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Abstract

Generative modelling has recently emerged as a promising tool to efficiently
explore the vast chemical space. In homogeneous catalysis, Transition Metal
Complexes (TMCs) are ubiquitous, and finding better TMC catalysts is critical to a
number of technologically relevant reactions. Evaluating reaction rates requires
expensive transition state (TS) structure search, making traditional library-based
screening difficult. Inverse-design of TMCs with a model capable of generating
good TS guesses can lead to breakthroughs in catalytic science. We present such
generative model herein. The model is an instance of an equivariant conditional
diffusion model, and the key innovation lies in its specific data representation and
training procedure, that allow generic databases (e.g. non-TS structures) to be
leveraged at training time, while offering the desired controllability at sampling
time (e.g. ability to generate TSs on demand). We demonstrate that augmenting
the training database with generic (but related) data enables a practical level of
performance to be reached. In a case study, our model successfully explores the
chemical space around Vaska’s complex, where the property of interest is the
H,-activation barrier, in two distinct settings: generation from scratch, and redesign
of a specific ligand in a known TMC. In both cases, we validate a selection of novel
samples with Density Functional Theory (DFT) calculations.

1 Introduction

Accelerated discovery of novel compounds with desired properties is a grand challenge. The social
and economic impacts of the discovery of novel high-performing catalysts for critical chemical
reactions are potentially immense. However, searching the chemical space is notably difficult.
Experimental synthesis and testing are impractical, and the computational cost of in-silico screening
with ab-initio methods is prohibitive for large set of molecules. While some of these computationally
intensive calculations can effectively be amortized through surrogate models (Friederich et al., 2020),
the need for innovative search methods remains, and deep generative models have recently emerged
as a promising avenue (Anstine and Isayev, 2023). This type of models is capable of learning complex
data distributions, that, in turn, can be sampled from to obtain novel compounds sharing similarities
with the training database. Two main design choices are required when developing such models: the
generative modelling paradigm and the data representation. For applications where the 3D geometry
is particularly relevant, e.g. protein pocket-conditioned generation (Igashov et al., 2024), or expensive
to obtain, e.g. ts generation (Duan et al., 2023), variants of Diffusion Models (DMs) (Ho et al., 2020)
operating on geometric graphs (Hoogeboom et al., 2022) constitute a sensible option.

In this paper, we target Transition Metal Complexes (TMCs), a class of chemical compounds
especially relevant in homogeneous catalysis (Nandy et al., 2021). As a case study, we focus on the
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chemical space in the neighbourhood of Vaska’s complex (Friederich et al., 2020), with a target of
optimizing the H,-activation barrier: AEEIZ. As this quantity directly depends on the geometry of
the TS, we resort to an E(3)-equivariant diffusion model operating in 3D (Hoogeboom et al., 2022).
We design a specific data representation, and formulate a conditional generative model that can be
controlled to generate TS geometries on-demand at sampling time. The designed data representation
also allows large generic databases, e.g. including non-TS structures or different coordination patterns,
to be leveraged for training. This is particularly useful when task-specific datasets are limited in size,
scarce, and most importantly if constructed from a small number of chemical motifs — likely to result
in potential overfitting when training deep generative models.

We summarize our main contributions as follows:

1. We design a data representation that enables (i) the handling of different coordination
patterns, (ii) structure-conditioned generation, and (iii) generation of TS structures on
demand. We demonstrate the practical benefit of the representation by training an equivariant
conditional diffusion model on an augmented dataset (TS and non-TS structures), and show
the performance improvement compared to a dataset limited to TS structures only.

2. We leverage the trained model and demonstrate its potential on two practical tasks: (i)
generation from scratch followed by a screening campaign, and (ii) exploration of the
chemical space around a known complex via redesign of one of its constituting ligands.

Related Work Equivariant conditional models have been applied to a range of practically relevant
problems such as conformer generation (Xu et al., 2021), linker design (Igashov et al., 2024),
structure-based design (Schneuing et al., 2022), or target-aware design (Guan et al., 2022). Recent
work (Jin and Merz Jr, 2024a;b; Cornet et al., 2024a) has also resorted to similar models for TMCs.

2 Methods

In Section 2.1, we detail the dataset, the generative task at hand along with the data augmentation
procedure. In Section 2.2, we describe the proposed data representation, the conditional generative
model along with the training and sampling procedures.

2.1 Dataset and Task

Target chemical space As a representative example
for our case study, we select the dataset from Friederich
et al. (2020), which studied the chemical space around
Vaska’s complex. In this system, the coordinated ligands
activate the Ir center for the oxidative addition of hydro-
gen.Friederich et al. (2020) generalized the original for-
mula, [Ir(PPh;),(CO)(Cl)], to the more generic [IrA,BC],
and populated each group (i.e. A, B, C) with a number of
different ligands. The database was constructed by enu-
merating all possible combinations of ligands in the trans
Ir(I) square planar framework, yielding a total of 2574
unique TMCs. Out of these, transition state calculations
were successfully performed for 1947 complexes.

IA;BC] + H, — [Ir(H),A.BCJ > cis—[IrH,A,BC]

Figure 1: Reaction under study, along
with the generalized Vaska’s complex
The reaction under study, along with the structure of the [IrA,BC], and the target property AEII{O
considered catalysts, are depicted in Fig. 1. The ligands considered in this work. )
used by Friederich et al. (2020) are all illustrated in Fig. 5.

Task The ultimate goal is to find complexes that minimize the activation energy associated with the
oxidative addition of hydrogen AEiﬁ as this is what conditions the reaction rate. With our model, we

seek to directly generate good guesses of TS geometries (i.e. structures on top of the energy profile),
in order to limit the amount of expensive transition state calculations required.

Data augmentation While enumerating a limited set of large building blocks is amenable to ab-
initio screening, or a valid approach to building an accurate surrogate model (Friederich et al., 2020),



the resulting dataset is unlikely to be ideal for training a deep generative model, and the limited
diversity is prone to incur overfitting. Ideally, such model should learn to generate novel structures
while obeying strict chemical rules. Starting from a limited dataset, a careful data augmentation
scheme can be designed to instill relevant chemical knowledge and improve the generative capabilities
of the model.

We augment the original dataset (Friederich et al., 2020) with complexes extracted from TMQM (Bal-
cells and Skjelstad, 2020), a database containing approximatively 108k TMCs. We filter the database,
and keep (i) linear, square-planar and octohedral coordination patterns — the most similar patterns
to the target square-planar; (ii)) monodentate ligands only — as required by the problem at hand; (iii)
TMC:s consisting of 100 atoms at most — to limit the memory requirements. After filtering, around
12000 additional training samples are added to the training data. We provide additional details about
the augmented dataset in Appendix A.2.

2.2 Generative Model

Data representation To effectively leverage augmented datasets — that include other coordination
patterns, denticities and non-TS structures, while maintaining complete controllability at sampling
time, the data representation should allow the model to (1) factor the different coordination patterns
and ligand denticities out of its internal representation (i.e. this information should become an input),
(2) distinguish between TS and non-TS structures, and (3) identify which atoms are considered as
contextual information. With this in mind, we extend the usual geometric graph description with
additional conditional information.

Formally, we represent a N-atom complex by & = (r, h,¢), with » = (rq,...,7n) € RV*3 and
h = (hy,...,hy) € RV*P denoting the usual atomic coordinates and features (e.g. atomic types
or charges), along with ¢ = (¢, ..., cx) € RVXC that specifies the conditional atomic information.
Importantly, c is defined as follows,

c = [gllpl|m],

where || denotes concatenation, g € {1, ..., G}V gathers the ligand group information (i.e. which
ligand an atom belongs to), p € [0, 1]*" specifies which atoms are connected to the metal center, and
m € [0,1]" encodes whether which atoms are part of the context. Group and connectivity infor-
mation, i.e. g and p, allow the model to discern the different connectivity patterns and differentiate
between TS and non-TS, whereas structure-conditioned generation is enabled by m, that partitions
the atoms into two subsets: & = {xM %M}, where subset M is treated as context. The metal
center is always part of M.

As a concrete example, a TMC such as depicted in Fig. 1 would feature 5 groups: a center (always
setto 1), two A, one B, and one C ligands. As all considered ligands are monodentate, only the atom
binding to the metal center would be considered as proximal in each of the groups except the group
corresponding to the center. In the associated TS, H, would be added to the group containing the
metal center, and both H atoms would be considered proximal.

Conditional Equivariant Diffusion Model We formulate a conditional probability distribution
po(rEM, h#M |reM] hM, c¢), that we parameterize using a conditional equivariant denoising net-
work g¢(z4, t, ¢), with z; denoting the noisy version of x at time t. We employ a diffusion process
and an architecture similar to that of OM-DIFF (Cornet et al., 2024a), with the only difference that
the noisy atomic features zgh) and the conditional information c get concatenated, and processed
through a shared encoder to obtain the initial invariant hidden states for each atom in the complex.
The forward and reverse processes only alter the atomic positions and features of non-contextual
atoms (r2M, h¥M), whereas c and the contextual atomic positions and features (r€M, R€M) are
left unchanged.

Conditional training For each data sample, g and p are fixed but m, and thereby M, are yet to be
defined depending what part of the complex should be considered as context. We therefore construct
m on-the-fly, by drawing a random combination of ligand groups to be masked. A given pair (7, h)
appear thus multiple times, with different variations of ¢. That way, ¢ is trained to denoise structures
with varying contexts. We note that, depending on the downstream task, m can be constructed
differently, e.g. at an atom-level instead of ligand-level.



Conditional sampling of transition states (TSs) During training, the model sees different co-
ordination patterns, a mixture of isolated catalysts and TS structures, and varying contexts. At
sampling time, the model is prompted with the desired conditional information, crs, to generate TSs
with a specific coordination pattern on demand. Namely, we specify the Ir metal centre, two atoms
representing H, belonging to the same group as the center, where each H is proximal. Finally, we
create 4 groups of monodentate ligands. Partial generation around a known complex can be achieved
by specifying (r€M, ) and m accordingly.

3 Experiments and Results

In what follows, we perform two experiments illustrating practical use cases. In Section 3.1, we
sample novel complexes from scratch, yielding a broad coverage of the property space. In addition to
evaluating the model, this can be useful to e.g. extend an existing database or to perform screening.
In Section 3.2, we leverage the ability of the model to perform partial generation and concentrate the
sampling around a known promising complex. We demonstrate that it effectively allows the property
space to be searched locally.

3.1 Sampling from scratch

Setup We construct the necessary conditional informa-
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tion crs to generate a TS, and sample 10000 complexes. 50
The number of atoms composing the different ligands is £
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and novelty, as displayed in the top panel of Fig. 2. De- Kinetics categories

tails about evaluation can be found in Appendix C.1. We .

observe that augmenting the training data with other co- Figure 2: From scratch experiment.
ordination patterns and non-TS geometries leads to a clear (T) Augmenting the dataset greatly in-
improvement of the generative capabilities of the model ~©I€ase€s Validity, Uniqueness and Nov-
— an approximately 4-fold improvement, increasing the €lty- (B) DFT energy barrier distribution
success rate from around 12% to nearly 50%. for the kinetics categories estimated by

the surrogate model.

Data-driven screening We then leverage a surrogate model (more details in Appendix D), and
estimate the barrier energy for the VxUxN samples generated by the model trained on the augmented
dataset. Predictions are used to categorize each sample according to its kinetics as per Friederich

et al. (2020): fast (AEI:EIz < 8.1 kcal/mol), average (8.1 kcal/mol < AEII{2 < 15.1 kcal/mol), or slow

(AE&Iz > 15.1 kcal/mol). We then run DFT calculations (more details in Appendix E) to compute
the true barrier of ~ 400 samples, of which 120 were successful. We discuss the failure modes
in more details in Appendix C.2. For each kinetics category, we display the corresponding energy
distributions in the bottom panel of Fig. 2. We observe that the surrogate is capable of capturing the
overall energy trend of the complexes generated by the diffusion model.

3.2 Searching in the neighborhood of a known complex

Setup We again provide crs to generate a TS structure, but we now also input a context set 2!
corresponding to complex 384 in the dataset (Friederich et al., 2020), where one of the A ligands has
been removed — we provide a graphical illustration of the setting in the upper left corner in Fig. 4.
The model is tasked to redesign the removed A ligand (including the coordinating atom), and place
H, accordingly. The size of the ligand to be designed is drawn from N ~ U([5,40]).



Local search We collect and run DFT calculations for
around 200 randomly selected VxUXxN samples. Among

—— Dataset

>
these, 50 were successful (more details in Appendix C.2). ‘é 02 T Gen-around C.364
The resulting barrier energy distribution is provided in & 0.1
Fig. 3, where we can observe a clear shift towards lower 0.0
barrier energies, compared to the initial dataset distribution. ~o 5 10 15 20 25

That shift can be explained by the low barrier energy (1.6 Barrier [kcal/mol]
kcal/mol) of the seed complex. This illustrates that local
search around known promising complexes allows the
combination of prior knowledge (i.e. through a known
compound) along with the ability of generative models to
suggest novel complexes.

Figure 3: Local search experiment.
Searching in the neighbourhood of com-
plex 384, with a barrier energy of 1.6
kcal/mol, leads to a shift in the property
distribution, as per DFT.

Novel promising complexes In Fig. 4, we provide a graphical depiction of the 5 novel samples that
led to the lowest calculated energy barriers. We note that one of the complex has an activation barrier
slightly lower than the lowest one found in the dataset.

o] T/o | N
®— ||r—'\(_‘ »mJ °
LIH 1.36 kcal / mol

~ Py ~

NH;

¢

2.37 kcal / mol 2.43 kcal / mol 2.72 kcal / mol

Figure 4: Novel complexes obtained by redesigning one of the A ligands in complex 384 extracted
from the Vaska’s dataset (Friederich et al., 2020). The context ™ provided to the model is
schematically depicted in the upper left corner. Out of the 50 calculations, these 5 complexes featured
the lowest barrier energies. Each complex is presented with the designed A ligand.

4 Conclusion

We presented a conditional equivariant diffusion model that leverages a tailored data representation
allowing a series of conditional generation tasks relevant for TMC catalysts to be performed. In a
case study revolving around Vaska’s complex, we showed that the data representation enabled the
training database to be augmented with generic data, thereby leading to a drastic improvement in
the generative capabilities of the model, while maintaining full controllability at test time. We then
showed that the model can effectively be combined with a surrogate model to perform screening in a
fully data-driven fashion. Finally, we demonstrated that the model can be used to redesign parts of
known complexes with desirable properties, and that the procedure is a viable approach to search the
chemical space while inducing a desired shift in the property distribution.

Avenues for future work are numerous. In terms of modelling, more advanced conditioning mecha-
nisms (Wu et al., 2024; Denker et al., 2024), including bond information (Le et al., 2024), or more
recent generative frameworks for geometric graphs (Irwin et al., 2024; Cornet et al., 2024b) are all
promising directions.
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A Dataset and data representation

A.1 Vaska’s complex dataset
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Figure 5: Ligands (26 in total) used to construct the initial dataset (Friederich et al., 2020). The
ligands are grouped by type.

A.2 Preparation of the augmented dataset

We leverage the updated TMQM dataset (Balcells and Skjelstad, 2020) to obtain additional training
data. We extract linear, square-planar and octohedral complexes. We infer the coordination geometry
using MolSimplify (Ioannidis et al., 2016; Nandy et al., 2018), and limit ourselves to complexes
that only feature monodentate ligands and at most 100 atoms in total. This results in 12738 additional
complexes. We also append the relaxed catalyst geometries from the original dataset (Friederich
et al., 2020) to the training data. In total, we do have 15294 data points in the augmented dataset, of
which around 2000 are TS geometries.

B Generated ligands
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Figure 6: Excerpt of novel A ligands obtained in the generation from scratch experiment.



C Evaluation details

C.1 Checks

Validity check To evaluate the validity of the generated TS structures, we perform series of checks,
that primarily rely on the ability of RDKit (Landrum, 2024) to infer bonding information:

1. [pairwise H, distance check] The pairwise distance the two H atoms, dp,, should be such
that dy, € [0.7,1.2]A;

2. [pairwise H,—Ir distance check] The pairwise distance the two H atoms and the Ir center,
du,—1r» should be such that dy,—y € [1.5,2.5]A;

3. [RDKit check] We start by removing Ir and H, from the generated complex and we man-
ually build a Mol object using the remaining atom types and coordinates,. We employ
rdDetermineBonds () to infer the bond structure. As the overall charge of a catalyst
should be 0, and that Ir has 1 positive charge, we allow bond assignments ligands that
lead to a charge of —1. In principle, the negative charge should be on the B ligand, as
shown in Fig. 5. After bond inference, the resulting Mol should contains 4 fragments, and
DetectChemistryProblems () should return an empty list.

Uniqueness and Novelty check After a successful bond allocation for a complex, we convert each
of its constituting fragments to a SMILES string, and finally represent the generated complex as a
multi-set of strings. Uniqueness can be defined as the ratio of unique multi-sets among all generated
samples, while novelty is expressed as the ratio of unique multi-sets that were not part of the training
database.

C.2 Failure modes

While we only performed calculations on samples that were deemed valid (and novel) by the filters
introduced Appendix C.1, the TS guesses generated by the model are approximate (e.g. distorted
structures or stretched bonds), and can result in subsequent unsuccessful TS searches. Across our
experiments, we observed a success rate of about 25% on average, against the ~ 75% rate reported
in Friederich et al. (2020). We note that, in the latter, the TS were constructed by combining
DFT-optimized ligand geometries.

The most common failure modes were the following:

* Calculation timeout: The calculations had an upper limit for run time of 10 hours. Calcula-
tions that reached the time limit were instantly stopped and considered unsuccessful. About
50% of all the calculations did not complete within the specified time window;

» Convergence failure: This error indicates that the self-consistent field (SCF) procedure has
failed to meet the convergence criterion. Solution to this error are dependent on the case
such as changing the initial geometry, using a different level of theory or using a different
SCF converger. This made up for 40% of the failed runs;

* Torsional failure (tors fail): This error is often encountered when using internal coor-
dinates. This occurs when atoms line up in a straight line during the optimization process,
since we are working with square planar geometries there is a often a chance of this situation
arising and causing a failure. Torsonial failure accounted for 10% of the failed calculations.



D Surrogate model

As it is not practical to use DFT to compute energy barriers for all the samples produced by the
generative model, we resort to a surrogate model to perform a cheap screening. We use another
equivariant neural network model, and train it TS structures from Friederich et al. (2020). We perform
a 10-fold cross-validation to get an error estimate across the whole property space. The corresponding
diagnostic can be seen in Fig. 7 and Table 1.

Table 1: Numerical summary of the error diagnostic of the surrogate model obtained by performing
10-fold cross-validation. Errors are provided in kcal - mol~!. Standard deviation is computed across
folds.

Metric Value

MAE (}) 0.5840.04
RMSE (})  0.83+0.00
MaxAE () 4.41+162
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Figure 7: Error diagnostic of the surrogate model. (L) Parity plot. (M) MAE across the property
space. (R) Cumulative distribution of the residuals.

E DEFT setup

A DFT protocol is set up to obtain the relaxed geometry of the

catalyst, search for the transition state and get converged ener- ° ‘ /p’
gies of both the structures which are then used to calculate the 5 20 £
activation barrier. For the geometry optimization of a catalyst, £ ‘/’

we use the transition state generated by the model, remove the S By o ]
activated hydrogens from the metal centre and use the resulting 5 10} ,/g ]
structure as the initial guess. The level of theory used is the same 8 ,

as the one used in the original dataset. The calculations were 8 °f 1
performed in Gaussian16 with the PBE functional (Perdew et al., 0 b
1996). Optimizations were performed with the def2-SVP basis 0 5 10 15 20 25
set (Schiifer et al., 1992). Effective Core Potentials (ECPs) are This work [kcal/mol]

specified for the non-valence electrons of Iridium. Furthermore, )

Grimme’s D3 (Grimme et al., 2010) dispersion correction was Figure 8 Plot showing our DFT
used. Optimizations were performed with a convergence criterion ~S€tup .yl.elds the same values as
tight in Gaussian. The transition state search was carried out the original one.

at the same level of theory. First the H—H bond was frozen at 1 A and rest of the molecule was
optimized, following this the optimized structure was used as a starting guess for transition state
search. Frequency calculations were carried out to confirm that a proper transition state was obtained.
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