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ABSTRACT

Score-based (denoising diffusion) generative models have recently gained a lot of
success in generating realistic and diverse data. These approaches define a forward
diffusion process for transforming data to noise and generate data by reversing
it (thereby going from noise to data). Unfortunately, current score-based models
generate data very slowly due to the sheer number of score network evaluations
required by numerical SDE solvers.

In this work, we aim to accelerate this process by devising a more efficient SDE
solver. Existing approaches rely on the Euler-Maruyama (EM) solver, which uses
a fixed step size. We found that naively replacing it with other SDE solvers fares
poorly - they either result in low-quality samples or become slower than EM. To
get around this issue, we carefully devise an SDE solver with adaptive step sizes
tailored to score-based generative models piece by piece. Our solver requires
only two score function evaluations per step, rarely rejects samples, and leads to
high-quality samples. Our approach generates data 2 to 10 times faster than EM
while achieving better or equal sample quality. For high-resolution images, our
method leads to significantly higher quality samples than all other methods tested.
Our SDE solver has the benefit of requiring no step size tuning.

1 INTRODUCTION

Score-based generative models (Song and Ermon, 2019; 2020; Ho et al., 2020; Jolicoeur-Martineau
et al., 2020; Song et al., 2020a; Piché-Taillefer, 2021) have been very successful at generating data
from various modalities, such as images (Ho et al., 2020; Song et al., 2020a), audio (Chen et al., 2020;
Kong et al., 2020; Mittal et al., 2021; Kameoka et al., 2020), and graphs (Niu et al., 2020). They have
further been used effectively for super-resolution (Saharia et al., 2021; Kadkhodaie and Simoncelli,
2020), inpainting (Kadkhodaie and Simoncelli, 2020), source separation (Jayaram and Thickstun,
2020), and image-to-image translation (Sasaki et al., 2021). In most of these applications, score-
based models achieved superior performances in terms of quality and diversity than the historically
dominant Generative Adversarial Networks (GANs) (Goodfellow et al., 2014).

Score-based models can be understood in two main classes: those based on a Variance Exploding
(VE) diffusion process (Song and Ermon, 2019) and those based on a Variance Preserving (VP) one
(Ho et al., 2020). Both diffusion processes progressively transform real data into Gaussian noise;
N (0, σ2

maxI) for VE where σ2
max is very large, and N (0, I) for VP.

The diffusion process (VE, VP, etc.) is then reversed in order to generate real data from Gaussian
noise. Reversing the process requires the score function, which is estimated with a neural network
(known as a score network). Although very powerful, score-based models generate data through an
undesirably long iterative process; meanwhile, other state-of-the-art methods such as GANs generate
data from a single forward pass of a neural network. Increasing the speed of the generative process is
thus an active area of research.

Chen et al. (2020) and San-Roman et al. (2021) proposed faster step size schedules for VP diffusions
that still yield relatively good quality/diversity metrics. Although fast, these schedules are arbitrary,
require careful tuning, and the optimal schedules will vary from one model to another.
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Figure 1: Comparison between our novel SDE solver at various values of error tolerance and Euler-
Maruyama for an equal computational budget. We measure speed through the Number of Function
Evaluations (NFE) and the quality of the generated images through the Fréchet Inception Distance
(FID; lower is better). See Table 1-2 for more details.

Block et al. (2020) proposed generating data progressively from low to high-resolution images and
show that the scheme improves speed. Similarly, Nichol and Dhariwal (2021) proposed generating
low-resolution images and then upscale them since generating low-resolution images is quicker. They
further suggested to accelerate VP-based models by learning dimension-specific noise rather than
assuming equal noise everywhere. Note that these methods do not affect the data generation algorithm
and would thus be complementary to our methods.

Song et al. (2020a) and Song et al. (2020b) proposed removing the noise from the data generation
algorithm and solve an Ordinary Differential Equation (ODE) rather than a Stochastic Differential
Equation (SDE); they report being able to converge much faster when there is no noise. Although it
improves the generation speed, Song et al. (2020a) report obtaining lower-quality images when using
the ODE formulation for the VE process (Song et al., 2020a). We will later show that our SDE solver
generally leads to better results than ODE solvers at similar speeds.

Thus, existing methods for acceleration often require considerable step size/schedule tuning (this
is also true for the baseline approach) and do not always work for both VE and VP processes. To
improve speed and remove the need for step size/schedule tuning, we propose to solve the reverse
diffusion process using SDE solvers with adaptive step sizes.

It turns out that off-the-shelf SDE solvers are ill-suited for generative modeling and exhibit either
(1) divergence, (2) slower data generation than the baseline, or (3) significantly worse quality than
the baseline (see Appendix A). This can be attributed to distinct features of the SDEs that arise in
score-based generative models that set them apart from the SDEs traditionally considered in the
numerical SDE solver literature, namely: (1) the codomain of the unknown function is extremely
high-dimensional, especially in the case of image generation; (2) evaluating the score function is
computationally expensive, requiring a forward pass of a large mini-batch through a large neural
network; (3) the required precision of the solution is smaller than usual because we are satisfied as
long as the error is not perceptible (e.g., one RGB increment on an image).
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We devise our own SDE solver with these features in mind, resulting in an algorithm that can get
around the problems encountered by off-the-shelf solvers. To address high dimensionality, we use
the `2 norm rather than the `∞ norm to measure the error across different dimensions to prevent a
single pixel from slowing down the solver. To address the cost of score function evaluations while
still obtaining high precision, we (1) take the minimum number of score function evaluations needed
for adaptive step sizes (two evaluations), and (2) use extrapolation to get high precision at no extra
cost. To take advantage of the reduced requirement for precision, we set the absolute tolerance for
the error according to the range of RGB values.

Our main contribution is a new SDE solver tailored to score-based generative models with the
following benefits:

• Our solver is much faster than the baseline methods, i.e. reverse-diffusion method with
Langevin dynamics and Euler-Maruyama (EM);

• It yields higher quality/diversity samples than EM when using the same computing budget;

• It does not require any step size or schedule tuning;

• It can be used to quickly solve any type of diffusion process (e.g., VE, VP)

2 BACKGROUND

2.1 SCORE-BASED MODELING WITH SDES

Let x(0) ∈ Rd be a sample from the data distribution pdata. The sample is gradually corrupted over
time through a Forward Diffusion Process (FDP), a common type of Stochastic Differential Equation
(SDE):

dx = f(x, t)dt+ g(t)dw, (1)

where f(x, t) : Rd × R→ Rd is the drift, g(t) : R→ R is the diffusion coefficient and w(t) is the
Wiener process indexed by t ∈ [0, 1]. Data points and their probability distribution evolve along
the trajectories {x(t)}1t=0 and {pt(x)}1t=0 respectively, with p0 ≡ pdata. The functions f and g are
chosen such that x(1) be approximately Gaussian and independent from x(0). Inference is achieved
by reversing this diffusion, drawing x(1) from its Gaussian distribution and solving the Reverse
Diffusion Process (RDP) equal to:

dx =
[
f(x, t)− g(t)2∇x log pt(x)

]
dt+ g(t)dw̄, (2)

where∇x log pt(x) is referred to as the score of the distribution at time t (Hyvärinen, 2005) and w̄(t)
is the Wiener process in which time flows backward (Anderson, 1982).

One can observe from Equation 2 that the RDP requires knowledge of the score (or pt), which we
do not have access to. Fortunately, it can be estimated by a neural network (referred to as the score
network) by optimizing the following objective:

L(θ) = Ex(t)∼p(x(t)|x(0)),x(0)∼pdata

[
λ(t)

2

∥∥sθ(x(t), t)−∇x(t) log pt(x(t)|x(0))
∥∥2
2

]
, (3)

where λ(t) : R→ R is a weighting function generally chosen to be inversely proportional to:

E
[∥∥∇x(t) log pt(x(t)|x(0))

∥∥2
2

]
.

One can demonstrate that the minimizer of that objective θ∗ will be such that sθ∗(x, t) = ∇x log pt(x)
(Vincent, 2011), allowing us to approximate the reverse diffusion process. As can be seen, evaluating
the objective requires the ability to generate samples from the FDP at arbitrary times t. Thankfully, as
long as the drift is affine (i.e., f(x, t) = Ax + B), the transition kernel p(x(t)|x(0)) will always be
normally distributed (Särkkä and Solin, 2019), which means that we can solve the forward diffusion
in a single step. Furthermore, the score of the Gaussian transition kernel is trivial to compute, making
the loss an inexpensive training objective.

There are two primary choices for the FDP in the literature, which we discuss below.
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2.2 VARIANCE EXPLODING (VE) PROCESS

The Variance Exploding (VE) process consists in the following FDP:

dx =

√
d [σ2(t)]

dt
dw.

Its associated transition kernel is:

x(t)|x(0) ∼ N (x(0), [σ2(t)− σ2(0)]I) ≈ N (x(0), σ2(t)I).

In practice, we let σ(t) = σmin

(
σmax

σmin

)t
, where σmin = 0.01 and σmax ≈ maxi

∑N
j=1 ||x(i) −

x(j)|| is the maximum Euclidean distance between two samples from the dataset {x(i)}Ni=1 (Song
and Ermon, 2020). Using the maximum Euclidean distance ensures that x(1) does not depend on
x(0); thus, x(1) is approximately distributed as N (0, σ2(1)I).

2.3 VARIANCE PRESERVING (VP) PROCESS

The Variance Preserving (VP) process consists in the following FDP:

dx = −1

2
β(t)xdt+

√
β(t)dw.

Its associated transition kernel is:

x(t)|x(0) ∼ N (x(0) e−
1
2

∫ t
0
β(s)ds, (1− e−

∫ t
0
β(s)ds) I).

In practice, we let β(t) = βmin + t (βmax − βmin), where βmin = 0.1 and βmax = 20. Thus, x(1)
is approximately distributed as N (0, I) and does not depend on x(0).

2.4 SOLVING THE REVERSE DIFFUSION PROCESS (RDP)

There are many ways to solve the RDP; the most basic one being Euler-Maruyama (Kloeden and
Platen, 1992), the SDE analog to Euler’s method for solving ODEs. Song et al. (2020a) also proposed
Reverse-Diffusion, which consists in ancestral sampling (Ho et al., 2020) with the same discretization
used in the FDP. With the Reverse-Diffusion, (Song et al., 2020a) obtained poor results unless
applying an additional Langevin dynamics step after each Reversion-Diffusion step. They named this
approach Predictor-Corrector (PC) sampling, with the predictor corresponding to Reverse-Diffusion
and the corrector to Langevin dynamics. Although using a corrector step leads to better samples, PC
sampling is only heuristically motivated and the theoretical underpinnings are not yet understood.
Nevertheless, (Song et al., 2020a) report their best results (in terms of lowest Fréchet Inception
Distance (Heusel et al., 2017)) using the Reverse-Diffusion with Langevin dynamics for VE models.
For VP models, they obtain their best results using Euler-Maruyama.

3 EFFICIENT METHOD FOR SOLVING REVERSE DIFFUSION PROCESSES

3.1 SETTING UP THE ALGORITHM

We start with a general algorithm for solving an SDE (similar to most ODE/SDE solvers). We choose
the various options/hyper-parameters based on a mixture of theory and experiments; an ablation study
of the different hyper-parameters can also be found in Appendix B.

3.1.1 INTEGRATION METHOD

Solving the RDP to generate data can take an undesirably long time. One would assume that solving
SDEs with high-order methods would improve speed over Euler-Maruyama, just like high-order ODE
solvers improve speed over Euler’s method when solving ODEs. However, this is not always the
case: while higher-order solvers may achieve lower discretization errors, they require more function
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evaluations, and the improved precision might not be worth the increased computation cost (Lehn
et al., 2002; Lamba, 2003).

Our preliminary attempts at using SDE solvers with the DifferentialEquations.jl Julia package
(Rackauckas and Nie, 2017a) confirmed that higher-order methods were significantly slower (6 to 8
times slower; see Appendix A). Lamba’s algorithm (Lamba, 2003), a low-order adaptive method,
yielded the fastest results, thus motivating us to restrict our search to the space of low-order methods.
Still, the resulting images were of lower quality.

Using a fixed step-size while solving an ODE/SDE requires some tuning and one should be able
to advance faster (from t = 1 to t = 0) in regions of low noise. To gain more speed, one can
dynamically adjust the step size over time; this is a common approach used in most fast ODE/SDE
solvers. Such technique generally use two integration methods: a lower-order (x′) method and a
higher-order (x′′) method. The local error E(x′,x′′) = x′ − x′′ is used to determine how stable the
lower-order method is at the current step size; the closer to zero, the more appropriate the step size is.
From this information, we can dynamically adjust the step size and decide whether or not to accept
the proposed sample of the lower-order method. Alternatively, one can select x′′ as the proposal,
which we will refer to as extrapolating.

Rather than using the Improved Euler ODE solver (Süli and Mayers, 2003) as in Lamba (2003) or a
high-order stochastic Runge-Kutta method (Rößler, 2010) as in Rackauckas and Nie (2017b) (which
did not work well in our preliminary attempts with the Julia package) we instead rely on the more
recent Improved Euler SDE solver (Roberts, 2012) as our higher order method. This method is very
similar to the classical Improved Euler ODE solver, but it is made to work with SDEs instead of
ODEs. Importantly, this method only requires two score function evaluations and re-uses the same
score function evaluation used for EM, meaning that it is only twice as expensive as EM. Similarly to
Lamba’s algorithm, this method, albeit quick, leads to images of poor quality. However, by using
extrapolation (taking x′′ instead of x′ as our proposal), we were able to match and improve over the
baseline approach (EM). Thus, using the stochastic Improved Euler was the key to taking bigger steps
without sacrificing precision. Note that Lamba’s algorithm cannot use extrapolation due to its use of
a non-stochastic ODE solver (Improved Euler).

An algorithm has strong-order p when the local error from t to t+ h is O(hp+1)). Euler-Maruyama
has strong-order 0.5 while Improved Euler has strong-order 1 (Roberts, 2012). The highest strong-
order found in the DifferentialEquations.jl Julia package (Rackauckas and Nie, 2017a) are order 1.5.
Thus, our method obtains a balance between methods that are 1) low precision, but fast and 2) high
precision, but slow.

3.1.2 TOLERANCE

In ODE/SDE solvers, the local error is divided by a tolerance term. Traditionally, the mixed tolerance
δ(x′) : Rd → Rd is calculated as the maximum between the absolute and relative tolerance:

δ(x′) = max(εabs, εrel|x′|), (4)

where the absolute value | · | is applied element-wise.

The DifferentialEquations.jl Julia package instead calculates the mixed tolerance through the maxi-
mum of the current and previous sample:

δ(x′,x′prev) = max(εabs, εrelmax(|x′|, |x′prev|)). (5)

Having no trivial prior for which approach to use, we tried both and found the latter approach
(Equation 5) to converge much faster for VE models (see Appendix B).

Given our focus on image generation, we can set εabs a priori. During training and at the end of the
data generation, images are represented as floating-point tensors with range [ymin, ymax]. When
evaluated, they must be transformed into 8-bit color images; this means that images are scaled to
the range [0, 255] and converted to the nearest integer (to represent one of the 256 values per color
channel). Given the 8-bit color encoding, an absolute tolerance εabs = ymax−ymin

256 corresponds to
tolerating local errors of at most one color (e.g., x′ij with Red=5 and x′′ij with Red=6 is accepted, but
x′ij with Red=5 and x′′ij with Red=7 is not) channel-wise. One-color differences are not perceptible
and should not influence the metrics used for evaluating the generated images. For VP models, which
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have range [−1, 1], this corresponds to εabs = 0.0078 while for VE models, which have range [0, 1],
this corresponds to εabs = 0.0039.

To control speed/quality, we vary εrel, where large values lead to more speed but less precision, while
small values lead to the converse.

3.1.3 NORM OF THE SCALED ERROR

The scaled error (the error scaled by the mixed tolerance) is calculated as

Eq =

∥∥∥∥ x′ − x′′

δ(x′,x′prev)

∥∥∥∥
q

.

Many algorithms use q = ∞ (Lamba, 2003; Rackauckas and Nie, 2017b), where ||x||∞ =
max(x1, ...,xk) over all k elements of x. Although this can work with low-dimensional SDEs,
this is highly problematic for high-dimensional SDEs such as those in image-space. The reason
is that a single channel of a single pixel (out of 65536 pixels for a 256 × 256 color image) with a
large local error will cause the step size to be reduced for all pixels and possibly lead to a step size
rejection. Indeed, our experiments confirmed that using q =∞ slows down generation considerably
(see Appendix B). To that effect, we instead use a scaled `2 norm:

||x||2 =

√√√√ 1

n

k∑
i=1

(
x′ − x′′

δ(x′,x′prev)

)
k

.

3.1.4 HYPERPARAMETERS OF THE DYNAMIC STEP SIZE ALGORITHM

Upon calculating the scaled error, we accept the proposal x′′ if Eq ≤ 1 and increment the time by h
Whether or not it is accepted, we update the next step size h in the usual way:

h← min(hmax, θhE
−r
q ), (6)

where hmax is the maximum step size, θ is the safety parameter which determines how strongly we
adapt the step size (0 being very safe; 1 being fast, but high rejections rate), and r is an exponent-
scaling term.

Although ODE theory tells us that we should let r = 1
p+1 with p being the order of the lower-

order integration method, there is no such theory for SDEs (Rackauckas and Nie, 2017b). Thus, as
Rackauckas and Nie (2017b) suggest, we resorted to empirically testing values and found that any
r ∈ [0.5, 1] works well on both VE and VP processes, but that r ∈ [0.8, 0.9] is slightly faster (see
Appendix B). We arbitrarily chose r = 0.9 as the default setting.

Finally, we defaulted to setting θ = 0.9 for the safety parameter as is common in the literature, and
choose hmax to be equal to the largest step size possible, namely the remaining time t.

3.1.5 HANDLING THE MINI-BATCH

Using the same step size for every sample of a mini-batch means that every images would be slowed
down by the other images. Since every image’s RDP is independent from one another, we apply a
different step size to each data sample; some images may converge faster than others, but we wait for
all images to have converged.

3.2 ALGORITHM

In Section 3.1, We defined every aspect of the algorithm needed to numerically solve Equation 2 for
image generation. The algorithm thus consists in using adaptive step sizes through Equation 6 with the
hyperparameters defined in the previous subsection (q =∞, θ = 0.9, r = 0.9, εabs = ymax−ymin

256 )
with Euler-Maruyama as the low-order method and Improved Euler as the high-order method. The
resulting algorithm is described in Algorithm 1. This algorithm is straightforward to parallelize across
the batch dimension.
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Note that this algorithm is only for solving an RDP; a more general version for solving an arbitrary
forward-time diffusion process can be found in Appendix C. Additionally, we present a demonstration
in Appendix F showing that the extrapolation step conserves the stability and convergence of the EM
step.

Algorithm 1 Dynamic step size extrapolation for solving Reverse Diffusion Processes

Require: sθ, εrel, εabs, hinit = 0.01, r = 0.9, θ = 0.9 . for images: εabs = ymax−ymin

256
t← 1
h← hinit
Initialize x
x′prev ← x
while t > 0 do

Draw z ∼ N (0, I)

x′ ← x− hf(x, t) + hg(t)2sθ(x, t) +
√
hg(t)z . Euler-Maruyama

x̃← x− hf(x′, t− h) + hg(t− h)2sθ(x′, t− h) +
√
hg(t− h)z

x′′ ← 1
2 (x
′ + x̃) . Improved Euler (SDE version)

δ ← max(εabs, εrelmax(|x′|, |x′prev|)) . Element-wise operations
E2 ← 1√

n
‖(x′ − x′′) /δ‖2

if E2 ≤ 1 then . Accept
x← x′′ . Extrapolation
t← t− h
x′prev ← x′

h← min(t, θhE−r2 ) . Dynamic step size update
return x

4 EXPERIMENTS

To test Algorithm 1 on RDPs, we apply it to various pre-trained models from Song et al. (2020a).
To start, we generate low-resolution images (32x32) by testing the VP, VE, VP-deep, and VE-
deep models on CIFAR-10 (Krizhevsky et al., 2009). Then, we generate higher-resolutions images
(256x256) by testing the VE models on LSUN-Church (Yu et al., 2015), and Flickr-Faces-HQ (FFHQ)
(Karras et al., 2019). See implementation details in Appendix D. We used four or less V100 GPUs to
run the experiments.

To measure the performance of the image generation, we calculate the Fréchet Inception Distance
(FID) (Heusel et al., 2017) and the Inception Score (IS) (Salimans et al., 2016), where low FID and
high IS correspond to higher quality/diversity. We compare our method to the three base solvers
used in Song et al. (2020a): Reverse-Diffusion with Langevin dynamics, Euler-Maruyama (EM),
and Probability Flow, where the latter solves an ODE instead of an SDE using Runge-Kutta 45
(Dormand and Prince, 1980). We also compare against the fast solver by (Song et al., 2020b) called
denoising diffusion implicit models (DDIM), which is only defined for VP models. We define the
baseline approach as the solver used by Song et al. (2020a) which leads to the lowest FID (EM for
VP models and Reverse-Diffusion with Langevin for VE models). For our algorithm, the only free
hyperparameter is the relative tolerance which we set to εrel ∈ {0.01, 0.02, 0.05, 0.1, 0.5}.
The FID and the Number of score Function Evaluations (NFE) are described in Table 1 for low-
resolution images and Table 2 for high-resolution images. The Inception Score (IS) is described for
CIFAR-10 in Appendix E.

4.1 PERFORMANCE

Compared to EM, we observe that our method is immediately advantageous in terms of qual-
ity/diversity for high-resolution images, along with 2 to 3× speedups (εrel = 0.02). While this
advantage becomes less obvious in terms of the FID on CIFAR-10, our method still offers > 5×
computational speedups at no apparent disadvantage (εrel ∈ {0.02, 0.05}).
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Table 1: Number of score Function Evaluations (NFE) / Fréchet Inception Distance (FID) on CIFAR-
10 (32x32) from 50K samples

Method VP VP-deep VE VE-deep

Reverse-Diffusion & Langevin 1999 / 3.41 1999 / 3.28 1999 / 2.40 1999 / 2.21
Euler-Maruyama 1000 / 2.55 1000 / 2.49 1000 / 2.98 1000 / 3.14

DDIM 1000 / 2.86 1000 / 2.69 – –

Ours (εrel = 0.01) 329 / 2.70 330 / 2.56 738 / 2.91 736 / 3.06
Euler-Maruyama (same NFE) 329 / 10.28 330 / 10.00 738 / 2.99 736 / 3.17

DDIM (same NFE) 329 / 4.81 330 / 4.76 – –

Ours (εrel = 0.02) 274 / 2.74 274 / 2.60 490 / 2.87 488 / 2.99
Euler-Maruyama (same NFE) 274 / 14.18 274 / 13.67 490 / 3.05 488 / 3.21

DDIM (same NFE) 274 / 5.75 274 / 5.74 – –

Ours (εrel = 0.05) 179 / 2.59 180 / 2.44 271 / 3.23 270 / 3.40
Euler-Maruyama (same NFE) 179 / 25.49 180 / 25.05 271 / 3.48 270 / 3.76

DDIM (same NFE) 179 / 9.20 180 / 9.25 – –

Ours (εrel = 0.10) 147 / 2.95 151 / 2.73 170 / 8.85 170 / 10.15
Euler-Maruyama (same NFE) 147 / 31.38 151 / 31.93 170 / 5.12 170 / 5.56

DDIM (same NFE) 147 / 11.53 151 / 11.38 – –

Ours (εrel = 0.50) 49 / 72.29 48 / 82.42 52 / 266.75 50 / 307.32
Euler-Maruyama (same NFE) 49 / 92.99 48 / 95.77 52 / 169.32 50 / 271.27

DDIM (same NFE) 49 / 37.24 48 / 38.71 – –

Probability Flow (ODE) 142 / 3.11 145 / 2.86 183 / 7.64 181 / 5.53

Table 2: Number of score Function Evaluations (NFE) / Fréchet Inception Distance (FID) on LSUN-
Church (256x256) and FFHQ (256x256) from 5K samples

Method VE (Church) VE (FFHQ)

Reverse-Diffusion & Langevin 3999 / 29.14 3999 / 16.42

Euler-Maruyama 2000 / 42.11 2000 / 18.57

Ours (εrel = 0.01) 1104 / 25.67 1020 /15.68
Euler-Maruyama (same NFE) 1104 / 68.24 1020 / 20.45

Ours (εrel = 0.02) 1030 / 26.46 643 / 15.67
Euler-Maruyama (same NFE) 1030 / 73.47 643 / 44.42

Ours (εrel = 0.05) 648 / 28.47 336 / 18.07
Euler-Maruyama (same NFE) 648 / 145.96 336 / 114.23

Ours (εrel = 0.10) 201 / 45.92 198 / 24.02
Euler-Maruyama (same NFE) 201 / 417.77 198 / 284.61

Probability Flow (ODE) 434 / 214.47 369 / 135.50
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Reverse-Diffusion with Langevin achieves the lowest FID for VE models on CIFAR-10, though at
the cost of a 4× computational overhead over our method. Furthermore, their advantage vanishes for
VP models and when generating high-resolution images.

We further compare our SDE solver to EM given the same computational budget and observe that
our method is always immensely preferable in high-resolutions and for VP models. For VE models
on CIFAR-10, we observe that our algorithm leads to a better FID as long as the NFE is sufficiently
large (270). Note that since our algorithm takes two score function evaluations per step, EM has
the advantage of doing twice as many steps given the same NFE, which appears to be a factor more
important than the order of the method at low budget in low-resolution VE. Nevertheless, comparing
for equal number of iterative step, the results still point to our method being always preferable. For
high-resolution images, we see that EM cannot converge on moderate to small NFEs due to the
high-dimensionality, making of our SDE solver the way to go.

Generally, we observe that the VE process cannot be solved as fast as the VP process; this is due to
the enormous Gaussian noise in the VE process causing larger local errors. This reflects the issue
mentioned in Section 3.1.1 regarding high-order SDE solvers not always being beneficial in terms of
speed for SDEs with heavy Gaussian noise. In practice, for VE, the algorithm uses a small step size
in the beginning to ensure high accuracy and eventually increases the step size as the noise becomes
less considerable.

4.2 SOLVING AN ODE INSTEAD OF AN SDE

We see that our SDE solver generally does better than Probability Flow, especially in high-resolution,
where we obtain greatly lower FIDs with a similar budget. Our algorithm attains the same NFE as
Probability Flow when εrel = 0.10 for low-resolution images and when 0.05 < εrel < 0.10 for
high-resolution images. For the same budget, Probability Flow has higher FID than our approach
on all but low-resolution VE models. However, in that case, our algorithm achieves a much lower
FID when εrel ≤ 0.05, albeit slower. In high-resolution, Probability Flow leads to very poor FIDs,
suggesting no convergence.

4.3 DDIM

Contrary to Song et al. (2020b),the FID of DDIM worsens significantly when the NFE decreases.
This could be due to differences between Song et al. (2020a) continuous-time score-matching and the
DDIM training procedure and architecture. Nevertheless, the FID increase engendered by a reduced
budget is much less dramatic than for EM. As of note, DDIM succeeds in maintaining a lower FID
than our solver at extremely small NFEs (< 50), albeit with extremely poor FID.

5 LIMITATIONS

Although we tested our approach on a wide range of settings, we nevertheless only tested on
continuous-time image generation models. We did so because solving the SDE requires continuous-
time and the only such pre-trained models at time of publishing are the one by Song et al. (2020a).

Although our approach removes step size and schedule tuning, we still need to choose a value of the
relative tolerance, which indirectly affects the number of steps taken; one could theoretically tune
this hyper-parameter to optimize a certain metric, going against the point of removing tuning. Still,
letting εrel = 0.01 for precise results and εrel = 0.05 for fast results are reasonable choices, as all
evidence points to the FID being stable w.r.t. εrel.

6 CONCLUSION

We built an SDE solver that allows for generating images of comparable (or better) quality to
Euler-Maruyama at a much faster speed. Our approach makes image generation with score-based
models more accessible by shrinking the required computational budgets by a factor of 2 to 5×, and
presenting a sensible way of compromising quality for additional speed.
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APPENDICES

A DIFFERENTIALEQUATIONS.JL

Table 3: Short experiments with various SDE solvers from DifferentialEquations.jl on the VP model
with a small mini-batch.

Method Strong-Order Adaptive Speed

Euler-Maruyama (EM) 0.5 No Baseline speed
SOSRA (Rößler, 2010) 1.5 Yes 5.92 times slower
SRA3 (Rößler, 2010) 1.5 Yes 6.93 times slower

Lamba EM (default) (Lamba, 2003) 0.5 Yes Did not converge
Lamba EM (atol=1e-3) (Lamba, 2003) 0.5 Yes 2 times faster

Lamba EM (atol=1e-3, rtol=1e-3) (Lamba, 2003) 0.5 Yes 1.27 times faster
Euler-Heun 0.5 No 1.86 times slower

Lamba Euler-Heun (Lamba, 2003) 0.5 Yes 1.75 times faster
SOSRI (Rößler, 2010) 1.5 Yes 8.57 times slower

RKMil (at various tolerances) (Kloeden and Platen, 1992) 1.0 Yes Did not converge
ImplicitRKMil (Kloeden and Platen, 1992) 1.0 Yes Did not converge

ISSEM 0.5 Yes Did not converge

Here, we report the preliminary experiments we ran with the DifferentialEquations.jl Julia package
(Rackauckas and Nie, 2017a) before devising our own SDE solver. As can be seen, most methods
either did not converge (with warnings of "instability detected") or converged, but were much slower
than Euler-Maruyama. The only promising method was Lamba’s method (Lamba, 2003). Note that
an algorithm has strong-order p when the local error from t to t+ h is O(hp+1)).

B EFFECTS OF MODIFYING ALGORITHM 1

Table 4: Effect of different settings on the [Inception score (IS) / Fréchet Inception Distance (FID) /
Number of score Function Evaluations (NFE)] from 10k samples (with mini-batches of 1k samples)
with the VP - CIFAR10 model.

Change(s) in Algorithm 1 IS FID NFE

No change
[
q = 2, r = 0.9, δ(x′,x′prev)

]
9.38 4.70 3972

Small modifications

δ(x′) 9.26 4.69 4166
No Extrapolation (thus, using Euler–Maruyama) 9.58 11.73 3978
q =∞ 9.48 4.90 14462
r = .5 9.41 4.69 4104
r = .8 9.36 4.68 3938
r = 1 9.41 4.69 4048

Variations of Lamba (2003) Algorithm

r = 0.5, Lamba integration 7.80 52.98 1468
r = 0.5, Lamba integration, Extrapolation 7.32 64.65 1438
r = 0.5, Lamba integration, q =∞ 9.28 21.09 2360
r = 0.5, Lamba integration, q =∞, θ = 0.8 9.21 18.82 2346

As can be seen, most chosen settings lead to better results. However, r seems to have little impact on
the FID. Still, using r ∈ [0.8, 0.9] lead to a little bit less score function evaluations and sometimes
lead to lower FID.
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Table 5: Effect of different settings on the [Inception score (IS) / Fréchet Inception Distance (FID) /
Number of score Function Evaluations (NFE)] from 10k samples (with mini-batches of 1k samples)
with the VE - CIFAR10 model.

Change(s) in Algorithm 1 IS FID NFE

No change
[
q = 2, r = 0.9, δ(x′,x′prev)

]
9.39 4.89 8856

Small modifications

δ(x′) 9.39 4.99 17514
No Extrapolation (thus, using Euler–Maruyama) 9.58 6.57 8802
q =∞ 9.41 5.03 39500
r = 0.5 9.47 4.87 9594
r = 0.8 9.45 4.84 8952
r = 1 9.43 4.93 8784

Variations of Lamba (2003) Algorithm

r = 0.5, Lamba integration 9.08 18.28 2492
r = 0.5, Lamba integration, Extrapolation 3.70 169.78 2252
r = 0.5, Lamba integration, q =∞ 9.42 6.80 5886
r = 0.5, Lamba integration, q =∞, θ = 0.8 9.35 6.20 2970

We notice that using q =∞ and δ(x′) lead to higher NFE as we expect. However, they also generally
lead to higher FID, thus lower quality/diversity, which is not expected! We hypothesized that this
might be due to the large number of steps taken when using q = ∞ and δ(x′). To test this, we
trained the VE and VP models with Euler-Maruyama with 10k steps instead of 1k steps and we
indeed obtained higher FIDs. This means that taking too many steps leads to worse performance in
score-based models.

Worse quality from taking more steps should typically not happen as more steps should mean a more
precise trajectory. We hypothesize this to be caused by the difference between using the actual score
function instead of using the pre-trained score-network; given the errors in the score network, it may
be that taking too many steps leads to some deviations from the right solution. Alternatively, this
could also be due to the metric, as no existing quality/diversity metrics for generative models is truly
perfect; but we believe that this hypothesis is less plausible than the increasing errors from using the
score-network.
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C DYNAMIC STEP SIZE ALGORITHM FOR SOLVING ANY TYPE OF SDE
(RATHER THAN JUST REVERSE DIFFUSION PROCESSES)

Assume, we have a Diffusion Process of the form:

dx = f(x, t)dt+ g(x, t)dw. (7)

The algorithm to solve it is represented in Algorithm 2. The differences are:

• it is in forward-time
• the range of time must be given
• The diffusion can depend on x, which leads to a slightly more complicated formulation that

depends on some random number s = ±1 (Roberts, 2012).
• we retain the full trajectory instead of only the ending
• we retain the noise after a rejection to ensure that there is no bias in the rejections

Algorithm 2 Dynamic step size extrapolation for solving arbitrary (forward-time) Diffusion Processes

Require: sθ, tbegin, tend, εrel, εabs, hinit = 0.01, r = 0.9, θ = 0.9
t← tbegin
h← hinit
Initialize x(t)
x′prev ← x
Draw z ∼ N (0, I)
while t < tend do

if Stratonovich SDE or g(x, t) = g(x) then
s← 0

else . Itō diffusion
Draw s ∼ Uniform({−1, 1})

x′ ← x(t) + hf(x(t), t) +
√
hg(x(t), t)(z− s) . Euler-Maruyama

x̃← x(t) + hf(x′, t+ h) +
√
hg(x′, t+ h)(z + s)

x′′ ← 1
2 (x
′ + x̃) . Improved Euler (SDE version)

δ ← max(εabs, εrelmax(|x′|, |x′prev|)) . Element-wise operations
E2 ← 1√

n
‖(x′ − x′′) /δ‖2

if E2 ≤ 1 then . Accept
t← t+ h
x(t)← x′′ . Extrapolation
x′prev ← x′

Draw z ∼ N (0, I)

h← min(t, θhE−r2 ) . Dynamic step size update
return x
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D IMPLEMENTATION DETAILS

We started from the original code by Song et al. (2020a) but changed a few settings concerning the
SDE solving. This creates some very minor difference between their reported results and ours. For
the VP and VP-deep models, we obtained 2.55 and 2.49 instead of the original 2.55 and 2.41 for the
baseline method (EM). For the VE and VE-deep models, we obtained 2.40 and 2.21 instead of the
original 2.38 and 2.20 for the baseline method (Reverse-Diffusion with Langevin).

As done in Song et al. (2020a), we used the optimal signal-to-noise ratio of 0.01 for the Langevin
corrector.

When solving the SDE, time followed the sequence t0 = 1, ti = ti−1 − 1−ε
N , where N = 1000 for

CIFAR-10, N = 2000 for LSUN, ε = 1e− 3 for VP models, and ε = 1e− 5 for VE models.

Meanwhile, the actual step size h used in the code for Euler-Maruyama (EM) was equal to 1
N . Thus,

there was a negligible difference between the step size used in the algorithm (h = 1
N ) and the actual

step size implied by t (h = 1−ε
N ). Note that this has little to no impact.

The bigger issue is at the last predictor step was going from t = ε to t = ε− 1
N < 0. Thus, t was

made negative. Furthermore the sample was denoised at t < 0 while assuming t = ε. There are two
ways to fix this issue: 1) take only a step from t = ε to t = 0 and do not denoise (since you cannot
denoise with the incorrect t or with t = 0), or 2) stop at t = ε and then denoise. Since denoising is
very helpful, we took approach 2; however, both approaches are sensible.

Finally, denoising was not implemented correctly before. Denoising was implemented as one
predictor step (Reverse-Diffusion or EM) without adding noise. This corresponds to:

x← x− h
[
f(x, t)− g(t)2∇x log pt(x)

]
.

At the last iteration, this incorrect denoising would be:

x← x +
d[σ2(t)]

dt

1

N
∇x log pt(x)

= x +
σmin
N

√
2 log

(
σmax
σmin

)
∇x log pt(x)

≈ x

for VE and

x← x +

√
βmin
N

∇x log pt(x)

≈ x

for VP.

Meanwhile, the correct way to denoise based on Tweedie formula (Efron, 2011) is:

x← x + Var[x(t)|x(0)]∇x log pt(x),

where Var[x(t)|x(0)] is the variance of the transition kernel: Var[x(t)|x(0)] = σmin = 0.01 for VE
and Var[x(t)|x(0)] = 1. This means that the correct Tweedie formula corresponds to

x← x + 0.012∇x log pt(x)

≈ x

for VE and
x← x +∇x log pt(x)

for VP.

As can be seen, denoising has a very small impact on VE so the difference between the correct and
incorrect denoising is minor. Meanwhile, for VP the incorrect denoising lead to a tiny change, while
the correct denoising lead to a large change. In practice, we observe that changing the denoising
method to the correct one does not significantly affect the FID with VE, but lowers down the FID
significantly with VP.
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E INCEPTION SCORE ON CIFAR-10

Table 6: Inception Score on CIFAR-10 (32x32) from 50K samples

Method VP VP-deep VE VE-deep

Reverse-Diffusion & Langevin 9.94 9.85 9.86 9.83

Euler-Maruyama 9.71 9.73 9.49 9.31
Ours (εrel = 0.01) 9.46 9.54 9.50 9.48
Ours (εrel = 0.02) 9.51 9.48 9.57 9.50
Ours (εrel = 0.05) 9.50 9.61 9.64 9.63
Ours (εrel = 0.10) 9.69 9.64 9.87 9.75

Probability Flow (ODE) 9.37 9.33 9.17 9.32

F STABILITY AND BIAS OF THE NUMERICAL SCHEME

The following constructions rely on the underlying assumption of the stochastic dynamics being
driven by a wiener process. More so, we also assume that the Brownian motion is time symmetrical.
Both assumptions are consistent and widely used in the literature; for example, see (Gardiner, 2009)
(Arnold, 1974).

The method described in Algorithm 1 gives us a significant speedup in terms of computing time and
actions. Albeit the speed up comes from a piece-wise step in the algorithm combining the traditional
Euler Maruyama (EM) with a form of adaptive step size predictor-corrector. Here we show that both
the stability and the convergence of the EM scheme are conserved by introducing the extra adaptive
stepsize of our new scheme. As a first step, we define the stability and bias in a Stochastic Differential
Equation (SDE) numerical solution.

We denote <(λ) as the real value of a complex-valued λ.

The linear test SDE is defined in the following way:

dxt = λxtdt+ σdwt (8)

with its numerical counterpart
yn+1 = < (hλ)yn + zn,

where the zn are random variables that do not depend on y0,y1......yn or λ and the EM scheme is

yn+1 = (1 + hλ)yn + zn.

A numerical scheme is asymptotically unbiased with step size h > 0 if, for a given linear SDE (8)
driven by a two-sided Wiener process, the distribution of the numerical solution yn converges as
n→∞ to the normal distribution with zero mean and variance σ2

2|λ| (Artemiev and Averina, 2011).
This stems from the fact that a solution of a linear SDE (8) is a Gaussian process whenever the initial
condition is Gaussian (or deterministic); thus, there are only two moments that control the bias in the
algorithm:

lim
n→∞

E [yn] = 0, lim
n→∞

E
[
y2
n

]
= − σ2

2 |λ|
.

A numerical scheme with step size h is numerically stable in mean if the numerical solution y
(h)
n

applied to a linear SDE satisfies
lim
n→∞

E [yn] = 0,

and is stable in mean square (Saito and Mitsui, 1996) if we have that

lim
h→0

(
lim
n→∞

E
[
|yn|

2
])

=
σ2

2<(λ)
.
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In what follows, we will trace the criteria for bias through our algorithm and show that it remains
unbiased. By construction, the first EM step remains unbiased, while for the RDP, we write down the
time reverse Wiener process as

ỹn+1 = (1 + λh) ỹn + z̃n

in the reverse time steps h i.e., t− nh, t− 2nh,

E
[
ỹn+1

]
= (1 + λ (t− h))E [ỹn]

= (1 + λ (t− h))E
[
(1 + λ (t− h)) ỹn−1

]
...

= (1 + λ (t− h))n+1 E [ỹ0]

= (1 + λ (t− h))n+1 E [y0] .

Thus, if
|1 + λ (t− h)| < 1,

then
lim
n→∞

E
[
y(h)
n

]
= 0.

In Algorithm 1, we are performing consecutive steps forward and backwards in time so t = 2h such
that

|1 + λh| < 1.

Thus, the scheme is both numerically stable and unbiased with respect to the mean.

Next, we focus on the numerical solution in mean square:

E
[∣∣ỹn+1

∣∣2] = |1 + λ (t− h)|2 E
[
|ỹn|

2
]
+ σ2h

= |1 + λ (t− h)|2
{
|1 + λ (t− h)|2 E

[∣∣ỹn−1∣∣2]+ σ2h
}
+ σ2h

...

= |1 + λ (t− h)|2(n+1) E [|y0|] +
|1 + λ (t− h)|2(n+1) − 1

2<λ+ |λ|2 (t− h)
σ2.

Under the same assumption of consecutive steps, we have that

E
[∣∣ỹn+1

∣∣2] = |1 + λh|2(n+1) E [|y0|] +
|1 + λh|2(n+1) − 1

2<(λ) + |λ|2 h
σ2,

lim
n→∞

E
[∣∣ỹn+1

∣∣2] = − σ2

2<(λ) + |λ|2 h
,

lim
h→0

(
lim
n→∞

E
[∣∣ỹn+1

∣∣2]) = − σ2

2<(λ)
.

Assuming the imaginary part of λ is null, we have that

lim
h→0

(
lim
n→∞

E
[∣∣ỹn+1

∣∣2]) = − σ2

2 |λ|
.

Thus, the numerical scheme is stable and unbiased in the mean square.

Following the two steps for computation of x′ and x̃, the step size decreases and does not change
size; thus, all the above statements hold, and the entire algorithm is stable and unbiased with respect
to both the mean and square mean.
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G SAMPLES

(a) Dynamic-step Extrapolation (ε = 0.01) (b) Dynamic-step Extrapolation (ε = 0.02)

(c) Dynamic-step Extrapolation (ε = 0.05) (d) Dynamic-step Extrapolation (ε = 0.10)

Figure 2: VP - CIFAR10
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(a) Dynamic-step Extrapolation (ε = 0.01) (b) Dynamic-step Extrapolation (ε = 0.02)

(c) Dynamic-step Extrapolation (ε = 0.05) (d) Dynamic-step Extrapolation (ε = 0.10)

Figure 3: VP-deep - CIFAR10
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(a) Dynamic-step Extrapolation (ε = 0.01) (b) Dynamic-step Extrapolation (ε = 0.02)

(c) Dynamic-step Extrapolation (ε = 0.05) (d) Dynamic-step Extrapolation (ε = 0.10)

Figure 4: VE - CIFAR10
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(a) Dynamic-step Extrapolation (ε = 0.01) (b) Dynamic-step Extrapolation (ε = 0.02)

(c) Dynamic-step Extrapolation (ε = 0.05) (d) Dynamic-step Extrapolation (ε = 0.10)

Figure 5: VE-deep - CIFAR10
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(a) Dynamic-step Extrapolation (ε = 0.01) (b) Dynamic-step Extrapolation (ε = 0.02)

(c) Dynamic-step Extrapolation (ε = 0.05) (d) Dynamic-step Extrapolation (ε = 0.10)

Figure 6: VE - LSUN-Church (256x256)
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(a) Dynamic-step Extrapolation (ε = 0.01) (b) Dynamic-step Extrapolation (ε = 0.02)

(c) Dynamic-step Extrapolation (ε = 0.05) (d) Dynamic-step Extrapolation (ε = 0.10)

Figure 7: VE - FFHQ (256x256)
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