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Abstract

We introduce∞-THOR, a new framework for long-horizon
embodied tasks that advances long-context understanding
in embodied AI.∞-THOR provides: (1) a generation frame-
work for synthesizing scalable, reproducible, and unlimited
long-horizon trajectories; (2) a novel embodied QA task,
Needle(s) in the Embodied Haystack, where multiple scat-
tered clues across extended trajectories test agents’ long-
context reasoning ability; and (3) a long-horizon dataset
and benchmark suite featuring complex tasks that span hun-
dreds of environment steps, each paired with ground-truth
action sequences. To enable this capability, we explore ar-
chitectural adaptations, including interleaved Goal-State-
Action modeling, context extension techniques, and Context
Parallelism, to equip LLM-based agents for extreme long-
context reasoning and interaction. Experimental results and
analyses highlight the challenges posed by our benchmark
and provide insights into training strategies and model be-
haviors under long-horizon conditions. Our work provides
a foundation for the next generation of embodied AI systems
capable of robust, long-term reasoning and planning.

1. Introduction

Real-world embodied reasoning is a sequential decision-
making problem requiring long-horizon planning, where
task success depends on both memorizing and reasoning
over multiple events that occur far apart in time. Using
large pre-trained vision-language-action (VLA) models as
policies for such tasks requires surpassing the key challenge
of long-context reasoning. We seek to answer questions
pertaining to what design choices matter in terms of envi-
ronments, model architectures, and training methods when
using VLA models for long-horizon embodied tasks. To
this end, we develop a new framework for long-horizon
tasks designed to push the boundaries of long-context un-
derstanding in embodied AI.

We introduce ∞-THOR, a new framework for gener-

ation, training, and evaluation of long-horizon embodied
tasks. Our benchmark uniquely features tasks with a syn-
thetic final goal, which involves multiple objects that appear
at distant time steps, requiring multi-step reasoning across
over hundreds of steps. Figure 1 illustrates an example: the
agent observes the tomato at an early step (t=17) and the
counter top much later (t=560). Then, the final task is given
at t=670, which requires the agent to place the tomato on
the counter top. This setup highlights the challenge of long-
horizon dependency, where key objects and locations must
be remembered and acted upon after hundreds of steps.

This long-horizon setup introduces a new challenging
task, Needle(s) in the Embodied Haystack (NiEH). Unlike
the standard Needle in a Haystack task [19], which focuses
on recalling a single clue in text, NiEH poses two main
challenges: (1) multiple scattered clues (Needles) and (2)
multi-modal inputs that combine visual and linguistic obser-
vations from the environment (Embodiment). This task is
designed to evaluate the agent’s ability to recall and reason
about previously encountered environmental details, such
as identifying objects and recalling performed actions.

Going beyond static evaluations such as NiEH,∞-THOR
also provides an interactive evaluation, allowing agents to
execute policies and complete long-horizon tasks within a
dynamic environment. To support this, we release a trajec-
tory dataset for training, with episodes over 400 steps in the
training set and more than 600 steps in the dev and test sets.
These trajectories can be used for imitation learning, and
our experiments show that access to longer context during
training leads to significant performance gains, highlight-
ing the importance of our dataset for long-context embodied
reasoning.

We further investigate various architectural considera-
tions for embodied agents to operate under extreme se-
quence lengths. We show that interleaved Goal-State-
Action modeling—a multimodal, goal-conditioned VLA
architecture that jointly models interleaved sequences of
goals, states, and actions using a LLM backbone is the
most practical approach for this class of problems. More-
over, since standard LLMs are constrained by fixed con-



Figure 1. Example of the trajectory and a long-horizon embodied task generated from ∞-THOR. The final goal (“Put the tomato on the
counter top” at t=670) requires recalling both the tomato (seen at t=17) and the counter (seen at t=560) to solved the long-horizon task.
Context size refers to the input token length when converting the trajectory into the LLM input space.

text windows and cannot natively handle inputs exceeding
1M tokens, we explore long-context extension techniques
such as rotary embedding scaling and positional interpo-
lation [6, 10, 22]. Lastly, we demonstrate how to further
strengthen long-context reasoning by fine-tuning the model
on extended-context inputs using Context Parallelism, a
parallel training strategy that allows efficient scaling to very
long sequences.

We provide comprehensive experiments and analyses,
demonstrating both the challenges posed by our benchmark
and the behavior of baseline models under long-horizon set-
tings. We investigate a range of training considerations,
including different configurations for fine-tuning and long-
context adaptation, and evaluate their impact on model per-
formance.

Our contributions are summarized as follows:

• We introduce∞-THOR, a new framework for generating,
training, and evaluating long-horizon embodied tasks,
featuring synthetic final goals that require multi-step rea-
soning across hundreds of steps.

• We propose a novel embodied QA task, Needle(s) in the
Embodied Haystack, requiring agents to recall and reason
over multiple scattered clues across extended trajectories.

• We release a large-scale trajectory dataset and an interac-
tive evaluation environment to support both offline imita-
tion learning and online policy execution in long-horizon
settings.

• We describe architectural adaptations including inter-
leaved Goal-State-Action modeling, long-context exten-
sion and Context Parallelism, tailored for interactive em-
bodied reasoning.

• We present empirical results and analyses, providing in-
sights to the current capabilities and limitations of em-
bodied AI systems on long-horizon tasks.

2. Related Work

Long-horizon Planning in Virtual Environments.
AI2THOR [15] provides interactive indoor environments
widely used for embodied reasoning research, while
ProcTHOR [9] extends these capabilities by procedurally
generating scalable environments, potentially facilitating
longer trajectories. MineDojo [11] offers an open-ended
platform within Minecraft, explicitly geared toward tasks
requiring extensive long-term planning. Additionally,
platforms such as VirtualHome [23] and Habitat 3.0 [24]
have demonstrated suitability for tasks involving long-term
interactions and complex activity sequences. However,
all of these platforms only provide environments and do
not include standardized datasets or benchmark suites to
support training and evaluation for long-horizon embodied
tasks.

Embodied QA and Multimodal Needle in the
Haystack Tasks. Embodied QA tasks, such as Embod-
iedQA [8] and MM-EGO [31], require agents to answer
questions grounded in visual observations, often demand-
ing spatial and temporal reasoning over the agent’s trajec-
tory. While these benchmarks emphasize multimodal un-
derstanding, they do not involve active interaction with the
environment during evaluation. Another related area to our
NiEH task is the multimodal Needle in a Haystack (NiH)
problem. Traditional NiH tasks primarily assessed textual
recall within long-context inputs [19], while recent mul-
timodal variants extend this idea by incorporating visual
components [29, 30]. However, these works operate on rel-
atively short context windows (typically up to 72K tokens)
and do not require embodied reasoning or temporal depen-
dencies across a dynamic trajectory.

Datasets and Benchmarks for Long-horizon Embod-
ied Tasks. Recent efforts have pushed toward long-
horizon embodied tasks, where agents must complete multi-



Benchmark / Platform Task Interaction Dataset QA set
Horizon w/ env modality # steps GT actions single multi

ProcTHOR [9] ✗ ✓ ✗ ✗ ✗ ✗ ✗

MineDojo [11] Long ✓ ✗ ✗ ✗ ✗ ✗

Habitat 3.0 [24] Long ✓ ✗ ✗ ✗ ✗ ✗

VirtualHome [23] Short ✓ multi 11.6 ✓ ✗ ✗

ALFRED [26] Medium ✓ multi 50 ✓ ✗ ✗

ALFWorld [27] Medium ✓ text 50 ✓ ✗ ✗

BEHAVIOR-100 [28] Med/Long ✓ ✗ ✗ ✗ ✗ ✗

BALROG [21] Long ✗ ✗ ✗ ✗ ✗ ✗

EQA [8] ✗ ✗ ✗ ✗ ✗ ✓ ✗

MM-EGO [31] ✗ ✗ ✗ ✗ ✗ ✓ ✗

∞-THOR Long ✓ multi 600+ ✓ ✓ ✓

Table 1. Comparison of benchmarks. We use Short (< 50 steps), Medium (50–300 steps), and Long (> 300 steps) to describe task horizon,
reflecting the approximate number of environment steps required to complete a task in each benchmark. Single/Multi in the QA set column
denotes single- and multi-evidence question type.

step goals with extended temporal dependencies. While
ALFRED [26] and ALFWorld [27] introduced multi-step
instruction-following tasks with action annotations and tex-
tual grounding, their task horizons are relatively short, typi-
cally under 50 steps. BEHAVIOR-100 [28] evaluates agent
generalization on household activities, some of which re-
quire prolonged engagement, but mainly focus on single
task. BALROG [21] is a benchmark for testing the agentic
capabilities of long-context LLMs, but its scope is limited
to game-based environments.

Long-context Benchmarks. Outside embodied AI,
general benchmarks have addressed challenges in long-
context reasoning. Benchmarks, such as LongBench [4]
and RULER [12], focus on retrieval or summarization tasks.
GSM-∞ [32] extends GSM-8K [7] to assess mathematical
reasoning over extremely long textual inputs.

3.∞-THOR: An Environment for Generating,
Training, and Evaluating Long-horizon
Embodied Tasks

∞-THOR features with a generation framework for synthe-
sizing long trajectories to train and evaluate AI agents in
long-horizon embodied tasks. We build∞-THOR upon the
AI2-THOR simulator [15], an interactive 3D environment
for embodied AI research that supports diverse scenes, ob-
jects, and agent actions. ∞-THOR enables the creation of
trajectories with no length limit, and provides an evaluation
setup where agents can interact dynamically with the en-
vironment during both training and testing. This supports
both offline learning by producing large-scale datasets, and
online learning through direct agent-environment interac-
tion.

Each trajectory generated by∞-THOR consists of multi-
ple task goals, such as “Put a clean sponge on a metal rack”

and “Pick up the apple and place it on the microwave”, re-
quiring grounded understanding and action to achieve the
goal. This enables the agent to explore and interact with the
environment over extended episodes. At the end of each tra-
jectory, the agent is assigned a synthetic long-horizon task
that requires reasoning over entities encountered at distant
time steps. For the example in Figure 1, the long-horizon
task (Sub-goal #23) at step t=689, “Put the tomato on the
counter top”, depends on observations made far earlier: the
tomato at t=17 and the counter top at t=560. Our generation
framework can generate unlimited tasks, the trajectories can
be exceptionally long, exceeding 1M context tokens or be-
yond when the trajectory is processed with LLMs.

Successfully completing this task requires the agent to
(1) memorize and integrate key environmental information
over hundreds of steps, and (2) plan actions based on de-
pendencies that are separated in time, demonstrating the
need for long-context reasoning and robust spatio-temporal
memory.

3.1. Static Evaluation: Needle(s) in the Embodied
Haystack

We first introduce a novel task in the form of a static evalua-
tion: Needle(s) in the Embodied Haystack (NiEH). NiEH is
designed to evaluate an agent’s ability to recall and reason
about environmental states encountered throughout a trajec-
tory. Unlike traditional embodied QA tasks that focus pri-
marily on visual understanding of a single image, NiEH em-
phasizes reasoning about environmental changes over time,
requiring agents to interpret and integrate sequences of mul-
timodal observations.

Figure 2 presents examples of the two NiEH task types.
In the single-evidence setting, a question is answerable
based on a single observation step; in the multi-evidence
setting, multiple temporally distant steps must be combined



(a) Needle in the Embodied Haystack: Single-evidence question types.

(b) Needles in the Embodied Haystack: Multi-evidence question types.

Figure 2. Example of N(s)iEH task and Ground-truth steps.

to answer the question. The NiEH testset includes diverse
question types, such as binary (“yes” or “no”), “what”-,
“where”-, and “how many”-style questions. These ques-
tions span a broad range of difficulty, from simple mem-
ory recall (similar to the Needle in a Haystack paradigm) to
complex queries that requiring multi-step reasoning across
temporally and spatially distributed evidence.

Testset Construction. We first replay the generated tra-
jectories and collect the agent’s egocentric views, along
with all objects that interact with the agent throughout the
trajectories, such as objects that are picked up, moved, or
even simply observed. Based on these interactions, we ap-
ply a set of rule-based templates to generate QA pairs, such
as “Q. What object did you slice? A. {object name}”
and “Q. Is {obeject name} on the desk? A. Yes/No”.
Then, we sample questions based on the frequency to ensure
diversity across object types, and annotate the GT answer
steps using the replay logs.

After generating QA pairs and annotating the GT steps,

we cross-validate the answerability of each question with
GT images using four different multimodal LLMs: LLaVA-
OneVision 7B [16], Qwen2.5-VL 7B [3], Deepseek-VL 7B
[20], and Pixtral 12B [1]. Since these models are highly
capable at standard visual QA, we filter out the questions
that none of the four models successfully answer with GT
images. At test time, the entire trajectory is treated as a
Haystack and then cropped based on the GT image’s depth.
Full details on templates, generation rules, and the valida-
tion scores of the four models are included in the Appendix.

Challenges in Needle(s) in the Embodied Haystack.
The NiEH task introduces two key challenges for current
models. First, many questions require reasoning over mul-
tiple temporally distant events. As shown in Figure 2(b),
the agent moves a dish sponge from the garbage bin at
t = 24, then to the counter top, and later places it into a
drawer at t = 751. A question such as “Where was the
dish sponge before you put it on the counter top?” requires
the model to recall and chain together multiple actions and



NiEH testset Single-clue Multi-clue

# of question-answer pair 829 474

Trajectory Train Dev Test

# trajectory 2,456 125 225
# avg/max sub-goals 12/18 16/24 18/33
# avg steps 405 613 627
# max steps 654 890 952
# avg token length 602K 880K 912K
# max token length 954K 1.2M 1.3M

Table 2. Dataset Statistics

locations across hundreds of steps. Second, some ques-
tions demand aggregating sparse and temporally scattered
evidence from long trajectories. In the second example in
Figure 2(b), answering “How many times did you move the
credit card?” requires the model to track and count all rele-
vant actions occurring from the beginning to the end of the
episode. These challenges highlight the need for models
that can perform robust long-horizon reasoning across both
time and modalities in complex embodied environments.

3.2. Constructing Long-horizon Trajectories for In-
teractive Evaluations

With∞-THOR’s generation framework, we can synthesize
long-horizon trajectories to construct training, validation,
and test sets for offline learning and evaluation. Our ap-
proach builds upon a planner-based method [15], in which
we sequentially concatenate multiple single-task demon-
strations into a extended trajectory, while maintaining con-
sistency in object states and agent interactions throughout.

To generate each trajectory, we first sample a task type
from one of seven predefined templates (e.g., pick two ob-
jects and place, pick and place with movable receptacle).
We then sample objects that are required to perform the
task, such as items to be picked up or receptacles to be
interacted with. Based on the sampled task and objects,
we use a classical task planner that operates on PDDL-
defined domains to generate ground-truth action sequences.
These plans are executed in a simulator, and only successful
rollouts are retained. We then concatenate these success-
ful demonstrations to construct long-horizon sequences that
span hundreds of steps. For the final goal, the involved ob-
jects are sampled exclusively from those seen during the
early 20% and the final 20% of the trajectory. This en-
forces a long-term temporal dependency between two ob-
jects that must be jointly referenced to complete the final
task. Through this procedure, we generate 2,456/125/225
trajectories for the training, validation, and test sets, respec-
tively. Details on task types and a pseudo-algorithm for the
generation process are provided in the Appendix.

4. Architectures for Long-Horizon Vision-
Language-Action Models

Embodied agents must effectively interact with complex,
dynamic environments, necessitating capabilities to inter-
pret multimodal inputs (vision, language) and produce co-
herent sequences of actions. Developing such Vision-
Language-Action (VLA) models is particularly challeng-
ing due to the need for seamless integration of perceptual
understanding, linguistic reasoning, and action prediction.
Existing VLA models either use separate encoders for vi-
sion, language, and action modules [26], or focus on short-
horizon, low-level tasks such as robot arm manipulation in
constrained environments [5, 14], where decisions depend
only on the most recent observation and a single instruc-
tion. While recent multimodal LLMs like LLaVA [17],
MiniGPT-4 [33], and Llama 3.2 [2] show strong multi-
modal reasoning abilities, they primarily operate on static
inputs (e.g., single or few images) and lack the dynamic
interactivity and memory needed for long-horizon embod-
ied tasks involving continuous vision-language-action se-
quences. Moreover, many state-of-the-art models are only
accessible via proprietary APIs, making them impractical
for real-time, controllable embodied settings and managing
long-term memory states.

We explore the potential of a multimodal LLM as a uni-
fied model for VLA modeling, utilizing an interleaved in-
put structure of goal, state (visual observations), and ac-
tion tokens, as illustrated in Figure 3. This interleaved
multimodal input allows the model to process vision, lan-
guage, and actions concurrently, thereby facilitating more
coherent, real-time interaction modeling. Specifically, our
goal-conditioned agent uses a multimodal LLM backbone
trained to predict subsequent actions autoregressively, con-
ditioned on sequences of goal and state tokens. At each
timestep t, the environment provides a new visual obser-
vation st, which is encoded as state tokens and appended
to the existing token stream. The model then autoregres-
sively predicts the next action at conditioned on the full
history of goals, states, and previously taken actions. This
action is executed in the environment (e.g., “Pick up the
book”), which leads to the next observation st+1, contin-
uing the perception-action loop. This interactive sequence
is repeated over hundreds of steps, allowing the model to
reason over temporally distant information while maintain-
ing grounded behavior in dynamic settings. By leveraging
this interleaved Goal–State–Action modeling, our architec-
ture supports coherent decision-making across long-horizon
embodied tasks.

Context Extension. Given the limitations in context
length of most LLMs, using off-the-shelf models is insuf-
ficient for processing long inputs such as those exceed-
ing 1M tokens. We explore various long-context extension



Figure 3. Agent–environment interaction through interleaved Goal-State-Action modeling.

techniques that allows the model to generalize to longer
input sequences without retraining from scratch. Specifi-
cally, we consider: Linear Interpolation[6]: Rescales in-
put positions to fit within the pretrained RoPE range by lin-
early interpolating positional indices; Dynamic Scaling[6]:
Adapts RoPE frequencies at runtime based on the input se-
quence length, using a linear rescaling to maintain consis-
tent positional encoding behavior across varying lengths;
YaRN[22]: Dynamically interpolates attention frequencies
during inference, balancing between pretrained and ex-
trapolated positional regimes; LongRoPE[10]: Augments
RoPE with specially designed extrapolation functions, en-
abling robust generalization to long sequences without de-
grading attention quality. We apply these techniques during
fine-tuning, at inference time, or in both settings simultane-
ously.

Context Parallelism. To further enhance the model’s
ability to reason over long contexts, it is crucial to fine-tune
on extended context inputs. However, the quadratic com-
plexity of the attention mechanism makes it computation-
ally infeasible to train directly over long sequences. To ad-
dress this challenge, we employ Context Parallelism, a par-
allel training technique designed for efficient long-context
modeling.

Context Parallelism leverages Ring Attention [18], a
novel parallel implementation of the attention layer. In Ring
Attention, key-value (KV) shards are cyclically shuffled
across devices, and partial attention scores are computed
iteratively. This process is repeated until all KV shards
have been incorporated on each device, ensuring complete
attention coverage without the full memory cost of stan-
dard attention. By combining Context Parallelism with our
dataset of extended long-context inputs, we are able to scale
fine-tuning to substantially longer sequences, unlocking im-
proved long-horizon reasoning capabilities.

5. Experiments

5.1. Static Evaluation: Needle(s) in the Embodied
Haystack

We first evaluate model performance on the Needle in the
Embodied Haystack (NiEH) and Needles in the Embodied
Haystack (NsiEH) tasks, which test an agent’s ability to re-
trieve and reason over sparse evidence scattered throughout
long embodied trajectories.

Building a Embodied Haystack. Unlike the traditional
Needle in the Haystack setup, which inserts a target sen-
tence into a long text corpus like a book, we use the en-
tire embodied trajectory as the input context. To simulate
different reasoning depths, we crop the input sequence ei-
ther from the beginning or the end based on the GT image’s
position. In the NsiEH task, where multiple evidences are
scattered throughout the trajectory, we fill the context with
intermediate steps in between the GT steps keeping their
temporal order.

Results. Figure 4 presents the performance of LLaVA-
OneVision 7B [16] model across various context extension
methods. Linear Interpolation, Dynamic Scaling, and Lon-
gRoPE scaling all struggled with very long contexts be-
yond 128K tokens (the results of Linear Interpolation are
excluded from Figure since it fails at all examples). YaRN
consistently outperformed other methods across both NiEH
and NsiEH, successfully answering questions at context
lengths exceeding 384K tokens, likely due to its architec-
tural alignment with LLaVA-OneVision’s Qwen2 LM back-
bone, which employs RoPE and YaRN scaling during pre-
training. YaRN performed best at moderate scaling fac-
tors (e.g., x4), however, further scaling to x8 and x16 did
not yield additional gains. In particular, x16 slightly im-
proved performance in the 256K–384K token range but led
to degradation notably at shorter context sizes (¡64K), sug-



(a) Results of Needle in the Embodied Haystack (NiEH).

(b) Results of Needles in the Embodied Haystack (NsiEH).

Figure 4. Results of Needle(s) in the Embodied Haystack with the LLaVA-OneVision 7B model. The white dashed line denotes the
maximum input context length of the model. Context Parallelism is applied to all experiments with the context size over 384K.

gesting that excessive scaling may introduce instability and
negatively impact performance. Overall, all methods fail
beyond 512K tokens. We expect these trends to persist as
models are pushed to even larger context windows, high-
lighting the need for more advanced methods to effectively
handle extremely long-context scenarios in the future.

Single vs Multi-evidence Reasoning. Comparing NiEH
to the more challenging NsiEH task, we observe a signifi-
cant performance drop in the multi-evidence setting. This
is especially pronounced for mid-depth questions involv-
ing sparse or distant evidence (e.g., “Where was the Mug
before you put it on the CounterTop?”) or questions re-
quiring the aggregation of multiple clues (e.g., “How many
times did you move the Apple?”), as shown in Figure 2(b).
These results demonstrate that our NiEH and NsiEH tasks
pose a substantial challenge to current long-context mod-
els and success requires both fine-grained temporal memory
and multi-evidence reasoning across extended embodied in-
teractions.

5.2. Interactive Evaluation in∞-THOR

We conduct an interactive online evaluation using the
AI2THOR simulator to measure agent performance on our
long-horizon test set. Our experiments analyze reward

accumulation across various context extension methods,
different scaling factors, and multiple fine-tuning context
lengths: 32K, 64K, and 130K.

Training. We fine-tune the LLaVA-OneVision 7B model
on our training set while freezing the vision encoder. We
used 8 H100 GPUs with both tensor parallelism [25] and
pipeline parallelism [13] for the 32K context size, while
Context Parallelism is employed for training on larger con-
text sizes (64K and 130K). Additional training specifics are
available in the Appendix.

Plan-level Evaluation. We evaluate agent performance
based on reward accumulation given previous states and
actions. Evaluation is performed at the plan-level, where
a plan represents a short sequence of actions aimed at a
specific intermediate goal. For example, a “Go to loca-
tion” plan comprises actions like Move Ahead, Rotate
Right/Left, and Look Up/Down. Each trajectory is
thus composed of multiple sequential plans. At each step,
agents are presented with a task goal alongside the previ-
ous state-action sequences, predicting subsequent actions
and interacting continuously with the environment until the
plan completion. Further evaluation details are provided in
the Appendix.

Results and Discussion. Figure 5 illustrates the com-



Figure 5. Agent’s reward across different experimental configurations. We compare (a) context extension methods at fixed scaling (x4), (b)
varying YaRN scaling factors, (c) fine-tuning with different context lengths using Context Parallelism, and (d-e) combinations of scaling
during both training and inference. (f) summarizes the most effective strategies, highlighting that exposure to longer contexts during
training significantly improves performance. Non-planner models cannot generate valid actions after around 250 steps (≈376K).

parative results across six experimental configurations. The
Planner trajectory serves as the performance upper-bound.
We address the following key questions through our exper-
imental results:

Q. Which context extension methods perform best? Fig-
ure 5(a) compares different context extension methods at
a fixed scaling factor of x4. Similar to the NiEH results,
YaRN consistently achieves the highest performance show-
ing very close performance to Planner.

Q. Does further scaling enhance performance? Figure
5(b) explores YaRN scaling at different scaling factors (x4,
x8, and x16). Interestingly, increasing the scaling factor
beyond x4 does not significantly improve performance, in-
dicating a diminishing return for larger scaling factors.

Q. Is fine-tuning on a dataset with long trajectories ef-
fective? Figure 5(c) demonstrates the effectiveness of fine-
tuning with Context Parallelism, enabling scaling of context
lengths up to 64K and 130K tokens. At a 130K context size,
the model can learn sequences comprising approximately
86 steps, substantially longer compared to only 22 steps
with a 32K context size. This shows that exposure to longer
context during training significantly enhances model per-
formance, suggesting that incorporating more long-horizon
data by∞-THOR could further improve model capabilities.
We note that context extension methods were not applied in
this experiment.

Q. Does combining context extension methods during
both training and inference provide additional benefits?
Figures 5(d) and 5(e) illustrate experiments with scaling ap-
plied at both training and evaluation stages. Results indicate
that additional scaling at evaluation after fine-tuning with
scaled RoPE provides no further performance improvement

and may degrade performance at shorter context lengths
(≤300K tokens).

Based on these observations, we can conclude that fine-
tuning strategies are most effective when long-trajectory
datasets are available. In the absence of extensive train-
ing data, employing YaRN scaling at x4 yields performance
comparable to the Planner upper-bound, particularly within
context lengths under 200K tokens (Figure 5(f)).

6. Conclusion

We presented∞-THOR, a new framework for long-horizon
embodied tasks designed to advance long-context under-
standing in embodied AI. Our framework enables scalable
synthesis of long, complex trajectories paired with GT ac-
tion sequences, and supports both offline training and online
interaction with the environment. As part of this framework,
we introduced a novel embodied QA benchmark, Needle(s)
in the Embodied Haystack, that challenges agents to rea-
son over sparse, temporally distant visual evidence embed-
ded within extended trajectories. To equip models for this
setting, we explored architectural adaptations including in-
terleaved Goal–State–Action modeling, context extension
techniques such as YaRN and LongRoPE, and efficient fine-
tuning via Context Parallelism. Our experiments demon-
strate that exposure to longer contexts during training sig-
nificantly improves model performance, and the limitation
of existing context extension techniques struggle with long-
context reasoning. We hope our framework and benchmark
encourage further research into models capable of robust
long-horizon reasoning under realistic, interactive environ-
ments.
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Supplementary Material

A. Dataset Construction
A.1. Building the Needle(s) in the Embodied

Haystack Benchmark
We construct the Needle(s) in the Embodied Haystack
benchmark in three stages: 1) Trajectory Replay and Meta-
data Collection; 2) Rule-Based QA Generation; and 3)
Cross-validation with Multimodal LLMs. The following
sections provide detailed descriptions of each step.

A.1.1. Trajectory Replay and Metadata Collection
We first replay 225 test trajectories generated by∞-THOR,
logging both visual observations (agent’s egocentric views)
and structured metadata at each timestep. For every step,
we store the list of visible objects, agent-inventory items,
openable containers, and their contents from the simulator.
This produces a fine-grained interaction log that captures
grounded scene dynamics over time.

An example of the collected metadata at a single
timestep is shown below:

Example of metadata entry

{
"img_idx": 2,
"img_filename": "000000002.png",
"step": 1,
"object_log": {

"visible": ["Shelf", "Vase", "Book"],
"pickupable": ["Vase", "Book"],
"isOpen": [],
"inven_obj": [],
"receptacles": ["Shelf"],
"recep_objs": {

"Shelf": ["Vase", "Book"]
}

}
}

Each metadata entry corresponds to a low-level action
step and provides the semantic state of the scene, enabling
the construction of temporally grounded QA instances in
later stages.

A.1.2. Rule-Based QA Generation
To construct the QA set, we apply rule-based generation
templates to each trajectory using its sequence of low-level
actions and associated metadata. The QA generation pro-
cess involves parsing the agent’s interactions with objects,
containers, and the environment, and applying a set of hand-
crafted rules to synthesize grounded questions.

Our QA generation logic covers a diverse range of ques-
tion types, including object presence, object state, loca-
tion tracking, slicing actions, container content reasoning,
and action counting. For instance, if an object is seen
for the first time at a particular step, a presence question
such as “Is there any apple in this room?” is generated.
Similarly, after a PutObject action, location-based ques-
tions like “Where was the apple before you put it to the
microwave?” are produced. When slicing actions hap-
pen, we create questions about the object being sliced and
other nearby items (e.g., “What objects were in the Fridge
when you sliced the apple?”). Then, we sample ques-
tions based on the frequency to ensure diversity across ob-
ject types, and annotate the GT answer steps using the re-
play logs. Table 3 summarizes the types of questions gen-
erated, and corresponding trigger conditions and example
templates.

A.1.3. Cross-validation with Multimodal LLMs
To ensure the answerability and clarity of the generated QA
pairs, we perform cross-validation using four powerful mul-
timodal LLMs: LLaVA-OneVision 7B [16], Qwen2.5-VL
7B [3], Deepseek-VL 7B [20], and Pixtral 12B [1]. Each
model is prompted with the GT images corresponding to
the annotated QA steps and asked to answer the associated
questions. Given their strong performance on standard vi-
sual QA tasks, we use these models to assess whether a
question can be correctly answered or not. We keep only the
QA pairs that are correctly answered by at least one of the
four models, and discard those that fail across all models.
This helps improve dataset quality and filtering out ambigu-
ous or visually ungroundable questions. Table 4 shows the
accuracy of each model on the finalized QA set when eval-
uated with GT images. Notably, even with access to GT
images, all models struggle with questions requiring rea-
soning over three or more evidence steps. To maintain the
benchmark’s difficulty and support evaluation of more ca-
pable models in future, we manually inspect the multi-clue
questions and include those that are answerable.

A.2. Constructing Long-Horizon Trajectories
To synthesize long-horizon trajectories, we construct each
trajectory by sequentially chaining successful sub-tasks
sampled from a predefined set of task templates. This
process is illustrated in Algorithm 1. We begin by sam-
pling a task template from a fixed task pool, which includes
goal types such as pick and place simple, pick
two obj and place, and pick and place with



Table 3. QA types, trigger conditions, and corresponding question templates used in rule-based generation.

QA Type Trigger Condition Example Template(s)

object presence (Yes/No) object appears visibly in the tra-
jectory

Is there any {obj} in this room?
Have you seen a/an {obj}?

open state questions container marked as open in meta-
data

Was {container} open?

object location tracing sequences of Pickup and
PutObject actions

Where was {obj} before you put it to {container}?
Where did you move the {obj} from the {container}?
Where is {obj} now?

slicing-based questions SliceObject action detected
in trajectory

What did you slice?
What objects were in/on {container} when you slice {obj}?

container content container visibility with non-
empty contents

What objects were in/on the {container}?
What object did you put in/on the {container}?

put action questions unique PutObject action for a
container

What object did you put in/on the {container}?

final object state final location of an object at
episode end

Is {obj} in/on the {container}?
What objects are in/on the {container}?
How many objects were in/on the {container}?

movement counting object picked up more than once How many times did you move {obj}?

Table 4. QA accuracy (%) of multimodal LLMs on ground-truth
images.

Model Size # of clues (GT steps) Total
1 2 ≥3

LLaVA-OneVision 7B 86.61 68.55 23.74 71.15
Qwen2.5-VL 7B 85.94 89.83 64.40 82.20
Deepseek-VL 7B 81.56 39.14 22.57 62.88
Pixtral 12B 91.34 39.60 58.56 76.25

movable recep. Each sampled template requires rele-
vant objects in the scene (e.g., pickupable items, target re-
ceptacles), which are then used to define the goal for that
task.

We use a classical task planner, which operates over
PDDL-defined domains [26], to generate a low-level action
sequence for the sampled goal, and simulate this plan in
an interactive environment. If the rollout fails (e.g., due
to collisions, object occlusions, or unreachable conditions),
we discard the sequence and re-sample from the task pool.
Otherwise, the successful rollout is retained and appended
to the ongoing trajectory.

This sampling-execution loop is repeated until a long tra-
jectory with a desired number of sub-goals is formed. The
resulting synthetic long-horizon trajectory consists of mul-
tiple sub-goals concatenated into a continuous sequence. To
induce long-term temporal dependencies, the final sub-task
is constrained to involve only objects that appear in the early
20% and late 20% of the overall trajectory, requiring the
agent to integrate temporally distant evidence to answer as-
sociated questions.

Algorithm 1 Construct Long-horizon Trajectory

1: Input: Task Pool T , max sub goals N
2: Output: Long-horizon trajectory τ
3: Initialize empty trajectory τ ← []
4: while len(τ ) < N do
5: Sample task template g ∼ T and objects
6: Plan action sequence πg by planner
7: if Simulate(πg) is successful then
8: Append πg to trajectory: τ ← τ ∥ πg

9: else
10: Discard and re-sample
11: end if
12: end while
13: // Final sub-task with long-term object dependency
14: Sample gfinal ∼ T and objects in early 20% and late

20%
15: Plan and simulate πfinal using restricted objects
16: if Simulate(πfinal) is successful then
17: Append πfinal to trajectory: τ ← τ ∥ πfinal
18: else
19: Repeat sampling until success
20: end if
21: return τ

B. Training and Evaluation Details

B.1. Interactive Evaluation in∞-THOR

Training. We fine-tune the LLaVA-OneVision 7B model
on our training set while freezing the vision encoder. The
model is trained using a next-action prediction objective,
where only the action tokens are optimized, conditioned on
the goal and state tokens. Table 5 summarizes the train-
ing specifications for different context lengths. For 32K



Table 5. Training specifications for different context lengths.

Context Length Parallelism # GPUs Training Time

32K Tensor (4) + Pipeline (2) 8 160 hrs
64K Context (8) 8 120 hrs
130K Context (16) 16 134 hrs

training, we apply tensor parallelism with a degree of 4 and
pipeline parallelism with a degree of 2, utilizing 8 H100
GPUs in total. Since pipeline parallelism requires the batch
size to match the pipeline degree, we set the batch size
to 2. For longer context lengths, we use context paral-
lelism: 8-way for 64K (on 8 GPUs) and 16-way for 130K
(on 16 GPUs). All models are fine-tuned for approximately
3 epochs with a learning rate of 1e-5, using the AdamW
optimizer and a linear learning rate schedule with a 0.03
warmup ratio.

Plan-Level Evaluation. We evaluate agent performance
using a plan-level framework, where each plan corresponds
to a short sequence of actions aimed at achieving a specific
intermediate sub-goal (e.g., navigating to an object, plac-
ing an item). A trajectory is composed of multiple such
plans, executed sequentially. For the interactive evaluation,
the agent is presented with the current plan’s goal along
with the history of previous GT states and actions. Using
this context, the agent predicts the next action and interacts
step-by-step with the environment. The interaction contin-
ues until the current plan is either successfully completed
or terminated due to failure (e.g., collisions or deadlocks).
After each plan, the context is reset to include the GT ac-
tions and states from the completed portion of the trajectory,
and the agent proceeds to the next plan. This ensures that
each plan is evaluated independently, conditioned only on
the correct prior history. The agent’s performance is mea-
sured via cumulative reward across all plans in the trajec-
tory. Pseudocode for this evaluation procedure is provided
in Algorithm 2.

Algorithm 2 Plan-Level Evaluation

1: Input: Trajectory T = {P1, P2, . . . , PN}, Agent pol-
icy π, Environment E

2: Initialize: Reward R← 0
3: Initialize state and history with initial observation
4: for each plan Pi in T do
5: Initialize context with GT actions up to Pi−1

6: while not done and not failure do
7: at ← π(context)
8: st+1, rt, done, failure← E .step(at)
9: Append (at, st+1) to context

10: R← R+ rt
11: end while
12: if failure then
13: Break evaluation
14: end if
15: end for
16: return Total accumulated reward R
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