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ABSTRACT

Histochemical staining is a critical step in the diagnosis of
cancer, where hematoxylin-eosin (H&E) stain is used most
commonly in clinical practice. However, the H&E images
often cannot be used for making accurate diagnoses. To
this end, pathologists must perform immunohistochemical
(IHC) stain, which is time-consuming and costly. In the field
of computer-aided diagnosis, existing models can virtually
generate IHC staining images, but they often require pixel-
aligned data and annotations from pathologists, which are
difficult to be obtained. To address this problem, we propose
a self-supervised PR (a typical type of IHC) virtual staining
model utilizing unpaired data without pathologists’ annota-
tions for the first time. Based on the observation that PR
images are easy to be segmented, we introduce segmentation
as the proxy task to make the virtual staining more accu-
rate. Experimental results show that our model can generate
PR images with the highest accuracy. Moreover, our model
achieves the desired results on an external dataset.

Index Terms— PR virtual staining, self-supervised, aux-
iliary segmentation task

1. INTRODUCTION

Cancer is the second leading cause of death today, and patho-
logical analysis plays a crucial role in cancer diagnosis, treat-
ment, and prognosis. As the central part of the patholog-
ical analysis, histochemical staining enables different parts
of the tissue to exhibit different colors. As the most com-
mon staining, hematoxylin-eosin (H&E) can stain the nucleus
blue or dark-purple and stain extracellular matrix and cyto-
plasm pink, respectively, to facilitate the pathologists’ obser-
vation of cellular tissue structures. However, H&E staining
does not always provide enough contrast to distinguish nor-
mal cells from cancer cells during tissue analysis and cannot
accurately analyze oncogene expression. Clinically, immuno-
histochemical (IHC) stain can distinguish normal cells from
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oncogene-positive cells by antigen-antibody binding so that
pathologists can make more accurate diagnoses. For exam-
ple, during breast cancer tissue analysis, pathologists often
use IHC staining to analyze the expression of genes such as
ER, PR, Ki67, and HER2 to determine the type of mutation
in the patient to guide the proper treatment. Specially, PR is
a progesterone-related gene, which is usually used to reflect
the dependence of cancer cell growth on progesterone, and is
the main focus of our paper.

Compared with H&E staining, IHC staining is a more
time-consuming and costly procedure with a very rigorous
staining process. As a result, only about 1% of cancer pa-
tients in resource-poor countries and regions can cover the
cost of IHC examination, severely hindering its use in clinical
practice [1]. Therefore, developing virtual staining technolo-
gies to reduce the cost of staining for pathologists and patients
will significantly advance the use of IHC staining in clinical
practice.

However, from the viewpoint of computer vision, the vir-
tual generation of IHC images from H&E images is a chal-
lenging task due to the fact that IHC images contain many
features that are not included in H&E images, such as nega-
tive and positive oncogene expression.

In recent years, deep learning has been widely used in im-
age processing. Deep neural networks can theoretically fit any
mapping from the input domain to the output domain, pro-
viding an ideal solution for virtual staining techniques. With
the rapid development of deep neural networks, some work
has been successfully applied in virtual staining [2], and the
current models are mainly divided into two categories: su-
pervised and unsupervised models. Supervised models, such
as Rivenson et al. [3] and Zhang et al. [4], use pixel-by-
pixel aligned data to train staining models and achieve high-
precision virtual staining. However, existing supervised mod-
els (e.g., pix2pix [5]) cannot be used in many cases due to
the difficulty of obtaining pixel-by-pixel paired data in clin-
ical practice. Unsupervised models, such as Li et al.[6] and
Lo et al. [7], overcome the problem of relying on paired data
in supervised models, but these unsupervised models lack ef-
fective supervised information, resulting in inaccurate stain-



ing in many cases [8]. Liu et al. [1] proposed a model to
add pathologists’ annotations as additional supervised infor-
mation. However, this model relies heavily on expert labeled
data, which is also difficult to obtain in clinical practice.

Actually, without expert annotations, achieving accurate
virtual staining of IHC based on unpaired data is a challeng-
ing task. First, no studies have addressed this problem be-
fore. Second, existing unsupervised models have difficulty in
extracting the features necessary for generating IHC images
from H&E images. In this paper, to address these problems,
we propose a model to accurately transfer H&E images to
IHC images by using a self-supervised auxiliary segmenta-
tion task to help extract the features necessary for generating
IHC images. The self-supervised segmentation proxy task is
based on the observation that the positive areas in IHC im-
ages are easy to be segmented.Our main contributions are as
follows:

(1) We propose a stain transfer model for the virtual gen-
eration of IHC images from H&E images, and apply it to PR
virtual staining for the first time. This model needs neither
paired data nor expert annotations;

(2) We propose a self-supervised image style transfer
model. With the observation of the easy segmentation prop-
erty of PR images, we introduce a segmentation proxy task to
improve the accuracy of style transfer. Moreover, the model
can be extended to the cases where the image features are
easy to extract, like the positive areas of PR images;

(3) We enhance the model’s focus on morphological infor-
mation by introducing the auxiliary segmentation task. More-
over, the gap between real H&E images and virtual H&E im-
ages can be reduced, and the features extracted in the virtual
H&E images can be closer to those extracted in the real ones.
Ultimately, the accuracy of IHC virtual staining can be im-
proved.

2. METHOD

In the virtual staining of H&E to IHC, it is hard to accurately
stain the positive areas directly utilizing unsupervised models,
since it is challenging to find the positive areas based on the
color information provided by the H&E images. Instead, the
segmentation task can focus on the morphological informa-
tion of H&E images and find out their positive areas, which
would be beneficial for improving the accuracy of the virtual
staining. In addition, since the color differences between pos-
itive areas (brown) and negative areas (blue) of IHC images
are evident, we can easily obtain positive areas from IHC-
stained images. The positive areas can provide accurate la-
beling information for the segmentation task. Motivated by
this, we propose an IHC virtual staining model assisted with
a self-supervised segmentation task. We design the task based
on the observation that the positive areas in IHC images can
be easily segmented, which provides supervised information
to the model effectively and makes the generated IHC images

Fig. 1. The overall structure of our model. (a): The process
of IHC-H&E-IHC; (b): The process of H&E-IHC-H&E.

more accurate.
Similar to the traditional unsupervised generative ad-

versarial network [9], our model employs two generators,
GIHC2H&E and GH&E2IHC. GIHC2H&E generates H&E im-
ages based on the IHC images, and GH&E2IHC generates IHC
images based on the H&E stained images. Then, we also
introduce an auxiliary segmenter SH&E, which segments out
the positive areas of the H&E images, serving as a proxy task
to construct self-supervised constraints. In addition, we use
a threshold segmenter SIHC to segment out the positive areas
of IHC, which serve as ground truth to constrain SH&E.

GIHC2H&E consists of an encoder and a staining decoder.
The encoder is used to extract the features of the input images,
and the staining decoder generates the virtual staining results
based on the extracted features. GH&E2IHC also consists of
an encoder and a staining decoder, with the similar goal to
that of GIHC2H&E. Moreover, SH&E consists of an encoder
and a segmenting decoder, where the function of the encoder
is similar to that of GH&E2IHC, and the segmenting decoder
generates the positive areas corresponding to the H&E images
based on the extracted features. Since both of GH&E2IHC and
SH&E need to focus on the positive areas of H&E images, they
share the encoder. In addition, SIHC can segment the positive
areas of IHC images based on their Red channel values using
a predefined threshold (In this paper, we set the threshold to
be 120). Overall, as shown in Fig.1, our model consists of
IHC-H&E-IHC and H&E-IHC-H&E processes, which will be
described as follows.

2.1. The IHC-H&E-IHC and H&E-IHC-H&E processes

Similar to UGATIT, as shown in Fig.1(a), in each training it-
eration, we first feed a real IHC image into GIHC2H&E to gen-
erate a virtual H&E image, and a reconstructed IHC image is



Fig. 2. Real IHC images and virtual H&E results under dif-
ferent conditions.

generated after feeding the virtual H&E image to GH&E2IHC.
By employing cycle loss, the reconstructed IHC image is con-
strained to be consistent with the real IHC image. In the pro-
cess of generating the reconstructed IHC image, we simulta-
neously input the virtual H&E image to SH&E and obtain the
positive areas of the virtual H&E image. Moreover, the label
obtained by inputting the real IHC image to SIHC is used to
constrain SH&E by using segmentation loss. In addition, as
shown in Fig.1(a), we detach SH&E from the current gradient
map so that the segmentation task does not affect the genera-
tion of the virtual H&E image. Thus, the virtual H&E image
can be much closer to the real H&E image, as the detailed
description in the following sections.

Similar to Fig.1(a), in the process of generating the re-
constructed H&E image, we input the real H&E image into
SH&E and use the label obtained by inputting the virtual IHC
image into SIHC as ground truth to constrain SH&E, as shown
in Fig.1(b). The total loss formulation of the generator and
the discriminator are as follows (We retain most of the loss
functions of UGATIT):

LG = λ1 × lGadv + λ2 × lGcam + λ3 × lcyc

+ λ4 × lidt + λ5 × lseg.
(1)

LD = λ1 × lDadv + λ2 × lDcam. (2)

2.2. The impact of segmentation on virtual H&E images

In the process of IHC-H&E-IHC, since the virtual H&E im-
age is the intermediate result between the input IHC image
and the reconstructed IHC image, there exist differences be-
tween such virtual H&E image and the real H&E image. Such
phenomenons can be verified by the following observations.

As shown in Fig.2(a)&(b), the model without the auxiliary
segmenter SH&E (UGATIT) maps the brown areas in IHC to
dark purple areas in H&E, and maps the blue areas in IHC
to light purple areas in H&E, which constitutes many color
differences that exist rarely in real H&E images. The color
differences show that UGATIT mainly learns the color map-
ping, and the real mapping of H&E images and IHC images
is not obtained. Moreover, this phenomenon reflects that the

Fig. 3. The slide-level and patch-level results of our model
and competing models.

process of IHC-H&E-IHC mainly focuses on the color infor-
mation of the pathological images, and thus cannot achieve
accurate staining for the real H&E images. Compared with
Fig.2(b), the color differences between the negative and pos-
itive areas in Fig.2(c) are much smaller, reflecting that the
pathology image segmentation task pays more attention to the
morphological features.

However, observing from the images in Fig.2(c), directly
adding the auxiliary segmenter into the model brings another
problem: The color of virtual H&E images is not close to
the real ones, where the virtual ones are mostly pink but the
real ones are mostly purple. This is because the segmenter
constrained by the supervised information focuses more on
morphological features and less on color features. There-
fore, the quality of the virtual H&E images is not ideal in this
case. To solve this problem, as shown in Fig.1(a), we detach
SH&E from the current gradient map. And since SH&E and
GH&E2IHC share the encoder which can extract both the color
features and morphological features well, the virtual H&E im-
ages are much closer to the real H&E images.

3. EXPERIMENTS

We have evaluated our proposed model over a breast cancer
dataset. The results show our model can transfer H&E images
into PR (a typical type of IHC) images with unpaired patches
efficiently, indicating that the self-supervised auxiliary seg-
mentation task improves the accuracy greatly.

In the breast cancer dataset (containing 33 pairs of con-
secutive slides, 28 for training and 5 for testing) , the slides
are essentially similar in tissue morphological structure but
are not pixel-level aligned. Before being input to the model,
each image is preprocessed by two data augmentation strate-
gies: random horizontal flop and random vertical flip.



Fig. 4. Confusion matrices for the judgment results of Fiji
IHC Toolbox. A-paracancerous tissue area, B-negative area,
C-weakly positive area, D-positive area.

3.1. Comparison Results

Figure 3 exhibits the virtual generation of PR stained images
from H&E stained images. In Fig.3(a), the slide-level results
of a positive slide and a negative slide are provided. It can
be seen that compared with consecutive layers (considered as
reference), our model achieves high accuracy. In Fig.3(b),
the patch-level results of some key parts of slides are pro-
vided. It can be observed that the traditional unsupervised
image generation models only match the color of H&E and
PR domains. For example, UGATIT [9] matches the brown
areas of PR domain with the dark purple areas of H&E do-
main, and matches the blue areas of PR domain with the light
purple areas of H&E domain together. This phenomenon is
correct in positive images but incorrect in negative images.
AI-FFPE [10] has the same problem as UGATIT. Moreover,
MUNIT [11] maps all the tissue areas into paracancerous tis-
sue areas (the color of paracancerous tissue areas is usually
gray). These phenomenons are because traditional unsuper-
vised models focus relatively on the color features of patho-
logical images and have insufficient ability to extract morpho-
logical features. In contrast, our model can stain all the pos-
itive areas brown and stain all the negative areas blue, which
keeps strong consistency with reference.

In addition, we invite pathologists to split each slide into
several ROIs (for each H&E slide, the ROIs corresponding to
IHC slides generated by different models and the reference
are approximately the same) and employ Fiji IHC Toolbox to
evaluate the results generated by all the models. The confu-
sion matrices of the judged results are shown in Fig.4. It can
be seen that our model achieves the highest accuracy com-
pared to all the unsupervised competing models.

Moreover, the evaluation metric Contrast-Structure Sim-
ilarity (CSS) can express how much morphological informa-
tion is preserved from the original images, so we use CSS
to measure the models’ ability to extract content. Table 1
shows that our model achieves the best among these mod-
els, as the proposed self-supervised auxiliary segmenter can
improve our model’s focus on morphological information.

Table 1. The CSS of different models (higher is better).
Models AI-FFPE MUNIT UGATIT Ours

CSS 0.629±0.169 0.384±0.207 0.613±0.174 0.672±0.158

Fig. 5. Confusion matrices for the judgment results of Fiji
IHC Toolbox. A-paracancerous tissue area, B-negative area,
C-weakly positive area, D-positive area.

3.2. Ablation Study

Due to the fact that the UGATIT model mainly focuses on
the color features and does not fully utilize the morphological
features, the model mainly learns the color mapping between
H&E and IHC while ignoring the morphological mapping,
and thus cannot achieve IHC virtual staining accurately. In
contrast, by utilizing the self-supervised constraints brought
by SH&E, our model is able to learn not only color infor-
mation but also morphological information, achieving better
staining transfer from H&E images to IHC ones.

We separate SH&E from the current gradient map to en-
sure the virtual H&E images are much closer to the real H&E
images. Therefore, SH&E obtains images that are much closer
to reality and enables a stronger ability of extracting features
from real H&E images. Moreover, since GH&E2IHC and
SH&E shares an encoder, the results of IHC virtual staining
can be more accurate. As shown in Fig.5(c), we can see
by introducing and detaching SH&E, the accuracy of IHC
generation improves a lot.

4. CONCLUSIONS

In this paper, we propose an H&E to PR stain transfer model
with self-supervised auxiliary segmentation, which can be
trained with unpaired patches. The ground truth of the self-
supervised auxiliary segmentation task is obtained by em-
ploying the property that PR images are easily segmented
by the thresholding method. We introduce a detaching op-
eration in the training process to ensure the high quality of
virtual H&E required for generating PR results accurately.
Experiments on PR images show that our model is superior to
traditional unsupervised models, and our approach can also
achieve pleasing results on the external dataset.

Using the model we devise, in clinical practice, pathol-
ogists can save a lot of time, and patients can save much
money. Meanwhile, in scientific studies, our model can pro-
vide a huge amount of data for researchers. In the future,
we hope to study more elegant self-supervised constraints in
histopathology image style transfer and extend our model to
broader clinical applications.
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