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ABSTRACT

Training overparameterized neural networks often yields solutions with varying
generalization capabilities, even when achieving similar training losses. Recent
evidence indicates a strong correlation between the sharpness of a minimum and its
generalization error, leading to increased interest in optimization methods that ex-
plicitly seek flatter minima for improved generalization. Despite its contemporary
relevance to overparameterization, however, this sharpness-aware minimization
(SAM) strategy has not been studied much yet as to exactly how it is affected by
overparameterization. In this work, we analyze SAM under varying degrees of
overparameterization, presenting both empirical and theoretical findings that reveal
its critical influence on SAM’s effectiveness. First, we conduct extensive numerical
experiments across diverse domains, demonstrating that SAM consistently benefits
from overparameterization. Next, we attribute this phenomenon to the interplay
between the enlarged solution space and increased implicit bias resulting from
overparameterization. Furthermore, we show that this effect is particularly pro-
nounced in practical settings involving label noise and sparsity, and yet, sufficient
regularization is necessary. Last but not least, we provide other theoretical insights
into how overparameterization helps SAM achieve minima with more uniform
Hessian moments compared to SGD, and much faster convergence at a linear rate.

1 INTRODUCTION

The remarkable success of deep learning can largely be attributed to the increasing size of neural net-
works. As these networks grow deeper and wider, they have demonstrated exceptional performance
across a wide range of applications (Kaplan et al., 2020; Alayrac et al., 2022; Dehghani et al., 2023;
Radford et al., 2023). This raises an intriguing question: why do such large—and thus potentially
overparameterized—neural networks work so well? Although a complete understanding remains
elusive, research suggests that overparameterization can positively impact various aspects of the
learning process, including even generalization (Neyshabur et al., 2017; Du & Lee, 2018). In particu-
lar, overparameterized neural networks often exhibit convexity-like behavior during optimization,
making all local minima globally optimal, and thereby, allowing global minima to be found with
local optimization methods such as gradient descent (Kawaguchi, 2016; Du et al., 2019).

However, not all global minima are necessarily equivalent; converging to different minima can yield a
large disparity of generalization capabilities, despite their same level of training loss reaching almost
zero (Keskar et al., 2017; Gunasekar et al., 2018). One plausible explanation for such an implicit
phenomenon is that generalization is somewhat negatively correlated with the sharpness of the loss
landscape, i.e., flat minima tend to generalize better than sharp ones (Chaudhari et al., 2017; Jiang
et al., 2020). This calls for new ways to guide the optimization process to converge to flat minima, and
various strategies have been suggested to this end (Izmailov et al., 2018; Foret et al., 2021; Orvieto
et al., 2022; Zhao et al., 2022). Indeed, it has been observed in many studies that reducing sharpness
can enhance generalization performance (Bahri et al., 2022; Chen et al., 2022b; Qu et al., 2022).

Despite the sharpness minimization scheme being developed in the context of overparameterization,
the precise impact of overparameterization on this scheme has not been studied much in the literature.
In this work, we systematically investigate the effects of overparameterization on sharpness-aware
minimization (SAM) (Foret et al., 2021). Specifically, we conduct extensive experiments to precisely
measure the impact of overparameterization across a diverse set of tasks, ranging from standard
tasks in computer vision and natural language processing, to molecular property prediction, and
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further, to video game in reinforcement learning. To gain further insight into the results, we perform
detailed investigations into the interactions between overparameterization and SAM through visual
inspection of the solution space on a simple regression setting as well as analyzing the influence of
overparameterization on the implicit bias of SAM. Furthermore, we study how overparameterization
influences SAM under various conditions, including label noise, sparsity, and regularization. Last
but not least, we explore other implications of overparameterization on SAM through theoretical
analyses, including the characteristics of the attained minima and the convergence rate.

Our key contributions and findings are summarized as follows.

• Section 3. We perform extensive experiments across eight workloads of datasets and models at
varying scales, spanning synthetic, vision, language, chemistry, and game domains.
We observe that overparameterization consistently improves the generalization benefit
of SAM1. This phenomenon is general and previously unknown2.

• Section 4. We propose hypotheses to understand this general phenomenon, positing that two
factors may be at play: (i) overparameterization first increases the number of simpler
and flatter solution candidates, and (ii) it also increases the implicit bias of SAM.
These are verified with standard experiments in both synthetic and realistic settings.

• Section 5. We present the merits and caveats of overparameterization in employing SAM in
practice: (i) the benefit of overparameterization for SAM is more pronounced under
label noise and sparsity, while (ii) sufficient regularization is needed. This can serve
as a useful guidance for practitioners.

• Section 6. We develop theoretical analyses3 on linear stability and convergence: under overpa-
rameterization, (i) linearly stable minima for SAM are flatter and have more uniformly
distributed Hessian moments compared to SGD, and (ii) a stochastic SAM can con-
verge at a linear rate. These are also numerically verified.

• Overall. We discover that overparameterization has critical influences on SAM. Both empirical
performance and theoretical aspects of SAM all improve with overparameterization. In
other words, SAM may not take its advantage over SGD without overparameterization.

2 BACKGROUND

Let us consider the general unconstrained optimization problem:

min
x

f(x) (1)

where f : Rd → R is the objective function to minimize, and x ∈ Rd is the optimization variable.
Based on recent studies that indicate a strong correlation between the sharpness of f at a minimum
and its generalization error (Keskar et al., 2017; Dziugaite & Roy, 2017; Jiang et al., 2020), Foret
et al. (2021) suggest to turn (1) into a min-max problem of the following form

min
x

max
∥ϵ∥2≤ρ

f(x+ ϵ) (2)

where ϵ and ρ denote some perturbation added to x and its norm bound, respectively. Thus, the goal
is now to seek x that minimizes f in its ϵ-neighborhood, such that the objective landscape becomes
locally flat. Taking the first-order Talyor approximation of f at x and solving for optimal ϵ⋆ gives the
following update rule for SAM:

xt+1 = xt − η∇f

(
xt + ρ

∇f(xt)

∥∇f(xt)∥2

)
. (3)

SAM has been shown to be effective for improving generalization performance compared against SGD
(Chen et al., 2022b; Kaddour et al., 2022; Bahri et al., 2022), and subsequent works have analyzed

1By “generalization benefit”, we mean the improvement made by SAM over SGD in validation accuracy.
2While evidence of the similar observation can be found in the literature (Chen et al., 2022b), no prior work

has conducted experiments or confirmed this phenomenon at any scale comparable to ours.
3We note that these are not intended to directly support Section 3 and 4, which we discuss in Section 7.
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various aspects of SAM under different settings including its convergence rates (Andriushchenko &
Flammarion, 2022; Mi et al., 2022; Si & Yun, 2023) and implicit bias (Compagnoni et al., 2023; Wen
et al., 2023; Andriushchenko et al., 2023).

Meanwhile, a considerable amount of evidence has indicated the benefit of overparameterization
for training neural networks. Besides the empirical success witnessed across different domains
(Kaplan et al., 2020; Radford et al., 2021; Dehghani et al., 2023), overparameterization turns all
local minima into global ones in theory enabling local methods to succeed under non-convex settings
(Kawaguchi, 2016; Du et al., 2019). Researchers have also proved the power of overparameterization
to enable much faster convergence (Ma et al., 2018; Vaswani et al., 2019; Meng et al., 2020) and
better generalization (Allen-Zhu et al., 2019; Brutzkus & Globerson, 2019). To our knowledge,
however, previous work has mostly focused on non-sharpness-aware optimizers, and the effects of
overparameterization on SAM has been left rather unattended despite its contemporary significance
to large-scale training trends and widespread usage in practice.

3 KEY OBSERVATION: SAM IMPROVES WITH OVERPARAMETERIZATION

Workload # Domain Task Dataset Architecture Model

1 Synthetic Regression Synthetic MLP Two-layer MLP
2 Vision Image classification MNIST MLP LeNet-300-100
3 Vision Image classification CIFAR-10 CNN ResNet-18
4 Vision Image classification ImageNet CNN ResNet-50
5 Language PoS tagging Universal Dependencies Transformer Encoder-only Transformer
6 Language Sentiment classification SST-2 RNN LSTM
7 Chemistry Graph property prediction ogbg-molpcba GNN GCN
8 Game Proximal policy optimization Atari Breakout CNN Five-layer CNN

Table 1: Summary of evaluation workloads. They cover eight different datasets spanning five domains
and six tasks at varying scale, and include eight neural network models of five different architecture
types. For each workload, we test up to ten different models of varying degrees of parameterization.
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Figure 1: Improvement in validation metrics by SAM. The generalization benefit of SAM tends to
increase as the model becomes more overparameterized. We present the full results including the
absolute metrics for SAM and baseline optimizers in Figure 7 of Appendix B.

SAM is introduced to find flat minima and thereby improve generalization performance in practice. In
this work, we are interested in whether and how this improvement is affected by overparameterization.
In order to understand any potential relationship between SAM and overparameterization, we first
focus on precisely measuring the effect of overparameterization. More specifically, we conduct a
wide range of deep learning experiments (see Table 1 for the summary of all tested workloads), and
observe how the generalization improvement made by SAM changes as with more parameters.
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As a result, we find a strong and consistent trend that SAM improves with overparameterization
in all tested cases (see Figure 1). To elaborate, initially, SAM does not work much better than
the non-sharpness-aware baseline optimizer (i.e., SGD or Adam family depending on the default
choice) when the model is at relatively low number of parameters; it only starts to improve with more
parameters and makes a clear distinction at very large number of parameters. We emphasize that this
holds true for a wide variety of architectures (MLP, CNN, RNN, GCN, Transformer) and datasets of
different domains (Synthetic, Vision, Language, Chemistry, Game) under a rigorous hyperparameter
search (see Appendix A.1 for the full experiment details).

This result possibly indicates that SAM is more effective, when (and possibly only when) applied to
overparameterized models. On the other hand, the increased generalization performance of SAM
with more parameters renders a promising avenue, given that the modern neural network models
are often heavily overparameterized (Zhang et al., 2022; Dehghani et al., 2023). We note that some
evidence of the similar positive influence of overparameterization for SAM can be derived in the
literature (Chen et al., 2022b), however, no prior work has conducted experiments or confirmed this
phenomenon at any scale comparable to ours.4

4 UNDERSTANDING WHY SAM IMPROVES WITH OVERPARAMETERIZATION

Then why does overparameterization particularly favor SAM over non-sharpness-aware optimizers?
We address this question in this section to better understand the effect of overparameterization on SAM.
Precisely, we posit that it is potentially due to the complementarity between overparameterization
enlarging the solution space and the implicit bias of SAM driving toward flat minima; i.e., once there
are more diverse solutions available (including both sharp and flat minima) by overparameterization,
optimizers intrinsically biased toward flat solutions (such as SAM) will more likely find such solutions
than unbiased optimizers (such as GD). We support this reasonable hypothesis by demonstrating
the followings: (i) SAM finds simpler and flatter solutions than GD with the enlarged solution
space (Section 4.1), and (ii) the implicit bias of SAM becomes stronger with overparameterization
(Section 4.2); both of these take place only when the model is overparameterized.

4.1 ENLARGED SOLUTION SPACE ALLOWS SAM TO FIND SIMPLER AND FLATTER SOLUTIONS

To corroborate our hypothesis, we start with a simple experiment where we train one-hidden-layer
ReLU networks using full-batch SAM and GD following Andriushchenko & Flammarion (2022); we
use 5, 10, 100, and 1000 hidden neurons for underparameterized to highly overparameterized cases;
we run three random seeds and compare solutions obtained by SAM and GD in Figure 2.

First, we find that the solutions found by SAM are not differentiated much from those of GD when
the model has no more than 10 neurons. Looking closely into the case of 10 neurons, they all seem to
be roughly 4 to 6 degrees of piecewise linear functions, i.e., the number of line segments for each
solution is less than 10, which is the maximum possible joints that this model can have in theory. On
the other hand, in the case of 100 to 1000 neurons, one can easily see that the solutions found by
SAM are much simpler (and thus more likely to generalize) compared to those by GD.

Next, we also track the optimization trajectories of both SAM and GD. The trajectories are plotted
along PCA directions calculated from the converged minima following Li et al. (2018). The results
are illustrated in Section 4.1. We find that both SAM and GD reach solutions in a similar basin when
the model is under/moderately parameterized, whereas in the overparameterized case, they reach
different solutions, i.e., SAM reaches a flatter solution, even though they all start from the same initial
point.

These results support the idea that SAM has some implicit bias that drives itself toward a certain type
of solutions (e.g., simple and flat) as previously shown in prior work (Andriushchenko & Flammarion,
2022; Compagnoni et al., 2023; Wen et al., 2023). More importantly, however, these results newly
reveal that overparameterization is a critical factor in facilitating this implicit behavior of SAM;
without it the space of potential solutions decreases, and SAM may not take effect.

4As an additional result, we provide a theoretical analysis of the effect of overparameterization decreasing
the test error of SAM in Appendices K to L. Precisely, however, this result only mean for SAM and is not to be
confused with the relative improvement against SGD as shown in Section 3.

4
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Figure 2: Solutions found by GD (top) and SAM (bottom). Both optimizers find similar solutions
for under/moderately-parameterized models, whereas the solutions found by SAM are much simpler
with less variance compared to those by GD for overparameterized models. Here, different colors
correspond to different random seeds. See Appendix A.2 for the experiment details.
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Figure 3: Optimization trajectories of GD and SAM starting from the same initial point. GD and
SAM reach solutions in a similar basin for under/moderately-parameterized models, whereas they
reach different solutions for overparameterized models, i.e., flatter region for SAM.

4.2 IMPLICIT BIAS OF SAM INCREASES WITH OVERPARAMETERIZATION

While overparameterization can secure favorable conditions for SAM, it is not to be confused with
guaranteeing the implicit bias of SAM taking effect. In fact, we can further relate the implicit bias of
SAM to the perturbation bound ρ to bridge this gap. Specifically, SAM can be proved to be an SDE
model of SGD on an implicitly regularized loss (Compagnoni et al., 2023):

f̃(x) := f(x) + ρE∥∇fγ(x)∥2 (4)

where γ refers to some stochasticity. This indicates that SAM becomes more regularized (i.e., the
implicit bias is amplified) when ρ increases.5

Our interest thus lies in seeing whether overparameterization has any effect on increasing ρ. Since
if that is the case, it indeed means that overparameterization puts more regularization on SAM. We
verify this by finding the empirically optimal perturbation bound ρ⋆ that yields the best generalization
performance as we change the degree of overparameterization. Specifically, we take a standard deep
learning task and perform an extensive grid search to find ρ⋆. The result is displayed in Figure 4.

Indeed, it is observed that ρ⋆ tends to increase as the number of parameters increases; i.e., seeing
from left to right, ρ value that yields highest accuracy (marked as green star ⋆) tends to increase.
We confirm that this trend is consistently observed for various other workloads (See Figures 10
to 13 of Appendix E for more results). This result is certainly encouraging since it supports that the
generalization benefit of SAM via implicit regularization can indeed increase by overparameterization.
Additionally, we provide a conceptual account of why intuitively it makes sense to see increasing ρ
with overparameterization in Appendix D.

5This holds as long as ρ is not too large, by which it might overshadow minimizing f and implicitly bias the
optimizer toward stationary points such as saddles and maxima. Note it reduces to standard SGD when ρ = 0.
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Figure 4: Validation accuracy versus ρ for 3-layer MLP trained on MNIST (top) and ResNet-18
trained on CIFAR-10 (bottom). ρ⋆ is located to be higher with more parameters.

5 FURTHER MERITS AND CAVEATS OF OVERPARAMETERIZATION

In this section, we present further merits and some caveats of overparameterization. Specifically, we
show that the overparameterization benefit of SAM continues to exist and becomes more evident
under label noise or sparsity. We also discover that sufficient regularization is required to attain the
benefit. These results could serve as a guidance to employ SAM in practice.

Overparameterization secures the robustness of SAM to label noise In practice, deep learning
models are often trained on noisy data (Song et al., 2022). To examine whether the overparameteriza-
tion benefit for SAM continues to exist in this scenario, we introduce some label noise to training
data (Angluin & Laird, 1988; Natarajan et al., 2013) and see how SAM responds. The results are
reported in Figure 5a. Overall, we find SAM benefits from overparameterization significantly more
than SGD in the presence of label noise. Precisely, the accuracy improvement made by SAM keeps
on increasing as the model has more parameters, whereas the improvement over SGD is marginal for
less parameterized models. Notably, this trend is more pronounced with a higher noise level; e.g.,
it rises from 5% to nearly 50% at the highest noise rate. Notably, it is previously known that SAM
is robust to label noise compared to SGD (Foret et al., 2021; Baek et al., 2024), and yet, this result
newly reveals that overparameterization plays a profound role in securing the robustness of SAM.

SAM benefits from sparse overparameterization. There has been a recent interest in employing
sparsity to train large models to alleviate the computation and memory costs (Hoefler et al., 2021;
Mishra et al., 2021). To test the effect of overparameterization on SAM under this setting, we
introduce a varying degree of sparsity to an overparameterized model at initialization (Lee et al.,
2019) such that the number of parameters matches the original dense model. The results are reported
in Figure 5b. We observe that the generalization improvement tends to increase as the model becomes
more sparsely overparameterized; more precisely, the average accuracy improvement increases from
0.4% in the small dense model to around 0.8% in the large sparse model. This result suggests that
one can consider taking sparsification more actively when employing SAM.

Sufficient regularization is needed to secure the benefit of overparameterization. We also
investigate whether the overparameterization benefit for SAM continues to exist when models are
prone to overfitting due to insufficient regularization (Ying, 2019). Specifically, we evaluate three
cases: (a) without weight decay, (b) without early stopping, and (c) without sufficient inductive bias.6
The results are reported in Figures 5c to 5e. We observe that the generalization improvement does
not increase by simply adding more parameters. The results indicate that some level of regularization
is required in practice to attain the overparameterization benefit for SAM.

6For (c), we train vision transformers that is not pre-trained on a massive dataset, which is known to lack
inductive biases inherent to CNNs and thus more prone to overfitting (Lee et al., 2021; Chen et al., 2022a).
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Figure 5: Effect of (a) label noise, (b) sparsity, and (c-e) regularization on SAM. (a) The benefit of
SAM is more pronounced with a higher noise level. (b) The improvement by SAM tends to increase
in large sparse models compared to their small dense counterparts. (c-e) SAM does not always benefit
from overparameterization without sufficient regularization. See Figures 14 to 18 in Appendix F for
more results.

6 OTHER EFFECTS OF OVERPARAMETERIZATION: THEORETICAL ASPECTS

Thus far, we focused on empirically exploring how increasing number of parameters influences SAM,
and discovered critical improvements in its generalization benefits. However, existing theoretical
analyses on overparameterization also hint at other types of positive influences on different aspects of
SAM such as convergence (Ma et al., 2018; Vaswani et al., 2019) and implicit bias (Neyshabur, 2017;
Zhang et al., 2017). Despite this, we find that there is little work on explicitly verifying whether these
influences extend to SAM, however.

To fill this gap, we develop theoretical analyses of the effect of overparameterization on SAM7 in this
section. Specifically, we show that (i) linearly stable minima for SAM have more uniform Hessian
moments compared to SGD (Section 6.1), and (ii) SAM can converge much faster (Section 6.2), all
when the model is overparameterized.

To this end, we adopt the following interpolation assumption to theoretically characterize overparam-
eterization:
Definition 6.1. (Interpolation) There exists x⋆ s.t. fi(x⋆) = 0 and ∇fi(x

⋆) = 0 for i = 1, . . . , n,

To this end, which is a widely accepted notion in the literature (Ma et al., 2018; Vaswani et al., 2019).
Crucially, this implies that there exists a fixed point x⋆ for stochastic gradient-based optimizers,
which comes as an important property in the following two sections.

We also use an unnormalized version of SAM:

xt+1 = xt − η∇f (xt + ρ∇f(xt)) , (5)

a variant empirically similar to normalized SAM which is often adopted to simplify the proof
(Andriushchenko & Flammarion, 2022; Compagnoni et al., 2023).

We leave a clear note here that the aim of these analyses is to complement, rather than directly support
Sections 3 and 4, by outlining theoretically guaranteed benefits of overparameterization on SAM. We
discuss more about the limitations later in Section 7.

6.1 LINEARLY STABLE MINIMA OF SAM HAVE A MORE UNIFORM HESSIAN THAN SGD

It has been observed in Woodworth et al. (2020); Xie et al. (2021) that SGD converges to certain types
of minima among many others in an overparameterized regime. We analyze the minima attained by
SAM and how they compare to the minima attained by SGD from the perspective of linear stability
(Wu et al., 2018; 2022), which is defined as follows:
Definition 6.2. (Linear stability) Consider an iterative first-order optimizer xt+1 = xt − ηtG(xt)
where ηt denotes a step size and G refers to a stochastic gradient estimate measured at the current

7We use an unnormalized version of SAM to ease the proof, a variant empirically similar to normalized SAM
(Andriushchenko & Flammarion, 2022; Compagnoni et al., 2023), although recent studies have called this into
question (Dai et al., 2023; Si & Yun, 2023).
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Figure 6: (a) Loss landscapes of SGD (left) and SAM (right) along with the corresponding sharpness
a = λmax(H). SAM converges to flatter minima with lower sharpness compared to SGD. (b)
Non-uniformity of Hessian for SGD and SAM. SAM has a more uniform Hessian distribution than
SGD. (c) Convergence properties of SAM. As model becomes overparameterized, SAM converges
much faster and closer to a linear rate. See Appendix A.3 for the experiment details.

iterate xt. A minimizer x⋆ is called linearly stable if there exists a constant C such that

E[∥x̃t − x⋆∥2] ≤ C∥x̃0 − x⋆∥2

for all t > 0 under x̃t+1 = x̃t−∇G(x⋆)(x̃t−x⋆), i.e., if it does not deviate far from x⋆ once arrived
near a fixed point.

Here the existence of the fixed point is implied by the interpolation assumption in Definition 6.1,
whereas the absence of this assumption would mean no minimum could exhibit linear stability.

With this, we provide the following theorem of a linearly stable minima for a stochastic SAM.
Theorem 6.3. Let us assume x⋆ = 0 without loss of generality. Then x⋆ is linearly stable for a
stochastic SAM if the following is satisfied:

λmax
(
(I − ηH − ηρH2)2 + η(η − 2ρ)(M2 −H2)

+2η2ρ(M3 −H3) + η2ρ2(M4 −H4)
)
≤ 1

(6)

where H = 1
n

∑n
i=1 Hi and Mk = 1

n

∑n
i=1 H

k
i are the average Hessian and the k-th moment of the

Hessian at x⋆ over n training data. Subsequently as a necessary condition of (6) it follows that

0 ≤ a(1 + ρa) ≤ 2

η
, 0 ≤ s22 ≤ 1

η(η − 2ρ)
, 0 ≤ s33 ≤ 1

2η2ρ
, 0 ≤ s44 ≤ 1

η2ρ2
, (7)

where a = λmax(H), sk = λmax((Mk −Hk)1/k) are the sharpness and the non-uniformity of the
Hessian measured with the k-th moment, respectively.

The detailed proof of the theorem is provided in Appendix I.

Our result (7) suggests that SAM requires less sharp minima and more uniformly distributed Hessian
moments to achieve linear stability (provided that ρ > 0) compared to those of SGD (Wu et al.,
2018), i.e., when ρ → 0 in (7). While a similar result is shared by a concurrent work of Behdin et al.
(2023), we further ensure that higher-order terms of Hessian moments are bounded, and interestingly,
it becomes tighter for a larger ρ. To corroborate our result, we measure the empirical sharpness and
non-uniformity of Hessian. The results are reported in Figures 6a and 6b.

6.2 STOCHASTIC SAM CONVERGES MUCH FASTER WITH OVERPARAMETERIZATION

Prior works have revealed the power of overparameterization for stochastic optimization methods to
accelerate convergence (Ma et al., 2018; Vaswani et al., 2019; Meng et al., 2020). We prove that this
benefit also extends to a stochastic SAM.

Besides the interpolation assumption we defined earlier in Definition 6.1, let us start by providing
some assumptions used below.
Definition 6.4. (Smoothness) f is β-smooth if there exists β > 0 s.t. ∥∇f(x)−∇f(y)∥ ≤ β∥x−y∥
for all x, y ∈ Rd.
Definition 6.5. (Polyak-Lojasiewicz) f is α-PL if there exists α > 0 s.t. ∥∇f(x)∥2 ≥ α(f(x) −
f(x⋆)) for all x ∈ Rd.

8
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The smoothness and the Polyak-Lojasiewicz (PL) assumptions are standard and used frequently in
optimization (Gower et al., 2020; Meng et al., 2020; Nutini et al., 2022; Karimi et al., 2016). The
smoothness assumption is satisfied for any neural network with smooth activation and loss function
with bounded inputs (Andriushchenko & Flammarion, 2022), and the PL condition is argued to be
satisfied when the model is overparameterized (Belkin, 2021; Liu et al., 2022), which we empirically
verify in Figure 22b of Appendix H.

Under these assumptions, we present the following convergence theorem of a stochastic SAM:

Theorem 6.6. Suppose each fi is β-smooth, f is λ-smooth and α-PL, and interpolation holds.

For any ρ ≤ 1
(β/α+1/2)β , a stochastic SAM that runs for t iterations with constant step size η⋆

def
=

α−(β+α/2)βρ
2λβ(βρ+1)2 gives the following convergence guarantee:

E
xt

[f(xt)] ≤
(
1− α− (β + α/2)βρ

2
η⋆
)t

f(x0).

We provide the full proof in Appendix J, which also contains result for the more general case of a
mini-batch SAM.

This result shows that with overparameterization, a stochastic SAM can converge as fast as the
deterministic gradient method at a linear convergence rate, which is much faster than the well-known
sublinear rate of O(1/t) for SAM (Andriushchenko & Flammarion, 2022). Also, our analysis
suggests that convergence is guaranteed without the bounded variance assumption and diminishing
step size under overparameterization, while without overparameterization, convergence does not hold
(Andriushchenko & Flammarion, 2022). This suggests that overparameterization can significantly
ease the convergence of SAM. We corroborate our result empirically as well, by measuring how
training proceeds with overparameterization in realistic settings. The results are plotted in Figure 6c.

7 CONCLUSION

In this work, we have disclosed the critical influence of overparameterization on SAM from empirical
and theoretical perspectives. We started with an extensive evaluation to display a highly consistent
trend that the generalization benefit of SAM increases with overparameterization, without which
SAM may not take effect (Section 3). This led us to come up with a reasonable hypothesis to
explain the benefit in terms of increased solution space and implicit bias (Section 4). In addition,
we presented further merits and caveats of overparameterization in practice (Section 5). Finally, we
developed theoretical advantages of overparameterization for SAM on linear stability, convergence,
and generalization (Section 6). We believe these findings can bridge between overparameterization
and SAM, which has been rather unattended in the literature as of yet. Nevertheless, we discuss
limitations, ideas for potential future work as well as practical implications of our results below.

Theoretical account of Section 3 The consistent trend observed in Section 3 certainly hints at
the presence of a fundamental process underneath, and yet, our study does not offer a precise
theory to support this phenomenon. This is largely because modeling the generalization of SAM
under varying degrees of overparameterization challenges the boundaries of existing theoretical
frameworks currently available in the literature. Nevertheless, drawing upon recent advancements in
understanding overparameterization and generalization, we have developed plausible hypotheses to
directly address this phenomenon (Section 4). We also employed rigorous theoretical frameworks to
examine the effects of overparameterization on various other aspects of SAM, reinforcing the general
trend of overparameterization benefits (Section 6). We believe these efforts offer valuable insights
and preliminary foundations that could be instrumental in achieving a comprehensive theoretical
account of Section 3 in the future.

Other sharpness minimization schemes Our theoretical results in Section 6 are based on an
unnormalized version of SAM. This is largely driven by two reasons: (i) it appears to render minimal
practical difference from the original SAM, and more crucially, (ii) it simplifies analyses as widely
adopted in initial studies (Andriushchenko & Flammarion, 2022; Compagnoni et al., 2023). However,
more recently, works such as Dai et al. (2023); Si & Yun (2023) have highlighted the theoretical
significance of the normalization step. We plan to extend our analysis to better reflect the effect of

9
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normalization in future work. Additionally, given that different sharpness minimization schemes can
make a difference in the found minima and resulting performance (Kaddour et al., 2022; Dauphin
et al., 2024), extension of our analyses to other non-SAM sharpness minimization schemes (Izmailov
et al., 2018; Orvieto et al., 2022) and studying how they compare to SAM under overparameterization
would be a promising avenue for future work. Nonetheless, we consider these results an initial
exploration of the impact of overparameterization on SAM, setting the stage for future research.

More ablation study In addition to our explanation of how overparameterization improves SAM
in Section 4, we have conducted an additional ablation study to investigate the influence of other
factors on the increased benefit of SAM Appendix G. In Appendix G.1, we present preliminary
investigations on the effect of increasing the depth instead of the width, where we find that the
benefit of overparameterization can differ from architectures. In Appendix G.2, we test whether
stronger weight decay can remove the gap between SGD and SAM, which shows that even after
given much larger values of weight decay, SGD isn’t able to outperform SAM on any model size.
In Appendix G.3, inspired by recent studies suggesting that overparameterized models can behave
like linearized models (Jacot et al., 2018) while such implicit linearization phenomenon can coincide
independently of overparameterization (Chizat et al., 2019), we have tested if the increased benefit
of SAM is due to linearization. As a result, we have observed that SAM underperforms SGD in the
linearized regimes by more than 10%. This indicates that linearization is not the main factor for the
increased benefit of SAM and again verifies that overparameterization itself is likely to be the main
factor of the benefit.

Potential to modern deep learning Our key observations in Section 3 indicate a great potential
to use SAM in the modern landscape of large-scale training (Kaplan et al., 2020; Belkin, 2021).
Also, our results in Section 5 further highlight its potential in the current trend where foundation
models are often trained with noisy data (Radford et al., 2021; Schuhmann et al., 2022) or to employ
sparsity (Frantar et al., 2024; Jiang et al., 2024). In this regard, we can possibly anticipate that the
overparameterization benefit might hold even when training billion-scale foundation models (Zhang
et al., 2022; Dehghani et al., 2023), which we leave to explore as future work. It would also be
interesting to study how popular settings for training foundation models other than label noise or
sparsity affect the benefit, such as quantization (Gholami et al., 2022), differential privacy (Yu et al.,
2022), or human alignment (Ouyang et al., 2022).

REPRODUCIBILITY

We have made a concerted effort to ensure reproducibility by following best practices and providing
detailed documentation of all stages of our experimental pipeline. This includes, but is not limited to,
detailed information about the experimental setup and configurations including random seeds used
for all training and evaluation in Appendix A.1, the use of publicly available datasets with links and
details for obtaining and preprocessing them, to name a few. Additionally, we provide our complete
source code with the necessary dependencies, algorithms, and hyperparameters for reproducing the
results presented in the paper as supplementary material.
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Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 1998.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs, 2010.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. Snip: Single-shot network pruning based
on connection sensitivity. ICLR, 2019.

Seung Hoon Lee, Seunghyun Lee, and Byung Cheol Song. Vision transformer for small-size datasets.
arXiv preprint arXiv:2112.13492, 2021.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape
of neural nets. NeurIPS, 2018.

Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Loss landscapes and optimization in over-parameterized
non-linear systems and neural networks. ACHA, 2022.

Nicolas Loizou, Sharan Vaswani, Issam Hadj Laradji, and Simon Lacoste-Julien. Stochastic polyak
step-size for sgd: An adaptive learning rate for fast convergence. AISTATS, 2021.

Siyuan Ma, Raef Bassily, and Mikhail Belkin. The power of interpolation: Understanding the
effectiveness of sgd in modern over-parametrized learning. ICML, 2018.

Si Yi Meng, Sharan Vaswani, Issam Hadj Laradji, Mark Schmidt, and Simon Lacoste-Julien. Fast
and furious convergence: Stochastic second order methods under interpolation. AISTATS, 2020.

Peng Mi, Li Shen, Tianhe Ren, Yiyi Zhou, Xiaoshuai Sun, Rongrong Ji, and Dacheng Tao. Make
sharpness-aware minimization stronger: A sparsified perturbation approach. NeurIPS, 2022.

Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh,
Chong Yu, and Paulius Micikevicius. Accelerating sparse deep neural networks. arXiv preprint
arXiv:2104.08378, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. Workshop on
Deep Learning, NeurIPS, 2013.

Nagarajan Natarajan, Inderjit S Dhillon, Pradeep K Ravikumar, and Ambuj Tewari. Learning with
noisy labels. NeurIPS, 2013.

Behnam Neyshabur. Implicit regularization in deep learning. arXiv preprint arXiv:1709.01953, 2017.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring generaliza-
tion in deep learning. NeurIPS, 2017.

Joakim Nivre, Marie-Catherine De Marneffe, Filip Ginter, Yoav Goldberg, Jan Hajic, Christopher D
Manning, Ryan McDonald, Slav Petrov, Sampo Pyysalo, Natalia Silveira, et al. Universal depen-
dencies v1: A multilingual treebank collection. LREC, 2016.

Julie Nutini, Issam Laradji, and Mark Schmidt. Let’s make block coordinate descent converge faster:
faster greedy rules, message-passing, active-set complexity, and superlinear convergence. JMLR,
2022.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Antonio Orvieto, Hans Kersting, Frank Proske, Francis Bach, and Aurelien Lucchi. Anticorrelated
noise injection for improved generalization. ICML, 2022.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. NeurIPS, 2022.

Zhe Qu, Xingyu Li, Rui Duan, Yao Liu, Bo Tang, and Zhuo Lu. Generalized federated learning via
sharpness aware minimization. ICML, 2022.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. ICML, 2021.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
Robust speech recognition via large-scale weak supervision. ICML, 2023.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
open large-scale dataset for training next generation image-text models. NeurIPS, 2022.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Dongkuk Si and Chulhee Yun. Practical sharpness-aware minimization cannot converge all the way
to optima. NeurIPS, 2023.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. ICLR, 2015.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. EMNLP, 2013.

Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin, and Jae-Gil Lee. Learning from noisy
labels with deep neural networks: A survey. TNNLS, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. NeurIPS, 2017.

Sharan Vaswani, Francis Bach, and Mark Schmidt. Fast and faster convergence of sgd for over-
parameterized models and an accelerated perceptron. AISTATS, 2019.

Kaiyue Wen, Tengyu Ma, and Zhiyuan Li. How sharpness-aware minimization minimizes sharpness?
ICLR, 2023.

Blake Woodworth, Suriya Gunasekar, Jason D Lee, Edward Moroshko, Pedro Savarese, Itay Golan,
Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models. COLT,
2020.

Lei Wu, Chao Ma, et al. How sgd selects the global minima in over-parameterized learning: A
dynamical stability perspective. NeurIPS, 2018.

Lei Wu, Mingze Wang, and Weijie Su. The alignment property of sgd noise and how it helps select
flat minima: A stability analysis. NeurIPS, 2022.

Zeke Xie, Issei Sato, and Masashi Sugiyama. A diffusion theory for deep learning dynamics:
Stochastic gradient descent exponentially favors flat minima. ICLR, 2021.

Xue Ying. An overview of overfitting and its solutions. Journal of physics, 2019.

Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A Inan, Gautam Kamath, Janardhan
Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, et al. Differentially private fine-tuning of
language models. ICLR, 2022.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. ICLR, 2017.

Guodong Zhang, Lala Li, Nado Zachar, James Martens, Sushant Sachdeva, George Dahl, Chris
Shallue, and Roger B. Grosse. Which algorithmic choices matter at which batch sizes? insights
from a noisy quadratic model. NeurIPS, 2019.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Yang Zhao, Hao Zhang, and Xiuyuan Hu. Penalizing gradient norm for efficiently improving
generalization in deep learning. ICML, 2022.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A EXPERIMENTAL DETAILS

A.1 EXPERIMENTS FOR SECTION 3

Workload Epochs/steps Learning rate / decay Weight decay Batch size ρ search Baseline optimizer

Synthetic 100 epochs 0.1 / step 0.0 128
{
0.001,0.01,0.05,0.07,0.1,
0.2,0.3,0.5,0.7,1.0,2.0

}
SGD

MNIST/MLP 100 epochs 0.1 / step 0.0001 128 {0.01, 0.02, 0.05, 0.1, 0.2} SGD with momentum 0.9

CIFAR-10/ResNet-18 200 epochs 0.1 / step 0.0005 128
{
0.001,0.005,0.01,0.02,
0.05,0.1,0.2,0.5,1.0

}
SGD with momentum 0.9

ImageNet/ResNet-50 90 epochs 0.1 / cosine 0.0001 512 {0.01, 0.02, 0.05, 0.1, 0.2} SGD with momentum 0.9

PoS tagging 75000 steps 0.05 / inverse sqrt 0.1 64 {0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5} AdamW (β1 = 0.9, β2 = 0.98)

Sentiment classification 30 epochs 0.1 / constant 3e-6 64 {0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5} SGD with momentum 0.8

Graph property prediction 105 steps 0.001 / constant 0.0 256 {0.01, 0.02, 0.05, 0.1, 0.2} Adam (β1 = 0.9, β2 = 0.999)

Atari game 107 steps 2.5e-4 / linear 0.0 256 {0.01, 0.02, 0.05, 0.1, 0.2} Adam (β1 = 0.9, β2 = 0.999)

CIFAR-10/ViT 200 epochs 0.1 / cosine 0.0001 128 {0.01, 0.02, 0.05, 0.1, 0.2} SGD with momentum 0.9

Table 2: Hyperparameters for each workload.

Workload Scaling factor Values

Synthetic # of neurons {k ∗ 100|1 ≤ k ≤ 10}
MNIST/MLP # of neurons {[300 ∗ p, 100 ∗ p]|p ∈ {0.25, 0.5, 1, 4, 10}}
CIFAR-10/ResNet-18 # of convolutional filters {2k|2 ≤ k ≤ 8}
ImageNet/ResNet-50 # of convolutional filters {16 ∗ k|1 ≤ k ≤ 5}
PoS tagging dimension of hidden states {128 ∗ k|1 ≤ k ≤ 5}
Sentiment classification dimension of hidden states {2k|5 ≤ k ≤ 9}
Graph property prediction # of neurons {2k|7 ≤ k ≤ 9}
Atari game # of convolutional filters {16 ∗ k|1 ≤ k ≤ 4}
CIFAR-10/ViT dimension of hidden states {2k|5 ≤ k ≤ 10}

Table 3: Model scaling factors and values for each workload.

For all the experiments in Section 3, we run the experiments with the same configurations over
three different random seeds. Most of the experiments are conducted with a single RTX3090 GPU
having 24GB memory while some experiments requiring larger memory are conducted with multiple
RTX3090 GPUs. The code is implemented with JAX (Bradbury et al., 2018) and provided as a
supplementary material. Many of our experiments and the hyperparameter values are based on
examples provided by Flax (Heek et al., 2023) official repository.8 The hyperparameter values and
how the models are scaled for each workload are summarized in Table 2 and Table 3 respectively. We
present the additional details below.

Synthetic Regression / 2-layer MLP We follow the student-teacher setting from Advani et al.
(2020) where the teacher is a randomly initialized 2-layer ReLU network with 200 neurons and the
student is a 2-layer ReLU network with a different number of neurons. Each element for the input
x ∈ R100 is sampled from a standard normal distribution while the target y ∈ R is calculated as the
output of the teacher network added by Gaussian noise sampled from a standard normal distribution.
The models are trained on 20400 training data, which is roughly the same as the number of parameters
in the teacher model, and tested on the 5100 data, which is a quarter of the number of the training
data.

MNIST / 3-layer MLP We train LeNet-300-100 (LeCun et al., 1998) for the MNIST (LeCun et al.,
2010). The learning rate decays by 0.1 after 50% and 75% of the total epochs. We scale the models
while preserving the relative proportions of the number of neurons in each layer as 3 : 1.

CIFAR-10 / ResNet-18 We train ResNet-18 (He et al., 2016) for the CIFAR-10 (Krizhevsky et al.,
2009). We choose the hyperparameters as similar to Andriushchenko & Flammarion (2022). The
learning rate decays by 0.1 after 50% and 75% of the total epochs.

ImageNet / ResNet-50 We train ResNet-50 (He et al., 2016) for the ImageNet (Deng et al., 2009).
We choose the hyperparameters as similar to Du et al. (2022) and use a linear warmup of 5000 steps.
We additionally experiment with ρ = 0.005 for the two smallest models.

8https://github.com/google/flax/tree/main/examples
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PoS tagging/ Transformer We train Encoder-only Transformer (Vaswani et al., 2017) for the
Universal Dependencies (Nivre et al., 2016) – Ancient Greek. We use a linear warmup of 8000 steps.
We evaluate the validation accuracy once every 1000 step and report the best value except for the
experiment in Figure 5d. The dimension of MLP and the number of attention heads are scaled as 4×
and 1/64× of the dimension of the hidden states following the Flax example.

SST / LSTM We train LSTM (Hochreiter & Schmidhuber, 1997) for SST2 (Socher et al., 2013)
where the task is a binary classification (positive/negative) of the movie reviews. We evaluate the
validation accuracy for every epoch and report the best value. The embedding size is scaled as
300/256× of the dimension of hidden states following the Flax example.

Graph property prediction / GCN We train 2-layer Graph Convolutional Networks (Kipf &
Welling, 2017) for the ogbg-molpcba (Hu et al., 2020). Here, the input is a graph of a molecule where
nodes and edges each represent atoms and chemical bonds. The task is a binary classification of
whether a molecule inhibits HIV replication or not.

Atari game / CNN We train 5-layer CNNs for the Atari Breakout-v5 game (Mnih et al., 2013).
We train the Actor-Critic networks (Konda & Tsitsiklis, 1999) with proximal policy optimization
(Schulman et al., 2017). We evaluate the validation score once every 100 step and report the best
value. We also use gradient clipping of 0.5 for all models.

CIFAR-10 / ViT For the experiment in Figure 5e, we train 6-layer Vision Transformers (Dosovitskiy
et al., 2021) for the CIFAR-10 (Krizhevsky et al., 2009) using the patch size of 4× 4. We scale the
dimension of MLP and the number of attention heads as 2× and 1/32× of the dimension of hidden
states.

A.2 EXPERIMENTS FOR SECTION 4

For the experiments in Figure 2 and Section 4.1, we follow the setting in Andriushchenko & Flam-
marion (2022).9 Specifically, we train one-hidden-layer ReLU networks where each data has input
x ∈ R and target y ∈ R. Here, the networks are trained on the quadratic loss with full-batch GD or
SAM with ρ = 0.3. Additionally, the optimization trajectories in Section 4.1 are plotted following
Li et al. (2018).10 Specifically, the trajectories are plotted along the PCA directions calculated from
converged minima of two different paths from SGD and one path from SAM.

A.3 EXPERIMENTS FOR SECTION 6

Linear stability For the experiments of Figures 6a and 6b, we follow the setting in Wu et al. (2018).
Specifically, we set up 3-layer MLP having [3000, 1000] hidden neurons with squared loss, so that
the local quadratic approximation becomes precise, and train the networks on MNIST. We use 1000
random samples to calculate the non-uniformity, and all models are trained to reach near zero loss.
The networks are trained with a constant learning rate of 0.1 without weight decay or momentum.

Convergence – Matrix Factorization For the matrix factorization experiment in Figure 6c, we
solve the following non-convex regression problem: minW1,W2

Ex∼N (0,I)∥W2W1x−Ax∥2 where
the objective function is smooth and satisfies the PL-condition (Loizou et al., 2021). We choose
A ∈ R10×6 and generate 1000 training samples, which are used for training a rank k linear network
with two matrix factors W1 ∈ Rk×6 and W2 ∈ R10×k. Here, interpolation is satisfied when rank
k = 10. We train two linear networks with k ∈ {4, 10} for 100 epochs with a constant learning rate
of 0.0005 and compare the convergence speed.

9https://github.com/tml-epfl/understanding-sam/tree/main/one_layer_
relu_nets

10https://github.com/tomgoldstein/loss-landscape
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B ABSOLUTE VALIDATION METRIC FOR SECTION 3

We present the full results of Figure 1, including the absolute validation metrics of SAM and SGD in
Figure 7. There is a consistent trend that SAM improves with overparameterization in all tested cases.
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(a) Improvement in validation metrics by SAM
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Figure 7: Effects of overparameterization on SAM. Improvement in validation metrics by SAM.
(a) Improvement in validation metrics by SAM and (b) the absolute metrics for SAM and baseline
optimizers. The generalization benefit of SAM tends to increase as the model becomes more
overparameterized.

C MINI-BATCH TRAINING FOR SECTION 4.1

We compare the solutions of SGD and stochastic-SAM (ρ = 0.2) as done in Section 4.1. Here, for
every training iteration, we randomly choose 6 data points for computing the loss. We use 5, 10, 100,
and 1000 hidden neurons for underparameterized to highly overparameterized cases; we run three
random seeds and compare solutions obtained by SAM and SGD in Figures 8. We also track the
optimization trajectories of both SAM and SGD, which are plotted along PCA directions calculated
from the converged minima following Li et al. (2018), which are provided in 9. We find that when
the model is more overparameterized, solutions found by SAM are much more simpler and flatter
compared to ones found by SGD.
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Figure 8: Solutions found by SGD (top) and stochastic-SAM (bottom). Both optimizers find similar
solutions for under/moderately-parameterized models, whereas the solutions found by SAM are much
simpler with less variance compared to those by SGD for overparameterized models. Here, different
colors correspond to different random seeds.
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Figure 9: Optimization trajectories of SGD and stochastic-SAM starting from the same initial
point. SGD and SAM reach solutions in a similar basin for under/moderately-parameterized models,
whereas they reach different solutions for overparameterized models, i.e., flatter region for SAM.

D OVERPARAMETERIZATION AND ρ

We can develop a simple account of why ρ may need to increase with overparameterization. Firstly,
the scale of perturbation ϵ controlled by ρ needs to increase relatively proportionally with respect
to the increase in model dimensionality in order to preserve a similar level of perturbation effect;
an extreme case is when the model grows infinitely large, ρ should grow together, otherwise no
perturbation can be made, i.e., ∥ϵ∥ → ∞ as d → ∞.

A non-asymptotic interpretation can also be developed. Precisely, the Lipschitz bound on gradients,
i.e.,

∥∥∥∇f
(
x+ ρ ∇f(x)

∥∇f(x)∥2

)
−∇f(x)

∥∥∥
2
≤ β

∥∥∥x+ ρ ∇f(x)
∥∇f(x)∥2

− x
∥∥∥
2
= βρ, indicates that the SAM

gradient becomes more similar to the original gradient as the model gets smoother (i.e., smaller
smoothness constant β) with increasing size, requiring larger perturbation bound to achieve similar
levels of perturbation effect. These hold under the assumption that overparameterization makes the
model smoother, which we empirically confirm in Figure 22a.

E FULL RESULTS ON OPTIMAL PERTURBATION BOUND

Extending from Section 4, we plot the validation accuracy of SAM versus different values of ρ, along
with their optimal value of ρ for 3-layer-MLP/MNIST, ResNet-50/ImageNet, ResNet-18/CIFAR-10,
and LSTM/SST2 in Figures 10 to 13, respectively. It is observed that ρ⋆ tends to increase as the model
becomes more overparameterized; on CIFAR-10 with ResNet18, the smallest model has ρ⋆ = 0.01
while the largest three have ρ⋆ = 0.2.
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Figure 10: Validation accuracy versus ρ for MNIST and 3-layer MLP.
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Figure 11: Validation accuracy versus ρ for ResNet-50 and ImageNet.
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Figure 12: Validation accuracy versus ρ for ResNet-18 and CIFAR-10.
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Figure 13: Validation accuracy versus ρ for LSTM and SST2.

F ADDITIONAL RESULTS FOR SECTION 5

F.1 LABEL NOISE

More results on the effect of overparameterization on SAM under label noise are presented in
Figure 14. Overall, we find SAM benefits from overparameterization significantly more than SGD in
the presence of label noise. Precisely, the accuracy improvement made by SAM keeps on increasing
as the model becomes more overparameterized, and this trend is more pronounced with higher noise
levels; e.g., it rises from 5% to nearly 50% at the highest noise rate.
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Figure 14: Effect of overparameterization on SAM under label noise for CIFAR-10 and ResNet-18.
(a) SAM benefits a lot more from overparameterization than SGD; it is more pronounced with high
noise level. (b-d) Under label noise, SGD tends to overfit as with more parameters unlike SAM.
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Figure 15: Effect of sparsification on SAM for ResNet-18 and CIFAR-10. Here, all the models have
approximately 701k parameters. The improvement tends to increase in large sparse models compared
to their small dense counterparts.
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Figure 16: Effect of sparsification on SAM for MNIST and 3-layer MLP. Here, all the models have
approximately 61k parameters. The improvement tends to increase in large sparse models compared
to their small dense counterparts.
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F.2 SPARSE OVERPARAMETERIZATION

Additional results on the effect of sparsification on the generalization benefit of SAM are plotted in
Figures 15 and 16. Here, we try two sparsification methods that do not require pertaining, random
pruning and SNIP (Lee et al., 2019). For both methods, we note that the generalization improvement
by SAM tends to increase as the model becomes more sparsely overparameterized.

We also plot the effect of sparsification on ρ⋆ in Figure 17. We find that ρ⋆ is sometimes different
between small dense and large sparse models despite having a similar number of parameters; for
the MLP of 61k parameters on MNIST, ρ⋆ changes over different sparsity levels and sparsification
methods, but this does not generalize to the CIFAR-10 and ResNet-18. This indicates that it is not
just the parameter count that affects the behavior of SAM, but some other factors such as the pattern
of parameterization also have an influence on how SAM shapes training.

F.3 REGULARIZATION

More results on the effect of regularization on SAM are presented in Figure 18. We find that
overparameterization does not increase the generalization benefit of SAM. We suspect this is because
the models are prone to overfitting in these cases and overparameterizing models may decrease the
overall performance both for SGD and SAM; for example in Figure 18c, the validation accuracy
drops after 11.2m parameters.
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Figure 18: Effect of overparameterization on SAM without regularization: (a) CIFAR-10/ResNet-18
without weight decay, (b) Transformer/PoS tagging without early stopping, and (c) ViT/CIFAR-10.
SAM does not always benefit from overparameterization in these cases.

G ABLATION

G.1 EFFECT OF DEPTH

We experiment with changing the number of layers for MNIST/MLP and Cifar-10/ResNet-18.
Precisely, we change the number of width-1000 hidden layers in MLP and resblock in each stage
of ResNet-18 for MNIST and CIFAR-10 respectively. The results are provided in Figure 19. We
find that SAM also improves with overparameterization for these cases while the increase is not
significant for ResNet.
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Figure 19: Improvement in validation metrics by SAM over different model depths. Deeper models
tend to yield higher validation accuracy improvements. Here we change the number of width-1000
hidden layers in MLP and resblock in each stage of ResNet-18 for MNIST and CIFAR-10 respectively.
Benefits of SAM also improves with overparameterization in terms of depth, although the increase is
not significant for ResNet.
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Figure 20: Effect of weight decay on validation accuracy of ResNet-18 trained on CIFAR-10 with
SAM and SGD over various model scales and the improvement in validation metrics by SAM when
considering weight decay. Even after being given much larger values of weight decay, SGD isn’t able
to outperform SAM on any model size.

G.2 SAM VS. WEIGHT DECAY

We conduct experiments on Cifar-10/ResNet-18 for four different model sizes and five values of
weight decay. The results are provided in Figure 20. We find that SGD with stronger weight decay
does not compete to replace SAM for overparameterized models; for overparameterized models,
using larger weight decay rather degrades the performance for SGD. This potentially indicates that a
generic regularization strategy may not suffice for overparameterized models relatively compared to
SAM.

G.3 RESULTS ON SAM UNDER LINEARIZED REGIME
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Figure 21: Effect of linearization on SAM. Here, α controls the degree of linearization. High
linearization does not yield improvement, and in fact, SAM (ρ = 0.001) underperforms SGD in the
linearized regime (left), although both achieve effective linearization at α = 1000 with stability close
to 1 (right).

Recent studies suggest that highly overparameterized models can behave like linearized networks
(Jacot et al., 2018), while such implicit linearization phenomenon can coincide independently of
overparameterization (Chizat et al., 2019). One might wonder if the increased effectiveness of SAM
directly comes from the overparameterization itself or is rather due to linearization. To verify, we
reproduce experiments in Chizat et al. (2019) and see how SAM performs in the linearized regimes
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while fixing the number of parameters. Specifically, we train VGG-11 (Simonyan & Zisserman, 2015)
on the Cifar-10 with the α-scaled squared loss L(x, y) = ∥f(x)− y/α∥2 and use the centered model
whose initial output is set to 0. Here, a large value of α leads to a higher degree of linearization of the
models.

The results are reported in Figure 21. We observe that SAM underperforms SGD in the linearized
regimes; while SAM (ρ = 0.001) and SGD both achieve effective linearization at α = 1000, SAM
underperforms SGD by more than 10%. This indicates that linearization is not the main factor, and
overparameterization itself is what leads to the improvement of SAM in previous experiments.

H EMPIRICAL MEASUREMENT OF LIPSCHITZ SMOOTHNESS AND PL
CONSTANTS
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Figure 22: The empirical measurement of Lipschitz smoothness (a) and PL-ness (b) for CIFAR-10
and ResNet-18. The Lipschitz smoothness becomes smaller and PL constant becomes larger as the
model size increaess.

We measure the empirical Lipschitz smoothness constant and PL constant based on Zhang et al.
(2019). Specifically, the empirical smoothness β̂(xk) and empirical PL constant α̂(xk) at iteration k
is computed as follows:

β̂(xk) = max
γ∈{δ,2δ,...,1}

∥∇f(xk + γd)−∇f(xk)∥2
∥γd∥2

, (8)

α̂(xk) = min
γ∈{δ,2δ,...,1}

∥∇f(xk + γd)∥22
f(xk + γd)− f(x⋆)

. (9)

where d = xk+1 − xk and δ ∈ (0, 1) where we choose δ = 0.1. We measure these quantities at the
end of every epoch throughout training. The results are shown in Figure 22.

I PROOF OF THEOREM 6.3

Here, we provide the detailed proof of Theorem 6.3.

We first define a linearized stochastic SAM, which is derived from applying first-order Taylor
approximation on a stochastic SAM update given as follows:

Definition I.1. (Linearized stochastic SAM) We define a linearized stochastic SAM as

xt+1 = xt − ηHξt(xt+1/2 − x⋆), (10)

where xt+1/2 = xt + ρHξt(xt − x⋆) is the linearized ascent step and Hξt is the Hessian estimation
at step t.

This actually corresponds to using SAM for the quadratic approximation of f near x⋆, and we use
this fact in the experiment setup. We assume without loss of generality that the fixed point x⋆ satisfies
x⋆ = 0.
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Then, we are ready to present the proof of Theorem 6.3. Our goal is to derive a bound of the form
E∥xt∥2 ≤ C∥x0∥2. We first apply (10) to E

[
∥xt+1∥2 |xt

]
and continue expanding the terms as

follows:

E
[
∥x2

t+1∥ |xt

]
= E∥xt − ηHξt(xt + ρHξtxt)∥2

= x⊤
t E

[(
I − ηHξt − ηρH2

ξt

)2 ∣∣∣xt

]
xt

= x⊤
t E

[
I − 2η(Hξt + ρH2

ξt) + η2
(
Hξt + ρH2

ξt

)2 ∣∣∣xt

]
xt

= x⊤
t E

[
I − 2η(Hξt + ρH2

ξt) + η2
(
H2

ξt + 2ρH3
ξt + ρ2H4

ξt

) ∣∣∣xt

]
xt

= x⊤
t E

[
I − 2ηHξt + η(η − 2ρ)H2

ξt + 2η2ρH3
ξt + η2ρ2H4

ξt

∣∣∣xt

]
xt

= x⊤
t

(
I − 2ηH + η(η − 2ρ)EH2

ξt + 2η2ρEH3
ξt + η2ρ2EH4

ξt

)
xt

= x⊤
t

(
I − 2ηH + η(η − 2ρ)H2 + 2η2ρH3 + η2ρ2H4

+ η(η − 2ρ)(EH2
ξt −H2) + 2η2ρ(EH3

ξt −H3) + η2ρ2(EH4
ξt −H4)

)
xt

= x⊤
t

( (
I − ηH − ηρH2

)2
+ η(η − 2ρ)(EH2

ξt −H2) + 2η2ρ(EH3
ξt −H3) + η2ρ2(EH4

ξt −H4)
)
xt

Since x⊤Ax ≤ λmax(A)∥x∥2 always holds for any x and any matrix A with the maximum eigenvalue
λmax(A), applying this inequality and taking the total expectation gives the following;

E
[
∥xt+1∥2

]
≤ λmax

((
I − ηH − ηρH2

)2
+ η(η − 2ρ)(EH2

ξ −H2)

+ 2η2ρ(EH3
ξ −H3) + η2ρ2(EH4

ξ −H4)

)
E
[
∥xt∥2

]
.

Recursively applying this bound gives

E∥xt∥2 ≤ λmax

((
I − ηH − ηρH2

)2
+ η(η − 2ρ)(EH2

ξ −H2)

+ 2η2ρ(EH3
ξ −H3) + η2ρ2(EH4

ξ −H4)

)t

∥x0∥2.

Here, we can see that x⋆ is linearly stable if

λmax

(
(I − ηH − ηρH2)2

+ η(η − 2ρ)(EH2
ξ −H2) + 2η2ρ(EH3

ξ −H3) + η2ρ2(EH4
ξ −H4)

)
≤ 1.

J PROOF OF THEOREM 6.6

In this section, we show that a stochastic SAM converges linearly under an overparameterized regime.
To put into perspective, this is the rate of convergence of gradient descent for a family of functions
satisfying the PL-condition and smoothness assumptions (Karimi et al., 2016). We first make several
remarks on this result below.
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• Crucially, this result shows that with overparameterization, a stochastic SAM can converge as
fast as the deterministic gradient method at a linear convergence rate. It is much faster than the
well-known sublinear rate of O(1/t) for SAM (Andriushchenko & Flammarion, 2022).

• When ρ = 0, we recover the well-known convergence rate for SGD in interpolated regime (Bassily
et al., 2018).

• This result does not require the bounded variance assumption (Andriushchenko & Flammarion,
2022) since the interpolation provides necessary guarantees. This suggests that overparameteriza-
tion can ease the convergence of SAM.

We prove the convergence for an unnormalized mini-batch SAM given as

xt+1 = xt − ηgB
t (xt + ρgB

t (xt)),

where gB
t (x) = 1

B

∑
i∈IB

t
∇fi(x) and IBt ⊆ {1, ..., n} is a set of indices for data points in the

mini-batch of size B sampled at step t. This is a more general stochastic variant of SAM where a
stochastic SAM in Section 6.2 is a particular case of a mini-batch SAM with mini-batch size B = 1.

We first make the following assumptions:

(A1) (β-smothness of fi). There exists β > 0 s.t. ∥∇fi(x)−∇fi(y)∥ ≤ β∥x−y∥ for all x, y ∈ Rd,
(A2) (λ-smothness of f ). There exists λ > 0 such that ∥∇f(x) − ∇f(y)∥ ≤ λ∥x − y∥ for all

x, y ∈ Rd,
(A3) (α-PLness of f ). There exists α > 0 s.t. ∥∇f(x)∥2 ≥ α(f(x)− f(x⋆)) for all w, v ∈ Rd,
(A4) (Interpolation). If f(x⋆) = 0 and ∇f(x⋆) = 0, then fi(x

⋆) = 0 and ∇fi(x
⋆) = 0 for

i = 1, . . . , n, where n is the number of training data points.

Before we prove the main theorem, we first introduce two lemma important to the proof.
Lemma J.1. Suppose that Assumption (A1) holds. Then

⟨∇fi(xt+1/2),∇f(xt)⟩ ≥ ⟨∇fi(xt),∇f(xt)⟩ −
βρ

2
∥∇fi(xt)∥2 −

βρ

2
∥∇f(xt)∥2, (11)

where xt+1/2 = xt + ρ∇fi(xt).

This lemma shows how well a stochastic SAM gradient ∇fi(xt+1/2) aligns with the true gradient
∇f(xt). The two gradients become less aligned as β and ρ grow bigger, i.e. for sharper landscape
and larger perturbation size.

Proof. We first add and subtract ∇fi(xt) on the left side of the inner product

⟨∇fi(xt+1/2),∇f(xt)⟩ = ⟨∇fi(xt+1/2)−∇fi(xt),∇f(xt)⟩︸ ︷︷ ︸
τ1

+⟨∇fi(xt),∇f(xt)⟩. (12)

We here bound the term τ1 so that it becomes an equality when ρ = 0. To achieve this, we start with
the following binomial square, which is trivially lower bounded by 0.

0 ≤ 1

2
∥∇fi(xt+1/2)−∇fi(xt) + βρ∇f(xt)∥2

We then expand the above binomial square so that the term containing τ1 appears.

0 ≤ 1

2
∥∇fi(xt+1/2)−∇fi(xt)∥2 + ⟨∇fi(xt+1/2)−∇fi(xt) , βρ∇f(xt)⟩︸ ︷︷ ︸

βρτ1

+
1

2
∥βρ∇f(xt)∥2

We subtract the term βρτ1 on both sides of the inequality which gives

−⟨∇fi(xt+1/2)−∇fi(xt) , βρ∇f(xt)⟩ ≤
1

2
∥∇fi(xt+1/2)−∇fi(xt)∥2 +

β2ρ2

2
∥∇f(xt)∥2.
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Then we upper bound the right-hand side using the Assumption (A1):

−⟨∇fi(xt+1/2)−∇fi(xt) , βρ∇f(xt)⟩ ≤
β2

2
∥xt+1/2 − x∥2 + β2ρ2

2
∥∇f(xt)∥2

=
β2ρ2

2
∥∇fi(xt)∥2 +

β2ρ2

2
∥∇f(xt)∥2.

We divide both sides with βρ, obtaining:

−⟨∇fi(xt+1/2)−∇fi(xt),∇f(xt)⟩ ≤
βρ

2
∥∇fi(xt)∥2 +

βρ

2
∥∇f(xt)∥2.

Applying this to (12) gives the bound in the lemma statement.

Lemma J.2. Suppose that Assumption (A1) holds. Then∥∥∇fi(xt+1/2)
∥∥2 ≤ (βρ+ 1)2∥∇fi(xt)∥2, (13)

where xt+1/2 = xt + ρ∇fi(xt).

This second lemma shows that the norm of a stochastic SAM gradient is bounded by the norm of the
stochastic gradient. Similar to the Lemma J.1, as β and ρ grow bigger the norm for a stochastic SAM
gradient can become larger than the norm of the true gradient.

Proof. We use the following binomial squares:

∥∇fi(xt+1/2)∥2

= ∥∇fi(xt+1/2)−∇fi(xt)∥2 + 2⟨∇fi(xt+1/2)−∇fi(xt),∇fi(xt)⟩+ ∥∇fi(xt)∥2.

We bound the right-hand side using Cauchy-Schwarz inequality and Assumption (A1), which gives∥∥∇fi(xt+1/2)
∥∥2

= ∥∇fi(xt+1/2)−∇fi(xt)∥2 + 2⟨∇fi(xt+1/2)−∇fi(xt),∇fi(xt)⟩+ ∥∇fi(xt)∥2

≤
C.S.

∥∇fi(xt+1/2)−∇fi(xt)∥2 + 2∥∇fi(xt+1/2)−∇fi(xt)∥∥∇fi(xt)∥+ ∥∇fi(xt)∥2

≤
(A1)

β2∥xt+1/2 − xt∥2 + 2β∥xt+1/2 − xt∥∥∇fi(xt)∥+ ∥∇fi(xt)∥2

= β2ρ2∥∇fi(xt)∥2 + 2βρ∥∇fi(xt)∥2 + ∥∇fi(xt)∥2

= (βρ+ 1)2∥∇fi(xt)∥2

These two lemmas essentially show how similar a stochastic SAM gradient is to the stochastic
gradient, where the two become more similar as β and ρ decrease, which aligns well with our
intuition. Using Lemma J.1 and J.2, we provide the convergence result in the following theorem.
Theorem J.3. Suppose that Assumptions (A1-4) holds. For any mini-batch size B ∈ N and

ρ ≤ 1
(β/α+1/2)β , unnormalized mini-batch SAM with constant step size η⋆B

def
= 1−(κB+1/2)βρ

2λκB(βρ+1)2 gives
the following guarantee at step t:

E
xt

[f(xt)] ≤
(
1− αη⋆B

2

(
1−

(
κB +

1

2

)
βρ

))t

f(x0),

where κB = 1
B

(
B−1
2 + β

α

)
.

This theorem states that mini-batch SAM converges at a linear rate under overparameterization.
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Proof. Proof can be outlined in 3 steps.

step 1. Handle terms containing mini-batch SAM gradient gB
t (xt + ρgB

t (xt)) using bounds
from (A1).

step 2. Take conditional expectation E[ · |xt] and substitute expectation of function of mini-batch
gradient gB

t with terms containing ∥∇f(xt)∥ and E
[
∥∇fi(xt)∥2

∣∣∣ xt

]
.

step 3. Bound the two terms from step 2, one using Assumptions (A1) and (A4) and the other
using Assumption (A3) and (A4) which results in all the terms to contain f(xt). Then
finally we take total expectations to derive the final runtime bound.

We start from the quadratic upper bound derived from Assumption (A2);

f(xt+1) ≤ f(xt) + ⟨∇f(xt), xt+1 − xt⟩+
λ

2
∥xt+1 − xt∥2.

Applying mini-batch SAM update, we then have

f(xt)− f(xt+1) ≥ η
〈
∇f(xt) , gB

t (xt+1/2)
〉
− η2λ

2

∥∥gB
t (xt+1/2)

∥∥2 ,
where xt+1/2 = xt + ρgB

t (xt).

step 1. We can see that there are two terms that contain a mini-batch SAM gradient gB
t (xt+1/2).

We see that each can be bounded directly using Lemma J.1 and J.2, which gives

f(xt)− f(xt+1)

≥ η

(
⟨gB

t (xt),∇f(xt)⟩ −
βρ

2
∥gB

t (xt)∥2 −
βρ

2
∥∇f(xt)∥2

)
− η2λ

2
(βρ+ 1)2 ∥gB

t (xt)∥2

= η⟨gB
t (xt),∇f(xt)⟩ −

ηβρ

2
∥∇f(xt)∥2 −

η

2

(
ηλ (βρ+ 1)2 + βρ

)
∥gB

t (xt)∥2.

step 2. Now we apply E[ · |xt] to all the terms.

E
[
f(xt)− f(xt+1)

∣∣ xt

]
= f(xt)− E

[
f(xt+1)

∣∣ xt

]
≥ ηE

[
⟨gB

t (xt),∇f(xt)⟩
∣∣∣ xt

]
− ηβρ

2
E
[
∥∇f(xt)∥2

∣∣ xt

]
− η

2

(
ηλ (βρ+ 1)2 + βρ

)
E
[
∥gB

t (xt)∥2
∣∣∣ xt

]
= η

(
1− βρ

2

)
∥∇f(xt)∥2 −

η

2

(
ηλ (βρ+ 1)2 + βρ

)
E
[
∥gB

t (xt)∥2
∣∣∣ xt

]
.

Here we expand the term E
[
∥gB

t (xt)∥2
∣∣∣ xt

]
by expanding the mini-batched function into individual

function estimators as follows.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

EgB
t

[
∥gB

t (xt)∥2
∣∣∣ xt

]
= EIB

t

〈 1

B

∑
i∈IB

t

∇fi(xt) ,
1

B

∑
j∈IB

t

∇fj(xt)

〉 ∣∣∣∣∣ xt



=
1

B2


∑
i∈IB

t

Efi

[
∥∇fi(xt)∥2

∣∣∣ xt

]
+

∑
i∈IB

t

∑
j∈IB

t
(j ̸=i)

Efi,fj

[
⟨∇fi(xt),∇fj(xt)⟩

∣∣∣ xt

]
=

1

B
E
[
∥∇fi(xt)∥2

∣∣∣ xt

]
+

B − 1

B
∥∇f(xt)∥2 .

(14)

Using (14), we get

f(xt)− E
[
f(xt+1)

∣∣ xt

]
(15)

≥ η

(
1− βρ

2

)
∥∇f(xt)∥2

− η

2

(
ηλ (βρ+ 1)2 + βρ

)( 1

B
E
[
∥∇fi(xt)∥2

∣∣∣ xt

]
+

B − 1

B
∥∇f(xt)∥2

)
= η

((
1− βρ

2

)
− B − 1

2B

(
ηλ(βρ+ 1)2 + βρ

))
∥∇f(xt)∥2

− η

2B

(
ηλ(βρ+ 1)2 + βρ

)
E
[
∥∇fi(xt)∥2

∣∣∣ xt

]
. (16)

step 3. In this step, we bound the two terms and take the total expectation to derive the final
runtime bound.

We first derive a bound for E
[
∥∇fi(xt)∥2

∣∣∣ xt

]
. We start from the following bound derived from

Assumption (A1):
∥∇fi(xt)−∇fi(x

⋆)∥2 ≤ 2β(fi(xt)− fi(x
⋆)).

By Assumption (A4), this reduces to

∥∇fi(xt)∥2 ≤ 2βfi(xt).

Applying this to (16) gives

f(xt)− E
[
f(xt+1)

∣∣ xt

]
≥ η

((
1− βρ

2

)
− B − 1

2B

(
ηλ(βρ+ 1)2 + βρ

))
∥∇f(xt)∥2

− ηβ

B

(
ηλ(βρ+ 1)2 + βρ

)
E[fi(xt)|xt]

= η

((
1− βρ

2

)
− B − 1

2B

(
ηλ(βρ+ 1)2 + βρ

))
︸ ︷︷ ︸

τ2

∥∇f(xt)∥2

− ηβ

B

(
ηλ(βρ+ 1)2 + βρ

)
f(xt). (17)

Next, to bound ∥∇f(xt)∥2, we use the following bound derived from applying f(x∗) = 0 from (A4)
to (A3):

∥∇f(x)∥2 ≥ αf(x). (18)
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Assuming τ2 ≥ 0 which we provide a sufficient condition at the end of the proof, we apply (18) to
(17) which gives

f(xt)− E
[
f(xt+1)

∣∣ xt

]
≥ ηα

((
1− βρ

2

)
− B − 1

2B

(
ηλ(βρ+ 1)2 + βρ

))
f(xt)−

ηβ

B

(
ηλ(βρ+ 1)2 + βρ

)
f(xt)

= η

α− α

(
1

B

(B − 1

2
+

β

α

)
︸ ︷︷ ︸

κB

+
1

2

)
βρ− η(βρ+ 1)2

λ

B

(
α
B − 1

2
+ β

)
︸ ︷︷ ︸

λακB

 f(xt)

= ηα

(
1−

(
κB +

1

2

)
βρ− ηλ(βρ+ 1)2κB

)
f(xt).

Hence, we get

E
[
f(xt+1)

∣∣ xt

]
≤

(
1− ηα

(
1−

(
κB +

1

2

)
βρ

)
+ η2αλ(βρ+ 1)2κB

)
f(xt).

Applying total expectation on both sides gives

E[f(xt+1)] ≤
(
1− ηα

(
1−

(
κB +

1

2

)
βρ

)
+ η2αλ(βρ+ 1)2κB

)
E[f(xt)]. (19)

Optimizing the multiplicative term in (19) with respect to η gives η = 1−(κB+1/2)βρ
2λκB(βρ+1)2 , which is η⋆B in

the theorem statement. With assumption of ρ ≤ 1
(β/α+1/2)β so that we have η⋆B ≥ 0, applying this to

(19) gives

E [f(xt+1)] ≤
(
1− αη⋆B

2

(
1−

(
κB +

1

2

)
βρ

))
E [f(xt)] ,

which provides the desired convergence rate.

Last but not least, we calculate the upper bound for ρ to satisfy the assumption τ2 ≥ 0 by substituting
η for η⋆B in τ2, yielding ρ ≤ 2BκB+2β/α

(2B−1)κB+β/α
1
β . Minimizing this upper bound with respect to B gives

ρ ≤ 1
β , which is a looser bound than ρ ≤ 1

(β/α+1/2)β .

K TEST ERROR OF SAM CAN DECREASE WITH OVERPARAMETERIZATION

Recent works have shown that overparameterization can even improve generalization both empirically
and theoretically (Neyshabur et al., 2017; Brutzkus & Globerson, 2019). Here, we present that
overparameterization also improves generalization for SAM in the sense that test error can decrease
with larger network widths (and thus more parameters).

We follow the same setting of Allen-Zhu et al. (2019). Specifically, we consider a risk minimization
over some unknown data distribution D using a one-hidden-layer ReLU network with a smooth
convex loss function (e.g., cross entropy). The network is assumed to be initialized with Gaussian and
take bounded inputs. Then, we characterize a generalization property of a stochastic SAM as below.
Theorem K.1. (Informal) Suppose we train a network having m hidden neurons with training data
sampled from D. Then, for every ε in some open interval, there exists M ∝ 1/ε such that for every
m ≥ M , with appropriate values of η, ρ, T , a stochastic SAM gives the following guarantee on the
test loss with high probability:

E
x0,··· ,xT−1

[
1

T

T−1∑
t=0

ED[f(xt)]

]
≤ ε.

We present a formal version of the theorem and its proof in Appendix L.

This result suggests that to achieve ε-test accuracy from running T iterations of SAM requires a
minimum width M proportional to 1/ε. This indicates that a network with a larger width can achieve
a lower test error, and hence, overparameterization can improve generalization for SAM.
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Figure 23: Generalization of
SAM. Test error keeps on de-
creasing with a larger number
of neurons.

Experiment We support this result empirically on synthetic data
for a simple regression task. Specifically, following the setup of
Allen-Zhu et al. (2019), we train 2-layer ReLU networks with syn-
thetic data. Here, each element of the input x = (x1, x2, x3, x4) ∈
R4 for synthetic data is sampled from random Gaussian distribution
and then normalized to satisfy ∥x∥2 = 1, and target y is calculated as
y = (sin(3x1)+sin(3x2)+sin(3x3)−2)2 · cos(7x4). The weights
and biases of the first layer are initialized from N (0, 1/m) where
m is the number of hidden neurons, and the weights of the second
layer are initialized from N (0, 1). We only train the weights of the
first layer for 800 epochs, while the biases of the first layer and the
weights of the second layer are frozen to initialized values. We use
1000 and 5000 data points for training and testing respectively. We
use a batch size of 50 without weight decay and decay learning rate
by 0.1 after 50% of the total epochs. We perform the grid search
over learning rate and ρ from {10−k|2 ≤ k ≤ 7} and {10−k|1 ≤ k ≤ 5} respectively.

L PROOF OF THEOREM K.1

In this section, we provide the formal version of Theorem K.1 and its proof.

L.1 NOTATION AND SETUP

Throughout this section, we use the same notations and setups as Allen-Zhu et al. (2019). We remark
that the notations are different from those used in Appendices I to K.

First, let us assume the unknown data distribution D where each data z = (x, y) consists of the
input x ∈ Rd and the corresponding label y ∈ Y . We also assume, without loss of generality, that
∥x∥2 = 1 and xd = 1/2. The loss function L : Rk × Y → R is assumed to be non-negative, convex,
1-Lipschitz continuous, and 1-smooth with respect to its first argument.

Next, we define the target network F ∗ = (f∗
1 , · · · , f∗

k ) : Rd → Rk as

f∗
r (x)

def
=

p∑
i=1

a∗r,iϕi(⟨w∗
1,i, x⟩)⟨w∗

2,i, x⟩ (20)

where each ϕi : R → R is an infinite-order smooth function. Here, we assume that ∥w∗
1,i∥2 =

∥w∗
2,i∥2 = 1, |a∗r,i| ≤ 1 hold for all i ∈ {1, · · · , p}. We denote the sample and network complexity

of ϕ as Cs and Cϵ respectively (see Section 2 of Allen-Zhu et al. (2019) for the formal definitions).
Suppose we have a concept class C that consists of all functions F ∗ with bounded number of
parameters p and complexity C. We also denote the population risk achieved by the best target
function F ∗ in this concept class as OPT, i.e., OPT = min

F⋆∈C
E(x,y)∼D[L(F

∗(x), y]

Then, we define the learner network F = (f1, · · · , fk) : Rd → Rk as below.

fr(x)
def
=

m∑
i=1

a
(0)
r,i ReLU(⟨wi, x⟩+ b

(0)
i ). (21)

Note that the learner network is a 2-layer ReLU network with m neurons. We train the network with
n sampled data sampled from D and denote it as Z = {z1, · · · , zN}. We only train the weights
W = (w1, · · · , wm) ∈ Rm×d and freeze the values of a, b during the training. We denote the initial
value of the weight and its value at time t as W (0) and W (0)+Wt respectively. Each element of W (0)

and b(0) are initialized from N (0, 1/m) while each element of a(0)r are initialized from N (0, ε2a) for
some fixed εa ∈ (0, 1]. At each step t, we sample a single data point z = (x, y) from Z and update
W using un-normalized version of SAM:

Wt+1 = Wt − η∇L(F (x;W (0) +Wt+1/2), y)

= Wt − η∇L(F (x;W (0) + ρ∇L(F (x;W (0) +Wt), y)), y). (22)
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L.2 FORMAL THEOREM

Now, we are ready to present the formal version of Theorem K.1 below.

Theorem L.1. (SAM version of Theorem 1 in Allen-Zhu et al. (2019)) For every ε ∈
(
0, 1

pkCs(ϕ,1)

)
,

there exists M0 = poly(Cϵ(ϕ, 1), 1/ε) and N0 = poly(Cs(ϕ, 1), 1/ε) such that for every m ≥ M0

and every N ≥ Ω̃(N0), by choosing εa = ε/Θ̃(1) for the initialization and η = Θ̃( 1
εkm ), ρ =

Θ̃( 1
ε3km3 ), T = Θ̃

(
(Cs(ϕ,1))

2·k3p2

ε2

)
, running T iterations of stochastic SAM defined in Equation (22)

gives the following generalization bound with high probability over the random initialization.

ESAM

[
1

T

T−1∑
t=0

E(x,y)∼DL(F (x;W (0) +Wt), y)

]
≤ OPT + ε. (23)

Here, the notation of Õ(·) ignores the factor of polylog(m).

L.3 PROOF OF THEOREM L.1

We here present the proof of Theorem L.1.

First, note that we can directly use the algorithm-independent part from Allen-Zhu et al. (2019). Thus,
it is sufficient to show that the similar version of Lemma B.4 in Allen-Zhu et al. (2019) also holds for
SAM.

We first define the function G = (g1, · · · , gk) : Rd → Rk as similar to Allen-Zhu et al. (2019).

gr(x;Wt)
def
=

m∑
i=1

a
(0)
r,i (⟨w

(t)
i , x⟩+ b

(0)
i )1[⟨w(0)

i , x⟩+ b
(0)
i ≥ 0]. (24)

Then, the following corollary holds for a stochastic SAM from Lemma B.3 of Allen-Zhu et al.
(2019). The corollary presents an upper bound on the norm of differences between ∂

∂W L(F (·), y)
and ∂

∂W L(G(·), y).
Corollary L.2. (SAM version of Lemma B.3 in Allen-Zhu et al. (2019)) Let τ = εa(η + ρ)t. Then,
for every x satisfying ∥x∥2 = 1, and for every time step t ≥ 1, the following are satisfied with high
probability over the random initialization.
(a) For every r ∈ [k],∣∣∣fr(x;W (0) +Wt)− gr(x;W

(0) +Wt)
∣∣∣ = Õ(εakτ

2m3/2)

(b) For every y ∈ Y ,∥∥∥∥ ∂

∂W
L(F (x;W (0) +Wt), y)−

∂

∂W
L(G(x;W (0) +Wt), y)

∥∥∥∥
2,1

≤ Õ(εakτm
3/2+ε2ak

2τ2m5/2)

(25)

Next, we present the key lemma integral to our proof. The part (c) will be directly used in the proof
and presents an upper bound on the norm of differences between SAM gradient and SGD gradient
for F .
Lemma L.3. For every x satisfying ∥x∥2 = 1, and for every time step t ≥ 1, the following are
satisfied with high probability over the random initialization.
(a) For at most Õ(εaρ

√
km) fraction of i ∈ [m]: we have

1[⟨w(t+1/2)
i , x⟩+ b

(0)
i ≥ 0] ̸= 1[⟨w(t)

i , x⟩+ b
(0)
i ≥ 0].

(b) For every r ∈ [k],∣∣∣fr(x;W (0) +Wt+1/2)− fr(x;W
(0) +Wt)

∣∣∣ = Õ(ε3akρ
2m3/2 + ε2a

√
kρm)

(c) For every y ∈ Y ,∥∥∥∥ ∂

∂W
L(F (x;W (0) +Wt+1/2), y)−

∂

∂W
L(F (x;W (0) +Wt), y)

∥∥∥∥
2,1

≤ Õ(ε2akρm
3/2 + ε4ak

2ρ2m5/2 + ε3ak
3/2ρm2) (26)
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Proof. Recall that the following hold from the definition of F (see Lemma B.3 of Allen-Zhu et al.
(2019) for the details).∥∥∥∥ ∂

∂wi
fr(x;W

(0) +Wt)

∥∥∥∥
2

≤ εaB and
∥∥∥∥ ∂

∂wi
L(F (x;W (0) +Wt), y)

∥∥∥∥
2

≤
√
kεaB (27)

(a) Let τ = εaρ and define H def
=

{
i ∈ [m]

∥∥∥∥ ∣∣∣⟨w(t)
i , x⟩+ b

(0)
i

∣∣∣ ≥ 2
√
kBτ

}
. Then, the lemma is a

direct corollary from Lemma B.3 (a) of Allen-Zhu et al. (2019).
(b) We divide i into two cases. First, when i /∈ H, we can directly utilize Lemma B.3.(b) of Allen-
Zhu et al. (2019) and the total difference from these i’s is Õ(ε3akρ

2m3/2). Next, we consider the
differences from i ∈ H.∣∣∣a(0)r,i

(〈
w

(t+1/2)
i , x

〉
+ b

(0)
i

)
1

[〈
w

(t+1/2)
i , x

〉
+ b

(0)
i ≥ 0

]
−a

(0)
r,i

(〈
w

(t)
i , x

〉
+ b

(0)
i

)
1

[〈
w

(t)
i , x

〉
+ b

(0)
i ≥ 0

]∣∣∣
≤

∣∣∣a(0)r,i

(〈
w

(t+1/2)
i − w

(t)
i , x

〉)∣∣∣
=

∣∣∣∣a(0)r,i

(〈
ρ · ∂

∂wi
L(F (x;W (0) +Wt), y), x

〉)∣∣∣∣
≤ ρ

∣∣∣a(0)r,i

∣∣∣ · ∥∥∥∥ ∂

∂wi
L(F (x;W (0) +Wt), y)

∥∥∥∥
2

· ∥x∥2

≤ ρ(εaB) · (
√
kεaB)

= Õ(ε2a
√
kρ)

The first inequality is from the fact that i ∈ H and thus 1

[〈
w

(t+1/2)
i , x

〉
+ b

(0)
i ≥ 0

]
=

1

[〈
w

(t)
i , x

〉
+ b

(0)
i ≥ 0

]
. Then, we have utilized the definition of SAM (22) and Cauchy-Schwartz

inequality. Since there can be at most m number of i ∈ H, the total differences from i ∈ H amount
to Õ(ε2a

√
kρm). Combining the two cases proves the (b).

(c) By the chain rule, we have

∂

∂wi
L(F (x;W (0) +Wt), y) = ∇L(F (x;W (0) +Wt), y)

∂

∂wi
F (x;W (0) +Wt).

Since L is 1-smooth, applying the above lemma (b) gives∥∥∥∇L(F (x;W (0) +Wt+1/2), y)−∇L(F (x;W (0) +Wt), y)
∥∥∥
2

≤
∥∥∥F (x;W (0) +Wt+1/2)− F (x;W (0) +Wt)

∥∥∥
2

≤ Õ
(
ε3ak

3/2ρ2m3/2 + ε2akρm
)
. (28)

For i ∈ H, we have 1[⟨w(t+1/2)
i , x⟩+ b

(0)
i ≥ 0] = 1[⟨w(t)

i , x⟩+ b
(0)
i ≥ 0] and thus ∂

∂wi
F (x;W (0) +

Wt+1/2) =
∂

∂wi
F (x;W (0) +Wt). Then, combining (28) with (27) and using the fact that there can

be at most m number of i ∈ H, this amounts to Õ
(
ε4ak

2ρ2m5/2 + ε3ak
3/2ρm2

)
.

Next, for i /∈ H, we can directly use the result from Lemma B.3.(c) of Allen-Zhu et al. (2019) and
this contributes to Õ(ε2akρm

3/2). Summing these together, we prove the bound.

Finally, we show that the following lemma holds, which is a SAM version of Lemma B.4 in Allen-Zhu
et al. (2019). Combined with the algorithm-independent parts presented in Allen-Zhu et al. (2019),
proving the following lemma concludes the proof of Theorem L.1. We use the notation of LF (Z;W )

for LF (Z;W )
def
= 1

|Z|
∑

(x,y)∈Z L(F (x;W +W (0)), y) and similarly define LG(Z;W ).
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Lemma L.4. (SAM version of Lemma B.4 in Allen-Zhu et al. (2019)) For every ε ∈
(
0, 1

pkCs(ϕ,1

)
,

letting εa = ε/Θ̃(1), η = Θ̃( 1
εkm ), and ρ = Θ̃( 1

ε3km3 ), there exists M = poly(Cϵ(ϕ, 1), 1/ε) and

T = Θ
(

k3p2·Cs(ϕ,1)
2

ε2

)
such that if m ≥ M , the following holds with high probability over random

initialization.
1

T

T−1∑
t=0

LF (Z,Wt) ≤ OPT + ε. (29)

Proof. Let W ※ be the weights constructed from the Corollary B.2 in Allen-Zhu et al. (2019). By the
convexity of L and Cauchy-Schwartz inequality, we have

LG(Z,Wt)− LG(Z;W ※) ≤ ⟨∇LG(Z;Wt),Wt −W ※⟩
= ⟨∇LG(Z;Wt)−∇LF (Z;Wt),Wt −W ※⟩
+ ⟨∇LF (Z;Wt)−∇LF (Z;Wt+1/2),Wt −W ※⟩
+ ⟨∇LF (Z;Wt+1/2),Wt −W ※⟩

≤ ∥∇LG(Z;Wt)−∇LF (Z;Wt)∥2,1∥Wt −W ※∥2,∞
+ ∥∇LF (Z;Wt)−∇LF (Z;Wt+1/2)∥2,1∥Wt −W ※∥2,∞
+ ⟨∇LF (Z;Wt+1/2),Wt −W ※⟩

From the SAM update rule (22), we have the following equality.

∥Wt+1 −W ※∥2F = ∥Wt − η∇LF (z
(t),Wt+1/2)−W ※∥2F

= ∥Wt −W ※∥2F − 2η⟨∇LF (z
(t),Wt+1/2),Wt −W ※⟩+ η2∥∇LF (z

(t),Wt+1/2)∥2F .

Thus, we have

LG(Z;Wt)− LG(Z;W ※) ≤ ∥∇LG(Z;Wt)−∇LF (Z : Wt)∥2,1∥Wt −W ※∥2,∞︸ ︷︷ ︸
(A)

+ ∥∇LF (Z;Wt)−∇LF (Z;Wt+1/2)∥2,1∥Wt −W ※∥2,∞︸ ︷︷ ︸
(B)

+
∥Wt −W ※∥2F − Ez(t) [∥Wt+1 −W ※∥2F ]

2η

+
η

2
∥∇LF (Wt+1/2, z

(t))∥2F︸ ︷︷ ︸
(C)

.

Since ∥Wt −W ※∥2,∞ = Õ(
√
kεa(η + ρ)t+ kpC0

εam
), (A) is bounded as

(A) = Õ

(√
kεa(η + ρ)T∆+

kpC0

εam
∆

)
where ∆ = Õ

(
ε2ak(η + ρ)Tm3/2 + ε4ak

2(η + ρ)2T 2m5/2
)
.

Next, we can bound (B) from Lemma L.3(c) as follows.

(B) = Õ(
√
kεa(η + ρ)T∆′ +

kpC0

εam
∆′),

where ∥∇LF (Z;Wt)−∇LF (Z;Wt+1/2)∥2,1 ≤ ∆′ = ε2akρm
3/2 + ε4ak

2ρ2m5/2 + ε3ak
3/2ρm2.

We also have
(C) = Õ(ηε2akm)

since the norm of ∇LF is always bounded as ∥∇LF (·, z(t))∥2F = Õ(ε2akm).
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Then, by telescoping, we have

1

T

T−1∑
t=0

ESAM[LG(Z;Wt)]− LG(Z;W ※) ≤ Õ

(√
kεa(η + ρ)T∆+

kpC0

εam
∆

)
+ Õ

(√
kεa(η + ρ)T∆′ +

kpC0

εam
∆′

)
+

∥W0 −W ※∥2F
2ηT︸ ︷︷ ︸
(D)

+Õ(ηε2akm).

We can bound (D) in the same way as Allen-Zhu et al. (2019),

(D) =
∥W0 −W ※∥2F

2ηT
= Õ

(
k2p2Cs(ϕ, 1)

2

ε2am
· 1

ηT

)
.

By setting η = Θ̃( ε
kmε2a

), ρ = Θ̃( ε
km3ε4a

), T = Θ̃(k3p2Cs(ϕ, 1)
2/ε2), we have ∆ =

Õ(k
6p4Cs(ϕ,1)

4

m3/2ε4
) and ∆′ = Õ( 1

m3/2ε
+

√
k

m ). Hence, with large enough m, we obtain the following
inequality and prove Lemma L.4, combined with the remaining parts from Allen-Zhu et al. (2019).

1

T

T−1∑
t=0

ESAM[LG(Z;Wt)]− LG(Z;W ※) ≤ O(ε). (30)
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