
Li-ion Battery Material phase prediction through
Hierarchical Curriculum Learning

Anika Tabassum∗, Nikhil Muralidhar∆, Ramakrishnan Kannan∗, Srikanth Allu∗
∗Oak Ridge National Laboratory

∆Department of Computer Science, Stevens Institute of Technology
{tabassuma,kannanr,allus}@ornl.gov, nmurali1@stevens.edu

Abstract

Li-ion Batteries (LIB), one of the most efficient energy storage devices, are widely
adopted in many industrial applications. Imaging data of these battery electrodes
obtained from X-ray tomography can explain the distribution of material con-
stituents and allow reconstructions to study electron transport pathways. Therefore,
it can eventually help quantify various associated properties of electrodes (e.g.,
volume-specific surface area, porosity) which determine the performance of batter-
ies. However, these images often suffer from low image contrast between multiple
material constituents , making it difficult for humans to distinguish and characterize
these constituents through visualization. A minor error in detecting distributions
among the material constituents can lead to a high error in the calculated param-
eters of material properties. We present a novel hierarchical curriculum learning
framework to address the complex task of estimating material constituent distribu-
tion in battery electrodes. To provide spatially smooth prediction, our framework
comprises three modules: (i) an uncertainty-aware model trained to yield inferences
conditioned upon global knowledge of material distribution, (ii) a technique to
capture relatively more fine-grained (local) distributional signals, (iii) an aggrega-
tor to appropriately fuse the local and global effects towards obtaining the final
distribution.

1 Introduction

Lithium Ion batteries (LIB) are an advanced energy storage technology employed across many highly
impactful mechanical and technological applications ranging from electric vehicles to smartphones
and laptops. A critical facet of the functioning of LIB is the two electrodes (i.e., anode and cathode)
that enable the storage and flow of electricity. These electrodes are typically composite materials
consisting of electro-chemically active material particles (e.g., Li, Ni, Mn) and a polymeric binder
(e.g., C) to bind the active material particles onto a substrate (typically a thin aluminum sheet). During
battery manufacture, these ingredients (i.e., active material particles and binder) are mixed in solvent
and finally coated onto the thin aluminum substrate. The coating and the substrate together form the
electrode.

Motivation: The microstructure of these composite electrode coatings significantly influences the
LIB performance. Specifically, homogeneity of the coating thickness across the entire electrode
ensures optimal electrical conductivity. Since the primary purpose of the binder used in electrodes is
to hold the active material in the electrodes, the distribution of the binder throughout the electrode
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Figure 1: Motivation for MatPhase. (a) shows a micro-scale image of a portion of electrode sample.
The varying intensities across the image represents possible transitions among material constituents
which cannot be easily perceived by human. (b) Heatmap of predictions for the corresponding pixels
obtained through a popular image segmentation model Ronneberger et al. [2015] (grey, white and
black pixels denote Ni, C, and pore respectively). (c) Shows the output after adopting our proposed
hierarchical curriculum learning. The red rectangles indicate some of the prediction differences
between (b) and (c). Predictions at (c) are more smooth and free of artifacts.

coating determines the thickness of the coating. The lack of homogeneous distribution of the binder
(and thereby the active material) can also lead to the absence of electrode coating in certain regions
termed pores, thereby impeding the current flow in those regions, causing degradation in battery
performance.

Many approaches have been proposed to account for the binder distribution but are all heuristic
in nature. Despite the advancements in imaging (e.g., X-ray microtomography), there has been
noticeable difficulty in resolving the location of all phases (i.e., active materials, binder, pores)
within the microstructure Pietsch et al. [2018]. Since, existing imaging tools (at micro-scale) cannot
distinguish spatial distributions due to the complex microstructures and various compositional
materials of electrodes, identifying material constituents and phase transition in the microstructure of
electrode coating from low contrast imaging (i.e., X-ray microtomography) becomes challenging.

Fig. 1(a) shows an example of a low contrast micro-scale image of an electrode. Every pixel of the
image either contains carbon binder (C) or active particles, e.g., nickel (Ni), or a pore. Clearly, it
is impossible to distinguish phase transitions between two material constituents by the human eye.
Thus, we leverage the power of machine learning techniques to address the problem of material phase
prediction from micro-scale images. Specifically, we develop a framework to label each pixel in
an image with its material phase (i.e., C, Ni, or Pore). We treat this problem of pixel-wise material
phase identification as an image segmentation task. Popular image segmentation architectures, (e.g.,
U-Net Ronneberger et al. [2015]), do not translate well to the current task. Fig. 1(b) shows the
predicted material constituents for each pixel obtained by U-Net. Although U-Net effectively captures
the global properties of material constituents, it fails to predict the phase boundaries (i.e., transition
between two constituents) accurately. Additionally, the model predictions from U-Net also lead
to artifacts (i.e., small regions of discontinuous predictions) especially at the phase boundary (see
Fig. 1(b) - red rectangles are used to highlight artifacts). Accurate prediction of these constituents at
phase boundaries is crucial as this influences the quantification of various physical properties of the
electrode by domain experts. Even a minor error in predicting these phase boundaries translates to a
high error in calculating the physical properties of the material.

We posit that the failure of traditional segmentation models to represent the microstructure accurately
is two-fold: (a) the inability of flat modeling architectures to learn at different granularity across
different regions of the microstructure. For example, predictions conditioned upon a coarse-grained
representation might suffice in a homogeneous region of the microstructure. In contrast, a less
homogeneous region (i.e., a region concentrated with many constituents) requires a relatively more
fine-grained representation learning ability (b) traditional segmentation models do not possess the
ability to accurately distinguish between tasks of differing degrees of difficulty (e.g., predicting pixels
at phase transitions vs. predicting pixels within a single phase).

To address these failure modes, we propose a novel deep-learning framework, Material Phase
Prediction (MatPhase), for LIB microstructure reconstruction. To address failure mode (a), we
introduce two architectures that are designed to learn representations at varying complexities (i.e.,
a coarse-grained model and a fine-grained model). To address the failure mode (b), we develop a
hierarchical curriculum learning framework to automatically distinguish between regions with low
and high degrees of prediction difficulty. Fig. 1(c) shows our final predicted result after incorporating
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curriculum learning. Comparing with Fig. 1(b), see the pixels within corresponding red rectangles
like the leftmost red rectangle. The small black dot of pore is not seen in the corresponding rectangle
in Fig. 1(c). Overall, our predictions are smoother around phase boundaries without the artifacts that
are apparent without using the curriculum.

Our Contribution: To the best of our knowledge, there is no existing technique to identify the
complex phase boundaries from low contrast tomography images of electrodes, and MatPhase is the
first attempt to address this challenge. Our contributions are: (i) We develop a novel uncertainty-aware
ML framework MatPhase to predict material phases of electrodes from low-contrast micro-scale
image samples obtained through X-ray tomography. (ii) First time in the literature, we introduce
a hierarchical curriculum learning technique to predict the fine-grained material phase boundaries
from a low-contrast image. (iii) To aid smooth fine-grained phase boundary prediction, we build a
multi-class classifier which can capture both local and global representations. (iv) Through rigorous
experiments, we show MatPhase yield better predictions than any non-trivial competitors.

2 Background and Preliminaries

We consider each individual material constituent in a low contrast micro-scale image of an electrode
as a class and state our problem as a downstream task of material phase prediction.

Problem 2.1 (Material Phase Prediction). Given, a set of labeled datasets D = (X ,Y)
N
i=1, and a

set of classes C. Each Xi ∈ X is an image of n×m pixels. Yi ∈ Y consists of n×m instances1

for the corresponding pixels in Xi, where each instance belongs to a class c ∈ C. Predict, Ŷ for an
unlabeled X.

Hierarchical Curriculum Learning: A learning task often requires a set of multiple curricula S
(i.e., ordered learning strategies) to enable a model to learn effective representations. It is possible
that these multiple curricula could each govern a subset of the overall dataset D. Additionally, the set
of curricula {s1, .., sn} ∈ S themselves have (latent) dependencies. In such a scenario, we introduce
the paradigm of hierarchical curriculum learning (HCL) as a solution to address learning in the
aforementioned context.

We define the goal of hierarchical curriculum learning (HCL) as being the implementation of multiple
complementary curriculum strategies in a hierarchical fashion to order data by relative hardness (i.e.,
from easy to hard). Specifically, assume S = {s1, s2} where |S| (i.e., number of curricula) may be
derived by expert knowledge. Further, let us assume h(s1) < h(s2) where h(·) is a hardness measure
also specified by a domain expert. s1 may for instance be considered the curriculum geared toward
learning global properties of the problem while s2 may be the curriculum for learning (nuanced) local
variations (thus h(s1) < h(s2)).

In this context, automatic-HCL comprises a learning framework which automatically learns to
address the task of interest by first partitioning D into D = {D1,D2} such that D1 ⊆ D, D2 ⊆ D,
D1 ∩ D2 = ∅ and h(D1) < h(D2). The partitioning step may be viewed as a coarse-grained
curriculum that initially restricts learning to the easier instances in the dataset. This partitioning step
not only learns effective representations for D1 but is also designed to yield fine-grained curricula
for training models on the harder D2 data. Hence, the coarse and fine-grained curricula together
comprise an automatic-HCL framework for effective learning of the task of interest.

3 Our Framework

This section describes our framework MatPhase, which predicts material phases from low-contrast
images not easily perceived by humans. MatPhase first predicts the material phases through a global
model (learning global data features). This is followed by a data partitioning step governed by the
performance of global model on D, which forms the coarse-grained curriculum. The partitioning
step concludes with the global model which learns the properties of easier data partition (D1), while
yieliding a measure of hardness for D2, which forms the fine-grained curriculum. We design a local
model to be trained on D2, governed by the fine-grained curriculum to learn local data features.

1We employ the word ‘pixel’ and ‘instance’ interchangeably throughout the paper
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3.1 Uncertainty-aware Global Segmentation Model (UGSM)

We initially view Problem 2.1 as an image segmentation task using U-Net Ronneberger et al. [2015]
due to its precise object localization and adaptability to be trained with a few samples. However,
to achieve smooth prediction (as mentioned in Sec. 1 Fig. 1), we pursue U-Net as a global model
instead. Our idea is to leverage a course-grained curriculum which learns the global representations
of the model. Then, partition the incorrectly predicted instances (i.e., harder data D2) from the
correctly predicted instances (D1). Hence, we aim for an uncertainty-aware global segmentation
model (UGSM). Our assumption A1 is: high uncertainty tends to incorrect predictions. We pursue
Monte-Carlo Dropout (MCD) based uncertainty estimation Gal and Ghahramani [2016] due to its
easy adaptability by any deep-learning model. For UGSM, we incorporate a dropout layer (dropout
probability 0.5) after each convolution block of U-Net proposed by DeVries et al. DeVries and Taylor
[2018]. During inference, UGSM samples T predictions. For each input X, the final output of
UGSM consists of two pairs: (i) predicted class per pixel, i.e, ŶG ∈ Rn×m, (ii) an uncertainty map
UG ∈ Rn×m. Suppose, UGSM samples a set of logits P = {Pi}Ti=1, where Pi ∈ R|C|×n×m. Now
if F = 1

T

∑
Pi∈P Pi. ŶG = argmax softmax(F).

For uncertainty map UG, we compute the entropy each instance. Suppose, pic is the probability that
UGSM labels instance i as class c. We calculate ui = −

∑
c∈C pclog(pc).

3.2 Automatic Hierarchical Curriculum Learning (HCL)

Figure 2: Motivating coarse-grained HCL: (a) Uncertainty map by UGSM (b) Heatmap of the
predictions for same input of Fig. (a). Red pixels are incorrect predictions. All other pixels are
correct predictions (black as pore, white as C, and grey as Ni). The density of red instances in Fig.
(b) is higher than pixels with high uncertainty value in Fig. (a), indicating that UGSM also assigns
low uncertainties to a significant portion of incorrect predictions invalidating assumption A1.

As mentioned in Sec. 2, our automatic HCL consists of coarse-grained curriculum s1 and a fine-
grained curriculum s2. We view the incorrectly predicted instances of UGSM as harder data D2.
In this context, our curriculum s1 is the process of automatically partitioning D into D1 and D2,
where D1 is the set of correctly predicted instances of UGSM. If assumption A1 was to hold, s1
could be a simple rule-based classifier with a pre-set uncertainty threshold that identifies D2 using
the uncertainty map UG obtained by UGSM. Fig. 2 (a) shows example of an uncertainty map of
UGSM for an image X. The high values (white colored pixels) denote high uncertainty. We observe
that majority of the instances with high uncertainty lie at the phase boundaries. Fig. 2(b) shows the
heatmap of the ground-truth label (material phases) for the same input X. The red pixels represent
incorrect predictions of UGSM. We notice that the number of incorrect classifications (Fig. 2(b) red
pixels) is much higher than the number of instances with high uncertainty (Fig. 2(a)). This implies that
UGSM assigns low uncertainties to a significant portion of instances that it predicts incorrectly. This
implies that our simplistic assumption A1 is a necessary but not a sufficient condition for identifying
incorrect predictions in the context of the current model pipeline. Our goal through curriculum s1 is
hence to segregate (i.e., coarse-grained curriculum) all these red instances as D2.Next, we briefly
describe the coarse-grained and fine-grained curriculum.

Coarse-grained curriculum (HCL-IDK): We intend s1 to automatically learn the representations of
D1 and D2 by UGSM for partitioning. Fig. 3 shows the heatmaps of the UGSM logits, F of each
class c ∈ C (pore, carbon, and nickel) for the input X in Fig. 2. For e.g., consider Fig. 3(b) which is
the heatmap of the logits of class carbon. The logits for all the pixels that contains class carbon (C)
bear values within range (2, 6). Also, the logits of the pixels across the C boundaries bear similar
values, i.e., all values within range (0.5, 1), (pixels colored in white). Comparing with Fig. 2(b),
we see these white pixels or pixels of carbon boundaries (at Fig. 3(b)) match with the incorrectly
predicted red pixels around carbon (Fig. 2(b)). We observe similar behavior for the heatmaps of logits
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Figure 3: Heatmap of the logits of UGSM for the same input image of Fig. 2. Each Fig. corresponds
to logits of class (a) Pore, (b) C, and (c) Ni. These heatmaps has high values (blue pixels) that
corresponds to the predicted pixel class. Each heatmap also shows similar weights (pixels in white)
around the class boundaries. Density of these white pixels mostly match with the incorrectly predicted
red pixels in Fig. 2 (b). This motivates to view the incorrectly predicted pixels as "I dont Know" class.

of class pore and nickel. Hence, we can make an assumption A2: incorrectly predicted instances bear
similar weights in the UGSM logits. For A2, we consider the incorrect instances as "I don’t know"
(IDK) class.

We leverage a binary Feed-forward classifier for s1 to identify the IDK instances. The goal of the
classifier is to learn an effective latent representations for IDK through UGSM features, i.e. F and
UG. For each instance j, the input of the classifier is a vector idkj ∈ R4 which consists of the
features, i.e., F j ∈ R3 and uj . Let, YIDK be the set of all instances that classifier identifies as IDK
and Y ′

IDK be the complement of YIDK . Hence, our easy data D1 comprises of the instances present
in Y ′

IDK , and hard data D2 comprises of the instances in YIDK .

Fine grained curriculum (HCL-USI): For learning the set of hard instances in D2, we adopt
curriculum s2. Here, s2 is a fine-grained curriculum that quantifies the hardness of every instance
in D2. We employ the uncertainty map UG of UGSM as the hardness function. Hence, our s2
curriculum progresses by training with increasingly hard instances governed by the instance-wise
uncertainty of UGSM (HCL-USI).

3.3 Local Classification Model with Global Annotated Region (LCGAR)

The main goal of LCGAR is to provide smooth predictions for the IDK instances in D2. We aim
to capture both the local and global features of the target instance for this task. We motivate for
a classifier that accepts multiple features, i.e., (i) a local image of X surrounding the target IDK
instance, (ii) predicted class labels of UGSM, i.e., ŶG, (iii) UGSM logits, i.e., Fj for the target
instance j. By training our model with global features from UGSM, we intend to learn latent local
representations of target instances, hence yield smooth predictions.

We denote Lj ∈ Rh×h as bounded local region of the original input image X centered around
the candidate pixel of interest j (target IDK instance). Here h is the width/height of the bounded
region from the center of the pixel of interest. For the corresponding pixels in Lj , we incorporate
the predicted class of UGSM in the form of one hot encoder channel, i.e., a 3d input tensor (Iji ∈
R|C|×h×h). If a predicted class of Lj

i is IDK by HCL-IDK, we interpolate Iji with zero masking.

We adopt a CNN architecture of LCGAR. To capture rich information about the arrangement of the
surrounding for the target pixel of interest, we concatenate UGSM logits (F j) with the flattening
layer of CNN. The overall CNN architecture is shown in the appendix.

3.4 MatPhase Framework

Fig. 4 provides an overview of MatPhase. We first train the uncertainty-aware global segmentation
model (UGSM). For each image, X ∈ X , UGSM provides a pixel-wise prediction map (ŶG) and an
uncertainty map (UG) associated with the prediction. Our coarse-grained curriculum HCL-IDK is
trained to partition all the instances in ŶG into two sets, YIDK and Y ′

IDK . Next, the fine-grained
curriculum HCL-USI orders YIDK by increasing prediction uncertainty obtained from the UGSM
model. Next, our local model LCGAR is trained on both the global and local features to learn local
context of YIDK to yield corresponding predictions ŶL. Finally, an ensemble model aggregates ŶG

and ŶL to provide spatially smoother predictions, i.e., Ŷ. Ŷ = Ŷj
G, if j ∈ YIDK , else Ŷ = Ŷj

L.
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Figure 4: Overview of our proposed framework MatPhase which is designed to capture both global
and local representations using automatic HCL-IDK and HCL-USI, for smooth phase predictions.

4 Experiments

Our framework is implemented in PyTorch. All models are trained using 3 V100 Tesla GPUs. For
every X-Ray Computed Tomography (XCT) imaging of electrode cross-sections, we obtain the
ground-truth labels by utilizing cross-sectioning with Focused-Ion beam (FIB/SEM) experiments
Vierrath et al. [2015]. The detail of the data collection process and pre-processing is in the appendix.
Code and datasets are available for research purposes2.

Research Questions: Our goal is to demonstrate that MatPhase can capture better predictions than
any other state-of-the-art (SOTA) image segmentation models. We are interested to analyze whether
our automatic HCL framework is useful for modeling smooth phase predictions. Specifically we want
to address: Q1. Is our automatic curriculum learning (HCL) effective for modeling phase boundaries?
Q2. Does incorporating global information aid local modeling? Q3. How does MatPhase predict
over SOTA? Q1 and Q2 are aligned with justifying the effectiveness of MatPhase. With Q3, we
plan to showcase MatPhase performance comparing with multiple non-trivial competitors.

Measure of success: We evaluate the quality of MatPhase predictions on a downstream task of
Problem 2.1 for low contrast image data. We choose four evaluation metrics: (i) F1-score. (ii) Pixel
accuracy (ACC) for k best performing and worst performing predictions to evaluate smoothness of
material phase predictions. (iii) Mean intersection over union (mIU) from the standard practice of
image segmentation models Long et al. [2015], Badrinarayanan et al. [2017]. (iv) Frequency weighted
intersection over union (fIU) to evaluate in presence of class imbalance from the standard practice for
image segmentation models Long et al. [2015]. We describe each metric in the appendix.

Baselines: We compare MatPhase with SOTA image segmentation models. Specifically, to provide
pixel to pixel predictions and to compare with different variants of UGSM, we use (1) DeepLabV3 Flo-
rian and Adam [2017] (2) MANet Fan et al. [2020](3) FCN Long et al. [2015], (4) SegNet Badri-
narayanan et al. [2017], (5) U-Net Ronneberger et al. [2015], (6) U-Net++ Zhou et al. [2018]. (7)
MCD-U-Net DeVries and Taylor [2018]: Monte-Carlo dropout based U-Net, similar to our global
model UGSM. (8) Local-U-Net: Replace our local model LCGAR with a U-Net model Ronneberger
et al. [2015]. For training, we mask the cross-entropy loss values (with zeros) for the instances that
are not classified by HCL-IDK. (9) ResNet-18 He et al. [2016]: Our aim is to check with a pixel by
pixel classifier model using same the input representation of LCGAR architecture. We leverage a
ResNet-18 model, setting the bounded local region h = 11 for every instance in the image. Note that,
we also try with ResNet-34, ResNet-50 and only show the record which yield the best result. (10)
Adapted-LCGAR: Predict every instances of image with pre-trained LCGAR.

2Code repository: github.com/srikanthallu/BatteryAnalytics
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4.1 Effectiveness (Q1-Q2)

Next, we aim to demonstrate the effectiveness of MatPhase, by analyzing the importance of (i)
coarse-grained (HCL-IDK) and fine-grained (HCL-USI) curriculum of HCL, (ii) input representations
of LCGAR, which incorporates global data features of to aid local modeling.

Table 1: Effectiveness of HCL for different variants of MatPhase in terms of F1-score per class,
accuracy (%) on top 5 best performing, and lowest performing test sets, mIU, and fIU. For all metrics,
high score yields the better result (best values in bold).

Model F1 ACC(%) ACC(%) mIU fIU
Pore C Ni Best 5 Lowest 5

UGSM 0.86 0.82 0.94 91.5 ± 0.04 90.5± 0.6 0.77 0.844
MatPhase w/o HCL-USI 0.86 0.85 0.95 93.2± .07 91.7± 1.7 0.803 0.870
MatPhase 0.86 0.85 0.95 93.2± 0.02 91.9± 1.3 0.802 0.871

Effectiveness of HCL: For Q1, we want to evaluate the importance of curriculum learning. Hence,
we describe the models varying the implementation of HCL learning strategies: (i) UGSM : We obtain
the predictions from our pre-trained UGSM without any partitioning steps governed by curriculum
HCL-IDK. (ii) MatPhase w/o HCL-USI : The model is trained directly using the hard data partitioned
by HCL-IDK, which further is not learnt by HCL-USI. For testing, we replace our local model with
MatPhase w/o HCL-USI and use the same framework MatPhase. We compare the performance of
MatPhase, which is governed by both the curriculum HCL-IDK and HCL-USI against the models
mentioned above in Table 1. We evaluate multiple metrics, mean F1-score per class across all the test
datasets, average pixel accuracy rate of best 5 and worst 5 predictions, and mean IoU. For accuracy,
the values (±) denote the percentage of deviation among the 5 predictions. We observe, MatPhase
outperforms UGSM across all the metrics.

Effectiveness of UGSM features for LCGAR: For Q2, our goal is to capture how incorporating
global features of UGSM to LCGAR aid modeling predictions. We use different variants of LCGAR
varying the input representations. We train each model based on the same target instances used in
MatPhase, only changing the input representation. (i) Only-Image: Consider LCGAR input as the
local input image surrounding the target instances as mentioned in Sec. 3.3. We do not consider
UGSM logits Fj in the flattening layer. (ii) Image+UGSM-Y: LCGAR input consists of the input
images and the UGSM predictions ŶG surrounding the target instances as mentioned in Sec. 3.3.
We do not consider UGSM logits Fj . (iii) Image+UGSM-Emb: Consider LCGAR input as the local
input image surrounding the target instances. Also include logits Fj of the target instance j.

Table 2: Effectiveness of incorporating global information for modeling LCGAR. Evaluation metrics
are analogous to Table 1. MatPhase outperforms all the models (best values in bold).

Model F1 ACC (%) ACC (%) mIU fIU
Pore C Ni Best 5 Lowest 5

Only-Image 0.69 0.7 0.92 87.6± 0.08 82.2± 1.9 0.65 0.781
Image+UGSM-Y 0.84 0.84 0.95 93.3± 0.06 89.8± 0.028 0.79 0.867
Image+UGSM-Emb 0.69 0.7 0.92 87.6± 0.08 82.2± 0.019 0.65 0.781
MatPhase 0.86 0.85 0.95 93.2± 0.02 91.9± 1.3 0.802 0.871

Table 2 shows the performance of LCGAR for different input representations. MatPhase uses all the
global features as mentioned in Sec. 3.3. MatPhase clearly outperforms all the models. On average
using global features, F1- score of MatPhase increase to 0.12 (0.17 for pore, 0.15 for C, and 0.03 for
Ni) comparing with Only-Image which uses no global features. Comparing with Image+UGSM-Y,
the low mIU and fIU indicates that MatPhase predicts better phase boundaries, hence lead to smooth
prediction. Note that, all the models in Table 2 follow the exact same architecture of MatPhase, with
the only difference being the change of input to LCGAR (i.e., the local component of the MatPhase).
Details about each variant are described in Sec. 4.1.
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4.2 Comparison with baselines (Q3)

We show the performance of MatPhase against SOTA image segmentation models and some non-
trivial competitors. Our goal is to demonstrate that achieving smooth predictions for material phases
from low-contrast images is challenging and cannot be easily captured by a SOTA.

Table 3: Performance of MatPhase comparing with the baselines in terms of evaluation metrics
analogous to Table 1. High value yields the better result for all the metrics (best values in bold).

Model F1 ACC (%) ACC (%) mIU fIU
Pore C Ni Best 5 Lowest 5

DeepLabV3 0.85 0.86 0.87 90± 3.85 89± 1.87 0.76 0.83
Florian and Adam [2017]

MANet Fan et al. [2020] 0.81 0.79 0.93 90.7± 3.15 85.6± .0002 0.74 0.82
FCN Long et al. [2015] 0.66 0.17 0.88 80± 0.2 75.8± 1.2 0.45 0.64
SegNet 0.81 0.78 0.94 91.7± 0.1 85.6± 1.6 0.74 0.83
Badrinarayanan et al. [2017]

U-Net Ronneberger et al. [2015] 0.85 0.82 0.94 91.2± .09 90.03± 1 0.77 0.84
U-Net++ Zhou et al. [2018] 0.76 0.53 0.78 72.4± 1.46 67.8± 3.09 0.54 0.59
MCD U-Net 0.86 0.82 0.94 91.5± 0.09 90.5± 0.6 0.78 0.84
DeVries and Taylor [2018]

Local U-Net 0.86 0.82 0.94 91.5± 0.04 90.5± 0.5 0.78 0.84
ResNet-18 He et al. [2016] 0.86 0.83 0.95 92.7± .03 90.6± 0.02 0.79 0.86
Adapted-LCGAR 0.85 0.84 0.95 93± 0.02 91.8± 1.2 0.79 0.86
MatPhase 0.86 0.85 0.95 93.2 ± 0.02 91.9± 1.3 0.80 0.87

Table 3 shows the performance MatPhase comparing with all the baselines described in Sec. 4. We
observe MatPhase outperforms all the baselines. On average, our F1-score improves 0.5 for pore,
0.14 for C, and 0.2 for Ni. w.r.t. mIU and fIU, on average MatPhase performance improves 8.5%
and 6% than the baselines. It indicates that leveraging automated curriculum learning (HCL) and
incorporating global information to capture local and global features for predicting target instances
can provide quality predictions (smooth and free of artifacts).

5 Conclusion

With the collaboration between computer scientists and battery researchers, for the first time, we
present MatPhase, a novel framework to predict material phases, especially phase boundaries, from
low contrast images of an electrode. Our extensive study against multiple non-trivial competitors
(deep-learning-based models) and SOTA show that, on average, MatPhase increases the performance
by 8.5%. We also show that incorporating HCL and the local model together on average increases our
performance up to 7%3. Our framework is practically useful to battery researchers for understanding
of the distribution of material phases of the electrode from high noise data. We envision using
the framework to study the cross-sections of cycled electrodes and understand various degradation
mechanisms that impact the loss of capacities.
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6 Appendix

6.1 Relevant Work

Recently, multiple deep-learning based image segmentation models have been proposed for object
or boundary detection in computer vision applications He et al. [2017], Ronneberger et al. [2015],
Badrinarayanan et al. [2017], Long et al. [2015]. Howard et al. proposed a boundary detection
model by addressing the spatially varying intensities in velocity shock wave image data Howard
et al. [2017]. Researchers viewed the problem of identifying material constituents from electrode
samples as object detection Daemi et al. [2018]. Errors induced during data binarization and how that
would translate into uncertainties in the calculated parameters, such as porosity, tortuosity, or specific
surface area was demonstrated by Pietsch et al. Pietsch et al. [2018]. Also, Jiang et al. developed a
machine learning workflow that automatically identifies multiple fragments that broke away from the
same particle and quantifies every single NMC particle in electrode Jiang et al. [2020]. Using this
approach, they have also observed several regions of the NMC particles’ that are detached from the
polymeric binder domain in the severely damaged local region. Muller et al. adopted a 3D U-Net
architecture to achieve segmentation across electrode samples Ronneberger et al. [2015]. However,
none of these works adopt any non-trivial technique to achieve smooth predictions. Labonte et al.
proposed a binary segmentation for LIB electrode material, which can quantify uncertainty to the
segmentation LaBonte et al. [2020]. Multiple curriculum learning strategies have been proposed to
solve different tasks Wang et al. [2021], Sinha et al. [2020]. Goyal et al. proposed a hierarchical
class-based curriculum loss function to perform multi-class classification Goyal and Ghosh [2021]. To
accelerate inference along with prediction accuracy, Wang et al. proposed a framework ‘I don’t know’
(IDK) that systematically selects a subset of instances of a pre-trained deep learning model Wang
et al. [2017]. Their proposed IDK framework is a rule-based function that selects instances if the
entropy loss of the pre-trained model is within a user-defined threshold.

Liu et al. Liu et al. [2021] employs an external style transfer module for image segmentation which
is used to govern the curriculum. However, for our method no external module is employed and
curriculum is learnt implicitly as part of the framework MatPhase. To the best of our knowledge,
our proposed hierarchical curriculum learning framework has not been adopted in any application for
the task of material phase prediction.

6.2 Extension to Sec 3

LCGAR Architecture: Table 4 shows the architecture of LCGAR– a CNN. After each convolution
and fully connected layer, we implement activation LeakyRelu. To capture rich information about the
arrangement of the surrounding for the target pixel of interest, we concatenate UGSM logits (F j)
after flattening.

Table 4: LCGAR Architecture.
Layer Type Specifications
Convolution layer Kernel (3× 3,), 32 channels, padding 1
Convolution layer Kernel (3× 3,), 32 channels, padding 1
Maxpool Kernel (2× 2)
Convolution layer Kernel (3× 3,), 16 channels, padding 1
Convolution layer Kernel (3× 3,), 16 channels, padding 1
Maxpool Kernel (2× 2)
Convolution layer Kernel (1× 1,), 8 channels
Convolution layer Kernel (1× 1,), 8 channels
Concat: Flatten
+ UGSM logits Fj

Fully Connected Layer Size 128, dropout (20%)
+ dropout
Batch-normalization Size 128
Softmax Number of class (3)
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6.3 Extension to Sec 4

Data Collection Process: X-Ray Computed Tomography (XCT) and similar techniques do not
provide information on carbon binder distribution as it is “transparent” for the X-Ray. It thus
becomes indistinguishable from the pores in the electrodes. For collecting the ground-truth labels, to
identify all the material constituents, we utilized cross-sectioning with Focused-Ion beam (FIB/SEM)
experiments for imaging and Energy Dispersive X-Ray Spectroscopy (EDS) for chemical mapping
of electrode cross-sections Vierrath et al. [2015]. The slicing was performed using Hitachi NB500
dual-beam FIB/SEM. The cross-sections were at a distance of every 200nm resulting in a total depth
of 26µm resulting in 133 images.

Pre-processing: In this paper, we construct our data-set D using the corpus of 133 images collected
through cross-sections of an electrode. Each low-contrast image X in the corpus consists of 224×256
pixels. The corresponding ground-truth (GT) Y contains 224× 256 material constituents consisting
of pores, carbon binder (C), and Nickel (Ni). We leverage a data augmentation technique for efficient
training with few data samples. Our technique is: First, for every image X and the corresponding GT,
we obtain k different images, removing a row of pixels from the top. Next, we resize each k images
into original size, i.e., 224× 256. We choose k = 10, as this is sufficient for training data. Finally,
to smooth the resized GT for the corresponding k images, we use existing knowledge provided by
domain experts: A pixel with Carbon (C) can not exist surrounding Ni pixels and vice-versa for a
pixel with Ni. Using k nearest-neighbor rule, we remove noise from GT, i.e., if most surrounding
pixels (nearest neighbors) around a C pixel are Ni, the GT label is changed to Ni. Thus, our labeled
dataset D consists of N = 1330 images and corresponding GT. For the test, we split D, which
consists of 50 image-GT pairs. 40 pairs among the test-set are completely unseen samples, i.e., the
original image of the electrode before the augmentation is not present in the training data.

Model Training: Both UGSM and LCGAR are trained with weighted cross-entropy loss due to
heavy class imbalance in the ground-truth (on average C: 26%, Ni: 60%, Pore: 14%). In all the
experiments, for LCGAR, we normalize input image between [-1, 1] and use activation LeakyReLU,
which yields the best results. Our UGSM model is trained on 100 epochs with batch size 20, while
HCL-IDK and LCGAR were trained for 15 epochs with batch size 1024.

Measure of Success:
(i) F1-score: Our goal is to measure the overall prediction for each class c, i.e., pore, carbon

(C), and nickel (Ni) for the unseen datasets.
(ii) Pixel accuracy (ACC): Fraction of the number of pixels that are predicted correctly among to-

tal pixels (in %).To measure smooth predictions Sinha et al. [2020], We aim to evaluate pixel
accuracy for k best performing and worst performing predictions to evaluate smoothness of
material phase predictions.

(iii) Mean intersection over union (mIU): We intend to quantify predictions from standard prac-
tice of image segmentation models Long et al. [2015], Badrinarayanan et al. [2017]. Suppose,
tc be the total number of pixels labeled as class c, njc be the number of pixels of class c
predicted as class j, and |C| are the total number of classes. mIU = 1

|C|
∑

c
ncc

tc+
∑

j ̸=c njc

(iv) Frequency weighted intersection over union (fIU): To quantify predictions in presence of
class imbalance, we incorporate fIU from the standard practice for image segmentation
models Long et al. [2015]. If t be the total number of pixels, fIU = 1

t

∑
c

tc∗ncc

tc+
∑

j ̸=c njc
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