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ABSTRACT

Adversarial examples —imperceptibly modified data inputs designed to mislead
machine learning models— have raised concerns about the robustness of modern
neural architectures in safety-critical applications. In this paper, we propose a
unified mathematical framework for understanding adversarial examples in neural
networks, corroborating Ian Goodfellow’s original conjecture that such examples
are exceedingly rare, despite their presence in the proximity of nearly every test
case. By exploiting results from Kernel Theory, we characterise adversarial ex-
amples as those producing near-zero Mercer’s eigenvalues in the empirical kernel
associated to a trained neural network. Consequently, the generation of adversar-
ial attacks, using any known technique, can be conceptualised as a progression to-
wards the eigenvalue space’s zero point within the empirical kernel. We rigorously
prove this characterisation for trained fully-connected neural networks under mild
assumptions on the nonlinear activation function, thus providing a mathematical
explanation for the apparent contradiction of neural networks excelling at general-
isation while remaining vulnerable to adversarial attacks. In practical experiments
conducted on the MNIST dataset, we have verified that adversarial examples gen-
erated through the widely-used Deep Fool algorithm do, indeed, lead to a shift in
the distribution of Mercer’s eigenvalues toward zero. These results are in strong
agreement with predictions of our theoretical framework.

1 INTRODUCTION

Adversarial examples are specially crafted input data points that are designed to cause a model to
output an incorrect prediction. These examples are created by making small, imperceptible perturba-
tions to the input data (e.g., images, text or audio) which are typically indistinguishable to humans
but can have a significant impact on the model’s output Szegedy et al. (2014); Goodfellow et al.
(2015). The existence of adversarial examples has raised questions about the robustness and relia-
bility of deep learning models when used in safety-critical applications Ruan et al. (2021). Indeed,
empirical evidence shows that neural networks are particularly sensitive to adversarial examples; for
example, in the context of image analysis, it has been shown that for any trained neural network
and input image, it is always possible to find an imperceptible change to the image that yields a
misclassification result Moosavi-Dezfooli et al. (2017)

Adversarial attacks can occur in many application domains, and these vulnerabilities can be ex-
ploited by malicious attackers Ren et al. (2020). For example, in image classification, a self-driving
car’s neural object detection system might misclassify a stop sign as a yield sign if an adversarial
sticker is placed on it Akhtar et al. (2021). In Natural Language Processing, attackers can make
subtle changes to text, such as adding or removing words or modifying individual characters, to
deceive sentiment analysis or spam detection models Zhang et al. (2020b) and, in cybersecurity,
attackers can modify malware to evade detection by antivirus or intrusion detection systems Rosen-
berg et al. (2021). As a result, researchers and practitioners are actively developing techniques to
defend against adversarial attacks , such as adversarial training, input preprocessing, and robust
model architectures Zhang et al. (2020a); Fowl et al. (2021); Carlini et al. (2019); Han et al. (2023).
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The foundational paper introducing adversarial examples Szegedy et al. (2014) characterised them
as “intriguing properties” of neural networks and raised a compelling question: how can neural
networks exhibit strong generalisation performance on test examples drawn from a data distribution,
while simultaneously being susceptible to adversarial examples? An interesting hypothesis, which
we recapitulate next, was already outlined in the paper’s concluding remarks.

“A possible explanation is that the set of adversarial negatives is of extremely low probability, and
thus is never (or rarely) observed in the test set, yet it is dense (much like the rational numbers), and
so it is found near virtually every test case.”

Despite the substantial attention dedicated by researchers to explaining the prevalence of adversarial
examples, as discussed in Section 6, and despite progress in identifying new attack variants and
developing defensive approaches, robustness measures Yu et al. (2019); Carlini et al. (2019); Wang
et al. (2023), and theoretical guarantees based on such measures Bhagoji et al. (2019); Shafahi et al.
(2019), the fundamental nature of adversarial examples continues to elude complete understanding
Guo et al. (2018); Ilyas et al. (2019); Madry et al. (2018); Qin et al. (2019).

In this paper, we take an additional stride in this direction and provide novel theoretical results
that further substantiate the original hypothesis by Szegedy et al. (2014). Our research relies on the
formulation of fully-connected neural networks (FCNs) as specific instances of parameter-dependent
kernel machines, which has enabled researchers to leverage well-established results in the field of
kernel theory Györfi et al. (2002); Saitoh & Sawano (2016); Berthier et al. (2020) to investigate the
generalisation properties of neural networks Canatar et al. (2021); Simon et al. (2022). Specifically,
a trained FCN can be equivalently viewed as realising a non-linear transformation of the input data,
which is associated to an empirical kernel, followed by a linear transformation characterised by the
readout weights of the network.

Mercer’s decomposition theorem Mercer (1909); Minh et al. (2006) is a fundamental result in kernel
theory which plays a crucial role in various ML algorithms and provides the mathematical founda-
tion for understanding the properties of kernel functions. Mercer’s decomposition theorem states
that, for a given kernel function applicable to pairs of data points sampled from a given probability
distribution, the kernel’s application can be represented as an infinite sum of products. These prod-
ucts consist of the application of Mercer’s eigenfunctions to the input data points, mapping them
to real values, weighted by Mercer’s eigenvalues—positive scalar values determining the relative
contribution of each term in the Mercer decomposition. Importantly, such eigenvalues and eigen-
functions are specific to the kernel function and input data distribution, but remain independent from
the specific data points being evaluated.

We adopt the perspective that the introduction of an adversarial example can be regarded as a modifi-
cation of the empirical data distribution derived from the training examples, expanded to incorporate
the adversarial example. According to Mercer’s theorem, even when maintaining the same empiri-
cal kernel associated to a trained FCN, this process results in a fresh set of Mercer eigenvalues and
eigenfunctions. This viewpoint enables us to characterise adversarial examples as those producing
near-zero Mercer eigenvalues in the updated decomposition of the the FCN’s empirical kernel. This
characterisation allows us to show that adversarial examples have measure zero in the limit where
they become infinitesimally close to any test example sampled from the original data distribution.

We interpret our results as providing a rigorous mathematical explanation for what appears to be
a paradoxical empirical observation: while neural networks demonstrate strong generalisation to
novel new test examples, they are also susceptible to adversarial attacks. Indeed, it follows from our
results that adversarial examples are exceedingly unlikely to occur in the test set, thereby providing
compelling support for the original hypothesis proposed by Szegedy et al. (2014).

To validate our theory, we conducted experiments on a FCN trained on a subset of the MNIST dataset
LeCun (2012), achieving zero training error and perfect generalisation performance on a subset of
the test set. We then used the well-known DeepFool algorithm Moosavi-Dezfooli et al. (2016) to
generate a collection of adversarial examples, and resorted to the numerical method established by
Baker (1977); Rasmussen & Williams (2006) to compute Mercer’s decomposition on the empirical
kernel associated with both the original empirical data distribution and our updated empirical data
distributions, which incorporate the adversarial examples. We have plotted and analysed the rele-
vant distributions of eigenvalues, computed those with minimal value and estimated the integral of
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relevant quantities near zero. Our numerical experiments align with our theory, demonstrating that
adversarial examples induce a shift in the distribution of Mercer eigenvalues towards zero.

2 PRELIMINARIES

Matrices and vectors. We use standard notation for real-valued vectors v ∈ Rn, matrices A ∈
Rm×n, and their transposes vT and AT . As usual, Ai,j denotes the (i, j)-element of A and vi
denotes the i-th element of v; furthermore, we use ai to denote the vector in the i-th row of A. The
n-dimensional zero vector is denoted as 0n. For A ∈ Rm×n and v ∈ Rn, we denote with A : v the
matrix obtained by extending A with v as an additional row. The Moore-Penrose pseudo-inverse of
a matrix A is denoted as A† Moore (1920) and the trace of A is denoted as Tr(A).

Fully-connected neural networks. A fully-connected neural network (FCN) with L layers is a
tuple N = ⟨{Wℓ}1≤ℓ≤L, {bℓ}1≤ℓ≤L, {σℓ}1≤ℓ≤L}⟩. Each layer ℓ ∈ {1, ..., L} consists of a weight
matrix Wℓ ∈ RNℓ×Nℓ−1 , a bias vector bℓ ∈ RNℓ and an activation function σℓ : R 7→ R where Nℓ

is the layer’s width. On input x ∈ RN0 , network N sets x0 := x and then subsequently computes,
for each layer 1 ≤ ℓ ≤ L, a sequence of pre-activations hℓ = Wℓxℓ−1 + bℓ and post-activations
xℓ = σℓ(hℓ). The network’s output N (x) on input x is then given by xL. We assume that all layers
except the last one have the same width N . We also assume that nonlinear activation functions σℓ

are Lipschitz continuous, a property that is satisfied by all commonly-used activation functions. For
the last layer, we assume width NL = 1 (ensuring a real-valued output), bL = 0 and σL = IdR (thus
ensuring linearity). In this setting, the weights WL are referred to as the readout weights.

Kernels. A kernel on RN0 is a positive semi-definite symmetric function K : RN0 × RN0 7→ R.
By Mercer’s theorem Minh et al. (2006), given a distribution p on RN0 , there exist unique countable
collections of Mercer’s eigenvalues λK,p

i and Mercer’s eigenfunctions φK,p
i , for i ∈ N, such that

• K(x,x′) =
∑∞

i λK,p
i φK,p

i (x)φK,p
i (x′) for all x,x′ ∈ RN0 ; and

• for i, j ∈ N, we have Ex∼p(x)

(
φK,p
i (x)φK,p

j (x)
)
= δi,j , with δi,j the Kronecker Delta.

The first condition represents the application of the kernel function to data points x and x′ as an
infinite sum of products, where the i-th product consists of the application of the i-th Mercer eigen-
function to x and x′, mapping these data points onto real values, weighted by the i-th Mercer eigen-
value. In turn, the second condition requires orthonormality of the Mercer eigenfunctions with re-
spect to the data distribution. We define the density ρK,p(λ) of Mercer’s eigenvalues as the measure
limM→∞

1
M

∑M
i=1 δλK,p

i
(λ), where δλK,p

i
is the Dirac measure.

Empirical feature maps. Consider a FCN N with L layers. The mapping from an input x to the
activation xL−1 is a nonlinear transformation ϕN : RN0 7→ RN called the empirical feature map,
which is associated to an empirical kernel KN : (x,x′) 7→ ⟨ϕN (x), ϕN (x′)⟩ expressed as the inner
product between the corresponding feature map evaluations. By definition, N (x) = (WL)TϕN (x)
for any input x to the FCN.

Consider a training set (X,y) with P examples sampled i.i.d. from an unknown distribution p. The
evaluation ϕN (X) = (ϕN (x1), ..., ϕN (xP ))

T ∈ RN×P of the empirical feature map on the training
set induces an empirical feature covariance matrix KN (X,X) ∈ RP×P , where element (i, j) for
1 ≤ i ≤ j ≤ N is given by KN (xi,xj). Finally, the training data X also induces an empirical

probability distribution pX defined as pX(x) = 1
P

(∑P
i=1 δxi

(x)
)

with δxi
the Dirac measure.

Adversarial examples. Consider a training set (X,y) sampled from an unknown distribution p
and let N be a FCN trained on (X,y) to zero error. Note that this assumption is not overly restrictive,
as training to interpolation is common practice in modern deep learning Ishida et al. (2020); Belkin
(2021); Mallinar et al. (2022). Let f be a real-valued function such that f(z) → ∞ as z → 0,
and let ϵ > 0. A vector x′ is an (ϵ, f)-adversarial example for N and p if there exists an example
(x∗, y∗) ∼ p such that ||x∗ − x′|| ≤ ϵ and (y∗ −N (x∗))2 < ∞, but (y∗ −N (x′))2 ≥ f(ϵ).
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Function f is introduced to adjust the definition of adversarial example for classification in the
literature to the regression setting, where there is no a-priori notion of what it means for the adver-
sarial example to change the prediction (in classification, changing the prediction means predicting
a different class). Function f allows practitioners to quantify when a modification of the output is
significant for the regression task at hand. To simplify the presentation, we fix an arbitrary such f
and speak from now onwards of ϵ-adversarial examples. The first condition in the definition requires
that the adversarial example x′ is close in norm to some test example for which N generalises to
bounded error; the second requirement ensures that the corresponding error diverges w.r.t. x′.

3 ADVERSARIAL ATTACKS SHIFT MERCER’S SPECTRUM TOWARDS
NEAR-ZERO EIGENVALUES

In this section, we show that adversarial examples can be characterised as those that shift the Mer-
cer’s spectrum of the empirical kernel corresponding to a trained neural network to yield near-zero
eigenvalues with sufficient probability.

To gain insight into this result, consider a FCN N , which has been successfully trained (technically,
to zero error) on a dataset (X,y) drawn from an unknown data distribution p. In this scenario,
Mercer’s theorem reveals the existence of a unique collection of eigenvalues and eigenfunctions
associated to the kernel KN and the known empirical distribution pX derived from the training data.

Now, suppose that we sample some new example (x∗, y∗) according to the true data distribution p
for which the network exhibits reasonable generalisation performance (technically, it suffices that
the error remains bounded), and consider any data point x′ in the vicinity of x∗. After augmenting
the training set with the new example x′, we reconsider the Mercer spectrum for KN and the up-
dated empirical distribution. In this context, we can characterise x′ as adversarial if and only if the
eigenvalues in the updated Mercer spectrum exhibit sufficient density near zero. Consequently, the
generation of adversarial attacks, using any known technique, can be conceptualised as a progression
towards the eigenvalue space’s zero point within the empirical kernel.

The main insight behind the proof is the observation that the error (y∗ −N (x′))
2, which quantifies

the discrepancy between data point x′ and example (x∗, y∗) can be written as a sum of terms in-
volving Mercer eigenvalues and eigenfunctions in the updated spectrum. In this decomposition, the
value of terms depending on the eigenfunctions can be bounded as ϵ → 0, and hence the only way
to obtain a divergence in the generalisation error characteristic of adversarial behaviour is for the
terms involving the eigenvalues to diverge to infinity.
Theorem 1. Let N be a FCN trained on (X,y) ∼ p to zero error. In the limit ϵ → 0, each data point
x′ ∈ RN0 such that ||x∗−x′|| ≤ ϵ for some example (x∗, y∗) ∼ p satisfying (y∗−N (x∗))2 < ∞ is
an ϵ-adversarial example for N and p if and only if the function λ 7→ 1

λ2 ρ
K,pX′ (λ) is not integrable

near zero 1, with X′ = X : x′.

Proof. Following the overall proof idea sketched above, our first step will be to derive the relevant
expression for the squared error, (y∗ −N (x′))

2, valid in the limit ϵ → 0.

The readout weights WL of N can be obtained as the solution of the linear system [ϕN (X)]TWL =
y, which is given by the following expression involving the empirical feature map ϕN and covari-
ance matrix KN of N on the training set (X,y):

WL = ϕN (X)[KN (X,X)]
†
y +w. (1)

Here, w is an element of the null-space of ϕN (X), i.e., verifying [ϕN (X)]
T
w = 0P . Thus, the

evaluation N (x′) of N on data point x′ is given by the following expression:

N (x′) = [ϕN (x′)]
T
(
ϕN (X)[KN (X,X)]

†
y +w

)
= Ñ (x′) +N0(x

′). (2)

where Ñ (x′) := [ϕN (x′)]
T
ϕN (X)[KN (X,X)]

†
y and N0(x

′) := [ϕN (x′)]
T
w. As a result, the

squared error can be written as follows:

(y∗ −N (x′))
2
=

(
y∗ − Ñ (x′)

)2

− 2 ·
(
y∗ − Ñ (x′)

)
· N0(x

′) + (N0(x
′))

2

1That is, lima→0

∫∞
λ=a

1
λ2 ρ

K,pX′ (λ)dλ = ∞.
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By Lipschitz continuity of ϕN , N0(x
′) remains bounded as ϵ → 0 because x′ is infinitesimally

close to x∗, and N0(x
∗) is bounded by assumption on the example (x∗, y∗). As a result, the term

that determines the divergence in the error is
(
y∗ − Ñ (x′)

)2

.

Let us denote kN (x′,X) := [ϕN (X)]TϕN (x′). Then, the term of interest can be expanded as
follows:(

y∗ − Ñ (x′)
)2

= y∗2 − 2 Tr
(
y∗kN (x′,X) yT (KN (X,X))

†
)

+Tr
(
kN (x′,X)[kN (x′,X)]

T
(KN (X,X))

†
yyT (KN (X,X))

†
) (3)

where we have used the simple algebraic property aTb = Tr(abT ).

To conclude, let
(
λ
KN ,pX′
i , φ

KN ,pX′
i

)
i∈N

be the Mercer’s decomposition of kernel KN and the ex-

tended empirical distribution pX′ . Then, Mercer’s theorem provides an expression of the application
of the kernel to data points in terms of the aforementioned eigenvalues and eigenfunctions; it fol-
lows that the empirical covariance matrix KN and the vector kN (x′,X) can be written as follows
for some large enough number M ≫ P :

KN (X,X) := ΦΛΦT kN (x′,X) = ΦΛΦ′ (4)

where Φj,k = φ
KN ,pX′
k (xj) for each 1 ≤ j ≤ P and 1 ≤ k ≤ M , Λk,l = δk,lλ

KN ,pX′
k for

each 1 ≤ k, l ≤ M , and Φ′
k := φ

KN ,pX′
k (x′) for each 1 ≤ k ≤ M .2 Hence, using Mercer’s

decompositions, we can further expand equation 3 as follows:(
y∗ − Ñ (x′)

)2

= y∗2 − 2y∗
M∑
j

1

λ
KN ,pX′
j

(
Φ†y(kN (x′,X))T (ΦT )†

)
j,j

+

M∑
j

1

(λ
KN ,pX′
j )2

(
Φ†yyT (ΦT )†

)
j,j

(
Φ†kN (x′,X)(kN (x′,X))T (ΦT )†

)
j,j

+

M∑
j

M∑
k ̸=j

1

(λ
KN ,pX′
j )(λ

KN ,pX′
k )

(
Φ†yyT (ΦT )†

)
j,k

(
Φ†kN (x′,X)(kN (x′,X))T (ΦT )†

)
j,k

(5)

With this expression at hand, we are ready to show the statement in the theorem. For the ”if”
direction, assume that x′ is ϵ-adversarial, then (y∗ −N (x′))2 ≥ f(ϵ), where f(ϵ) → ∞ as ϵ → 0

The first step is to show that as ϵ → 0, the quantities(
Φ†y(kN (x′,X))T (ΦT )†

)
j,j

,
(
Φ†yyT (ΦT )†

)
j,j

(
Φ†kN (x′,X)(kN (x′,X))T (ΦT )†

)
j,j

and(
Φ†yyT (ΦT )†

)
j,k

(
Φ†kN (x′,X)(kN (x′,X))T (ΦT )†

)
j,k

remain bounded. Each of these quanti-
ties can be written as sums over entries of the relevant matrices. In particular, since the rectangular
matrix Φ ∈ RP×M has orthogonal rows, we have Φ† = ΦT

(
ΦΦT

)−1
, and (ΦT )† =

(
ΦΦT

)−1
Φ

Moore (1920).

We have | (kN (x′,X))i | ≤
√

KN (x′,x′)KN (xi,xi) by Cauchy-Schwartz inequality and
KN (x′,x′) remains bounded as ϵ → 0 by Lipschitz continuity of ϕN . Entries of the matrix Φ
remain bounded as ϵ → 0 as evaluations of Mercer’s eigenfunctions. For the same reason, entries
of the matrix ΦΦT do not diverge as ϵ → 0, and therefore neither do entries of

(
ΦΦT

)−1
by

continuity of matrix inversion.

Therefore, if the squared error is to diverge towards infinity, at least one of the sums
∑M

j
1

λ
KN ,p

X′
j

,∑M
j

1

(λ
KN ,p

X′
j )2

, or
∑M

j

∑M
k ̸=j

1

(λ
KN ,p

X′
j )(λ

KN ,p
X′

k )
must diverge. For small eigenvalues, the sec-

ond sum dominates and hence must diverge. This sum can be expressed using the density of Mercer’s
2Expression equation 4 is not the classical eigendecomposition of a square matrix: the evaluations of eigen-

functions yield rectangular (infinite) matrices. This decomposition is enabled by Mercer’s theorem and is
specific to kernels.
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eigenvalues for KN and pX′ as follows: limM→∞
∑M

j
1

(λ
KN ,p

X′
j )2

=
∫

1
λ2 ρ

K,pX′ (λ)dλ. Thus, the

real-valued function λ 7→ 1
λ2 ρ

K,pX′ (λ) is not integrable near zero as required.

Conversely, assume that λ 7→ 1
λ2 ρ

K,pX′ (λ) is not integrable near zero. We have that, as ϵ →
0,

(
Φ†yyT (Φ†)T

)
j,j

(
Φ†kN (x′,X)(kN (x′,X))T (Φ†)T

)
j,j

is bounded away from zero. Indeed,
these terms can be written as sums of squared values, which can only converge to zero if each term of
the sum converges to zero, which, in turn, only happens if y = 0 or kN (x′,X) = 0 3. Thus, the term∑M

j
1

(λ
KN ,p

X′
j )2

(
Φ†yyT (Φ†)T

)
j,j

(
Φ†kN (x′,X)(kN (x′,X))T (Φ†)T

)
j,j

causes a divergence in

the generalisation error and example x′ is adversarial, as required.

It follows directly from the theorem that introducing x′ yields a Mercer’s decomposition where
eigenvalues have sufficient density near zero. Indeed, if eigenvalues had insufficient density near
zero then the function 1

λ2 ρ
KN ,pX′ (λ) would be integrable near zero. In particular, according to the

convergence/divergence of Riemann integrals, ρKN ,pX′ (λ) ∼ λβ as λ → 0 leads to non-integrability
if β ≤ 1 and to integrability if β > 1.

4 ADVERSARIAL EXAMPLES ARE EXCEEDINGLY UNLIKELY

In this section, we exploit the result in Theorem 1 to show that adversarial examples have zero
measure with respect to the true data distribution p. As in the previous section, we assume that
the neural network is trained to zero error and that its generalisation error remains bounded for
all examples drawn from the same distribution p as the training data. In this setting, we prove
that the probability of randomly sampling an ϵ-adversarial example from p tends to zero as ϵ →
0. Intuitively, Theorem 1 tells us that the density function 1

λ2 ρ
KN ,pX(λ) for the training data is

integrable near zero; this highly restricts the probability of sampling near-zero eigenvalues, and
consequently also the probability of sampling adversarial examples.
Theorem 2. Let N be trained to zero error on (X,y) ∼ p and let E(x,y)∼p

(
(y −N (x))2

)
< ∞.

Consider the indicator random variable 1N
ϵ which determines whether a vector x ∼ p is an ϵ-

adversarial example for N and p. In the limit ϵ → 0, it holds that p(1N
ϵ = 1) = 0.

Proof. Before proving the statement of the theorem, we define a set of events with useful probabili-
ties. For an arbitrary (but fixed) set X of data points sampled from p, let λj

X be the random variable
assigning to each x ∼ p the j-th Mercer eigenvalue for KN and pX : x. For an interval [a, b], let
EX,j

[a,b] be the event of λj
X taking values within [a, b] and define the event {ΛX = λ} :=

⋃
j E

X,j
[λ,λ+dλ].

Let 1N
ϵ be the indicator random variable determining whether x ∼ p is an ϵ-adversarial example for

N and p. By the law of total probability applied to 1N
ϵ , the following holds:

p(ΛX = λ) = p(ΛX = λ|1N
ϵ = 1) · p(1N

ϵ = 1) + p(ΛX = λ|1N
ϵ = 0) · p(1N

ϵ = 0) (6)

The probability p(ΛX = λ) coincides with the average density of Mercer’s eigenvalues with respect
to the random vector x ∼ p:

p(ΛX = λ) =

∫
p(ΛX = λ|x)p(x)dx =

∫
ρKN ,pX : x(λ)p(x)dx (7)

Since E(x,y)∼p(x,y)

(
(y −N (x))2

)
< ∞, it is easy to show, using the same arguments as in the

proof of Theorem 1, that λ 7→ 1
λ2 p(ΛX = λ) is integrable near zero.

By definition, p(ΛX = λ|1N
ϵ = 1) is the average density of Mercer eigenvalues for KN and pX : x

given that x is an ϵ-adversarial example. By Theorem 1, in the limit ϵ → 0, p(ΛX = λ|1N
ϵ = 1) is

strictly positive near zero, which gives us the following identity as λ → 0 and ϵ → 0:

p(1N
ϵ = 1) =

p(ΛX = λ)

p(ΛX = λ|1N
ϵ = 1)

− p(ΛX = λ|1N
ϵ = 0)

p(ΛX = λ|1N
ϵ = 1)

· p(1N
ϵ = 0) (8)

3Note that these excluded edge cases are already taken in account as particular cases of equation 2.
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Figure 1: Eigenvalue distribution for kernel KN and the original data distribution (respectively, the
the same data distribution extended with one adversarial example) in orange (respectively, in blue).
The X-axis is indexed by the value of the eigenvalues and the Y-axis is a probability density.

By Theorem 1, λ 7→ 1
λ2 p(ΛX = λ|1N

ϵ = 1) is not integrable near-zero whereas λ 7→ 1
λ2 p(ΛX =

λ|1N
ϵ = 0) is integrable near-zero. In particular, p(ΛX=λ|1N

ϵ =0)
p(ΛX=λ|1N

ϵ =1)
→ 0 as λ → 0. Similarly,

p(ΛX=λ)
p(ΛX=λ|1N

ϵ =1)
→ 0 as λ → 0, which yields p(1N

ϵ = 1) = 0, as required.

Our findings indicate that in practical evaluations of neural models, it is highly improbable for test
sets to include adversarial examples, given that they are sampled from the same underlying distribu-
tion p as the training data. In essence, adversarial examples created through artificial perturbations
of samples drawn from p are considered out-of-distribution and thus extremely unlikely to originate
from the same underlying data generation process that produced the training and test data. This sub-
stantiates the intuition that adversarial examples do not naturally manifest in real-world scenarios.

5 EXPERIMENTS

To validate our theory, we conducted experiments on a subset of MNIST consisting exclusively of
classes ”0” and ”1.” This subset comprised 253 examples, each with 784 pixels per image. Addi-
tionally, we established a test set consisting of 17 examples. We deliberately opted for this reduced
dataset size to accommodate computational constraints, as our computations require diagonalising
kernel matrices with dimensions of (P + 1) × (P + 1). However, it is important to note that the
size of the dataset is inconsequential to our theoretical results, as they remain independent of dataset
scale.

All experiments were executed on a GPU-enabled platform within Google Colab for enhanced com-
putational efficiency.

Using Pytorch, we trained a ReLU FCN with one hidden layer of size N = 512 to zero error on our
training dataset and 100% accuracy on our restricted test set. Subsequently, we exploited the im-
plementation of the DeepFool algorithm Moosavi-Dezfooli et al. (2016) to generate one adversarial
example for each of the 17 test examples. This algorithm essentially involves an iterative process
wherein we continuously adjust the input in the direction of the normalised gradient until a change
in prediction occurs.

We computed the eigenvalue distributions of the empirical kernel for the original training data distri-
bution. Then, for each adversarial example, we computed the updated eigenvalue distribution for the
same empirical kernel and the training data extended with the adversarial example. Thus, this gives
us 17 different updated eigenvalue distributions. To compute these distributions, we constructed 17
new kernel matrices by adding the relevant row and column corresponding to the adversarial exam-
ple and diagonalised them using PyTorch. By the classical results of Baker (1977); Rasmussen &
Williams (2006), the largest Mercer eigenvalues roughly coincide with the eigenvalues obtained by
diagonalising the corresponding kernel matrix. We have plotted an example of such updated distri-
butions against the original one in Figure 1; note how introducing an adversarial example shifts the
eigenvalue distribution towards zero.
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Figure 2: Comparing the integral of interest (left subfigure) and the minimal eigenvalue (right sub-
figure) between the original data distribution (orange line) and the updated data distributions (in
blue). The X-axis is indexed by the value of the integral quantity (respectively, the minimal value
of eigenvalues) on the left (respectively, on the right). In turn, the Y-axis is indexed on the left
(respectively, on the right) by the number of updated data distributions whose estimated integral
(respectively, whose minimal eigenvalue) falls into that bin.

We then computed the minimal eigenvalue within each eigenvalue distribution, and we estimated the
integral near zero of our real-valued function λ 7→ 1

λ2 ρ(λ) by computing the sum 1
B

∑
j

1
λ2
j
ρ(λj)

for the relevant densities of Mercer eigenvalues over the B bins in the histogram of Figure 1. The
histogram representing these estimations is depicted in Figure 2. Our numerical results clearly
demonstrate that, as expected, introducing adversarial examples shifts the eigenvalue distribution
towards zero and inflates the value of the integral of interest.

6 RELATED WORK

Several explanations have been proposed for the pervasiveness of adversarial attacks in neural net-
works. The linearity hypothesis Goodfellow et al. (2015) posits that, because of the (local) linear
nature of trained neural networks, small changes to each component of a high-dimensional vector
amount to a large change in the network’s output. The universality of ℓ2-adversarial attacks on ReLU
networks with random weights Daniely & Shacham (2020) provides a strong argument supporting
this hypothesis, especially considering the locally linear characteristics of ReLU networks.

The linearity hypothesis has motivated a series of research endeavors analysing the topological char-
acteristics of decision boundaries, with the aim to elucidate the nature of adversarial examples and
develop techniques for enhancing adversarial robustness. In Tanay & Griffin (2016), adversarial
examples are attributed to the distance of the sampling subspace to the decision boundary. These
potential deficiencies in the topology become more pronounced in higher dimensions, a phenomenon
exacerbated by the curse of dimensionality. Notably, the susceptibility to adversarial attacks esca-
lates with the increase in input dimensionality, as observed in Simon-Gabriel et al. (2019). In some
instances, particularly for synthetic data distributions with sufficiently high dimensions, adversarial
attacks become nearly unavoidable, as noted in Shafahi et al. (2019). Moreover, data sparsity in
relation to the input space heightens vulnerability to adversarial attacks, as discussed in Paknezhad
et al. (2022); Weitzner & Giryes (2023). The dimensionality of the parameter space also plays a sig-
nificant role in this context, with parameter redundancy Paknezhad et al. (2022) and a large ℓ1-norm
of the parameters Guo et al. (2018) representing situations associated with increased vulnerability.

Another line of research identifies features as the key object driving the occurrence of adversarial
examples. In Ilyas et al. (2019), it was shown that non-robust features—features resulting from
spurious correlations within the data that are nevertheless highly predictive— are responsible for
the presence of adversarial examples. Similarly, Wang et al. (2017) established that the existence
of an unnecessary feature, introduced to replicate the true underlying target function, renders a
system vulnerable to adversarial attacks. This perspective is further supported by the observation that
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saliency methods tend to emphasise class-discriminative features that can be exploited to generate
adversarial attacks, as highlighted in Gu & Tresp (2019).

We argue that our approach is positioned at the intersection of both these streams of research. By
taking Mercer’s eigenvalues into account, our theory operates in the high-dimensional embedding
space where the predictions follow a linear pattern. Additionally, shifting towards zero eigenvalues
can be understood as exploiting directions of non-robust features. Indeed, our approach was first
inspired by the double-descent phenomenon in neural networks Mei & Montanari (2022), in which
the spectrum of the empirical kernel also shifts towards zero at the divergence in terms of generali-
sation error. Within this body of literature, it is already established that stochastic cancellations give
rise to the emergence of spurious directions within the feature space Harzli et al. (2023), rendering
them susceptible to overfitting.

A final perspective on adversarial attacks, which bears loose connections with our approach, is based
on information geometry Zhao et al. (2019); Naddeo et al. (2022). This perspective centers on the
use of the Fisher Information Matrix which quantifies, for any pair of data points, the correlation
between gradients (with respect to parameters) of the log likelihood of the data. Researchers have
demonstrated that a technique involving the iterative elimination of the dominant eigenvalue direc-
tion in the Fisher Information Matrix leads to the generation of adversarial examples. This process
appears to yield configurations where variations in network parameters exhibit strong linear de-
pendencies with respect to the data. Consequently, these configurations may manifest as scenarios
where certain features become perfectly correlated within the dataset and this, in turn, results in the
empirical kernel having Mercer eigenvalues that approach zero.

7 LIMITATIONS AND FUTURE WORK

Our paper provides mathematical underpinning for a principled understanding of adversarial exam-
ples and sheds light on the mounting empirical evidence that adversarial examples exhibit measure
zero with respect to the data distribution.

Our results, however, are currently only directly applicable to FCNs and regression tasks. Nev-
ertheless, we anticipate that the core insights from our research could be extended to encompass
classification tasks as well as other neural architectures; this is a clear path for future research. Ad-
ditionally, conducting comprehensive experiments on more extensive and diverse datasets would be
beneficial. It is worth noting that our results can be readily extended to scenarios where the feature
map exhibits similar desirable properties as those seen in FCNs, such as Lipschitz continuity. Impor-
tantly, our findings remain unaffected by variations in problem dimensions and data characteristics,
offering a high degree of versatility.

It is also important to emphasise that our results are derived in the limit where adversarial examples
become infinitesimally close to data points sampled from the original data distribution. Specifically,
we have not characterised the rate at which the probability of encountering adversarial examples
diminishes with the distance to an example from the true data distribution. Addressing this aspect
remains a subject for future research and requires the derivation of precise bounds for the generali-
sation error. Exploring specific criteria governing the data distribution and neural architecture that
lead to rapid convergence rates (as ϵ → 0) and result in low probabilities of generating adversarial
examples is a promising avenue. Achieving this understanding could lay the groundwork for design-
ing architectures aimed at enhancing robustness, which, in turn, may lead to improved generalisation
performance.

Additionally, while we have proved that adversarial examples have a measure zero with respect to
the data distribution in the limit, we have not shown that examples producing near-zero Mercer
eigenvalues for the empirical kernel of a FCN always exist, which would be consistent with existing
empirical evidence and theoretical results.

In conclusion, we anticipate that our findings will serve as a catalyst for additional research into the
characteristics and prevalence of adversarial examples. Furthermore, we hope they will also encour-
age the exploration and development of novel defense mechanisms against adversarial attacks.

Reproducibility statement. The full proofs of the theorems are included in the main paper and
the code for numerical experiments is part of the supplementary material.
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