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Abstract

Quantifying functional connectivity (FC), a vital metric for the diagnosis of various brain
disorders traditionally relies on the use of a pre-defined brain atlas. However, using such
atlases can lead to issues regarding selection bias and lack of regard for specificity. Ad-
dressing this, we propose a novel transformer-based classification network (AFBR-KAN)
with effective brain function representation, to aid in diagnosing autism spectrum disorder
(ASD). AFBR-KAN leverages Kolmogorov-Arnold Network (KAN) blocks replacing tradi-
tional multi-layer perceptron (MLP) components. Thorough experimentation reveals the
effectiveness of AFBR-KAN in improving the diagnosis of ASD under various configurations
of the model architecture.
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1. Introduction

Diagnoses of autism spectrum disorder (ASD) are becoming increasingly prevalent across
the world (Ge et al., 2024). As such, research into effective methods to improve the diagnosis
of this brain disorder is vital. Traditional methods of diagnosing ASD have relied on analysis
of functional connectivity (FC) in the brain, quantified from blood-oxygen-level-dependent
(BOLD) signals obtained during resting-state functional magnetic resonance imaging (rs-
fMRI), but this approach has several flaws.

FC analysis performed in this matter typically relies on regions-of-interest (ROIs) pro-
duced by registering a subject’s brain with a pre-defined atlas. This approach can lead
to subjective selection bias, disregard for individual specificity, and a lack of interaction
between brain regions and FC analysis (Liu et al., 2024a). Despite research into various
methods of addressing these issues, such as data-driven (Jensen et al., 2024), individualized
(Li et al., 2022), and multi-atlas (Xu et al., 2024) setups, a definitive resolution to all of the
challenges associated with atlas-based parcellation techniques has not yet emerged.

Given that one of the largest drawbacks of traditional FC analysis in the high dimension-
ality and complexity of the functional representations, solutions that address this particular
issue are desired. Recently, Kolmogorov-Arnold Networks (KANs) (Liu et al., 2024b) have
emerged as an alternative to traditional multi-layer perceptrons (MLPs), leveraging learn-
able activation functions on edges rather than fixed activation functions on nodes. Inspired
by the Kolmogorov-Arnold representation theorem, KANs replace conventional weight ma-
trices with univariate functions parameterized as splines, offering improved expressiveness
and flexibility in function approximation. This design enables KANs to model complex
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transformations more efficiently while maintaining better interpretability and scaling prop-
erties compared to MLPs. We hypothesize that replacing MLPs with KANs in brain disorder
diagnosis modes can better capture intricate relationships in FC patterns, leading to more
robust and individualized ASD diagnoses.

In this paper, we propose ABFR-KAN, a novel workflow for brain disorder diagnosis.
Building upon state-of-the art methods, we propose novel sampling and function repre-
sentation strategies and investigate the impact of KANs under various configurations in
transformer networks. Our specific contributions are summarized as:

• Randomized anchor patch selection, which helps avoid structural bias, boosts individual-
specific representations and increases robustness and generalizability by reducing de-
pendence on atlas-based parcellation.

• Iterative sampling of patches from a subject’s brain, aimed to create multiple function
representations for the same subject, introducing variance while preserving meaningful
FC information.

• Extensive experimentation demonstrating the effectiveness of replacing traditional
MLP components in two transformer networks (ViT and DeiT).

2. Related Work

There generally exist three different setups for brain disorder analysis using an atlas: single-
atlas, multi-atlas, and individual-specific atlas. An example of a model constructed from
a single-atlas approach is BrainGNN (Li et al., 2021), a graph neural network (GNN)
based on the Desikan-Killiany (Desikan et al., 2006) atlas that is capable of analyzing fMRI
images and discovering neurological biomarkers. Another group employed multiple atlases
(Kennedy et al., 1998; Craddock et al., 2012; Rolls et al., 2020) to build a spectral GNN
that enabled the identification of potential disease-related patterns associated with major
depressive disorder (Lee et al., 2024). PFC-DBGNN- STAA (Cui et al., 2023) was proposed
as a method for identifying mild cognitive impairment (MCI) based on individual-specific
FC features.

As an alternative to using pre-defined atlases for ROI parcellation, several data-driven
approaches have been proposed. For example, attention-guided hybrid deep learning net-
works have been used to automatically localize discriminative brain regions for Alzheimer’s
disease and MCI diagnosis (Lian et al., 2020). RandomFR (Liu et al., 2024a) is an inno-
vative approach for brain function representation, and operates via randomized selection
of brain patches, and well as the use of novel function and position description methods.
RandomFR serves as the main inspiration for the research presented in this paper.

Given the early stage of research into KANs, there exist few studies on the use of KANs
for similar tasks that we propose in this paper. One study explores the use of KANs
as deep feature extractors for MRI reconstruction, finding that incorporating Chebyshev
polynomials into KANs (SS et al., 2024) led to both improved convergence and MRI re-
construction quality based on total variation and peak signal-to-noise ratio (Penkin and
Krylov, 2024). Another study demonstrated the usefulness of KANs for chemical exchange
saturation transfer (CEST) MRI analysis of the human brain (Wang et al., 2024), and
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Figure 1: Proposed AFBR-KAN model: The transformer network is fed fMRI-derived
patches that are embedded with spatial position information and passed through
the encoder. The binary classification prediction (control or ASD) is produced
by the KAN head. The encoder is in the ViT style, with a KAN block replacing
the MLP block. The KAN block is similar to an MLP block, but with DropPath
regularization and KAN layers to handle nonlinear transformations. In the KAN
layer, input I passes through multiple learnable nonlinear functions (ϕn) that are
combined in a structured manner to form the final transformations.
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Figure 2: (a) The gray matter mask from which our anchor patches are selected. (b) The
baseline grid-based anchor selection process. Note how certain patches fall outside
of the gray matter region entirely. (c) Our randomized anchor selection process,
which captures the full scope of the gray matter region, reduces structural bias
and enhances individual specificity.

another found that a model integrating the learnable spline activation functions of KAN
into convolution layers, ConvKAN, outperformed traditional convolutional neural network
(CNN) and graph convolution network (GCN) approaches at classifying Parkinson’s disease
(Patel et al., 2024). To our knowledge, we are the first to investigate the efficacy of KANs
for FC analysis and ASD diagnosis.

3. Methods

In this work, we follow the workflow structure described by (Liu et al., 2024a) for brain
function representation, which is divided into three stages: sampling, where anchor patches
are selected from gray matter along with position coordinates, function representation,
where sampled patches are combined with function and position descriptions for characteri-
zation of brain function, and transformer network, where embeddings based on the fusion
the function and position descriptions are passed to a transformer network for classification.
In this section, we detail our methodology based on these three phases.

3.1. Random Anchor Selection

Previous works (Liu et al., 2024a), have explored selecting anchor patches using a grid-based
method, where a grid of coordinates to sample anchor patches from is constructed from ROIs
in a unified parcellation of gray matter, along with stride and offset values. This approach,
which has proven effective, does limit models in terms of flexibility and adaptability because
the same grid is used for every subject in a dataset, imposing a structural bias and a
disregard for individual specificity, as a subject may have functionally distinct regions that
do not align well with predefined anchor patches.
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To address this flaw, we propose an alternate approach, a randomized one, for anchor
patch selection. Our method works as follows. First, bounding boxes encompassing ROIs
in the gray matter are calculated:

ROI = [xmin, ymin, zmin, xmax, ymax, zmax]. (1)

Next, the starting coordinates are randomly sampled using:

xstart ∼ Uniform(xmin, xmax − ps), (2)

where ps is the patch size. Similar equations are used to calculate ystart and zstart. Once
the anchor patches are sampled, they are validated to ensure sufficient overlap with the
gray matter mask, gm: ∑

(pm · gm) ≥ τ, (3)

where pm is the patch mask and τ is a threshold. If the condition is not met, resample until
a valid sample is found. This process repeats until the desired number of anchor patches is
sampled. A visualization of both the grid-based anchor selection and our random anchor
selection can be seen in Figure 2.

3.2. Iterative Patch Sampling

As opposed to sampling the patches used to represent the brain function of each subject
only once (Liu et al., 2024a), we propose an iterative modification of this process to serve
as a form of data augmentation. Our proposed method can be expressed as:

Samples =
m⋃
i=1

{(x, y, z, pi) | p(x, y, z, pi) ∩ gm ̸= ∅}, (4)

where p is the patch. In our method, patches are samples over multiple iterations, with
varying patch sizes. Each subject is sampled during every iteration.

3.3. Transformer Network

In this work, we explore KAN integration in two popular transformer networks: vision
transformer (ViT) (Dosovitskiy, 2020) and data-efficient image transformer (Touvron et al.,
2021). A visual depiction of our implementation of the KAN-based ViT is shown in Figure
1. Both networks have two main locations that traditionally are constructed with MLP
components: in the encoder, and in the classification head. We experiment with three
different configurations of KAN integration: KAN-KAN, where the MLPs in both the
encoder and classification head are replaced with KANs, KAN-MLP, where only the MLP
in the encoder is replaced, and MLP-KAN, where the opposite is true.

4. Experiments and Results

4.1. Data

We evaluated our proposed ABFR-KAN using pre-processed neuroimaging data from the
Autism Brain Imaging Data Exchange (ABIDE) (Craddock et al., 2013; Di Martino et al.,
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Table 1: Classification performance of ABFR-KAN with grid-based anchor selection and
random patch sampling. The best and second best results are bolded and
underlined, respectively.

Backbone Model ACC AUC F1 P R SPE

ViT

MLP-MLP 0.731±0.064 0.695±0.114 0.778±0.054 0.745±0.057 0.899±0.062 0.718±0.094
KAN-KAN 0.708±0.092 0.706±0.080 0.768±0.039 0.762±0.145 0.867±0.121 0.692±0.124
KAN-MLP 0.714±0.049 0.718±0.089 0.771±0.057 0.765±0.108 0.866±0.093 0.704±0.068
MLP-KAN 0.737±0.050 0.686±0.096 0.785±0.050 0.741±0.070 0.910±0.058 0.719±0.049

DeiT

MLP-MLP 0.720±0.050 0.696±0.097 0.762±0.050 0.724±0.080 0.856±0.011 0.693±0.057
KAN-KAN 0.725±0.057 0.697±0.049 0.773±0.043 0.750±0.131 0.846±0.060 0.711±0.068
KAN-MLP 0.696±0.053 0.663±0.097 0.756±0.048 0.742±0.121 0.826±0.123 0.672±0.052
MLP-KAN 0.679±0.058 0.662±0.025 0.767±0.017 0.733±0.080 0.939±0.049 0.663±0.066

2014). The preprocessed ABIDE repository contains data collected from a total of 1,112
patients at various sites, preprocessed using a variety of methods. We selected data from
171 patients that were collected from the NYU Langone Medical Center site that had been
processed using the Data Processing Assistant for Resting-State fMRI (DPARSF) (Yan
and Zang, 2010) method. Our selected subset of data contained information for 73 patients
diagnosed with ASD, and 98 from a control group.

4.2. Implementation Details

The ABFR-KAN model was implemented with PyTorch and trained on a single GPU
(NVIDIA GeForce RTX 4070, 16GB memory). A train-test split of 80-20 was used, mean-
ing 136 fMRI scans were used for training and 35 for testing. A 5-fold cross-validation
strategy was used to assess the model’s performance. For classification, we minimize the
cross-entropy loss. The model was trained for 100 epochs, using the Adam optimizer with
a learning rate of 0.0009. The model’s performance is gauged using traditional metrics
for classification tasks, namely accuracy (ACC), area under curve (AUC), F1 score (F1),
precision (P), recall (R), and specificity (SPE).

4.3. Results

4.3.1. Grid-based anchor selection, random patch sampling

In the first experiment, the main goal was to evaluate the performance of KAN integration,
with no changes to the anchor selection or patch sampling processes. Our primary findings
for this experiment are reported in Table 1. For the ViT backbone, we show that the final
configuration, MLP-KAN achieves the best performance, outperforming the other models
across four of the six evaluated metrics (KAN-MLP second best).

For the DeiT backbone, a different trend is observed. This time, KAN-KAN outper-
forms the other methods in five of the six metrics (MLP-KAN second best). Overall, the
performance of the DeiT-based models is poorer than the ViT-based ones.
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Table 2: Classification performance of ABFR-KAN with random anchor selection and ran-
dom patch sampling. The best and second best results are bolded and underlined,
respectively.

Backbone Model ACC AUC F1 P R SPE

ViT

MLP-MLP 0.702±0.033 0.667±0.081 0.737±0.057 0.723±0.061 0.776±0.125 0.704±0.039
KAN-KAN 0.743±0.068 0.727±0.112 0.783±0.061 0.764±0.084 0.890±0.132 0.729±0.072
KAN-MLP 0.720±0.045 0.704±0.041 0.768±0.055 0.734±0.082 0.825±0.116 0.699±0.037
MLP-KAN 0.708±0.059 0.693±0.071 0.763±0.069 0.732±0.146 0.876±0.143 0.688±0.057

DeiT

MLP-MLP 0.696±0.072 0.671±0.092 0.755±0.065 0.725±0.080 0.865±0.139 0.682±0.085
KAN-KAN 0.708±0.058 0.676±0.066 0.775±0.014 0.741±0.054 0.900±0.127 0.682±0.059
KAN-MLP 0.684±0.051 0.622±0.020 0.767±0.032 0.722±0.117 0.959±0.050 0.665±0.065
MLP-KAN 0.713±0.058 0.689±0.060 0.779±0.038 0.762±0.114 0.950±0.045 0.687±0.082

4.3.2. Random anchor selection, random patch sampling

In the second experiment, the randomized patch sampling process remained the same, but
the anchor selection process was switched to a randomized selection strategy as defined in
subsection 3.1. Our findings for this experiment are reported in Table 2. Comparing these
results to the previous experiment, we observe inverse trends. This time, for the ViT-based
models, KAN-KAN outperforms all of the models in all of the metrics, and outperforms the
baseline at higher rates compared to the KAN-based models in the previous experiment.

For the DeiT backbone, this time MLP-KAN proves best, outperforming the other
models in five of the six evaluated metrics (KAN-MLP second best). As with the previous
experiment, the DeiT-based models generally performed poorer compared to the ViT-based
models.

4.3.3. Grid-based anchor selection, iterative patch sampling

For the third experiment, we return to the grid-based anchor selection process but modify
the patch sampling process to use an iterative approach as defined in subsection 3.2. This
time, we observe identical trends between the ViT and DeiT backbones. For the ViT-based
models, KAN-MLP performs the best, outperforming the other models in four of the six
metrics (MLP-KAN second best).

KAN-MLP again performs the best for the DeiT models, achieving the best performance
in five of the six metrics (MLP-KAN second best). Notably, in this experiment, the DeiT-
based models are much more competitive with the ViT-based ones compared with the
previous experiments, outperforming them in four of the six metrics.

4.4. Discussion

From our experiments, we make several observations. In each of the three experiments, our
ABFR-KAN framework achieves better performance compared to the baseline RandomFR,
indicating both the efficacy of our proposed method, as well as KANs in general. Inter-
estingly though, taking into account the results of all the experiments, there is not a clear
winner in terms of the configuration of ABFR-KAN.
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Table 3: Classification performance of ABFR-KAN with grid-based anchor selection and
iterative patch sampling. The best and second best results are bolded and
underlined, respectively.

Backbone Model ACC AUC F1 P R SPE

ViT

MLP-MLP 0.643±0.047 0.612±0.040 0.760±0.049 0.725±0.043 0.839±0.124 0.652±0.040
KAN-KAN 0.673±0.043 0.621±0.043 0.757±0.033 0.702±0.108 0.898±0.128 0.638±0.037
KAN-MLP 0.690±0.048 0.674±0.090 0.772±0.035 0.683±0.045 0.918±0.068 0.651±0.051
MLP-KAN 0.684±0.029 0.623±0.056 0.725±0.043 0.733±0.064 0.819±0.153 0.671±0.048

DeiT

MLP-MLP 0.667±0.047 0.608±0.089 0.733±0.029 0.685±0.063 0.844±0.156 0.647±0.055
KAN-KAN 0.673±0.020 0.588±0.095 0.755±0.018 0.688±0.051 0.888±0.081 0.646±0.023
KAN-MLP 0.707±0.054 0.667±0.101 0.779±0.030 0.706±0.075 0.898±0.085 0.674±0.064
MLP-KAN 0.673±0.060 0.661±0.074 0.722±0.039 0.769±0.096 0.805±0.070 0.660±0.061

Considering the evaluations of the ViT and DeiT backbones as separate experiments
within the three main experiments, we are left with a total of six scenarios. The three
ABFR-KAN variants, KAN-KAN, KAN-MLP, and MLP-KAN have two scenarios each
where they outperform the others, with a ViT-based model and a DeiT-based model present
in the best cases for each of the three variants, making it difficult to evaluate whether one
particular configuration definitively performs the best. However, given that four of the
six scenarios are won by a configuration containing a hybrid of MLP and KAN blocks, it
appears that taking a hybrid approach to KAN integration works better than having either
all KANs or all MLPs.

Moving away from the discussion on KAN integration, we now discuss the modifications
we made to the RandomFR architecture itself. Modifying the anchor selection process to be
randomized as opposed to grid-based had a positive effect, with the best-performing model
in the second experiment outperforming the best-performing model of the first experiment
in three metrics for both the ViT-based and DeiT-based methods. The iterative patch
sampling process on the other hand did not perform as well compared to the original
RandomFR architecture. As the focus of this work was largely on exploring the efficacy
of KAN integration, proper optimization of the randomized anchor selection process and
iterative patch sampling process were not explored in depth. Additionally, we did not
explore the use of random anchor patches with iteratively sampled patches, which could be
an interesting exploration.

5. Conclusions

In this paper, we have introduced a novel architecture for improving ASD diagnosis, ABFR-
KAN. Our results demonstrate the effectiveness of our proposed technique, and specifically
highlight the effectiveness of KANs in this domain. Interestingly, strictly using KANs
without any MLP components was shown to have decreased components compared to con-
figurations where MLPs were involved in some way. This indicates the need for further
research in this area, as there are many different ways that KANs can be incorporated into
existing deep learning architectures, and optimal frameworks are not yet clear.

8



Improving brain disorder diagnosis with advanced brain function representation

References

Michael Brant-Zawadzki, Gary D Gillan, and Wolfgang R Nitz. Mp rage: a three-
dimensional, t1-weighted, gradient-echo sequence–initial experience in the brain. Ra-
diology, 182(3):769–775, 1992.

Cameron Craddock, Yassine Benhajali, Carlton Chu, Francois Chouinard, Alan Evans,
András Jakab, Budhachandra Singh Khundrakpam, John David Lewis, Qingyang Li,
Michael Milham, et al. The Neuro Bureau Preprocessing Initiative: open sharing of
preprocessed neuroimaging data and derivatives. Frontiers in Neuroinformatics, 7(27):5,
2013.

R Cameron Craddock, G Andrew James, Paul E Holtzheimer III, Xiaoping P Hu, and
Helen S Mayberg. A whole brain fmri atlas generated via spatially constrained spectral
clustering. Human brain mapping, 33(8):1914–1928, 2012.

Weigang Cui, Yulan Ma, Jianxun Ren, Jingyu Liu, Guolin Ma, Hesheng Liu, and Yang
Li. Personalized functional connectivity based spatio-temporal aggregated attention net-
work for mci identification. IEEE Transactions on Neural Systems and Rehabilitation
Engineering, 31:2257–2267, 2023.

Rahul S Desikan, Florent Ségonne, Bruce Fischl, Brian T Quinn, Bradford C Dickerson,
Deborah Blacker, Randy L Buckner, Anders M Dale, R Paul Maguire, Bradley T Hyman,
et al. An automated labeling system for subdividing the human cerebral cortex on mri
scans into gyral based regions of interest. Neuroimage, 31(3):968–980, 2006.

Adriana Di Martino, Chao-Gan Yan, Qingyang Li, Erin Denio, Francisco X Castellanos,
Kaat Alaerts, Jeffrey S Anderson, Michal Assaf, Susan Y Bookheimer, Mirella Dapretto,
et al. The autism brain imaging data exchange: towards a large-scale evaluation of the
intrinsic brain architecture in autism. Molecular Psychiatry, 19(6):659–667, 2014.

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition
at scale. arXiv preprint arXiv:2010.11929, 2020.

Wenrong Ge, Cancan Zhang, Guang Yang, and Bo Zhang. Prevalence and trends of autism
spectrum disorder and other developmental disabilities among children and adolescents
in the United States from 2019 to 2021. Frontiers in Psychiatry, 15, 2024.

Kyle M Jensen, Jessica A Turner, Vince D Calhoun, and Armin Iraji. Addressing incon-
sistency in functional neuroimaging: A replicable data-driven multi-scale functional atlas
for canonical brain networks. bioRxiv, 2024.

David N Kennedy, Nicholas Lange, Nikos Makris, Julianna Bates, James Meyer, and Verne S
Caviness Jr. Gyri of the human neocortex: an mri-based analysis of volume and variance.
Cerebral Cortex (New York, NY: 1991), 8(4):372–384, 1998.

Deok-Joong Lee, Dong-Hee Shin, Young-Han Son, Ji-Wung Han, Ji-Hye Oh, Da-Hyun Kim,
Ji-Hoon Jeong, and Tae-Eui Kam. Spectral graph neural network-based multi-atlas brain
network fusion for major depressive disorder diagnosis. IEEE Journal of Biomedical and
Health Informatics, 2024.

9



Ward Imran

Xiaoxiao Li, Yuan Zhou, Nicha Dvornek, Muhan Zhang, Siyuan Gao, Juntang Zhuang,
Dustin Scheinost, Lawrence H Staib, Pamela Ventola, and James S Duncan. Braingnn:
Interpretable brain graph neural network for fmri analysis. Medical Image Analysis, 74,
2021.

Yu Li, Aiping Liu, Xueyang Fu, Martin J Mckeown, Z Jane Wang, and Xun Chen. Atlas-
guided parcellation: Individualized functionally-homogenous parcellation in cerebral cor-
tex. Computers in Biology and Medicine, 150:106078, 2022.

Chunfeng Lian, Mingxia Liu, Yongsheng Pan, and Dinggang Shen. Attention-guided hy-
brid network for dementia diagnosis with structural mr images. IEEE transactions on
cybernetics, 52(4):1992–2003, 2020.

Mengjun Liu, Huifeng Zhang, Mianxin Liu, Dongdong Chen, Zixu Zhuang, Xin Wang, Lichi
Zhang, Daihui Peng, and Qian Wang. Randomizing human brain function representation
for brain disease diagnosis. IEEE Transactions on Medical Imaging, 2024a.

Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljačić,
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Appendix A. Demographics

Figure 3 provides a detailed breakdown of the demographics among patients in the data
subset. In total, 64 male (age range: 7-39) and 9 female (age range: 10-38) patients with
ASD diagnoses were selected, along with 72 male (age range: 6-31) and 26 female (age
range: 8-29) patients from the control group.

Figure 3: The patient demographics of our selected subset of data from the ABIDE I
dataset.

12



Improving brain disorder diagnosis with advanced brain function representation

Appendix B. Dataset Samples

Figure 4: Raw and preprocessed data for a single patient in the ABIDE I dataset.

Figure 4 shows different patient-specific scans from the ABIDE I dataset. The first, MP-
RAGE, is an MRI pulse sequence optimizing for T1-weighted imaging, allowing easy identi-
fication of anatomical features with high gray/white matter contrast (Brant-Zawadzki et al.,
1992). The second, rs-fMRI, is a noninvasive technique used to measure and analyze brain
activity when a subject is at rest, i.e., not engaged in a specific task. rs-fMRI’s are widely
used to study FC between brain regions (Santana et al., 2022). The third, and the most
relevant to this research, is the DPARSF pre-processed fMRI data. DPARSF is a toolkit
enabling easy pre-processing tasks such as slice timing, realignment, normalization, and
smoothing data (Yan and Zang, 2010).
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Appendix C. Patch Sampling

Figure 5: (a) The random patch sampling process. Observe how the size of the patches
is consistent. (b) The iterative patch sampling process, where each subject is
processed three times as a form of data augmentation, with patch sizes varying
from 8×8, 12×12, and 16×16.

Figure 5 shows the two different patch sampling processes used in our study. The first,
random patch sampling, uses consistent patch sizes randomly selected from across the gray
matter region, reducing structural bias while maintaining functional specificity. The second,
the iterative sampling method, acts as a data augmentation technique with the aim of
introducing variability while preserving meaningful FC information.
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Appendix D. Receiver Operating Characteristic (ROC) Curves

Figure 6: ROC curve comparison of our ABFR-KAN models vs. the baseline, which is re-
ported as MLP-MLP. Note that our ABFR-KAN models generally achieve better
curves compared to the MLP-MLP models.

Figure 6 presents a visual performance comparison between our ABFR-KAN models and
the baseline. The ROC curves illustrate the trade-offs between true and false positive
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rates. Our ABFR-KAN models demonstrate consistent performance improvement over the
baseline, as indicated by the higher ROC curves. This suggests that replacing traditional
MLP components with KANs enhances the model’s ability to distinguish between ASD and
control subjects. The observed improvements highlight the effectiveness of our approach in
capturing complex FC patterns within the brain.
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