
Early Exiting in Deep Neural Networks via
Dirichlet-based Uncertainty Quantification

Feng Xia
Princeton University

feng.xia@princeton.edu

Jake C. Snell
Princeton University

jsnell@princeton.edu

Thomas L. Griffiths
Princeton University

tomg@princeton.edu

Abstract

Deep neural networks are renowned for their accuracy across a spectrum of machine
learning tasks but often suffer from prolonged inference time due to their depth.
Early exiting strategies have been proposed to mitigate this by allowing predictions
to output at intermediate layers if total uncertainty falls below a threshold. However,
we observe that using total uncertainty as an exiting criterion does not consistently
reflect true model uncertainty, causing traditional methods to prevent early exits
for ambiguous data even when model uncertainty is low. To address this limitation,
we propose a Dirichlet-based framework to directly quantify model uncertainty.
Models trained with our approach demonstrate more balanced handling of both
ambiguous and unambiguous data, enabling a higher proportion of ambiguous
samples to exit early for more efficient inference.

1 Introduction

Deep neural networks (DNNs) have shown tremendous success across various domains: convolutional
neural networks for image classification [14, 12, 25, 28, 6], transformers for language modeling [30,
4, 3], recurrent neural networks for sequential data processing [21, 5, 26], just to name a few. While
this remarkable success is primarily credited to their depth, it also leads to substantial computational
costs in both training and inference phases [27]. Fast inference in DNNs is important for various
reasons. First, as networks continue to grow deeper, optimizing computation becomes crucial to
minimize waste and enhance efficiency. Second, fast inference is essential for deploying models
in resource-constrained environments such as mobile devices and embedded systems. Third, real-
world applications require fast inference to deliver a seamless user experience by enabling real-time
responses.

The sequential nature of DNNs limits their potential for parallelization [32]. To address this, early
exiting is an approach aimed at reducing the average inference time without parallelization [13]. It
allows certain samples to exit early through intermediate layers of the network when the network
exhibits sufficient confidence. Traditional exiting criteria use low total uncertainty as a proxy for high
model confidence [29]. Since total uncertainty can be further decomposed into model uncertainty and
data uncertainty, this measure does not accurately capture true model uncertainty, and therefore fails
to allow samples with high data uncertainty to exit early when model uncertainty is low.

We suggest that it is crucial to distinguish model uncertainty from total uncertainty and utilize
the former as the exiting criterion instead. To this end, we propose a Dirichlet-based framework
that posits neural networks output a Dirichlet distribution of probability vectors instead of a single

38th Workshop on Fine-Tuning in Machine Learning (NeurIPS 2024).

probability vector. Under this assumption, model uncertainty can be captured by the spread of the
distribution. We observe that the traditional cross entropy loss is degenerate within this framework
and therefore introduce a new training objective based on Kullback-Leibler divergence. Furthermore,
we generate an artificial dataset containing samples with high data uncertainty to explicitly train the
model for better handling of such cases.

Our findings show that models trained using our approach are more balanced in handling both
high-complexity and low-complexity samples, while the early exiting baseline shows a significant
performance gap between these two types of data. As a result, our approach enables a larger proportion
of ambiguous samples to exit early, outperforming the baseline. Our approach provides a simple
and easy-to-implement improvement to exiting criteria that preserves the model architectures and
enables models to perform effectively not only on low-complexity but also high-complexity data.
By differentiating between model uncertainty and total uncertainty, we also expose an interpretable
representation of uncertainty, which may be inherently useful for applications where uncertainty is
important for human decision making.

2 Background

2.1 Early exiting in deep neural networks

Early exiting is an approach aimed at reducing the average inference time of deep neural networks by
allowing “easy” samples to terminate early at intermediate exits, while “difficult” samples can utilize
the networks fully [20]. It usually requires answers to three main questions: 1) where to place the
intermediate exits (architectural design), 2) how to train the intermediate exits (training objective),
and 3) how to decide when to terminate at an intermediate exit (exiting criterion). Our study focuses
on the third question.

2.2 BranchyNet

BranchyNet [29] is one of the pioneering and most frequently referenced architectures for early
exiting in deep neural networks, making it a robust baseline for our studies.

Architecture. BranchyNet modifies the standard neural network by adding exit branches throughout
the network, allowing samples to exit early when their predictions have high confidence. The exit
branches can range from simple fully connected layers to more complex configurations such as
convolutional layers and multilayer perceptrons.

Training. During training, all branches in BranchyNet are jointly trained with the main network
using softmax cross entropy loss. Let y be the one-hot encoded ground truth label vector, and ŷ be
the predicted softmax probability vector. Then the softmax cross entropy loss is defined as:

L(ŷ,y) = −
∑
c∈C

yc log ŷc (1)

where C is the set of all possible labels. The training objective of BranchyNet is to minimize the
weighted sum of losses at each exit branch:

LBranchyNet(ŷ,y) =

N∑
n=1

wnL(ŷexitn ,y) (2)

where N is the total number of branches and wn are hyperparameters that represent weights of each
branch. Earlier branches receive higher weights in BranchyNet.

Exiting criterion. During inference, a sample begins with the lowest-level exit and iterates to the
final exit of the network. In BranchyNet, the exit criterion is based on the entropy. The entropy for a
predicted probability vector ŷ is defined as:

H(ŷ) = −
∑
c∈C

ŷc log ŷc (3)

Once the entropy value of a predicted probability vector at an intermediate exit falls below a
predetermined threshold T , the prediction is returned and the sample does not undergo further
processing by subsequent layers.

2

2.3 Aleatoric uncertainty and epistemic uncertainty

In machine learning, total uncertainty can be broken down into two dimensions: aleatoric uncertainty
and epistemic uncertainty [10, 15, 7]. Aleatoric uncertainty, also known as data uncertainty, usually
refers to the irreducible uncertainty which arises from the natural complexity of data, such as class
overlap and label noise. Epistemic uncertainty, also known as model uncertainty, on the other hand, is
the uncertainty caused by a lack of training data or insufficient model complexity. In particular, let x be
the input to the network and µ be a bottleneck representation such that p(y|x) =

∫
p(y|µ)p(µ|x) dµ.

Then the total uncertainty can be decomposed as:

H(y|x) = Eµ∼p(µ|x) [H(y|µ)]︸ ︷︷ ︸
aleatoric (data) uncertainty

+ I(y;µ|x)︸ ︷︷ ︸
epistemic (model) uncertainty

(4)

Many early exiting models rely on total uncertainty (i.e., entropy) as the exiting criterion. The
underlying assumption of these models is that the predictions of a neural network should converge to
a probability vector that favors a single class through successive layers. Therefore, they implicitly
assume total uncertainty will monotonically decrease towards zero throughout the network. Based
on this premise, high model confidence can be approximated by low entropy. Such an assumption
is generally accurate for samples with low data uncertainty (e.g., an unambiguous image as shown
in Figure 1). However, for samples with high data uncertainty (e.g., an ambiguous image as shown
in Figure 2), a network’s predictions may converge to a probability vector that assigns comparable
probabilities to multiple classes. Thus, early exiting mechanisms based on total uncertainty may
consistently route ambiguous samples to the final exit due to their overall high uncertainty, even when
the network’s predictions have stabilized at earlier stages.

Figure 1: An unambiguous rabbit
Figure 2: An ambiguous rabbit-duck il-
lusion [31]

Table 1 summarizes four possible combinations of data uncertainty and model uncertainty, with
examples for each. Among these four cases, only case 1 has low total uncertainty, allowing early
exits for samples from this category when using total uncertainty measure. Since data uncertainty is
irreducible, we argue that our objective is to return an intermediate prediction as soon as the model
uncertainty becomes low, regardless of data uncertainty. Such an approach will enable samples from
both case 1 and case 2 to exit early in the network.

Table 1: Four possible combinations of data uncertainty and model uncertainty.
Model Data Total

Uncertainty Uncertainty Uncertainty Examples

Case 1 low low low unambiguous in-distribution data
Case 2 low high high ambiguous in-distribution data
Case 3 high low high unambiguous out-of-distribution data
Case 4 high high high ambiguous out-of-distribution data

3 Approach

3.1 Basics of the Dirichlet distribution

To effectively distinguish model uncertainty from total uncertainty, the assumption that neural
networks produce a single point estimation is inadequate. Instead, we need networks’ output to be

3

able to capture uncertainty in its prediction. The Dirichlet distribution provides a natural solution, as
it is a distribution over predicted probability vectors.

The Dirichlet distribution of probability vectors over the set of all possible classes C is parameterized
by |C| concentration parameters α1, α2, . . . , α|C| > 0, and is defined as:

Dir(ŷ | α) =
Γ(α0)∏

c∈C Γ(αc)

∏
c∈C

ŷαc−1
c , α0 =

∑
c∈C

αc (5)

where ŷ represents a probability vector over C and Γ(·) is the gamma function.

The concentration parameters α1, α2, . . . , α|C| control the distribution of probability vectors: larger
values of αc indicate that probability vectors drawn from this distribution will assign a higher
probability to class c. When all αc are large (Figure 3b), the distribution concentrates around the
uniform probability vector at the center of the simplex. Conversely, with smaller αc values (Figure 3d),
the distribution over probability vectors becomes more dispersed.

(a) Low model uncertainty,
low data uncertainty

(b) Low model uncertainty,
high data uncertainty

(c) High model uncertainty,
low data uncertainty

(d) High model uncertainty,
high data uncertainty

Figure 3: Four Dirichlet simplexes under different combinations of model and data uncertainty.
Visualizations were created using the mpltern software package [8].

By assuming that neural networks output a Dirichlet distribution of class probability vectors rather
than a single class probability vector, the spread of the Dirichlet distribution can effectively represent
model uncertainty. To visualize, Figure 3 presents four possible scenarios of such a Dirichlet simplex
over three classes. The spread of the Dirichlet distribution can be quantified by its differential entropy:

H [Dir(α)] = log

∏
c∈C Γ(αc)

Γ(α0)
+ (α0 − |C|)ψ(α0)−

∑
c∈C

(αc − 1)ψ(αc) (6)

where ψ(·) is the digamma function. A higher differential entropy indicates a more dispersed
distribution, reflecting greater model uncertainty in the predicted class probabilities.

3.2 Our Dirichlet-based framework

We will next show the validity of the assumption that neural networks output a Dirichlet distribution
over class probability vectors. Specifically, we will show that the network’s output before the softmax
function captures a Dirichlet distribution. Mathematically, given an input x and a set of training data
D, the predicted probability of any class c can be written as:

ŷc = P (ŷ = c | x,D) =

∫
p(ŷ = c | α)p(α | x,D) dα (7)

where ŷ is the predicted class and α denotes the set of parameters of the Dirichlet distribution that
the network outputs. By further assuming that the trained network’s weights w sufficiently captures
the entire training dataset D and that the network outputs a deterministic Dirichlet distribution
parameterized by α⋆ (i.e. α⋆ = f(x,w), where f is the function that the network computes), the

4

predicted probability then simplifies to:

P (ŷ = c | x,D) =

∫
p(ŷ = c | α)p(α | x,w) dα (8)

=

∫
p(ŷ = c | ŷ)p(ŷ | α⋆) dŷ

=

∫
ŷc · Dir(ŷ | α⋆) dŷ

= EDir(ŷ|α⋆)[ŷc]

=
α⋆
c∑

k∈C α
⋆
k

where the last equation comes from the definition of expectation of a Dirichlet distribution. We recall
that this predicted probability is also given by the network’s softmax output:

P (ŷ = c | x,D) =
ezc(x)∑

k∈C e
zk(x)

(9)

where zk(x), ∀k ∈ C are the network’s outputs before softmax. By equating the two, we have:

α⋆
c∑

k∈C α
⋆
k

=
ezc(x)∑

k∈C e
zk(x)

(10)

Under this formulation, the neural network is essentially computing the parameters of the Dirichlet
distribution. More precisely, it computes log(α).

Because both narrowly and widely scattered Dirichlet distributions can yield the same expected
values, our Dirichlet framework allows two network outputs that result in identical probability vectors
after softmax to differ in model uncertainty, even when their total uncertainty remains the same.

3.3 Training

Training a neural network within the Dirichlet framework using the standard softmax cross entropy
loss is degenerate because it only encourages the expected value of the output Dirichlet to become
closer to the ground truth probability vector. It is insensitive to arbitrary scaling of α which controls
the spread of the Dirichlet, and it therefore disregards model uncertainty in its prediction. In order to
train the network to yield a confident prediction around the target probability vector, it is necessary to
modify the loss function.

Let Dunamb represent the set of unambiguous training data, where each sample is associated with
exactly one class. Drawing inspiration from Dirichlet Prior Networks for out-of-distribution sample
detection [15, 16], we define a new loss based on Kullback-Leibler divergence:

Lunamb(α̂) =
1

|Dunamb|
∑
Dunamb

KL [Dir(ŷ|α̂) ||Dir(ŷ|αunamb)] (11)

where αunamb is the set of parameters of the target Dirichlet for an unambiguous sample, which we
define as:

α
(c)
unamb =

{
β + 1 if c = k

1 otherwise
, for c ∈ C (12)

where C is the set of all possible classes and k is the ground truth class of the sample. This loss
encourages the network to output a sharp Dirichlet distribution centered around the ground truth
label’s probability vector. The parameter β controls the sharpness—larger values correspond to
greater sharpness.

As we wish the network to not only perform well on unambiguous data but also on ambiguous data,
we include a set of ambiguous data during training. The goal remains consistent, but now the target
vector will represent class overlaps, assigning probabilities to multiple classes. For example, if an
ambiguous sample may equally belong to any class in the set K ⊆ C, the target Dirichlet for this
sample is:

α
(c)
amb =

{
β + 1 if c ∈ K

1 otherwise
, for c ∈ C (13)

5

The training objective is to learn the target Dirichlet for each ambiguous sample:

Lamb(α̂) =
1

|Damb|
∑
Damb

KL [Dir(ŷ | α̂) ||Dir(ŷ | αamb)] (14)

The final loss is the sum of the two losses:

L(α̂) = Lunamb(α̂) + Lamb(α̂) (15)

3.4 Exiting criterion

We use differential entropy of the Dirichlet distribution as a measure of model uncertainty to replace
traditional entropy which measures total uncertainty to determine whether to exit at an intermediate
branch. As in BranchyNet, exiting thresholds can be manually set to meet a specified runtime or
accuracy constraint.

4 Experiments

4.1 Datasets

CIFAR-10. CIFAR-10 is a widely used dataset in machine learning for image classification bench-
marking [11]. It contains 60,000 color images of size 32x32 from 10 classes: airplane, automobile,
bird, cat, deer, dog, frog, horse, ship, and truck. It is divided into 50,000 training images and 10,000
testing images.

Unambiguous dataset. We use the original CIFAR-10 training dataset as the unambiguous training
dataset as each image in the set corresponds exactly to one class.

Ambiguous dataset. Given the challenge of obtaining a large set of naturally ambiguous images,
we generate ambiguous images artificially by blending images from distinct classes in the CIFAR-10
training dataset. The blending process is described in Appendix C. A blended image represents the
overlaps of the classes from which it is derived.

We generated 50,000 blended images to match the size of CIFAR-10 training dataset. Images were
blended from six groups of common overlapping classes: 10,000 images of “cat vs. dog”, 10,000
images of “deer vs. horse”, 10,000 images of “bird vs. airplane”, 10,000 images of “automobile
vs. truck”, 5,000 images of animals (bird, cat, deer, dog, frog, horse), and 5,000 images of vehicles
(airplane, automobile, ship, truck).

4.2 Models

In our experiments, we compare several models. Our goal is to explore the effects of (a) using the
Dirichlet distribution to capture uncertainty, and (b) the effect of training with ambiguous data.

AlexNet. AlexNet is a convolutional neural network used widely in image classification [12]. It is
consisted of five convolutional layers followed by three fully connected layers. To align with the early
exiting architecture we used in our experiments, we modified the original AlexNet to only include
one fully connected layer following five convolutional layers (see Figure 6 in Appendix A).

B-AlexNet. B-AlexNet is a BranchyNet adapted from AlexNet by adding a fully connected layer as
a side branch to each of the five convolutional layers [29] (see Figure 7 in Appendix A). B-AlexNet
was trained on the unambiguous dataset according to Section 2.2. For simplicity, we set training
weights wn to be 1 for all branches. B-AlexNet served as the baseline model in our experiments.

Dir-B-AlexNet. Dir-B-AlexNet shares the same architecture as B-AlexNet, but it was trained using
the objective rooted in the Dirichlet framework. Specifically, it was trained solely on the unambiguous
dataset and utilized the loss function outlined in Equation 11 in Section 3.3.

6

Amb-Dir-B-AlexNet. Similar to Dir-B-AlexNet, Amb-Dir-B-AlexNet has the same architecture
as B-AlexNet and was trained under the Dirichlet objective. However, it was trained on both the
unambiguous dataset and the ambiguous dataset, utilizing the summed loss function outlined in
Equation 15 in Section 3.3.

5 Results

We analyzed the performance of our Dirichlet-based approach (Dir-B-AlexNet and Amb-Dir-B-
AlexNet) compared to the traditional early exiting baseline (B-AlexNet) in handling ambiguous data
versus unambiguous data.

5.1 Evaluation datasets

In order to better understand how the various models handle different types of input samples, we
measure their performance on four evaluation datasets.

Baseline unambiguous dataset. The original CIFAR-10 testing dataset served as the baseline
unambiguous dataset in our evaluation.

Ambiguous dataset: Challenging Test. Challenging Test consists of 866 images in CIFAR-10
testing dataset found challenging by AlexNet during inference, indicated by entropy values over 0.5.
We further confirmed its ambiguity by observing that all branches in all three networks achieved an
accuracy around 50%.

Ambiguous dataset: In-distribution Blend. In-distribution Blend contains 10,000 images blended
from CIFAR-10 testing dataset, using the same blending distribution as the ambiguous training dataset
for training Amb-Dir-B-AlexNet.

Ambiguous dataset: Out-of-distribution Blend. Out-of-distribution Blend contains 10,000 im-
ages blended from CIFAR-10 testing dataset, using different combinations of categories relative to
the ambiguous training dataset. Specifically, it includes 2,500 images of “bird vs. frog”, 2,500 images
of “ship vs. truck”, 2,500 images of “automobile vs. airplane” and 2,500 images of “deer vs. dog”.

5.2 Evaluation Metrics

We evaluated the methods using two key metrics: (a) difference in average uncertainty between
ambiguous and unambiguous data and (b) the percentage of ambiguous samples that exit early.

5.2.1 Difference in average uncertainty between ambiguous and unambiguous data

This metric measures the difference in average uncertainty of ambiguous data vs. unambiguous data.
A smaller difference is preferred, as it indicates that the network is more balanced in its handling of
both types of data. To compute this metric, we first calculated the mean uncertainty for each network
(entropy for B-AlexNet, differential entropy for both Dir-B-AlexNet and Amb-Dir-B-AlexNet) on
the baseline unambiguous dataset. Then for each network, we computed the mean uncertainty across
Challenging Test, In-distribution Blend, and Out-of-distribution Blend. Given the difference in scale
for entropy and differential entropy, we utilized min-max normalization to standardize the results,
ensuring all values are scaled to a range of [0, 1]. Finally, we calculated the difference by subtracting
the normalized mean uncertainty of unambiguous data from that of ambiguous data.

Results. Figure 4 presents a comparison of three networks’ differences in mean uncertainty between
the unambiguous baseline and three ambiguous datasets across five exits. Amb-Dir-B-AlexNet
consistently demonstrates the smallest difference, followed closely by Dir-B-AlexNet. B-AlexNet
exhibits the largest difference across all exits for all datasets. Notably, Amb-Dir-B-AlexNet exhibits
a minimal difference at exits 1 to 3 and even shows a negative difference at exits 4 and 5 on In-
distribution Blend. This indicates that it is equally and even more confident in its predictions for this
group of ambiguous data compared to unambiguous data. This aligns with our expectation as it was
specifically trained to learn this distribution of ambiguous data.

7

5.2.2 Percentage of ambiguous samples early exiting

The second metric calculates the percentage of ambiguous samples that can exit early through the first
branch, when thresholds are set to allow 1, 25, 50, 75, 99% of unambiguous samples to exit from this
branch. Thresholds were found by sweeping across a range of possible values. This metric directly
assesses the practical utility of our approach in reducing inference time when handling ambiguous
samples, with a higher percentage indicating a better performance.

Results. Results are shown in Figure 5. Amb-Dir-B-AlexNet again outperforms the other two
models, evidenced by its consistently higher percentage values across all thresholds and datasets. To
our surprise, however, despite a small advantage on Challenging Test, Dir-B-AlexNet is outperformed
by B-AlexNet on In-distribution Blend and Out-of-distribution Blend. The reason for this discrepancy
is not immediately clear and needs further investigation.

(a) Challenging Test (b) In-distribution Blend (c) Out-of-distribution Blend

Figure 4: A model comparison of difference in average uncertainty between ambiguous and unam-
biguous data.

(a) Challenging Test (b) In-distribution Blend (c) Out-of-distribution Blend

Figure 5: A model comparison of percentage of ambiguous samples exiting from exit 1 when
1, 25, 50, 75, 99% unambiguous samples exit from exit 1.

6 Related work

Early exiting. Many early exiting strategies have been proposed to address the prolonged inference
time in deep neural networks. BranchyNet proposes to add side branches to the main network, en-
abling samples to exit early when entropy values of predictions drop below predetermined thresholds
[29]. Differential Branching reformulates early exiting in a differentiable format and eliminates the
need for designing an explicit exiting criterion [19]. Adaptive Neural Networks solves a layer-by-
layer weighted binary classification problem to trade off between future accuracy and computational
cost [2]. PonderNet learns to predict the probability of halting at each step [1]. Conditional Deep
Learning identifies the input difficulty via confidence measure and conditionally activate deeper
portions of the network [18]. Confident Adaptive Transformers trains a meta consistency classifier
for each intermediate exit, allowing samples to exit early while guaranteeing a specifiable degree of
consistency with the original model with high confidence [22].

Existing work generally falls into two categories in terms of exiting criteria: 1) using some function
of classification entropy as confidence measure, or 2) using a neural network to learn and predict
confidence measure or exiting probability. The first approach may not adequately represent true
model uncertainty for data with inherent complexity, while the second may lack interpretability and

8

efficiency. Our approach provides a simple yet effective way to directly measure model uncertainty
and improves model performance in handling ambiguous data.

Dirichlet neural networks. As Dirichlet neural networks enable the distinction between different
types of uncertainty in a prediction, they have been widely applied in out-of-distribution sample
detection and uncertainty estimation. As a form of Dirichlet neural networks, Dirichlet Prior Net-
works (DPN) separate distributional uncertainty from both data uncertainty and model uncertainty to
detect out-of-distribution samples [15, 16]. Further work built upon DPNs to maximize the repre-
sentational gap between in-distribution and out-of-distribution samples [17]. Evidential Networks
also demonstrate success in out-of-distribution detection and adversarial attack via Dirichlet-based
uncertainty estimation [24, 23]. Belief matching framework transforms the target label into a random
variable based on Bayesian principles and uses Dirichlet distribution as both the conjugate prior and
the posterior to improve generalization performance and uncertainty estimation [9]. To the best of our
knowledge, our approach is the first to apply Dirichlet neural networks to the early exiting setting.

7 Conclusion

Deep neural networks demonstrate impressive performance on a wide range of machine learning tasks
thanks to their depth, but this often comes at the cost of prolonged inference time. To address this,
early exiting strategies have been proposed to reduce the average inference time by allowing certain
samples to exit early through an intermediate layer of the network. Existing exiting criteria rely on
total uncertainty as a measure of model confidence, which can fail to reflect true model uncertainty
in the presence of high data uncertainty. In response, we propose a Dirichlet-based framework to
directly quantify model uncertainty, thereby enabling ambiguous samples to exit early when model
uncertainty is low, even if data uncertainty remains high. Compared to the baseline, models trained
with our approach exhibit a more balanced performance in handling ambiguous data vs. unambiguous
data, and enable early exits for a larger proportion of ambiguous data.

Our study has several limitations. First and foremost, our experiments focused on a single network
architecture and a specific image classification dataset. This limits the ability to apply our conclusions
to deep neural networks in general. Further experiments on various network architectures and
diverse datasets are crucial to fully determine the applicability and generalizability of our results.
Second, the blending technique we used to generate ambiguous datasets for training may raise
some questions about its validity: are blended image actually ambiguous? Blended images may
contain less information than the combination of two individual images when their values cancel out.
Blending can produce overly noisy images. One image may overshadow the other during the blending
process, resulting in an unambiguous image instead. Third, it remains unclear why Dir-B-AlexNet is
outperformed by B-AlexNet under the second evaluation metric despite a clear advantage in the first
metric. Despite these limitations, our work represents a step towards developing more interpretable,
highly efficient, and robust early exiting strategies.

Acknowledgments and Disclosure of Funding

This research project was supported by the NOMIS Foundation and by grant N00014-23-1-2510
from the Office of Naval Research.

References
[1] Andrea Banino, Jan Balaguer, and Charles Blundell. “Pondernet: learning to ponder”. In: arXiv

preprint arXiv:2107.05407 (2021).
[2] Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and Venkatesh Saligrama. “Adaptive neural

networks for efficient inference”. In: International Conference on Machine Learning. PMLR.
2017, pages 527–536.

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec

9

Radford, Ilya Sutskever, and Dario Amodei. “Language models are few-shot learners”. In:
Advances in Neural Information Processing Systems. Edited by H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin. Volume 33. Curran Associates, Inc., 2020, pages 1877–
1901.

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “BERT: pre-training
of deep bidirectional transformers for language understanding”. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2019. Edited by Jill Burstein, Christy Doran,
and Thamar Solorio. Association for Computational Linguistics, 2019, pages 4171–4186.

[5] Alex Graves. “Long short-term memory”. In: Supervised Sequence Labelling with Recurrent
Neural Networks. Springer Berlin Heidelberg, 2012, pages 37–45.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual learning for
image recognition”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). June 2016.

[7] Eyke Hüllermeier and Willem Waegeman. “Aleatoric and epistemic uncertainty in machine
learning: an introduction to concepts and methods”. In: Machine Learning 110.3 (Mar. 2021),
pages 457–506.

[8] Yuji Ikeda. Yuzie007/Mpltern: 1.0.4. Version 1.0.4. Zenodo, Apr. 25, 2024. URL: https:
//zenodo.org/doi/10.5281/zenodo.11068993.

[9] Taejong Joo, Uijung Chung, and Min-Gwan Seo. “Being Bayesian about categorical proba-
bility”. In: Proceedings of the 37th International Conference on Machine Learning. Edited
by Hal Daumé III and Aarti Singh. Volume 119. Proceedings of Machine Learning Research.
PMLR, July 2020, pages 4950–4961.

[10] Armen Der Kiureghian and Ove Ditlevsen. “Aleatory or epistemic? Does it matter?” In:
Structural Safety 31.2 (2009). Risk Acceptance and Risk Communication, pages 105–112.

[11] Alex Krizhevsky. “Learning multiple layers of features from tiny images”. Master’s thesis.
University of Toronto, 2009.

[12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet classification with deep
convolutional neural networks”. In: Advances in Neural Information Processing Systems.
Edited by F. Pereira, C. J. Burges, L. Bottou, and K. Q. Weinberger. Volume 25. Curran
Associates, Inc., 2012.

[13] Stefanos Laskaridis, Alexandros Kouris, and Nicholas D. Lane. “Adaptive inference through
early-exit networks: design, challenges and directions”. In: Proceedings of the 5th International
Workshop on Embedded and Mobile Deep Learning. 2021, pages 1–6.

[14] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. “Gradient-based learning
applied to document recognition”. In: Proceedings of the IEEE 86.11 (1998), pages 2278–
2324.

[15] Andrey Malinin and Mark Gales. “Predictive uncertainty estimation via prior networks”. In:
Advances in Neural Information Processing Systems. Edited by S. Bengio, H. Wallach, H.
Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett. Volume 31. Curran Associates, Inc.,
2018.

[16] Andrey Malinin and Mark Gales. “Reverse KL-divergence training of prior networks: improved
uncertainty and adversarial robustness”. In: Advances in Neural Information Processing
Systems. Edited by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and
R. Garnett. Volume 32. Curran Associates, Inc., 2019.

[17] Jay Nandy, Wynne Hsu, and Mong Li Lee. “Towards maximizing the representation gap
between in-domain & out-of-distribution examples”. In: Advances in Neural Information
Processing Systems. Edited by H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H.
Lin. Volume 33. Curran Associates, Inc., 2020, pages 9239–9250.

[18] Priyadarshini Panda, Abhronil Sengupta, and Kaushik Roy. “Conditional deep learning for
energy-efficient and enhanced pattern recognition”. In: 2016 Design, Automation & Test in
Europe Conference & Exhibition (DATE). 2016, pages 475–480.

[19] Simone Scardapane, Danilo Comminiello, Michele Scarpiniti, Enzo Baccarelli, and Aurelio
Uncini. “Differentiable branching in deep networks for fast inference”. In: ICASSP 2020 -
2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
2020, pages 4167–4171.

10

https://zenodo.org/doi/10.5281/zenodo.11068993
https://zenodo.org/doi/10.5281/zenodo.11068993

[20] Simone Scardapane, Michele Scarpiniti, Enzo Baccarelli, and Aurelio Uncini. “Why should we
add early exits to neural networks?” In: Cognitive Computation 12.5 (Sept. 2020), pages 954–
966.

[21] Mike Schuster and Kuldip K. Paliwal. “Bidirectional recurrent neural networks”. In: IEEE
Transactions on Signal Processing 45.11 (1997), pages 2673–2681.

[22] Tal Schuster, Adam Fisch, Tommi Jaakkola, and Regina Barzilay. “Consistent accelerated
inference via confident adaptive transformers”. In: Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing. Edited by Marie-Francine Moens, Xuan-
jing Huang, Lucia Specia, and Scott Wen-tau Yih. Association for Computational Linguistics,
Nov. 2021, pages 4962–4979.

[23] Murat Sensoy, Lance Kaplan, Federico Cerutti, and Maryam Saleki. “Uncertainty-aware deep
classifiers using generative models”. In: Proceedings of the AAAI Conference on Artificial
Intelligence. Volume 34. 04. Apr. 2020, pages 5620–5627.

[24] Murat Sensoy, Lance Kaplan, and Melih Kandemir. “Evidential deep learning to quantify
classification uncertainty”. In: Advances in Neural Information Processing Systems. Edited
by S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett.
Volume 31. Curran Associates, Inc., 2018.

[25] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks for large-scale
image recognition”. In: 3rd International Conference on Learning Representations, ICLR 2015.
Edited by Yoshua Bengio and Yann LeCun. 2015.

[26] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. “Sequence to sequence learning with neural
networks”. In: Advances in Neural Information Processing Systems. Edited by Z. Ghahramani,
M. Welling, C. Cortes, N. Lawrence, and K. Q. Weinberger. Volume 27. Curran Associates,
Inc., 2014.

[27] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. “Efficient processing of deep
neural networks: a tutorial and survey”. In: Proceedings of the IEEE 105.12 (2017), pages 2295–
2329.

[28] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. “Going deeper with convolu-
tions”. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015,
pages 1–9.

[29] Surat Teerapittayanon, Bradley McDanel, and H. T. Kung. “BranchyNet: fast inference via
early exiting from deep neural networks”. In: 2016 23rd International Conference on Pattern
Recognition (ICPR). 2016, pages 2464–2469.

[30] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. “Attention is all you need”. In: Advances in Neural
Information Processing Systems. Edited by I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett. Volume 30. Curran Associates, Inc., 2017.

[31] Ludwig Wittgenstein. Philosophical investigations. Translated by G. E. M. Anscombe, P. M. S.
Hacker, and Joachim Schulte. Rev. 4th ed. Malden, MA: Wiley-Blackwell, 2009.

[32] Weizheng Xu, Youtao Zhang, and Xulong Tang. “Parallelizing DNN training on GPUs:
challenges and opportunities”. In: Companion Proceedings of the Web Conference 2021. New
York, NY, USA: Association for Computing Machinery, 2021, pages 174–178.

11

A Network architectures

Figure 6 shows the AlexNet architecture we used in our experiments and Figure 7 shows the
BranchyNet variant.

Figure 6: AlexNet Figure 7: B-AlexNet

B Experimental setup

All experiments were run in Python 3.11 using an NVIDIA MIG GPU with 10 GB of GPU memory.
During training, B-AlexNet, Dir-B-AlexNet, and Amb-B-AlexNet were initialized with trained
weights of AlexNet on CIFAR-10. All models were trained for 100 epochs using the Adam optimizer
with a learning rate of 0.001.

C Image blending process

Figure 8 demonstrates the blending process in the creation of artificial ambiguous training data. Given
two images A and B, blending A and B results in an image C where each pixel of C is obtained by:

Ci,j =
1

2
Ai,j +

1

2
Bi,j

where Ai,j , Bi,j , Ci,j are the pixels of A,B,C on row i and column j, respectively.

12

(a) An image of “Dog” (b) An image of “Cat”

(c) A blended image of “Dog” and
“Cat”

Figure 8: Blending an image of “Dog” and an image of “Cat” into an ambiguous image of “Cat” and
“Dog”

13

	Introduction
	Background
	Early exiting in deep neural networks
	BranchyNet
	Aleatoric uncertainty and epistemic uncertainty

	Approach
	Basics of the Dirichlet distribution
	Our Dirichlet-based framework
	Training
	Exiting criterion

	Experiments
	Datasets
	Models

	Results
	Evaluation datasets
	Evaluation Metrics
	Difference in average uncertainty between ambiguous and unambiguous data
	Percentage of ambiguous samples early exiting

	Related work
	Conclusion
	Network architectures
	Experimental setup
	Image blending process

