2017), we propose to optimise a lower bound on our MI,

I(zt:T ; ot:T ) = Ep(zt:T ,ot:T )

[
log p(ot:T |zt:T )

p(ot:T )

]
= Ep(zt:T ,ot:T )

[
log

T∏
k=t

p(ok|zk)
p(ok)

]
,

≥
T∑
k=t

Ep(zk,ok)

[
log rψ(ok|zk)

p(ok)

]
,

where where p(ok|zk) is an intractable conditional distribution and rψ(ok|zk) is a tractable variational de-
coder, represented by a neural network with parameters ψ. We rule out the entropy term as it is independent
of our optimization procedure,

I(zt:T ; ot:T ) =
T∑
k=t

Ep(zk,ok)

[
log rψ(ok|zk)

]
= IRec . (11)

IRec can be interpreted as the log-likelihood of the observations given the state encodings.

4.4 Combined Objective

Our optimization strategy can be unified into a single objective function as,

min
θ,ψ,ϕ,W

LDePre = [α1ILTC + α2ICLUB ]− [β1IRec + β2INCE ]. (12)

The two losses, ILTC and IRec, are responsible for the representations from the encoder and decoder respec-
tively, while the other two terms, ICLUB and INCE , formulated as a contrastive loss, control the represen-
tations of the transition functions. They are jointly optimized.

4.5 Practical Implementation with Soft-Actor Critic

We jointly train DePre with SAC, an off-policy model-free reinforcement learning method, by incorporating
Equation (12) as an auxiliary objective while training the algorithm (Supplementary Material Section 3.1).
The transition model, accounting for latent dynamics, is designed to capture the inherent stochasticity of
the transitions. It is parameterised with a neural network that returns a Gaussian distribution defined by its
mean and variance. The Observation model implemented as a Deconvolutional Neural Network. The History
model is implemented as a Gated Recurrent Unit (GRU, Cho et al. (2014)). We utilize a stochastic encoder to
obtain representations from the images (Eysenbach et al., 2021; Theis & Agustsson, 2021), parameterised by
φ. For encoding subsequent observations, we leverage an exponential moving average of the online network
parameters, denoted as φm (He et al., 2020). We utilise the same principle for latent targets (Hansen et al.,
2022) for transition function, as it should ensure more stable learning process, accommodating any potential
fluctuations in the learning (Figure 3). The complete algorithm with SAC is described in the Supplementary
material.

5 Experiments

In this section, we conduct a thorough empirical assessment of the proposed DePre method on the DeepMind
control suite (DMC, Tassa et al. (2018)) in various settings and compare it with existing state-of-the-art
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approaches. We evaluate three distinct types of environments: (i) Standard environment with a static back-
ground, (ii) Natural environment with video-based, real-world backgrounds, and (iii) Random environment
with varying backgrounds in each frame. To underline the significance of each element in the model, we
conclude this section with an ablation study.

5.1 Environment Settings

For all three environments, we conducted experiments on six DMC tasks: Cheetah Run, Walker Walk,
Cartpole Swingup, Reacher Easy, Pendulum Swingup and Cup Catch. These robot control tasks pose
different challenges, such as sparse rewards, contacts and complex dynamics. For the standard settings,
no perterbutations are applied to the observations. The observations are RGB images of the size 84 ×
84 × 3. By incorporating the ground plane, a substantial portion of the background image is obscured,
thereby simplifying the task at hand. Thus, the ground plane is eliminated to maximize the utilization of
the background image. These natural videos are incorporated from Kinetics 400 dataset Kay et al. (2017)
at random. We used videos from random categories compared to the simplified challenge in DBC Zhang
et al. (2021) who only considered the driving category. Contrary to the predominant use of grayscale
images in benchmarking, we employing RGB videos in the background. We independently sampled 100
videos separately for training and testing. More information about the background noise is provided in the
Supplementary Material (Section 4.1).

5.2 Baselines and Implementation details

In this evaluation, we compare our approach to a selection of nine most-closely related approaches i.e.
Dreamer (Hafner et al., 2020a), Dreamer-V2 (Hafner et al., 2021b), Task-informed Abstractions (TIA, Fu
et al. (2021)), Denoised MDPs (Wang et al., 2022), Deep Bisimulation for Control (DBC, Zhang et al. (2021)),
Self-Predicting Representations (SPR, Schwarzer et al. (2021)), Variational Sparse Gating (VSG, Jain et al.
(2022)), Iso-Dreamer (Pan et al., 2022) and Temporal Predictive Coding (TPC, Nguyen et al. (2021)). These
selected methods are distinguished by their superior performance and accompanied by publicly accessible
source code. The task return is examined every 1000 steps. For all baseline methods, we employed the
optimal set of hyperparameters as indicated in the respective papers. Each task is executed with three
different seeds for each model. Detailed explanations of these methods and of the implementations can be
found in the Supplementary Material (Section 4).

5.3 Results in Natural Background settings

Figure 4 illustrates the outcomes when employing natural backgrounds, wherein the background videos were
not presented to the agent during its training phase. The main reasons for the degraded performance of most
baseline methods was changing the background image to RGB. Dreamer struggles to accurately capture the
agent’s entire state, and inadvertently incorporates the irrelevant background noise into its representation
(Supplementary Material Section 12). TIA, on the other hand, can only effectively distinguish the agent
from the distractor when the background is rendered in grayscale. DBC’s performance is on par with these
methods, however, it does not achieve the performance that was reported by Zhang et al. (2021). This
discrepancy is largely due to the inclusion of RGB image in the background and authors’ approach to use
the same video for both training and testing, which hampers its capability to manage diverse distraction
and restricts its generalization capability to unseen distractions. Similarly, TPC (Nguyen et al., 2021) and
Denoised MDPs (Wang et al., 2022) underperformed due to its incapability to generalise to diverse unseen
distractions. Our implementation utilises the authors’ open-sourced code, with the sole adjustment being the
introduction of additional videos. Contrary to these methods, DePre achieves better rewards in the top three
environments in Figure 4 (Also see Table 1). These results clearly demonstrate the superior performance of
our method, DePre, across the majority of tested environments. This can be attributed to the inclusion of
different components in our bottleneck framework which in-turn preserves the predictive information during
transitions. Such integration results in a reconstructed scene where the background is blurred, and the agent
is enhanced, signifying DePre’s capacity to encode task-relevant components, enhancing its performance even
in complex and noisy environments (Reconstruction Results in Supp. Material Section 6).
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However, it is crucial to note that the results from specific environments - Pendulum Swingup, Reacher
Easy, and Cup Catch - do not conclusively reflect the learning effectiveness of any method. During our
experiments, we found out the none of the method actually learns the environment and the observed perfor-
mance is predominantly influenced by the randomness of seed selection. For example, in some scenarios in
the Cup Catch environment, episodes often commence with the cup already secured in the holder, leading
to an unearned high score of 1000 for the entirety of the episode, unless the agent inadvertently dislodges
it. This results in sporadic and misleading evaluation scores, such as {1000, 0, 0}, averaging to 333±576.
Similarly, in the Reacher Easy environment, we observed that VSG, DBC, Iso-Dreamer and DePre, rather
than accomplishing the task of reaching, learn to rotate the arm, thereby achieving higher scores compared
to other methods that fail even in this unintended task. This observation, however, does not hold true
in other environments like Cheetah Run, Walker Walk, and Cartpole Swingup. In the Cartpole Swingup
environment, specifically, we noted that if the agent learns merely to rotate the cartpole instead of executing
the swingup movement, it attains scores ranging between 150 and 200, a benchmark almost all methods
achieved, DePre being the exception, which actually learns to swingup and balance it.

Failure under Sparse rewards. As illustrated in Figure 4, our approach excels in Dense reward scenarios
(e.g., Cheetah run, Walker walk, Cartpole swingup). However, it struggles with sparse reward environments
(Cup Catch and Pendulum Swingup) after 106 environment steps. The complexity of the task, when paired
with the visual noise in the environment, presents a considerable challenge and surpasses the limits of current
methodologies. In conclusion, the tasks that are inherently hard for model-based methods would remain hard
for DePre. Significant improvements can be made for exploration in such environments.

Figure 4: Natural Background Setting. Test performance of our method (DePre) and nine baselines
on six robot control tasks, with added videos as background noise. Shown is the mean of three runs where
shaded areas denote 95% confidence intervals.
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Table 1: Rewards in Natural and Random Environment Background Settings

Natural Settings Random Settings
Method Cheetah Walker Cartpole Pendulum Reacher Cup Cheetah Cartpole

Run Walk Swingup Swingup Easy Catch Run Swingup
DBC 122 ± 4 74 ± 41 181 ± 48 26 ± 46 305 ± 470 0 ± 0 37 ± 3 268 ± 167
De-MDPs 71 ± 18 113 ± 26 73 ± 2 0 ± 0 83 ± 33 0 ± 0 118 ± 41 149 ± 38
Dreamer 42 ± 9 68 ± 31 109 ± 46 0 ± 0 129 ± 188 68 ± 31 118 ± 41 149 ± 38
Dreamer-V2 118 ± 51 39 ± 29 137 ± 78 0 ± 0 0 ± 0 0 ± 0 155 ± 103 144 ± 38
SPR 45 ± 59 37 ± 6 150 ± 21 7 ± 10 100 ± 78 99 ± 1 105 ± 32 201 ± 18
TIA 20 ± 14 80 ± 52 118 ± 11 0 ± 0 115 ± 161 237 ± 411 16 ± 7 75 ± 2
TPC 42 ± 37 30 ± 9 106 ± 27 25 ± 35 16 ± 3 237 ± 334 59 ± 10 132 ± 97
VSG 56 ± 14 232 ± 43 139 ± 10 0 ± 0 12 ± 17 0 ± 0 127 ± 79 139 ± 10
Iso-Dreamer 10 ± 4 250 ± 48 99 ± 50 0 ± 0 12 ± 3 0 ± 0 5 ± 2 56 ± 27
DePre (Ours) 263 ± 11 454 ± 60 658 ± 62 40 ± 57 308 ± 222 332 ± 576 248 ± 33 572 ± 110

The table illustrates the rewards obtained in natural and random background settings across a spectrum of
tasks. The best or comparable method is present in bold. De-MDPs is shorthand for Denoised MDPs.

5.4 Results in Random Background settings

In this experiment, every time instance features a unique background image, inducing maximum stochasticity
in the environment. This experiment illustrates the preservation of temporally predictive information by
DePre. As demonstrated in Figure 1, for Cheetah run, DePre effectively isolates task-relevant features,
managing to reconstruct only the agent against a randomized background. In Figure 5 and Table 1, a
comparative analysis is presented between DePre and nine baseline methodologies in Cheetah Run and
Cartpole swingup environment. This shows superior performance of DePre over the baselines in natural
background settings. The notable performance drop observed in Denoised MDPs Wang et al. (2022) can be
attributed to the introduction of varied and continually changing videos during the evaluation phase. It is
likely that it has encountered the frames where the agent is not capable of segregating the relevant components
from the non-relevant ones. This issue highlights a key limitation in its robustness and adaptability to varying
environments.

Figure 5: Random Background Setting. Comparison of DePre with baselines in random background
setting on three runs.
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Figure 6: Reconstruction in cartpole environment in random settings. Observation reconstruction
of DePre in the Cartpole environment in random background setting. First row: Ground Truth, Second row:
DePre reconstruction

5.5 Results in Standard settings

The performance of all the evaluated methods in the standard DMC environment is illustrated in the Sup-
plementary Material (Section 5.4). DePre exhibits a degree of effectiveness in certain scenarios involving
static backgrounds, although it does not consistently outperform all other methods.

6 Discussion and Conclusion

Our work demonstrates that our information-theoretic formulation suggests a pathway to segregate and
represent task-relevant information in a noisy world, without explicitly modelling any rules of the MDPs.
We also show that objectives related to maximising information on various variables, that are explicitly
mentioned in other research (Bai et al., 2021; You et al., 2022; Lee et al., 2020b), implicitly emerge out from
our theoretical formulation. In our analysis, all the methodologies exhibit strong performance in noise-free
scenarios. When subjected to natural noise scenarios, characterized by real-world videos, DePre consistently
either surpassed or equaled the best of nine baselines in performance. However, there’s a noticeable path
for improvement as every method encountered challenges in tasks dominated by sparse rewards (bottom
row of Figure 4). Most notably, in random noise conditions, DePre does not face significant drop in per-
formance and outperforms all other baseline methodologies. We assert that, while there have been notable
contributions in the segregation of controllable and non-controllable elements within scenes, the field is in
dire need of algorithms that are capable of performing effectively in challenging and complex environments.
This necessity is clearly underscored by our empirical analysis, which highlights the current limitations and
underscores the importance of continued development in this area.
Our method can be combined with any existing RL model that performs exponentially well in noise-free
environment. We believe that there is a great room for improving the performance of our model, e.g., by
improving the model architecture for the encoding representations using Resnet like in Bai et al. (2021), by
utilising experience replay sampling strategies like PER (Schaul et al., 2016), or by incorporating sophisti-
cated exploration strategies for sparse environments (Laskin et al., 2020; You et al., 2022).
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