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ABSTRACT

The infection of hepatitis B attacks the liver and can produce acute and chronic
diseases, while it is a major health problem and life-threatening around the globe.
The control of this infection is a difficult task due to several reasons such as vari-
ation of human behavior, proper medication, vaccination, and existence of a large
number of carries, etc., but understanding the dynamics of the infection helps to
design appropriate control strategies. Thus, a proper complex dynamical system is
needed to find the stability conditions and propose intervention strategies for fore-
casting the control of hepatitis B virus transmission. We formulate a model that
will be helpful to investigate the temporal dynamics and suggest control strate-
gies for hepatitis B infection. The well-posedness of the proposed model will be
shown, and used to find the threshold parameter to analyze the model equilibria
and its stability. We also perform the sensitive analysis of the threshold quantity to
quantify the most sensitive epidemic parameters. Based on the temporal dynam-
ics and sensitivity, we investigate effective methods to minimize the infection of
hepatitis B, and develop the algorithms to support the theoretical results with the
help of numerical simulations.

1 INTRODUCTION

Hepatitis means liver inflammation produced by the virus’s bacterial infections and continuous expo-
sure to alcohol or drugs (Ganem & Prince, 2004). Hepatitis B infection is caused by a non-cytopathic
virus called the hepatitis B virus (HBV). The viruses are in vaginal fluids, blood, and semen, and
are transferred in multiple ways from one individual to other. Major routes of the transmissions are
blood, sharing razors, toothbrushes, and unprotected sexual contacts (Chang, 2007). Another source
of HBV transmission is maternal transmission (i.e., from an infected mother to her child). However,
this virus can not be transmitted from causal contact (McMahon, 2005). The infectious hepatitis B
has multiple infection phases: acute and chronic carries. The first phase refers to the initial three
months after someone becomes infected with hepatitis B. The immune system can recover in this
stage without taking any treatment/hospital care usually, however, may also lead to a long-term in-
fection indicating the chronic phase for someone. The individual with chronic HBV stage often
has no acute history of infection. The chronic hepatitis B phase is a severe stage and causes many
complications, for example, liver scarring, failure of the liver, and liver cancer (Ringehan et al.,
2017). In the chronic hepatitis B phase, there is a need for treatment with medicines, containing
oral antiviral agents. The proper treatment and hospital care will be necessary for the rest of their
lives, because this can slow cirrhosis progression and reduce the liver cancer incidence with an im-
provement in long-term survival. In 2021, WHO recommended oral treatments for the hepatitis B
virus as the most potent drugs. The symptom of hepatitis B includes skin yellowing, abdominal
pain, urine darkness, fever, and loss of appetite, etc. But for every individual, this is not common to
suffer from hepatitis B because 40% of the acute individuals have no symptoms in the acute stage
of the infection. Although the vaccine for hepatitis B is available, new cases still have been reported
and the infection of hepatitis B is one of the main public health issues that produce a high mortality
rate around the globe (Shepard et al., 2006). Worldwide two billion of the population are infected
with hepatitis B, among which the number of chronic hepatitis B is 360 million (Libbus & Phillips,
2009). Viral hepatitis B is a leading source of death among other diseases while producing 820000
deaths in 2019, with 1.5 million newly infected.
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Mathematical modeling is a useful tool and has been extensively used to test various theories related
to the dynamics of infectious diseases. Various mathematicians, researchers, and biologists used
mathematical models to study the communication of transmittible diseases (Rao & Kumar, 2015;
Lessler et al., 2016; Ndeffo-Mbah et al., 2018; Li, 2018). The temporal dynamics of hepatitis B also
have a rich literature, and a variety of epidemic models have been used frequently to know the dy-
namics of the disease. For example, a model has been reported to analyze the dynamics of hepatitis
B in Ghana by Dontwi et al. (2014). The dynamics of the hepatitis B virus with fractional derivatives
have been studied by Ullah et al. (2018a;b). Similarly, many more studies have been reported to dis-
cuss the dynamics of hepatitis B (Koonprasert et al., 2016; Khan et al., 2019). However, the recent
models are aimed to analyze the temporal dynamics of the infection using simple disease transmis-
sion rate rather than probability-based transmission, which is not realistic especially for a disease
having multiple infection phases. Since the contagious infection of hepatitis B has multiple phases
and it would be better to use probability-based transmission in the inflow and outflow of individuals
from one compartment to another compartment. We try to fill the gap by formulating a model using
probability-based rate of transmission according to the characteristics of hepatitis B virus transmis-
sion. The model will be developed using the idea of classical susceptible-infected-recovered (SIR)
model and probability-based transmission of individuals. We then discuss the existence of the model
solution using the Cauchy abstract equation and calculate the threshold parameter of the model to
analyze the sensitivity of important parameters. The threshold parameter and its sensitivity are dis-
cussed with the help of the next-generation matrix method and sensitivity index, respectively. We
also investigate the qualitative behaviors of the model to derive the stability conditions using linear
stability analysis. Based on sensitivity and stability conditions, we use optimal control theories to
formulate effective methods for hepatitis B eradication. Finally, algorithms for the proposed model
will be developed to present the numerical simulations and verify the theoretical analysis.

2 PRELIMINARIES

In this section, we recall some essential concepts, preliminaries, definitions, and methods for the
analysis of proposed model that will be helpful for getting our results.

Let Rn and Rn
+ respectively represent the space of n-tuple and the space of n-tuple with non-

negative entries. The system of non-linear autonomous differential equation then looks like

du⃗

dt
= ψ(u⃗(t)), u⃗(t0) = u⃗0, (1)

where u⃗ ∈ Rn and the function ψ implicitly depends only on the dependent variable u⃗ and not on
the independent variable t, for example, dudt = (a− bu(t))u(t). Let J be the variational matrix of
Eq.(1), then

J =


∂ψ1

∂u1
. . . ∂ψn

∂un

...
...

...
∂ψn

∂u1
. . . ∂ψn

∂un

 . (2)

Theorem 1 (Yassen, 2005) Let us assume that P(x) is a polynomial of degree n, such that

P(x) = xn + α1x
n−1 + . . .+ αn,

where α1, α2, . . . , αn, are constants. The n-Hurwitz matrices for the above polynomial are defined
by

H1 = α1, H2 =

[
α1 1
α3 α2

]
, H3 =

[
α1 1 0
α3 α2 α1

α4 α3 α3

]
,

...

Hn =


α1 1 0 0 . . . 0
α3 α2 α1 1 . . . 0
...

...
...

... . . .
...

0 0 0 0 . . . αn

 .
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It should be noted that for m > n, αm = 0. If the determinants of the Hurwitz matrices are positive
i.e. det(H1),det(H2), . . . ,det(Hn) > 0, the roots of P(x) will be negative or having negative real
parts.

2.1 CLASSIC SIR MODEL

In the history of epidemiology of the infectious disease, a classical model for the infectious disease
mitigation was presented by Kermack and McKendrick which looks like

dS
dt

= −βIS, dI
dt

= βIS − γI, dR
dt

= γI,

where the state variables, S, I and R describe the susceptible, infectious, and recovered/removed
population, respectively, while the disease mitigation rate is β and the recovery/removal rate is γ.

Definition 1 Let u⃗∗ is a fixed (equilibrium) point of the dynamical system (1) and ψ is a real valued
C1-function defined in some neighbourhood of u⃗∗ such that

a. ψ(u⃗∗) = 0, and ψ(u⃗) > 0 if u⃗ ̸= u⃗∗, b. ψ̇(u⃗) ≤ 0, and ψ̇(u⃗) = 0 if u⃗ = u⃗∗,

then the function ψ(u⃗) is Lyapunov, while the fixed point u⃗∗ is stable asymptotically.

Definition 2 (Samsuzzoha et al., 2013; Ngoteya & Gyekye, 2015) The basic reproductive number
is a very important quantity in the study of epidemiological models. Usually, the estimation of
epidemic parameters and uncertainties affect this quantity. The sensitivity analysis describes the
relation, and its relative impact between the threshold quantity and epidemic parameters is defined
as φ

R0

∂R0

∂φ , where φ is any epidemic parameter and R0 is the threshold quantity.

2.2 PONTRYAGIN’S MAXIMUM PRINCIPLE

Let µ = (µ1(t), µ2(t), . . . , µn(t)) and s = (s1(t), . . . , sn(t)) denote the state and control measures,
respectively. Then the optimal problem for the dynamical system is

ds

dt
= g(t, s, µ(t)), s(0) = s0, 0 ≤ t ≤ T is min

{
ϕ(T, s(T )) +

∫ t

0

g(t, s, µ)

}
,

then the Lagrangian L and the Hamiltonian H take the form

L(s, µ) = g(t, s, µ), H(s, µ, λ) = L(s, µ) + λf(s, µ),

where

f(s, µ) = (f1(s, µ), f2(s, µ), . . . fn(s, µ)), λ = (λ1, λ2, . . . , λn).

If (s∗, µ∗) represents the optimal solution of the above problem, then a non-trivial function, denoted
by λ, exists and satisfies

ds∗

dt
=
∂H

∂λ
, 0 =

∂H

∂µ
,

dλ(t)

dt
= −∂H

∂s
,

at (µ∗(t), s∗(t), λ(t)), and the maximality and transversal conditions

H(µ∗, s∗, λ) = max
µ∈[0,1]

H(s∗, µ, λ), and λ(T ) = 0 (3)

hold.

3 MODEL FORMULATION

In this section, we present the model framework and its detailed derivations. We follow the clas-
sic SIR model, keep in view the transfer mechanism of the disease, and have the total population,
represented by N(t), divided into various sub-classes. Particularly, the various epidemiological
sub-classes are susceptible, acute hepatitis B, chronic/carries, recovered, and the vaccinated com-
partments, indicated by S, A, C, R and V , respectively. We assume for the model constraints as
follows:
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• The various parameters and groups of population, S, A, C, R, and V are assumed to be
non-negative at time t = 0.

• There are two infectious phases of hepatitis B: acute and chronic, and both cause the spread-
ing of infection while the disease transmission co-efficient for acute and chronic are respec-
tively denoted by βa and βc. Also, if ρ is the probability of those who leads to the acute
portion after some one infected then (1 − ρ)-th portion will go to the chronic phase of the
infection.

• Successfully vaccinated individual will lead to the vaccinated compartment while unsuc-
cessful will go to the susceptible group of population.

• The death induced from hepatitis B is only considered in chronically infected group of
individuals.

• The inflow of maternally infected individuals go to the chronic carries.

Figure 1: The graph represents the schematic process of HBV virus transmission of the proposed
epidemic problem

Moreover, the schematic process of the model is depicted by Figure 1 and thus the governing equa-
tions of the epidemic problem subject to above assumptions is demonstrated by
dS(t)
dt

= Γξ (1− αC(t)) + ζV(t)− (βaA(t) + βcC(t) + ϑ+ η)S(t),

dA(t)

dt
= (βaA(t)S(t) + βcC(t)S(t)) ρ− (r1 + η)A(t),

dC(t)
dt

= (βaA(t) + βcC(t))S(t) (1− ρ) + qr1A(t)− (η + η1 + r2 − Γξα) C(t),

dR(t)

dt
= (1− q)r1A(t) + r2C(t)− ηR(t),

dV(t)
dt

= (1− ξ) Γ + ϑS(t)− (η + ζ)V(t),

(4)

with initial population sizes
S(0), V(0) > 0, A(0), C(0), R(0) ≥ 0. (5)

In the above epidemic problem (4)-(5) the description of model parameters are as: Γ is the birth rate
while the hepatitis B transmission rates are βa and βc. Moreover, η is assumed to be the natural
death rate. r1 and r2 respectively show the natural recovery rate, and recovery due to treatment.
η1 is the death rate from disease while ϑ is the vaccination rate of susceptible population. Further,
the maternally infection rate (vertical transmission) is denoted by α, and ξ is the proportion of un-
successful vaccination rate. The probability of those individuals which have no acute history while
directly leading to the chronic stage is denoted by ρ. Similarly, q is the probability of those which
recover directly in acute stage.

It is worthy to mention that the proposed epidemic model is a population dynamical problem, and to
show the well-possedness we describe the following propositions (all the missing proofs are given
in appendix).
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Proposition 1 The set R5
+ is invariant positively for the system (4).

Proposition 2 The solution of the proposed epidemic problem (4) is positive subject to the initial
conditions (5).

4 STEADY STATES ANALYSIS

We perform a qualitative analysis of the epidemic problem. We find the model equilibria and thresh-
old parameter to analyze the temporal dynamics of the model. We calculate the basic reproductive
number to derive some sufficient conditions for the local and global dynamics of the model using
linearization, Hurwitz criteria, and Lyapunov function theory.

4.1 STABILITY ANALYSIS

To perform the dynamical analysis of the epidemic problem, we first find the disease-free equi-
librium of the system (4). Let Df be the disease-free state of the proposed system described by
Df = (Sf ,Af ,Bf ,Rf ,Vf ), where Sf = Γξ

η+ϑ , Af = Cf = Rf = 0, and Vf = Γ(1−ξ)(η+ϑ)+ϑΓξ
(η+ζ)(η+ϑ) .

Further, the reproductive parameter, known as the threshold parameter and generally denoted by R0,
represents the average of secondary infectious produced by an infective whenever put into suscep-
tible individuals. Since, this quantity is the average of secondary infectives, the infection dies out
if R0 < 1, and spreads whenever R0 > 1. To calculate this quantity we follow (Perasso, 2018),
and let us assume that Y = (A, C)⊤ which implies that dYdt |Df

= F − V , where F and V are the
variational matrices around the disease-free state Df and becomes

F =

[
ρβaSf ρβcSf

(1− ρ)βaSf (1− ρ)βcSf

]
, V =

[
η + r1 0
−qr1 η + η1 + r2 − Γξα

]
.

Calculating the spectral radius of FV−1, i.e., σ(FV−1), we have that σ(FV−1) = R0 and

R0 = R1 +R2 +R3, R1 =
βc(1− ρ)Sf

(η + η1 + r2 − Γξα)
, R2 =

βaρSf
(η + r1)

,

R3 =
βcqr1ρSf

(η + r1)(η + η1 + γ2 − Γξα)
.

(6)

We now calculate the endemic state of the model. To make our calculation easier, we substitute
q1 = η + ϑ, q2 = η + r1, q3 = η + η1 + r2 − Γξα, and q4 = η + ζ. The disease endemic state of
the model is denoted by De = (Se,Ae, Ce,Re,Ve), where the components are defined as

Se =
q1q2

βcq2 (1− ρ) + ρ (qr1βc + q3βa)
, Ve =

1

q4
{(1− ξ)Γ + ϑSe} ,

Ae =
q1q2q3 {R0 − 1}+ ζVeρβcqr1 + ζVeβcq2(1− ρ) + ζVeρq3βa

{βcq2(1− ρ) + qr1ρβc + q3ρβa} {ρΓξαr1q + q2q3 + Γξαq2(1− ρ)}
,

Ce =
Ae {βaSe(1− ρ) + qr1}
βcSe + ρβcSe + q3

, Re =
1

η
{(1− q)r1Ae + r2Ce} .

(7)

It is clear from the second equation of the above system (7) that the endemic state of the proposed
epidemic problem continuously depends on the basic reproductive number R0, therefore, it is con-
cluded that the existence of the endemic state is subjected to the condition of R0 > 1. In the case of
R0 < 1, the proposed epidemic problem has only a disease-free state while the endemic state does
not exist.

Lemma 1 The existence of the endemic state for the model (4) is subject to condition R0 > 1,
otherwise it does not exist.

The temporal dynamics of the proposed epidemic problem (4)-(5) around the steady-states are de-
scribed by the following results.

Theorem 2 If the value of the threshold parameter is less than unity, i.e., R0 < 1, then the dynami-
cal system (4) is asymptotically stable around disease-free equilibrium. But if it is greater than unity
then the system is stable at the endemic equilibrium.
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Table 1: Parameters and its associated sensitivity indices along with the relative percentage impact
on the threshold quantity (R0)

Parameters Indices % Increase or Decrease Impact on R0

βa 0.2896 10 2.8960 %
βc 0.7103 10 7.1030 %
r1 -0.2321 10 2.3210 %
r2 -0.0587 10 0.5870 %
ϑ -0.9803 10 9.8030 %
α 0.0014 10 0.0140 %

4.2 SENSITIVITY ANALYSIS

To analyze the sensitivity of the model parameters and their relative impact on the threshold param-
eter, R0, we calculate the sensitivity indices of the model parameters. These indices do not allow
us to find the relative impact on basic reproductive numbers only but also will quantify the most
sensitive parameters to the disease spreading and control, which is very useful for formulating a
control mechanism. To calculate the indices, let us assume the parametric values are as: Γ = 0.343,
βa = 0.44, βc = 0.4570, r2 = 0.0081, r1 = 0.0590, ρ = 0.2600, q = 0.59, η1 = 0.08, η = 0.01,
α = 0.02, ξ = 0.03, θ = 0.5. The various epidemic parameters sensitivity indices are calculated
and given in Table 1. The sensitivity indices having positive signs show a direct relation with the
threshold parameter, R0, and whenever their values increase or decrease, the value of the threshold
parameter will also increase or decrease. on the other hand, the parameters with negative sensitivity
indices are inversely proportional to the threshold parameter, R0. That is, if their values increase,
then the value of the threshold parameter will decrease, while if the value of the epidemic parameters
decrease then the value of the threshold parameter will increase. It is clear, that the parameters which
have a direct relation are βa, βc, and α with accumulative sensitive index 1.0013. This implies that
increase or decrease in the value of these parameters by 10% will increase or decrease the value of
the threshold parameter by 10.013%. Similarly, the parameter with negative sensitive indices are r1,
r2, and ϑ having −0.2321, −0.0587 and −0.9803 sensitive indices, respectively. So, increase in the
value of r1, r2 and ϑ by 10% would decrease the value of the basic reproductive number by 2.321%,
0.587% and 9.803%, respectively. We observe that βc and ϑ are the most sensitive parameters hav-
ing highest sensitivity indices and significantly affecting the threshold parameter. Keeping in view
the sensitivity analysis and temporal dynamic of the model, it is easy to suggest control measure and
mechanism for the disease HBV.

5 OPTIMAL CONTROL STRATEGIES

Various mathematical techniques are used to characterize optimal control analysis for infectious dis-
eases (Rohani et al., 2008). Optimal control is one of the useful mathematical tool optimizing time-
varying control of dynamical systems which has been widely used (Lenhart & Workman, 2007). By
analyzing a set of equations illustrating the dynamics of a disease, optimal control theory can math-
ematically characterize the optimal strategy for a given control method and present insight into the
underlying dynamics, without the repeated simulation required to optimize simulation models. We
formulate a control mechanism programme for the eradication of HBV transmission. Based on the
dynamics and sensitivity, it is quantified that βc and ϑ are the most sensitive epidemic parameters
that significantly affect the threshold parameter as well as the disease propagation. To formulate the
control problem, we introduce the following two control measures:

• µ1(t) is a time dependent control measure physically describing the treatment of hepatitis
B infected population.

• µ2(t) is the time dependent control measure representing the vaccination of susceptible
population.

The clear goal of the control mechanism is to maximize the number of recovered and vaccinated
individuals and meanwhile to minimize the acute and chronic individuals using the above two time
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dependent controls, µ1(t) and µ2(t). Thus, the proposed control problem is the modification of
system (4), which takes the following form

J = min

∫ T

0

{
h1A(t) + h2C(t) +

1

2

(
k1u

2
1(t) + k2u

2
2(t)

)}
dt, (8)

subject to

dS(t)
dt

= Γξ (1− αC(t)) + ζV(t)− (βaA(t) + βcC(t) + η + u2(t))S(t),

dA(t)

dt
= (βaA(t) + βcC(t))S(t)ρ− (η + r1 + u1(t))A(t),

dC(t)
dt

= (1− ρ) (βaA(t) + βcC(t))S(t) + qr1A(t)− (u1(t) + η + η1 + r2 − Γξα) C(t),

dR(t)

dt
= (1− q)r1A(t) + r2C(t) + (A(t) + C(t))u1(t)− ηR(t),

dV(t)
dt

= (1− ξ) Γ + u2(t)S(t)− (η + ζ)V(t),

(9)

with initial condition

S(0) > 0, A(0) ≥ 0, C(0) ≥ 0, R(0) ≥ 0, V(0) > 0, (10)

where hi and ki, i = 1, 2 are the weight constants of infected hepatitis B population and measuring
the associated cost with treatment and vaccination control measure respectively. The goal of the
objective functional (8) is to minimize the population, A(t) and C(t) by taking the cost of control
parameters. Here, we need to find the optimal measures denoted by (µ∗

1, µ
∗
2), such that

J(µ∗
1, µ

∗
2) = min

{
J(µ1, µ2)|µi ∈ U , i = 1, 2

}
, (11)

subject to the model (9). Moreover, assuming that U is the control set defined as

U :=

{
(µ1, µ2)|µi(t) is Lebesgue measurable on [0, 1], 0 ≤ µi(t) ≤ 1, i = 1, 2

}
. (12)

For these control measures, first we prove their existence. So the control system (9) can be re-written
as

dw

dt
= Kw +M(w), (13)

where

K =

 − (η + u2(t)) 0 0 −Γξα ζ
0 − (η + u1(t)) 0 0 0
0 qr1 − (u1(t) + η + η1 + r2 − Γξα) 0 0

u2(t) 0 0 0 −η

 ,

w =


S(t)
A(t)
C(t)
R(t)
V(t)

 , M(w) =


Γξ − (βaA(t) + βcC(t))S(t)
ρ(βaA(t) + βcC(t))S(t)

(1− ρ)(βaA(t) + βcC(t))S(t)
0

(1− ξ)Γ

 .
Setting

F (w) = Kw +M(w). (14)

The second term on the right hand side of Eq.(14) satisfies

|M(w1)−M(w2) | ≤ m1 | S1(t)− S2(t) | +m2 | A2(t)−A1(t) | +m3 | C1(t)− C2(t) |
+m4 | R2(t)−R1(t) | +m5 | V1(t)− V2(t) |,
≤ m

{
| S1(t)− S2(t) | + | A1(t)−A2(t) | + | C1(t)− C2(t)

+ | R2(t)−R1(t) | + | V1(t)− V2(t) |
}
,
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where m = max{m1,m2,m3,m4,m5} is a positive constant and does not depend on the state
variable of the system (9). So, it can be re-written as

| F (w1)− F (w2) |≤ Q | w1 − w2 |, (15)

whereQ = max{m, ∥K∥}. So, it implies that F is uniformly Lipschitz continuous and by definition
of controls (µ1, µ2) and the state variables S(t),V(t) > 0, A(t), C(t),R(t) ≥ 0, imply that the
solution of Eq.(13) exists (Birkhoff & Rota, 1978), as stated below.

Theorem 3 There exists an optimal solution µ∗ = (µ∗
1, µ

∗
2) to the problem (8)-(12), contained in U .

We characterize the optimal solution to the control problem (8)–(12). To this end, we define the as-
sociated Lagrangian and Hamiltonian. Let us assume that s is the state variable, s = (S,A, C,R,V)
and µ = (µ1, µ2) is the control variable. Then the Lagrangian and the Hamiltonian are respectively
described by the following assertions

L(s, µ) = h1A+ h2C +
1

2

(
k1µ

2
1(t) + k2µ

2
2(t)

)
, H(s, µ, λ) = L(s, µ) + λg(s, µ), (16)

where
λ = (λ1, λ2, λ3, λ4, λ5), g(s, µ) = (g1(s, µ), . . . g5(s, µ)), (17)

and

g1(s, µ) = Γξ (1− αC(t)) + ζV(t)− (βaA(t) + βcC(t) + η + µ2(t))S(t),
g2(s, µ) = (βaA(t)S(t) + βcC(t)S(t)) ρ− (η + r1 + µ1(t))A(t),

g3(s, µ) = (1− ρ) (βaA(t) + βcC(t))S(t) + qr1A(t)− (µ1(t) + η + η1 + r2 − Γξα) C(t),
g4(s, µ) = (1− q)r1A(t) + r2C(t) + (A(t) + C(t))µ1(t)− ηR(t),

g5(x, u) = (1− ξ) Γ + µ2(t)S(t)− (η + ζ)V(t).

6 NUMERICAL COMPUTATION

This section is devoted to numerical investigation of the model to verify the theoretical results with
the help of some graphical visualization using Euler and Runge-Kutta methods. To verify the stabil-
ity results of the model we use Euler method, while for the optimal control analysis the Runge-Kutta
method is used. We will present the model discretization and then discuss the obtained results.

6.1 NUMERICAL SIMULATION

The numerical simulations are performed to verify our analytical findings with the help of some com-
putational analysis. To do so, we use the Euler scheme and the fourth-order Runge-Kutta scheme
given (due to space limit) in Algorithms 1 and 2 of the appendix, respectively. More precisely, the
Euler scheme is used to simulate the proposed model (4) and analyze the stability results. For this,
we assume the biological feasible parameters and different non-negative initial population sizes for
every class of individuals, as well as the time interval of 0 to 100 units. In case of disease-free
state the value of biological parameters are assumed as: Γ = 0.943, ξ = 0.05, βa = 0.0044,
βc = 0.00035, r2 = 0.081, r1 = 0.0590, ρ = 0.02, q = 0.059, η1 = 0.012, η = 0.09, α = 0.001,
ζ = 0.4, and ϑ = 0.5. We respectively calculate values of the disease-free state, Df and the thresh-
old quantity (R0) as Df = (4.011, 0, 0, 0, 2.79) and R0 = 0.00157. We execute the proposed
model using the Euler algorithm along with the above parametric values and obtain the simulations
carried out as reported in Figure 2. This clearly verifies the analytical findings as stated in Theorem
2. We use the approach of linear stability analysis, that is, perturbing the initial sizes of the compart-
mental population from the disease-free state while the solution trajectories go to the disease-free
equilibrium irrespective of its initial values. This interpretation states that whenever R0 < 1, each
solution curve of the susceptible population takes 60 units of time to reach its equilibrium position
of 4.011 as shown in Figure 2a. Similarly, the dynamics of infected (acute & chronic) and the re-
covered population reveal that the solution trajectories reach zero (vanishes) by taking 35, 30, and
70 units of time as shown in Figures 2b, 2c and 2d respectively. The dynamics of the vaccinated
individual are depicted in Figure 2e, which describes that the solution trajectories of the vaccinated
population will be non-zero and lead to its equilibrium position by taking 70 units of time, as shown

8
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in Figure 2e. This ensures the stability of the proposed epidemic problem around a disease-free
state, while the biological interpretation shows that there will be always susceptible and vaccinated
individuals and the infected population vanishes if R0 < 1. It could be noted that the elimination
of hepatitis B is subjected to the condition of R0 < 1, and therefore it is very necessary to optimize
and keep the value of the threshold parameter as low as possible.

However, if this is not the case, that is, R0 > 1, we assume another set of parameters values as:
Γ = 0.943, ξ = 0.05, βa = 0.0044, βc = 0.00035, r2 = 0.081, r1 = 0.0590, ρ = 0.02,
q = 0.059, η1 = 0.012, η = 0.09, α = 0.001, ζ = 0.4, and ϑ = 0.5 to perform stability analysis
of the endemic state. We calculate the value of the endemic state and the threshold parameter:
De = (0.531, 3.967, 1.652, 1.725, 1.513) and R0 = 1.1364. Similar to the previous case, the same
initial population sizes are taken and the model simulations are performed. We obtain the results
as given in Figure 3. This describes the time dynamics of the proposed model at the endemic state.
It is very much clear that the susceptible population decreases sharply from the very beginning of
infection and leads to its associated endemic position of 0.351 as shown in Figure 3a, while the
dynamics of acute, chronic, and recovered population reveals that they are increasing at the initial
time of the infection but decreasing then and attains its endemic positions, 3.967, 1.652, and 1.725 as
shown in the Figure 3b, Figure 3c, and Figure 3d, respectively. Similarly, the dynamics of vaccinated
individuals are represented by Figure 3e which shows that it will attain the endemic position of 1.513
after a unit of time. It is clear from this analysis that the infected (acute & chronic) population persist
in the community whenever no proper control measures are implemented. Furthermore, the optimal
control problem (8-9) is simulated using Algorithm 2 by considering the set of parameter values
corresponds to the endemic state of the proposed model. Moreover, the value of the weight constants
are assumed as: h1 = 0.6, h2 = 0.9, h3 = 0.44 and h4 = 0.2, while the time interval is taken to
be 0 to 20 units. Here, to see the effect of the optimal measures we plotted the compartmental
population of the model with and without control as shown in Figure 4. It is very easy to observe
that the goal of applying the control measures: to minimize the infected population and maximize the
recovered, and vaccinated population. More precisely, the dynamics of infected population with and
without optimal control are visualized in Figure 4b-4c. We note that the number of acutely infected
individuals with optimal control are always decreasing from the beginning and vanishes in the first
few units of time, while without control it is increasing and always exists. Similarly, the number of
chronically infected population are decreasing with optimal control application and reaches to zero,
however, increasing without control at the beginning and then decreasing with permanent existence
as shown in Figure 4c. The number of recovered and vaccinated population is increasing and then
reaches to a certain level of amount when applying the optimal control measures, but decreasing
in case of no control as shown in Figure 4d and 4d. We clearly observe the difference between
two cases (with optimal control and without optimal control) and believe that the proposed control
strategy will be helpful for the elimination of hepatitis B virus elimination.

7 CONCLUSION

The formulation of a mathematical model representing the complex biological or physical situation
involves some amount of simplifications because of the purpose to describe and predict the essen-
tial pattern of the process. The current work demonstrate the detailed derivation and analysis of a
model for hepatitis B virus transmission with optimal control. We formulated the model and used
a variety of mathematical methods including linear stability approach, basic reproductive number,
sensitivity analysis, optimal control theory, Hamiltonian and Lagrangian, Pontryagins principles,
numerical simulations to analyze the epidemic problem. We discussed the existence of model so-
lution and showed that the model is feasible biologically and mathematically. We investigated the
conditions for stability and performed the sensitivity analysis of the threshold quantity to figure out
the most sensitive epidemic parameters. On the basis of sensitivity and stability conditions an opti-
mal control mechanism has been developed in the form of two time dependent control measures, i.e.,
treatment and vaccination, for the minimization of acute and chronic individuals while maximizing
the recovered and vaccinated population. We then conducted the numerical simulations to verify the
the theoretical results. It could be concluded that two control measures play an important role to
eliminate the infection of hepatitis B virus transmission.
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A PROOFS OF PROPOSITIONS AND THEOREMS

A.1 PROOF OF PROPOSITION 1

Proof. Since, w = (S,A,B,R,V)⊤, and let us assume that

y11 = βaA+ βcC + η + ϑ, y21 = ρ (βaA+ βcC) , y22 = η + γ1,

y31 = (1− ρ) (βaA+ βcC) , y33 = η + η1 + γ2 − αΓξ, y55 = η + ζ,
(18)

then the proposed system (4) takes the form

dw

dt
= Aw + C,

where

A =


−y11 0 −αΓξ 0 ζ
y21 −y22 0 0 0
y31 qr1 −y33 0 0
0 r1(1− q) r2 −η 0
ϑ 0 0 0 −y55

 , C =


Γξ
0
0
0

Γ(1− ξ)

 .

Clearly, C is non-negative, and A is a Metzler matrix, which is enough to show that the model (4) is
invariant positively in R5

+.

A.2 PROOF OF PROPOSITION 2

Proof. Let [0,+∞) is the interval of solution for system (4), then the solution S(t) for the first
equation looks like

S(t) = exp

{
−(η + ϑ)t−

∫ t

0

(βaA(x) + βcC(x)) dx
}

×
∫ t

0

{Γζ (1− αC(x)) + ζV(x)} × exp

{
(η + ϑ)x+

∫ x

0

(βa(y) + βc(y)) dy

}
dx

+ S(0) exp
{
−(η + ϑ)t−

∫ t

0

(βaA(x) + βcC(x)) dx
}
> 0.

Like wise, the solution A(t) may take the form

A(t) = exp

{
−(η + r1)t+

∫ t

0

ρβaS(x)dx
}∫ t

0

ρβcC(x) exp
{
(η + r1)x−

∫ x

0

ρβa(y)S(y)dy
}
dx

+A(0) exp

{
−(η + r1)t+

∫ t

0

ρβaS(x)dx
}

≥ 0,

which describe that S(t) > 0 and A(t) ≥ 0 ∀ t ∈ [0,+∞). In a similar way it is easy to perform
that C ≥ 0, R ≥ 0 and V > 0.

11
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A.3 PROOF OF THEOREM 2

Proof. Obviously, from the fourth equation of the model (4), it is clear that R(t) appears only in
the fourth equation, so we can discuss the dynamics of the reduced system. Thus, using the linear
stability analysis (2), the variational matrix of system (4) around disease-free state becomes

J |Df
=

 −q1 −βaSf −βcSf − Γξα ζ
0 ρβaSf − q2 ρβcSf 0
0 qr1 (1− ρ)βcSf − q3 0
ϑ 0 0 q4

 . (19)

Let P(x) is the characteristic polynomial of the matrix, J |Df
, then

P(x) = a0x
4 + a1x

3 + a2x
2 + a3x+ a4, (20)

where

a0 = 1, a1 = q1 + q4 + q3 (1−R1) + q2 (1−R2) ,

a2 = η (η + ζ + ϑ) + q3 (q1 + q4) (1−R1) + q2 (q1 + q4) (1−R2) + q2q3 (1−R0)

+ S2
fβaβcρ (1− ρ) ,

a3 = q1q2q3 (1−R0) + q3η (η + ζ + ϑ) (1−R1) + q2η (η + ζ + ϑ) (1−R0)

+ S2
fβaβcρ (1− ρ)− S2

f

{
βcq2q4 (1− ρ) + βaq3q4ρ+ βcqq1r1ρ+ βcqq4r1ρ

}
,

a4 = q1q2q3q4 (1−R0) + Sfβcq2ϑζ (1− ρ) + S2
fβaβcq1q4ρ (1− ρ) + S2

fβaβcρ
2ϑζ

+ Sfβaq3ρϑζ + Sfβcqr1ρϑζ − q2q3ϑζ − S2
fβaβcρϑζ.

The co-efficient ai’s reveals that, whenever, R0 < 1 and a3, and a4 are positive, then the Routh-
Hurwitz criterion implies that the roots of the Eq.(20) are negative or having negative real parts, and
so the model is locally asymptotically stable under the condition of R0 < 1 and a3, a4 > 0.

In a similar fashion, it can be shown that the model is stable at the endemic equilibrium if the value
of the threshold quantity is greater than unity.

A.4 PROOF OF THEOREM 3

Proof. Since, the state and control functions are non-negative while the control set (12) is closed and
convex. The system (9) is bounded, and ensures the compactness. Also the integrand in the Eq.(8)
is convex with respect to the control measure µ1(t) and µ2(t). Thus, it proves the conclusion of
optimal controls (µ∗

1, µ
∗
2) existence.

A.5 PROOF OF THEOREM 4

We use Pontryagin’s Maximum Principle to obtain an optimal solution and thus we have the assertion
given below.

Theorem 4 Let S∗, A∗, C∗, R∗ and V∗ be optimal states associated with the optimal controls
(u∗1, u

∗
2) for (8)-(12), then λi(t) (adjoint variables), i = 1, . . . , 5 exist, and satisfy

λ
′

1(t) = {λ1(t)− ρλ2(t)− (1− ρ)λ3(t)} {βaA∗(t) + βcC∗(t)}+ λ1(t) {η + u∗2(t)} − u∗2(t)λ5(t),

λ
′

2(t) = −h1 + {λ1(t)− ρλ2(t)− (1− ρ)λ3(t)}βaS∗(t) + λ2(t) {η + r1 + u∗1(t)}
− λ3(t)qr1 − λ4(t)(1− q)r1 − λ4(t)u

∗
1(t),

λ
′

3(t) = −h2 + λ1(t)Γξα+ {λ1(t)− ρλ2(t)− (1− ρ)λ3(t)}βcS∗(t)

+ λ3(t) {u∗1(t) + η + η1 + r2 − Γξα}+ λ4(t) {r2 + u∗1(t)} ,

λ
′

4(t) = ηλ4(t), λ
′

5(t) = {λ5(t)− λ1(t)} ζ + ηλ5(t),

with terminal (transversality) conditions

λi(T ) = 0.

12
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Moreover, the optimal value of controls are

µ∗
1(t) = max

{
min

{
1

k1
(λ2(t)− λ4(t))A∗(t) + (λ3(t)− λ4(t))C∗(t), 0

}
, 1

}
,

µ∗
2(t) = max

{
min

{
1

k2
(λ1(t)− λ5(t))S∗(t), 0

}
, 1

}
.

Proof. The adjoint system
(
λ

′

1(t), λ
′

2(t), λ
′

3(t), λ
′

4(t), λ
′

5(t)
)

has been derived by the direct use of
the Pontryagin Principle, while terminal (transversal) conditions are obtained from the use of the
transversal condition. Moreover to derive the optimal values, u∗1 and u∗2, the Hamiltonian has been
partially differentiated with respect to the control functions u1 and u2 respectively, and then equating
∂H
∂ui

to zero, and solving. We then use the maximality conditions (3), and obtain the optimal value
of the control variables.

B DISCRETIZATION OF THE MODEL AND ALGORITHMS FOR NUMERICAL
SIMULATIONS

We shall present the temporal dynamics of the proposed model by creating algorithms using the
Euler and Runge-Kutta methods. Notice that the proposed epidemic problem contain five popula-
tion groups and we will apply the algorithm of Euler and Runge-Kutta method to every group of
population in order to present the dynamics of every compartment. For the shake of simplicity, let
us assume some notations

Φ1 = Γξ (1− αCi) + ζVi − (βaAi + βcCi + ϑ+ η)Si,
Φ2 = (βaAiSi + βcCiSi) ρ− (r1 + η)Ai,

Φ3 = (βaAi + βcCi)Si (1− ρ) + qr1Ai − (η + η1 + r2 − Γξα) Ci,
Φ5 = (1− q)r1Ai + r2Ci − ηRi, Φ4 = (1− ξ) Γ + ϑSi − (η + ζ)Vi,

then the algorithm for the model (4) solution with the aid of Euler method as concluded in the
Algorithm 1. To present the algorithms for the optimal control problem, we use the forward Runge-

Algorithm 1 Euler Method (EM)

1: Input: Endpoints t0, tmax, integer n, parametric values, initial conditions
2: Output: approximation S, A, C, R, V at (n+ 1) values of t
3: Parameters and Initial Conditions: Setting the values for Γ, ξ, βa, βc, r1, r2, ρ, q, η, η1 α, ζ,
ϑ, and for the initial sizes S(0), A(0), C(0), R(0), V(0)

4: for i = 1, · · · , n do
5: Recursive Formula:

ti = t0 + ih, Si+1 = Si + hΦ1 (Si,Ai, Ci,Vi) , Ai+1 = Ai + hΦ2 (Si,Ai, Ci) ,
Ci+1 = Ci + hΦ3 (Si,Ai, Ci) , Ri+1 = Ri + hΦ4 (Ai, Ci) , Vi+1 = Vi + hΦ5 (Si,Vi) ,

6: end for
7: Output (ti,Si+1,Ai+1, Ci+1,Ri+1,Vi+1)

13
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Kutta method and assume the following notations:
ΦS

1 = Γξ {1− αCi}+ ζVi − {βaAi + βcCi + ϑ+ η} Si,
ΦA

1 = {βaAiSi + βcCiSi} ρ− {r1 + η}Ai,

ΦC
1 = {βaAi + βcCi} Si (1− ρ) + qr1Ai − {η + η1 + r2 − Γξα} Ci,

ΦR
1 = (1− q)r1Ai + r2Ci − ηRi,

ΦV
1 = (1− ξ) Γ + ϑSi − {η + ζ}Vi,

ΦS
2 = Γξ

{
1− α

(
Ci +

hΦC
1

2

)}
−

{
βa

(
Ai +

hΦA
1

2

)
+ βc

(
Ci +

hΦC
1

2

)
+ ϑ+ η

}
{
Si +

hΦS
1

2

}
+ ζ

{
Vi +

hΦV
1

2

}
,

ΦA
2 =

{
βa

(
Ai +

hΦA
1

2

)
+ βc

(
Ci +

hΦC
1

2

)}{
Si +

hΦS
1

2

}
ρ− (r1 + η)

{
Ai +

hΦA
1

2

}
,

ΦC
2 =

{
βa

(
Ai +

hΦA
1

2

)
+ βc

(
Ci +

hΦC
1

2

)}{
Si +

hΦS
1

2

}
(1− ρ) + qr1

{
Ai +

hΦA
1

2

}
− {η + η1 + r2 − Γξα}

{
Ci +

hΦC
1

2

}
,

ΦR
2 = (1− q)r1

{
Ai +

hΦA
1

2

}
+ r2

{
Ci +

hΦC
1

2

}
− η

{
Ri +

hΦR
1

2

}
,

ΦV
2 = (1− ξ) Γ + ϑ

{
Si +

hΦS
1

2

}
− (η + ζ)

{
Vi +

hΦV
1

2

}
,

ΦS
3 = Γξ

{
1− α

(
Ci +

hΦC
2

2

)}
−

{
βa

(
Ai +

hΦA
2

2

)
+ βc

(
Ci +

hΦC
2

2

)
+ ϑ+ η

}
{
Si +

hΦS
2

2

}
+ ζ

{
Vi +

hΦV
2

2

}
,

ΦA
3 =

{
βa

(
Ai +

hΦA
2

2

)
+ βc

(
Ci +

hΦC
2

2

)}{
Si +

hΦS
2

2

}
ρ− (r1 + η)

{
Ai +

hΦA
2

2

}
,

ΦC
3 =

{
βa

(
Ai +

hΦA
2

2

)
+ βc

(
Ci +

hΦC
2

2

)}{
Si +

hΦS
2

2

}
(1− ρ) + qr1

{
Ai +

hΦA
2

2

}
− (η + η1 + r2 − Γξα)

{
Ci +

hΦC
2

2

}
,

ΦR
3 = (1− q)r1

{
Ai +

hΦA
2

2

}
+ r2

{
Ci +

hΦC
2

2

}
− η

{
Ri +

hΦR
2

2

}
,

ΦV
3 = (1− ξ) Γ + ϑ

{
Si +

hΦS
2

2

}
− (η + ζ)

{
Vi +

hΦV
2

2

}
,

ΦS
4 = Γξ

{
1− α

(
Ci +

hΦC
3

2

)}
−

{
βa

(
Ai +

hΦA
3

2

)
+ βc

(
Ci +

hΦC
3

2

)
+ ϑ+ η

}
{
Si +

hΦS
3

2

}
+ ζ

{
Vi +

hΦV
3

2

}
,

ΦA
4 =

{
βa

(
Ai +

hΦA
3

2

)
+ βc

(
Ci +

hΦC
3

2

)}{
Si +

hΦS
3

2

}
ρ− (r1 + η)

{
Ai +

hΦA
3

2

}
,

ΦC
4 =

{
βa

(
Ai +

hΦA
3

2

)
+ βc

(
Ci +

hΦC
3

2

)}{
Si +

hΦS
3

2

}
(1− ρ) + qr1

{
Ai +

hΦA
3

2

}
− (η + η1 + r2 − Γξα)

{
Ci +

hΦC
3

2

}
,

ΦR
4 = (1− q)r1

{
Ai +

hΦA
3

2

}
+ r2

{
Ci +

hΦC
3

2

}
− η

{
Ri +

hΦR
3

2

}
,

ΦV
4 = (1− ξ) Γ + ϑ

{
Si +

hΦS
3

2

}
− (η + ζ)

{
Vi +

hΦV
3

2

}
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Similarly by backward Runge-Kutta method, we have
Φλ11

= {λ1j − ρλ2j − (1− ρ)λ3j}
{
βaA∗

j + βcC∗
j

}
+ λ1j

{
η + µ∗

2j

}
− µ∗

2jλ5j ,

Φλ21 = −h1 + {λ1j − ρλ2j − (1− ρ)λ3j}βaS∗
j + λ2j

{
η + r1 + µ∗

1j

}
− λ3jqr1 − λ4j(1− q)r1 − λ4jµ

∗
1j ,

Φλ31
= −h2 + λ1jΓξα+ {λ1j − ρλ2j − (1− ρ)λ3j}βcS∗

j

+ λ3j
{
u∗1j + η + η1 + r2 − Γξα

}
+ λ4j

{
r2 + µ∗

1j

}
,

Φλ41
= ηλ4j , Φλ51

= {λ5j − λ1j} ζ + ηλ5j ,

Φλ12
=

[{
λ1j −

hΦλ11

2

}
− ρ

{
λ2j −

hΦλ21

2

}
− (1− ρ)

{
λ3j −

hΦλ31

2

}]
{
1

2

{
βa(A∗

j +A∗
j−1) + βc(C∗

j + C∗
j−1)

}}
+

{
λ1j −

hΦλ11

2

}
{
η +

1

2
(µ∗

2j + µ∗
2(j−1))

}
− 1

2
(µ∗

2j + µ∗
2(j−1))

{
λ5j −

hΦλ51

2

}
,

Φλ22
=

{(
λ1j −

hΦλ11

2

)
− ρ

(
λ2j −

hΦλ21

2

)
− (1− ρ)

(
λ3j −

hΦλ31

2

)}
βa

{
1

2
(S∗
j + S∗

j−1)

}
+

{
λ2j −

hΦλ21

2

}{
η + r1 +

1

2
(u∗1j + u∗1(j−1))

}
−

{
λ3j −

hΦλ31

2

}
qr1

−
{
λ4j −

hΦλ41

2

}
(1− q)r1 −

{
λ4j −

hΦλ41

2

}{
1

2
(µ∗

1j + µ∗
1(j−1))

}
− h1,

Φλ32
= −h2 +

{
λ1j −

hΦλ11

2

}
Γξα+

{(
λ1j −

hΦλ11

2

)
− ρ

(
λ2j −

hΦλ21

2

)
− (1− ρ)

(
λ3j −

hΦλ31

2

)}{
βc
2
(S∗
j + S∗

j−1)

}
+

{
λ4j −

hΦλ41

2

}{
r2 +

1

2
(µ∗

1j + µ∗
1(j−1))

}
+

{
λ3j −

hΦλ31

2

}{
1

2
(u∗1j + u∗1(j−1)) + η + η1 + r2 − Γξα

}
,

Φλ42 = η

{
λ4j −

hΦλ41

2

}
, Φλ52 =

{(
λ5j −

hΦλ51

2

)
−

(
λ1j −

hΦλ11

2

)}
ζ + η

{
λ5j −

hΦλ51

2

}
,

Φλ13
=

{(
λ1j −

hΦλ12

2

)
− ρ

(
λ2j −

hΦλ22

2

)
− (1− ρ)

(
λ3j −

hΦλ32

2

)}
{
1

2

{
βa(A∗

j +A∗
j−1) + βc(C∗

j + C∗
j−1)

}}
+

{
λ1j −

hΦλ12

2

}{
η +

1

2
(µ∗

2j + µ∗
2(j−1))

}
− 1

2
(µ∗

2j + µ∗
2(j−1))

{
λ5j −

hΦλ52

2

}
,

Φλ23
=

{(
λ1j −

hΦλ12

2

)
− ρ

(
λ2j −

hΦλ22

2

)
− (1− ρ)

(
λ3j −

hΦλ32

2

)}
βa

{
1

2
(S∗
j + S∗

j−1)

}
+

{
λ2j −

hΦλ22

2

}{
η + r1 +

1

2
(u∗1j + u∗1(j−1))

}
−

{
λ3j −

hΦλ32

2

}
qr1

−
{
λ4j −

hΦλ42

2

}
(1− q)r1 −

{
λ4j −

hΦλ42

2

}{
1

2
(µ∗

1j + µ∗
1(j−1))

}
− h1,

Φλ33
= −h2 +

{
λ1j −

hΦλ12

2

}
Γξα+

{(
λ1j −

hΦλ12

2

)
− ρ

(
λ2j −

hΦλ22

2

)
− (1− ρ)

(
λ3j −

hΦλ32

2

)}{
βc
2
(S∗
j + S∗

j−1)

}
+

{
λ4j −

hΦλ42

2

}
{
r2 +

1

2
(µ∗

1j + µ∗
1(j−1))

}
+

{
λ3j −

hΦλ32

2

}{
1

2
(u∗1j + u∗1(j−1)) + η + η1 + r2 − Γξα

}
,

Φλ43
= η

{
λ4j −

hΦλ42

2

}
,Φλ53

=

{(
λ5j −

hΦλ52

2

)
−
(
λ1j −

hΦλ12

2

)}
ζ + η

{
λ5j −

hΦλ52

2

}
,
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Φλ14
=

{(
λ1j −

hΦλ13

2

)
− ρ

(
λ2j −

hΦλ23

2

)
− (1− ρ)

(
λ3j −

hΦλ33

2

)}
{
βaA∗

j−1 + βcC∗
j−1

}
+

{
λ1j −

hΦλ13

2

}{
η + µ∗

2(j−1)

}
− µ∗

2(j−1)

{
λ5j −

hΦλ53

2

}
,

Φλ24
=

{(
λ1j −

hΦλ13

2

)
− ρ

(
λ2j −

hΦλ23

2

)
− (1− ρ)

(
λ3j −

hΦλ33

2

)}
βaS∗

j−1

+

{
λ2j −

hΦλ23

2

}{
η + r1 + u∗1(j−1)

}
−

{
λ3j −

hΦλ33

2

}
qr1

−
{
λ4j −

hΦλ43

2

}
(1− q)r1 −

{
λ4j −

hΦλ43

2

}
µ∗
1(j−1) − h1,

Φλ34
= −h2 +

(
λ1j −

hΦλ13

2

)
Γξα+

{(
λ1j −

hΦλ13

2

)
− ρ

{
λ2j −

hΦλ23

2

}
− (1− ρ)

(
λ3j −

hΦλ33

2

)}
S∗
j−1 +

{
λ4j −

hΦλ43

2

}{
r2 + µ∗

1(j−1)

}
+

{
λ3j −

hΦλ33

2

}{
u∗1(j−1) + η + η1 + r2 − Γξα

}
,

Φλ44
= η

{
λ4j −

hΦλ43

2

}
, Φλ54

=

{(
λ5j −

hΦλ53

2

)
−

(
λ1j −

hΦλ13

2

)}
ζ

+ η

{
λ5j −

hΦλ53

2

}
,

then the algorithm of optimal control problem is concluded in the table as given below.
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Figure 2: The graphs visualize the solution trajectories for S(t), A(t), C(t), R(t), and V(t) of the
proposed epidemic problem around disease free state.
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Algorithm 2
1: Input: Endpoints t0, tmax, integer n, parametric values, initial conditions
2: Output: approximation S, A, C, R, V at (n+ 1) values of t
3: Parameters and Initial Conditions: Setting the values for model parameters, weights con-

stants, and for the initial sizes of population S(0), A(0), C(0), R(0), V(0).
4: for i = 1, · · · , n do
5: Recursive Formulas for both control system and without control system:

ti = t0 + ih,

Si+1 = Si +
h

6
(ΦS1 + 2ΦS2 + 2ΦS3 +ΦS4) ,Ai+1 = Ai +

h

6
(ΦA1 + 2ΦA2 + 2ΦA3 +ΦA4) ,

Ci+1 = Ci +
h

6
(ΦC1 + 2ΦC2 + 2ΦC3 +ΦC4) ,Ri+1 = Ri +

h

6
(ΦR1 + 2ΦR2 + 2ΦR3 +ΦR4) ,

Vi+1 = Vi +
h

6
(ΦV1 + 2ΦV2 + 2ΦV3 +ΦV4) ,

6: end for
7: for i = 1, · · · , n do
8: Recursive Formulas for adjoint system:

λ1(j−1) =λ1j −
h

6
(Φλ11

+ 2Φλ12
+ 2Φλ13

+Φλ14
) , λ2(j−1) = λ2j −

h

6
(Φλ21

+ 2Φλ22
+ 2Φλ23

+Φλ24
) ,

λ3(j−1) =λ3j −
h

6
(Φλ31

+ 2Φλ23
+ 2Φλ33

+Φλ34
) , λ4(j−1) = λ4j −

h

6
(Φλ41

+ 2Φλ42
+ 2Φλ43

+Φλ44
) ,

λ5(j−1) =λ5j −
h

6
(Φλ51 + 2Φλ52 + 2Φλ53 +Φλ54) ,

9: end for
10: for i = 1, 2, . . . , n, j = n+ 2− 1 do
11: Optimal Control Variable (µ1)

if µ∗
1(j) < 0 then µ1(j) = 0 else, if 0 < µ∗

1(j) < 0 then µ1(j) = µ∗
1(j) else µ1(j) = 1

12: end for
13: for i = 1, 2, . . . , n, j = n+ 2− 1 do
14: Optimal Control Variable (µ2)

if µ∗
2(j) < 0 then µ2(j) = 0 else if 0 < µ∗

2(j) < 0 then µ2(j) = µ∗
1(j) else µ2(j) = 1

15: end for
16: Output: (ti,Si+1,Ai+1, Ci+1,Ri+1,Vi+1).
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Figure 3: The graphs visualize the solution trajectories for S(t), A(t), C(t), R(t), and V(t) of the
proposed epidemic problem around the disease endemic state.
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Figure 4: The graphs represent the dynamics of the compartmental population with and without
control applications.
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