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Abstract

Recent work has shown that Neural Ordinary Differential Equations (ODEs) can serve
as generative models of images using the perspective of Continuous Normalizing Flows
(CNFs). Such models offer exact likelihood calculation, and invertible generation/density
estimation. In this work we introduce a Multi-Resolution variant of such models (MRCNF),
by characterizing the conditional distribution over the additional information required to
generate a fine image that is consistent with the coarse image. We introduce a transformation
between resolutions that allows for no change in the log likelihood. We show that this
approach yields comparable likelihood values for various image datasets, with improved
performance at higher resolutions, with fewer parameters, using only one GPU. Further, we
examine the out-of-distribution properties of MRCNFs, and find that they are similar to
those of other likelihood-based generative models.

1 Introduction

Reversible generative models derived through the use of the change of variables technique (Dinh et al.,
2017; Kingma & Dhariwal, 2018; Ho et al., 2019a; Yu et al., 2020) are growing in interest as alternatives
to generative models based on Generative Adversarial Networks (GANs) (Goodfellow et al., 2016) and
Variational Autoencoders (VAEs) (Kingma & Welling, 2013). While GANs and VAEs have been able to
produce visually impressive samples of images, they have a number of limitations. A change of variables
approach facilitates the transformation of a simple base probability distribution into a more complex model
distribution. Reversible generative models using this technique are attractive because they enable efficient
density estimation, efficient sampling, and computation of exact likelihoods.

A promising variation of the change-of-variable approach is based on the use of a continuous time variant of
normalizing flows (Chen et al., 2018a; Grathwohl et al., 2019; Finlay et al., 2020), which uses an integral over
continuous time dynamics to transform a base distribution into the model distribution, called Continuous
Normalizing Flows (CNF). This approach uses ordinary differential equations (ODEs) specified by a neural
network, or Neural ODEs. CNFs have been shown to be capable of modelling complex distributions such as
those associated with images.

While this new paradigm for the generative modelling of images is not as mature as GANs or VAEs in terms of
the generated image quality, it is a promising direction of research as it does not have some key shortcomings
associated with GANs and VAEs. Specifically, GANs are known to suffer from mode-collapse (Lin et al.,
2018), and are notoriously difficult to train (Arjovsky & Bottou, 2017) compared to feed forward networks
because their adversarial loss seeks a saddle point instead of a local minimum (Berard et al., 2020). CNFs
are trained by mapping images to noise, and their reversible architecture allows images to be generated
by going in reverse, from noise to images. This leads to fewer issues related to mode collapse, since any
input example in the dataset can be recovered from the flow using the reverse of the transformation learned
during training. VAEs only provide a lower bound on the marginal likelihood whereas CNFs provide exact
likelihoods. Despite the many advantages of reversible generative models built with CNFs, quantitatively
such methods still do not match the widely used Fréchet Inception Distance (FID) scores of GANs or VAEs.
However their other advantages motivate us to explore them further.

Furthermore, state-of-the art GANs and VAEs exploit the multi-resolution properties of images, and recent
top-performing methods also inject noise at each resolution (Brock et al., 2019; Shaham et al., 2019; Karras
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Figure 1: The architecture of our Multi-Resolution Continuous Normalizing Flow (MRCNF) method (best
viewed in color). Continuous normalizing flows (CNFs) gs are used to generate images xs from noise zs at
each resolution, with those at finer resolutions conditioned (dashed lines) on the coarser image one level above
xs+1, except at the coarsest level where it is unconditional. Every finer CNF produces an intermediate image
ys, which is then combined with the immediate coarser image xs+1 using a linear map M from Equation 10
to form xs. The multiscale maps are defined by Equation 18.

et al., 2020; Vahdat & Kautz, 2020). While shaping noise is fundamental to normalizing flows, only recently
have normalizing flows exploited the multi-resolution properties of images. For example, WaveletFlow (Yu
et al., 2020) splits an image into multiple resolutions using the Discrete Wavelet Transform, and models the
average image at each resolution using a normalizing flow. While this method has advantages, it suffers from
many issues such as high parameter count and long training time.

In this work, we consider a non-trivial multi-resolution approach to continuous normalizing flows, which fixes
many of these issues. A high-level view of our approach is shown in Figure 1. Our main contributions are:

1. We propose a multi-resolution transformation that does not add cost in terms of likelihood.

2. We introduce Multi-Resolution Continuous Normalizing Flows (MRCNF).

3. We achieve comparable Bits-per-dimension (BPD) (negative log likelihood per pixel) on image
datasets using fewer model parameters and significantly less training time with only one GPU.

4. We explore the out-of-distribution properties of (MR)CNF, and find that they are similar to non-
continuous normalizing flows.

2 Background

2.1 Normalizing Flows

Normalizing flows (Tabak & Turner, 2013; Jimenez Rezende & Mohamed, 2015; Dinh et al., 2017; Papa-
makarios et al., 2019; Kobyzev et al., 2020) are generative models that map a complex data distribution,
such as real images, to a known noise distribution. They are trained by maximizing the log likelihood of
their input images. Suppose a normalizing flow g produces output z from an input x i.e. z = g(x). The
change-of-variables formula provides the likelihood of the image under this transformation as:

log p(x) = log
∣∣∣∣det dg

dx

∣∣∣∣ + log p(z) (1)

The first term on the right (log determinant of the Jacobian) is often intractable, however, previous works
on normalizing flows have found ways to estimate this efficiently. The second term, log p(z), is computed
as the log probability of z under a known noise distribution, typically the standard Gaussian N (0, I). The
normalizing flow is trained by maximizing the log-likelilhood of the data x in the real distribution i.e. log p(x),
using Equation 1.
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2.2 Continuous Normalizing Flows

Continuous Normalizing Flows (CNF) (Chen et al., 2018a; Grathwohl et al., 2019; Finlay et al., 2020) are a
variant of normalizing flows that operate in the continuous domain. A CNF creates a geometric flow between
the input and target (noise) distributions, by assuming that the state transition is governed by an Ordinary
Differential Equation (ODE). It further assumes that the differential function is parameterized by a neural
network, this model is called a Neural ODE (Chen et al., 2018a). Suppose CNF g transforms its state v(t)
using a Neural ODE, with the differential defined by the neural network f parameterized by θ. v(t0) = x
is, say, an image, and at the final time step v(t1) = z is a sample from a known noise distribution.

dv(t)
dt

= f(v(t), t, θ) =⇒ v(t1) = g(v(t0)) = v(t0) +
∫ t1

t0

f(v(t), t, θ) dt (2)

This integration is typically performed by an ODE solver. Since this integration can be run backwards as
well to obtain the same v(t0) from v(t1), a CNF is a reversible model. Equation 1 can be used to compute
the change in log-probability induced by the CNF. However, Chen et al. (2018a) and Grathwohl et al. (2019)
proposed a more efficient variant in the CNF context, the instantaneous change-of-variables formula:

∂ log p(v(t))
∂t

= −Tr
(

∂fθ

∂v(t)

)
=⇒ ∆ log pv(t0)→v(t1) = −

∫ t1

t0

Tr
(

∂fθ

∂v(t)

)
dt (3)

Hence, the change in log-probability of the state of the Neural ODE i.e. ∆ log pv is expressed as another
differential equation. The ODE solver now solves both differential equations Equation 2 and Equation 3 by
augmenting the original state with the above. Thus, a CNF provides both the final state v(t1) as well as the
change in log probability ∆ log pv(t0)→v(t1) together.

Prior works (Grathwohl et al., 2019; Finlay et al., 2020; Ghosh et al., 2020; Onken et al., 2021; Huang &
Yeh, 2021) have trained CNFs as reversible generative models of images by maximizing the image likelihood:

z = g(x) ; log p(x) = ∆ log px→z + log p(z) (4)

where x is an image, z and ∆ log px→z are computed by the CNF using Equation 2 and Equation 3, and
log p(z) is the likelihood of z under a known noise distribution, typically the standard Gaussian N (0, I).
Novel images are generated by sampling z from the noise distribution, and running the CNF in reverse.

3 Our method

Our method is a reversible generative model of images that builds on top of CNFs. We introduce the notion
of multiple resolutions in images, and connect the different resolutions in an autoregressive fashion. This
helps generate images faster, with better likelihood values at higher resolutions, using only one GPU in all
our experiments. We call this model Multi-Resolution Continuous Normalizing Flow (MRCNF).

3.1 Multi-Resolution image representation

Multi-resolution representations of images have been explored in computer vision for decades (Burt, 1981;
Marr, 2010; Witkin, 1987; Burt & Adelson, 1983; Mallat, 1989; Lindeberg, 1990). Much of the content of an
image at a resolution is a composition of low-level information captured at coarser resolutions, and high-level
information not present in the coarser images. We take advantage of this by first decomposing an image in
resolution space i.e. by expressing it as a series of S images at decreasing resolutions: x → (x1, x2, . . . , xS),
where x1 = x is the finest image, xS is the coarsest, and every xs+1 is the average image of xs. This called
an image pyramid (Burt, 1981; Burt & Adelson, 1983; Adelson et al., 1984; Witkin, 1987; Lindeberg, 1990).
In this work, we obtain a coarser image simply by averaging pixels in every 2×2 patch, thereby halving the
width and height. We then express x as a series of high-level information ys not present in the immediate
coarser images xs+1, and a final coarse image xS , and our overall method is to map these S terms to S noise
samples using S CNFs.:

x → (y1, x2) → (y1, y2, x3) → · · · → (y1, y2, . . . , yS−1, xS) (5)
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3.2 Defining the high-level information ys

Figure 2: Tetrahedron in 3D space with 4 corners. c = 22/3

We choose to design a linear transformation with the following properties: 1) invertible i.e. it should
be possible to deterministically obtain xs from ys and xs+1, and vice versa ; 2) volume preserving i.e.
determinant is 1, change in log-likelihood is 0 ; 3) angle preserving ; and 4) range preserving.

Consider the simplest case of 2 resolutions where x1 is a 2×2 image with pixel values x1, x2, x3, x4, and x2
is a 1×1 image with pixel value x̄ = 1

4 (x1 + x2 + x3 + x4). We require three values (y1, y2, y3) = y1 that
contain information not present in x2, such that x1 is obtained when y1 and x2 are combined.

This could be viewed as a problem of finding a matrix M such that: [x1, x2, x3, x4]⊤ = M [y1, y2, y3, x̄]⊤.
We fix the last column of M as [1, 1, 1, 1]⊤, since every pixel value in x1 depends on x̄. Finding the rest of
the parameters can be viewed as requiring four 3D vectors that are spaced such that they do not degenerate
the number of dimensions of their span. These can be considered as the four corners of a tetrahedron in 3D
space, under any configuration (rotated in 3D space), and any scaling of the vectors (see Figure 2).

Out of the many possibilities for this tetrahedron is the matrix that performs the Discrete Haar Wavelet
Transform (Mallat, 1989; Mallat & Peyré, 2009):
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However, this transformation incurs a cost in terms of log-likelihood:

∆ log p(x1,x2,x3,x4)→(y1,y2,y3,x̄) = log
∣∣det(M−1)

∣∣ = log(1/2) (7)

and is therefore not volume preserving. Other simple scaling of Equation 6 has been used in the past,
for example multiplying the last row of Equation 6 by 2, yielding an orthogonal transformation, such as
in WaveletFlow (Yu et al., 2020). However, this transformation neither preserves the volume i.e. the log
determinant is not 0, nor the maximum i.e. the range of xs changes.

We wish to find a transformation M where: one of the results is the average of the inputs, x̄; it is unit
determinant; the columns are orthogonal; and it preserves the range of x̄. Fortunately such a matrix exists
– although we have not seen it discussed in prior literature. It can be seen as a variant of the Discrete Haar
Wavelet Transformation matrix that is unimodular, i.e. has a determinant of 1 (and is therefore volume
preserving), while also preserving the range of the images for the input and its average (shown in Figure 2):
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−c c −c a
−c −c c a




y1
y2
y3
x̄

⇐⇒


y1
y2
y3
x̄

 =


c−1 c−1 −c−1 −c−1

c−1 −c−1 c−1 −c−1

c−1 −c−1 −c−1 c−1

a−1 a−1 a−1 a−1




x1
x2
x3
x4

 (8)

where c = 22/3, a = 4. Hence, there is no cost to the log-likelihood due to the transformation:

∆ log p(x1,x2,x3,x4)→(y1,y2,y3,x̄) = log
∣∣det(M−1)

∣∣ = log(1) = 0 (9)

4



Under review as submission to TMLR

This can be scaled up to larger spatial regions by performing the same calculation for each 2×2 patch.
Let M be the function that uses matrix M from above and combines every pixel in xs+1 with the three
corresponding pixels in ys to make the 2×2 patch at that location in xs using Equation 8:

xs = M(ys, xs+1) ⇐⇒ ys, xs+1 = M−1(xs) (10)

Equation 1 can be used to compute the change in log likelihood from this transformation xs → (ys, xs+1):

log p(xs) = ∆ log pxs→(ys,xs+1) + log p(ys, xs+1) = log
∣∣det(M−1)

∣∣ + log p(ys, xs+1) (11)

where log
∣∣det(M−1)

∣∣ can be determined for the Wavelet transform in Equation 6 using Equation 7 as
log

∣∣det(M−1)
∣∣ = dims(xs+1) log(1/2) where “dims” is the number of pixels times the number of channels

(typically 3) in the image, and for our unimodular transform in Equation 8 using Equation 9 as :

log
∣∣det(M−1)

∣∣ = 0 (12)

3.3 Multi-Resolution Continuous Normalizing Flows

Using the multi-resolution image representation in Equation 5, we characterize the conditional distribution
over the additional degrees of freedom (ys) required to generate a higher resolution image (xs) that is
consistent with the average (xs+1) over the equivalent pixel space. At each resolution s, we use a CNF
to reversibly map between ys (or xS when s=S) and a sample zs from a known noise distribution. For
generation, ys only adds information missing in xs+1, but conditional on it.

This framework ensures that one coarse image could generate several potential fine images, but these fine
images have the same coarse image as their average. This fact is preserved across resolutions. Note that the
3 additional pixels in ys per pixel in xs+1 are generated conditioned on the entire coarser image xs+1, thus
maintaining consistency using the full context.

In principle, any generative model could be used to map between the multi-resolution image and noise.
Normalizing flows are good candidates for this as they are probabilistic generative models that perform
exact likelihood estimates, and can be run in reverse to generate novel data from the model’s distribution.
This allows model comparison and measurement of generalization to unseen data. We choose to use the CNF
variant of normalizing flows at each resolution. CNFs have recently been shown to be effective in modeling
image distributions using a fraction of the number of parameters typically used in normalizing flows (and
non flow-based approaches), and their underlying framework of Neural ODEs have been shown to be more
robust than convolutional layers (Yan et al., 2020).

Training: We train an MRCNF by maximizing the average log-likelihood of the images in the training
dataset under the model. The log probability of each image log p(x) can be estimated recursively using
the sequence of variables in Equation 5, and the corresponding simplification of the log-probability using
Equation 11 as (here, x1 = x):

log p(x) = ∆ log px1→(y1,x2) + log p(y1, x2) = ∆ log px1→(y1,x2) + log p(y1 | x2) + log p(x2)
= ∆ log px1→(y1,x2) + log p(y1 | x2) + ∆ log px2→(y2,x3) + log p(y2 | x3) + log p(x3)

...

=
S−1∑
s=1

(
∆ log pxs→(ys,xs+1) + log p(ys | xs+1)

)
+ log p(xS) (13)

where ∆ log pxs→(ys,xs+1) is given by Equation 12 (or ??), while log p(ys | xs+1) and log p(xS) (at the coarsest
resolution S) are given by Equation 4:

zs = gs(ys | xs+1) ; log p(ys | xs+1) = ∆ log p(ys→zs)|xs+1 + log p(zs) (14)
zS = gS(xS) ; log p(xS) = ∆ log pxS→zS

+ log p(zS) (15)
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The coarsest resolution S can be chosen such that the last CNF operates on the image distribution at a small
enough resolution that is easy to model unconditionally. All other CNFs are conditioned on the immediate
coarser image. The conditioning itself is achieved by concatenating the input image of the CNF with the
coarser image. This model could be seen as a stack of CNFs connected in an autoregressive fashion.

Typically, likelihood-based generative models are compared using the metric of bits-per-dimension (BPD),
i.e. the negative log likelihood per pixel in the image. Hence, we train our MRCNF to minimize the average
BPD of the images in the training dataset, computed using Equation 16:

BPD(x) = − log p(x)/dims(x) (16)

We use FFJORD (Grathwohl et al., 2019) as the baseline model for our CNFs. In addition, we use to
two regularization terms introduced by RNODE (Finlay et al., 2020) to speed up the training of FFJORD
models by stabilizing the learnt dynamics: the kinetic energy K(θ) and the Jacobian norm B(θ) of the flow
f(v(t), t, θ) described in subsection 2.2:

K(θ) =
∫ t1

t0

∥f(v(t), t, θ)∥2
2 dt ; B(θ) =

∫ t1

t0

∥ϵ⊤∇zf(v(t), t, θ)∥2
2 dt, ϵ ∼ N (0, I) (17)

Parallel training: Note that although the final log likelihood log p(x) involves sequentially summing over
values returned by all S CNFs, the log likelihood term of each CNF is independent of the others. Conditioning
is done using ground truth images. Hence, each CNF can be trained independently, in parallel.

Generation: Given an S-resolution model, we first sample zs, s = 1, . . . , S from the latent noise distribu-
tions. The CNF gs at resolution s transforms the noise sample zs to high-level information ys conditioned
on the immediate coarse image xs+1 (except gS which is unconditioned). ys and xs+1 are then combined to
form xs using M from Equation 8. This process is repeated progressively from coarser to finer resolutions,
until the finest resolution image x1 is computed (see Figure 1). It is to be noted that the generated image
at one resolution is used to condition the CNF at the finer resolution.{

xS = g−1
S (zS) s = S

ys = g−1
s (zs | xs+1); xs = M(ys, xs+1) s = S-1 → 1

(18)

3.4 Multi-Resolution Noise

We further decompose the noise image as well into its respective coarser components. This means ultimately
we use only one noise image at the finest level, and it is decomposed into multiple resolutions using Equation 8.
xs+1 is mapped to noise of 1/4 variance, ys is mapped to noise of c-factored variance (see Figure 1). Although
this is optional, it preserves interpretation between the single- and multi-resolution models.

4 Related work

Multi-resolution approaches already serve as a key component of state-of-the-art GAN (Denton et al., 2015;
Karras et al., 2018; Karnewar & Wang, 2020) and VAE (Razavi et al., 2019; Vahdat & Kautz, 2020) based
deep generative models. The idea is to take advantage of the fact that much of the information in an
image is contained in a coarsened version, which allows us to deal with simpler problems (coarser images)
in a progressive fashion. This helps make models more efficient and effective. Deconvolutional CNNs (Long
et al., 2015; Radford et al., 2015) use upsampling layers to generate images more effectively. Modern state-of-
the-art generative models have also injected noise at different levels to improve sample quality (Brock et al.,
2019; Karras et al., 2020; Vahdat & Kautz, 2020). Several works (Oord et al., 2016; Reed et al., 2017; Menick
& Kalchbrenner, 2019; Razavi et al., 2019) have also shown how the inductive bias of the multi-resolution
structure helps alleviate some of the problems of image quality in likelihood-based models.

Several prior works on normalizing flows (Kingma & Dhariwal, 2018; Hoogeboom et al., 2019a;b; Song et al.,
2019; Ma et al., 2019; Durkan et al., 2019; Chen et al., 2020; Ho et al., 2019a; Lee et al., 2020; Yu et al.,

6



Under review as submission to TMLR

2020) build on RealNVP (Dinh et al., 2017). Although they achieve great results in terms of BPD and image
quality, they nonetheless report results from significantly higher number of parameters (some with 100x!),
and several times GPU hours of training.

STEER (Ghosh et al., 2020) introduced temporal regularization to CNFs by making the final time of integra-
tion stochastic. However, we found that this increased training time without significant BPD improvement.

STEER (Ghosh et al., 2020):
{

v(t1) = v(t0) +
∫ T

t0
f(v(t), t) dt;

T ∼ Uniform(t1 − b, t1 + b); b < t1 − t0
(19)

“Multiple scales” in prior normalizing flows: Normalizing flows (Dinh et al., 2017; Kingma & Dhariwal,
2018; Grathwohl et al., 2019) try to be “multi-scale” by transforming the input in a smart way (squeezing
operation) such that the width of the features progressively reduces in the direction of image to noise, while
maintaining the total dimensions. This happens while operating at a single resolution. In contrast, our
model stacks normalizing flows at multiple resolutions in an autoregressive fashion by conditioning on the
images at coarser resolutions.

Other classes of generative models that map from a complex distribution to a known noise distribution are
Denoising diffusion probabilistic models (DDPM) (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al.,
2020) which use a predefined noising process, and score-based generative models (Song & Ermon, 2019;
2020; Jolicoeur-Martineau et al., 2021; Song et al., 2021) which estimate the gradient of the log density
with respect to the input (i.e. the score) of corrupted data with progressively lesser intensities of noise. In
contrast, CNFs learn a reversible noising/denoising process using a Neural ODE.

4.1 Wavelet Flow (Yu et al., 2020)

WaveletFlow is a recent innovation on the normalizing flow, wherein the image is decomposed into a lower-
resolution average image, and 3 other informative components using the Discrete Wavelet Transformation.
The 3 components at each resolution are mapped to noise using a normalizing flow conditioned on the average
image at that resolution. WaveletFlow builds on the Glow (Kingma & Dhariwal, 2018) architecture. It uses
an orthogonal transformation, which does not preserve range, and adds a constant term to the log likelihood
at each resolution. Best results are obtained when WaveletFlow models with a high parameter count are
trained for a long period of time. We fix these issues using our MRCNF.

Comparison to WaveletFlow: We emphasize that there are important and crucial differences between
our MRCNF and WaveletFlow. We generalize the notion of a multi-resolution image representation (sub-
section 3.2), and show that Wavelets are one case of this general formulation. WaveletFlow builds on the
Glow (Kingma & Dhariwal, 2018) architecture, while ours builds on CNFs (Grathwohl et al., 2019; Finlay
et al., 2020). We also make use of the notion of multi-resolution decomposition of the noise, which is optional,
but is not taken into account by WaveletFlow. WaveletFlow uses an orthogonal transformation which does
not preserve range ; our MRCNF uses Equation 8 which is volume-preserving and range-preserving. Finally,
WaveletFlow applies special sampling techniques to obtain better samples from its model. We have so far
not used such techniques for generation, but we believe they can potentially help our models as well. By
making these important changes, we fix many of the previously discussed issues with WaveletFlow. For a
more detailed ablation study, please check subsection 5.3.

5 Experimental results

We train MRCNF models on the CIFAR10 (Krizhevsky et al., 2009) dataset at finest resolution of 32x32, and
the ImageNet (Deng et al., 2009) dataset at 32x32, 64x64, 128x128. We build on top of the code provided
in Finlay et al. (2020)1. In all cases, we train using only one NVIDIA RTX 20280 Ti GPU with 11GB.

In Table 1, we compare our results with prior work in terms of (lower is better in all cases) the BPD of the
images of the test datasets under the trained models, the number of parameters used by the model, and

1https://github.com/cfinlay/ffjord-rnode
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Table 1: Bits-per-dimension (BPD) (lower is better) of images in the corresponding evaluation sets for
CIFAR10, ImageNet 32×32, and ImageNet 64×64. We also report the number of Parameters (P) in the
models (in millions), and the Time taken to train (in GPU hours). All our models were trained on only one
GPU. Lower is better in all cases.
- Unreported values. ‡As reported in Ghosh et al. (2020). §Re-implemented by us. ‘x’: Fails to train.
∗RNODE Finlay et al. (2020) used 4 GPUs to train on ImageNet64.

CIFAR10 ImageNet32 ImageNet64
(↓) BPD P Time BPD P Time BPD P Time

Non Flow-based Prior Work
Gated PixelCNN (Van den Oord et al., 2016) 3.03 - - 3.83 - 60 3.57 - 60
SPN (Menick & Kalchbrenner, 2019) - - - 3.85 150.0M - 3.53 150.0M -
Sparse Transformer (Child et al., 2019) 2.80 59.0M - - - - 3.44 152.0M 7days
NVAE (Vahdat & Kautz, 2020) 2.91 - 55 3.92 - 70 - - -
DistAug (Jun et al., 2020) 2.56 152.0M - - - - 3.42 152.0M -
Flow-based Prior Work
RealNVP (Dinh et al., 2017) 3.49 - - 4.28 46.0M - 3.98 96.0M -
Glow (Kingma & Dhariwal, 2018) 3.35 44.0M - 4.09 66.1M - 3.81 111.1M -
MaCow (Ma et al., 2019) 3.16 43.5M - - - - 3.69 122.5M -
Flow++ (Ho et al., 2019a) 3.08 31.4M - 3.86 169.0M - 3.69 73.5M -
Wavelet Flow (Yu et al., 2020) - - - 4.08 64.0M - 3.78 96.0M 822
DenseFlow (Grcić et al., 2021) 2.98 - 250 3.63 - 310 3.35 - 224
1-Resolution Continuous Normalizing Flow
FFJORD (Grathwohl et al., 2019) 3.40 0.9M ≥5days 3.96‡ 2.0M‡ >5days‡ x x x
RNODE (Finlay et al., 2020) 3.38 1.4M 31.8 3.49§ - 1.6M§ - 40.4§ 3.83∗ 2.0M 256.4∗

FFJORD + STEER (Ghosh et al., 2020) 3.40 1.4M 86.3 3.84 2.0M >5days - - -
RNODE + STEER (Ghosh et al., 2020) 3.397 1.4M 22.2 3.49§ 1.6M§ 30.1§ - - -
(Ours) Multi-Resolution Continuous Normalizing Flow (MRCNF)
2-resolution MRCNF 3.65 1.3M 19.8 3.77 1.3M 18.2 3.44 2.0M 42.3
2-resolution MRCNF 3.54 3.3M 36.5 3.78 6.7M 18.0 x 6.7M x
3-resolution MRCNF 3.79 1.5M 17.4 3.97 1.5M 13.8 3.55 2.0M 35.4
3-resolution MRCNF 3.60 5.1M 38.3 3.93 10.2M 41.2 x 7.6M x

the number of GPU hours taken to train. The most relevant models for comparison are the 1-resolution
FFJORD (Grathwohl et al., 2019) models, and their regularized version RNODE (Finlay et al., 2020), since
our model directly converts their architecture into multi-resolution. Other relevant comparisons are previous
flow-based methods (Dinh et al., 2017; Kingma & Dhariwal, 2018; Song et al., 2019; Ho et al., 2019a; Yu
et al., 2020), however their core architecture (RealNVP (Dinh et al., 2017)) is quite different from FFJORD.

BPD: At lower resolution spaces, we achieve comparable BPDs in lesser time with far fewer parameters than
previous normalizing flows (and non flow-based approaches). However, the power of the multi-resolution
formulation is more evident at higher resolutions: we achieve better BPD for ImageNet64 with significantly
fewer parameters and lesser time using only one GPU. A more complete table can be found in the appendix.

Train time: All our experiments used only one GPU, and took significantly less time to train than 1-
resolution CNFs, and all prior works including flow-based and non-flow-based models. For example on
CIFAR-10, Glow (Kingma & Dhariwal, 2018) used 8 GPUs for 7 days, MintNet (Song et al., 2019) used
2 GPUs for ≈ 5 days, 1-resolution FFJORD (Grathwohl et al., 2019) used 6 GPUs for ≈ 5 days. All our
models used 1 GPU for ≤ 1 day.
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To make a fair comparison with previous methods, we report the total time taken to train the CNFs of all
resolutions one after another on a single GPU. We also maintained the batch size of the finest resolution the
same as that in the previous CNF works, but used bigger batch sizes to train coarser resolutions. However,
since all the CNFs can be trained in parallel, the actual training time in practice could be much lower.

5.1 Super-resolution

Our formulation also allows for super-resolution of images (Figure 3) free of cost since our framework is
autoregressive in resolution. At any stage, one can condition on a ground truth low-resolution image and
generate the corresponding high-resolution image.

Figure 3: ImageNet: Example of super-resolving to 64×64 from ground truth 16×16. Row 1: ground truth
16×16, Row 2: generated 32×32, Row 3: generated 64×64 Row 4: ground truth 64×64.

5.2 Progressive training

We trained an MRCNF model on ImageNet128 by training only the finest resolution (128×128) conditioned
on the immediate coarser (64×64) images, and attached it to a 3-resolution model trained on ImageNet64.
The resultant 4-resolution ImageNet128 model gives a BPD of 3.31 (Table 2) with just 2.74M parameters in
≈60 GPU hours.

Table 2: Metrics for unconditional ImageNet128 generation. Param is number of parameters, Time is in
hours. ‘-’ indicates unreported values.

ImageNet128 (↓) BPD Param Time
Parallel Multiscale Reed et al. (2017) 3.55 - -
SPN Menick & Kalchbrenner (2019) 3.08 250.00M -
(Ours) 4-resolution MRCNF 3.31 2.74M 58.59

5.3 Ablation study

Our MRCNF method differs from WaveletFlow in three respects:

1. we use CNFs, while WaveletFlow uses the discrete vairant of normalizing flows,

2. we use Equation 8 instead of Equation 6 as used by WaveletFlow,

3. we use multi-resolution noise.

We check the individual effects of these changes in an ablation study in Table 3, and conclude that:

1. Simply replacing the normalizing flows in WaveletFlow with CNFs does not produce the best results.
It does improve the BPD and training time compared to WaveletFlow.

9
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2. Using our unimodular transformation in Equation 8 instead of the original Wavelet Transformation
of Equation 6 not only improves the BPD, it also consistently decreases training time.

3. As expected, the use of multi-resolution noise does not have a critical impact on either BPD or
training time. We use it anyway so as to retain interpretation with 1-resolution models.

Table 3: Ablation study across using Wavelet in Equation 6, and multi-resolution noise formulation in
subsection 3.4. P is number of parameters, Time is in hours. Lower is better in all cases. ‘-’ indicates
unreported values. ‘x’ : Fails to train.

CIFAR10 ImageNet64
(↓) BPD P Time BPD P Time

WaveletFlow (Yu et al., 2020) - - - 3.78 98.0M 822.00
1-resolution CNF (RNODE) (Finlay et al., 2020) 3.38 1.4M 31.84 3.83 2.0M 256.40
2-resolution
eq. (6) WaveletFlow with CNFs, w/o multi-res noise 3.68 1.3M 27.25 x 2.0M x
eq. (6) WaveletFlow with CNFs, w/ multi-res noise 3.69 1.3M 25.88 x 2.0M x
eq. (8) MRCNF w/o multi-res noise 3.66 1.3M 19.79 3.48 2.0M 42.33
eq. (8) MRCNF w/ multi-res noise (Ours) 3.65 1.3M 19.69 3.44 2.0M 42.30
3-resolution
eq. (6) WaveletFlow with CNFs, w/o multi-res noise 3.82 1.5M 22.99 3.62 2.0M 43.37
eq. (6) WaveletFlow with CNFs, w/ multi-res noise 3.82 1.5M 25.28 3.62 2.0M 44.21
eq. (8) MRCNF w/o multi-res noise 3.79 1.5M 17.25 3.57 2.0M 35.42
eq. (8) MRCNF w/ multi-res noise (Ours) 3.79 1.5M 17.44 3.55 2.0M 35.39

Thus, our MRCNF model is not a trivial replacement of normalizing flows with CNFs in WaveletFlow. We
generalize the notion of multi-resolution image representation, in which the Discrete Wavelet Transform is
one of many possibilities. We then derived a unimodular transformation that adds no change in likelihood.

5.4 Adversarial Loss

Several works (Makhzani et al., 2015; Grover et al., 2018; Lee et al., 2018a; Beckham et al., 2019) have found
it useful to add an adversarial loss to pre-existing losses to generate images that better resemble the true
data distribution. Similar to Grover et al. (2018), we conducted experiments with an additional adversarial
loss at each resolution. However in our experiments so far, we could achieve neither better BPDs nor better
Fréchet Inception Distance (FID)s (Heusel et al., 2017). As noted in Theis et al. (2016), since likelihood-
based models tend to cover all the modes by minimizing KL-divergence while GAN-based methods tend to
mode collapse by minimizing JS-divergence, it is possible that the two approaches are incompatible, and so
combining them is not trivial.

6 Examining Out-of-Distribution behaviour

The derivation of likelihood-based models suggests that the density of an image under the model is an effective
measure of its likelihood of being in-distribution. However, recent works (Theis et al., 2016; Nalisnick et al.,
2019a; Serrà et al., 2020; Nalisnick et al., 2019b) have pointed out that it is possible that images drawn from
other distributions have higher model likelihood. Examples have been shown where normalizing flow models
(such as Glow) trained on CIFAR10 images assign higher likelihood to SVHN (Netzer et al., 2011) images.
This could have serious implications on their practical applicability. Some also note that likelihood-based
models do not generate images with good sample quality as they avoid assigning small probability to out-
of-distribution (OoD) data points, hence model likelihood (-BPD) is not effective for detecting OoD data in
such models.
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Figure 4: Histogram of log likelihood per dimension i.e. −BPD (estimated using normalized empirical Kernel
Density Estimation) of OoD datasets (TinyImageNet, SVHN, Constant) under (MR)CNF models trained
on CIFAR10. As with other likelihood-based generative models such as Glow & PixelCNN, OoD datasets
have higher likelihood under (MR)CNFs.

We conduct the same experiments with (MR)CNFs, and find that similar conclusions can be drawn. Figure 4
plots the histogram of log likelihood per dimension (-BPD) of OoD images (SVHN, TinyImageNet) under
MRCNF models trained on CIFAR10. It can be observed that the likelihood of the OoD SVHN is higher
than CIFAR10 for MRCNF, similar to the findings for Glow, PixelCNN, VAE in earlier works (Nalisnick
et al., 2019a; Choi et al., 2018; Serrà et al., 2020; Nalisnick et al., 2019b; Kirichenko et al., 2020).

One possible explanation put forward by Nalisnick et al. (2019b) is that “typical” images are less “likely”
than constant images, which is a consequence of the distribution of a Gaussian in high dimensions. Indeed, as
our Figure 4 shows, constant images have the highest likelihood under MRCNFs, while randomly generated
(uniformly distributed) pixels have the least likelihood (not shown in figure due to space constraints).

Choi et al. (2018); Nalisnick et al. (2019b) suggest using “typicality” as a better measure of OoD. However,
Serrà et al. (2020) observe that the complexity of an image plays a significant role in the training of likelihood-
based generative models. They propose a new metric S as an out-of-distribution detector:

S(x) = BPD(x) − L(x) (20)

where L(x) is the complexity of an image x measured as the length of the best compressed version of x (we
use FLIF (Sneyers & Wuille, 2016) following Serrà et al. (2020)) normalized by the number of dimensions.

We perform a similar analysis as Serrà et al. (2020) to test how S compares with -bpd for OoD detection. For
different MRCNF models trained on CIFAR10, we compute the area under the receiver operating character-
istic curve (auROC) using -bpd and S as standard evaluation for the OoD detection task (Hendrycks et al.,
2019; Serrà et al., 2020). Table 4 shows that S does perform better than -bpd in the case of (MR)CNFs,
similar to the findings in Serrà et al. (2020) for Glow and PixelCNN++. SVHN seems easier to detect as
OoD for Glow than MRCNFs. However, OoD detection performance is about the same for TinyImageNet.
We also observe that MRCNFs are better at OoD than CNFs.

Other OoD methods (Hendrycks & Gimpel, 2017; Liang et al., 2018; Lee et al., 2018b; Sabeti & Høst-Madsen,
2019; Høst-Madsen et al., 2019; Hendrycks et al., 2019) are not suitable, as identified in Serrà et al. (2020).

6.1 Shuffled in-distribution images

Prior work Kirichenko et al. (2020) concludes that normalizing flows do not represent images based on
their semantic contents, but rather directly encode their visual appearance. We verify this for continuous
normalizing flows by estimating the density of in-distribution test images, but with patches of pixels randomly
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Table 4: auROC for OoD detection using -bpd and S(Serrà et al., 2020), for models trained on CIFAR10.

CIFAR10 SVHN TIN
(trained) -BPD S -BPD S
Glow 0.08 0.95 0.66 0.72
1-res CNF 0.07 0.16 0.48 0.60
2-res MRCNF 0.06 0.25 0.46 0.66
3-res MRCNF 0.05 0.25 0.46 0.66

(a) (b)

Figure 5: (a) Example of shuffling different-sized patches of a 32×32 image: (left to right, top to bottom)
1×1, 2×2, 4×4, 8×8, 16×16, 32×32 (unshuffled) (b) Histogram of log likelihood per dimension (normalized
empirical Kernel Density Estimate) for MRCNF models at different resolutions, trained on CIFAR10.

shuffled. Figure 5 (a) shows an example of images of shuffled patches of varying size, Figure 5 (b) shows the
graph of the their log-likelihoods.

That shuffling pixel patches would render the image semantically meaningless is reflected in the FID between
CIFAR10-Train and these sets of shuffled images — 1x1: 340.42, 2x2: 299.99, 4x4: 235.22, 8x8: 101.36, 16x16:
33.06, 32x32 (i.e. CIFAR10-Test): 3.15. However, we see that images with large pixel patches shuffled are
quite close in likelihood to the unshuffled images (Figure 5 (b)), suggesting that since their visual content
has not changed much they are almost as likely as unshuffled images under MRCNFs.

7 Conclusion

We have presented a Multi-Resolution approach to Continuous Normalizing Flows (MRCNF). MRCNF
models achieve comparable or better performance in significantly less training time, training on a single
GPU, with a fraction of the number of parameters of other competitive models. Although the likelihood
values for 32×32 resolution datasets such as CIFAR10 and ImageNet32 do not improve over the baseline,
ImageNet64 and above see a marked improvement. The performance is better for higher resolutions, as seen
in the case of ImageNet128. We also conducted an ablation study to note the effects of each change we
introduced in the formulation.

In addition, we show that (Multi-Resolution) Continuous Normalizing Flows have similar out-of-distribution
properties as other Normalizing Flows.

In terms of broader social impacts of this work, generative models of images can be used to generate so-called
fake images, and this issue has been discussed at length in other works. We emphasize lower computational
budgets, and show comparable performance with far fewer parameters and lesser training time.
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A Full Table 1

Table 5: Unconditional image generation metrics (lower is better in all cases): parameters in the model,
bits-per-dimension, time (in hours). All our models were trained on only one NVIDIA V100 GPU. ‡As
reported in Ghosh et al. (2020). ∗used 4 GPUs. ‘x’: Fails to train.

CIFAR10 ImageNet32 ImageNet64
BPD P Time BPD P Time BPD P Time

Non Flow-based Prior Work
PixelRNN (Oord et al., 2016) 3.00 3.86 3.63
Gated PixelCNN (Van den Oord et al., 2016) 3.03 3.83 60 3.57 60
Parallel Multiscale (Reed et al., 2017) 3.95 3.70
Image Transformer Parmar et al. (2018) 2.90 3.77
PixelSNAIL (Chen et al., 2018b) 2.85 3.80
SPN (Menick & Kalchbrenner, 2019) 3.85 150.0M 3.53 150.0M
Sparse Transformer (Child et al., 2019) 2.80 59.0M 3.44 152.0M 7days
Axial Transformer (Ho et al., 2019b) 3.76 3.44
PixelFlow++ (Nielsen & Winther, 2020) 2.92
NVAE (Vahdat & Kautz, 2020) 2.91 55 3.92 70
Dist-Aug Sparse Tx (Jun et al., 2020) 2.56 152.0M 3.42 152.0M
Flow-based Prior Work
IAF (Kingma et al., 2016) 3.11
RealNVP (Dinh et al., 2017) 3.49 4.28 46.0M 3.98 96.0M
Glow (Kingma & Dhariwal, 2018) 3.35 44.0M 4.09 66.1M 3.81 111.1M
i-ResNets (Behrmann et al., 2019)
Emerging (Hoogeboom et al., 2019a) 3.34 44.7M 4.09 67.1M 3.81 67.1M
IDF (Hoogeboom et al., 2019b) 3.34 4.18 3.90
S-CONF (Karami et al., 2019) 3.34
MintNet (Song et al., 2019) 3.32 17.9M ≥5days 4.06 17.4M
Residual Flow (Chen et al., 2019) 3.28 4.01 3.76
MaCow (Ma et al., 2019) 3.16 43.5M 3.69 122.5M
Neural Spline Flows (Durkan et al., 2019) 3.38 11.8M 3.82 15.6M
Flow++ (Ho et al., 2019a) 3.08 31.4M 3.86 169.0M 3.69 73.5M
ANF (Huang et al., 2020) 3.05 3.92 3.66
MEF (Xiao & Liu, 2020) 3.32 37.7M 4.05 37.7M 3.73 46.6M
VFlow (Chen et al., 2020) 2.98 3.83
Woodbury NF (Lu & Huang, 2020) 3.47 4.20 3.87
NanoFlow (Lee et al., 2020) 3.25
ConvExp (Hoogeboom et al., 2020) 3.218
Wavelet Flow (Yu et al., 2020) 4.08 64.0M 3.78 96.0M 822
TayNODE (Kelly et al., 2020) 1.039
1-resolution Continuous Normalizing Flow
FFJORD (Grathwohl et al., 2019) 3.40 0.9M ≥5days ‡3.96 ‡2.0M ‡>5days x x
RNODE (Finlay et al., 2020) 3.38 1.4M 31.84 ‡2.36 2.0M ‡30.1 ∗3.83 2.0M ∗256.4

§3.49 §1.6M §40.39
FFJORD + STEER (Ghosh et al., 2020) 3.40 1.4M 86.34 3.84 2.0M >5days
RNODE + STEER (Ghosh et al., 2020) 3.397 1.4M 22.24 2.35 2.0M 24.90

§3.49 §1.6M §30.07
(Ours) Multi-Resolution Continuous Normalizing Flow (MRCNF)
2-resolution MRCNF 3.65 1.3M 19.79 3.77 1.3M 18.18 3.44 2.0M 42.30
2-resolution MRCNF 3.54 3.3M 36.47 3.78 6.7M 17.98 x 6.7M x
3-resolution MRCNF 3.79 1.5M 17.44 3.97 1.5M 13.78 3.55 2.0M 35.39
3-resolution MRCNF 3.60 5.1M 38.27 3.93 10.2M 41.20 x 7.6M x
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(a) Generated samples at 16×16 (b) Corresponding generated samples at 32×32

Figure 6: Generated samples from MNIST.

(a) Generated samples 8×8 (b) Generated samples 16×16 (c) Generated samples 32×32

Figure 7: Generated samples from CIFAR10.

B Qualitative samples

C Simple example of density estimation

For example, if we use Euler method as our ODE solver, for density estimation Equation 2 reduces to:

v(t1) = v(t0) + (t1 − t0)fs(v(t0), t0 | c) (21)

where fs is a neural network, t0 represents the "time" at which the state is image x, and t1 is when the state
is noise z. We start at scale S with an image sample xS , and assume t0 and t1 are 0 and 1 respectively:

zS = xS + fS(xS , t0 | xS−1)
zS−1 = xS−1 + fS−1(xS−1, t0 | xS−2)
...
z1 = x1 + f1(x1, t0 | x0)
z0 = x0 + f0(x0, t0)

(22)
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D Simple example of generation

For example, if we use Euler method as our ODE solver, for generation Equation 2 reduces to:

v(t0) = v(t1) + (t0 − t1)fs(v(t1), t1 | c) (23)

i.e. the state is integrated backwards from t1 (i.e. zs) to t0 (i.e. xs). We start at scale 0 with a noise sample
z0, and assume t0 and t1 are 0 and 1 respectively:

x0 = z0 − f0(z0, t1)
x1 = z1 − f1(z1, t1 | x0)
...
xS−1 = zS−1 − fS−1(zS−1, t1 | xS−2)
xS = zS − fS(zS , t1 | xS−1)

(24)

E Models

We used the same neural network architecture as in RNODE Finlay et al. (2020). The CNF at each resolution
consists of a stack of bl blocks of a 4-layer deep convolutional network comprised of 3x3 kernels and softplus
activation functions, with 64 hidden dimensions, and time t concatenated to the spatial input. In addition,
except at the coarsest resolution, the immediate coarser image is also concatenated with the state. The
integration time of each piece is [0, 1]. The number of blocks bl and the corresponding total number of
parameters are given in Table 6.

Table 6: Number of parameters for different models with different total number of resolutions (res), and the
number of channels (ch) and number of blocks (bl) per resolution.

MRCNF
resolutions ch bl Param

1
64 2 0.16M
64 4 0.32M
64 14 1.10M

2
64 8 1.33M
64 20 3.34M
64 40 6.68M

3
64 6 1.53M
64 8 2.04M
64 20 5.10M

F Gradient norm

In order to avoid exploding gradients, We clipped the norm of the gradients Pascanu et al. (2013) by a
maximum value of 100.0. In case of using adversarial loss, we first clip the gradients provided by the
adversarial loss by 50.0, sum up the gradients provided by the log-likelihood loss, and then clip the summed
gradients by 100.0.

G 8-bit to uniform

The change-of-variables formula gives the change in probability due to the transformation of u to v:

log p(u) = log p(v) + log
∣∣∣∣det dv

du

∣∣∣∣
21



Under review as submission to TMLR

Specifically, the change of variables from an 8-bit image to an image with pixel values in range [0, 1] is:

b(p)
S = a(p)

S

256

=⇒ log p(aS) = log p(bS) + log
∣∣∣∣det db

da

∣∣∣∣
=⇒ log p(aS) = log p(bS) + log

(
1

256

)DS

=⇒ log p(aS) = log p(bS) − DS log 256

=⇒ bpd(aS) = − log p(aS)
DS log 2

= −(log p(bS) − DS log 256)
DS log 2

= − log p(bS)
DS log 2 + log 256

log 2
= bpd(x) + 8

where bpd(x) is given from Equation 16.

H FID v/s Temperature

Table 7 lists the FID values of generated images from MRCNF models trained on CIFAR10, with different
temperature settings on the Gaussian.

Temperature
1.0 0.9 0.8 0.7 0.6 0.5

1-resolution CNF 138.82 147.62 175.93 284.75 405.34 466.16
2-resolution MRCNF 89.55 106.21 171.53 261.64 370.38 435.17
3-resolution MRCNF 88.51 104.39 152.82 232.53 301.89 329.12
4-resolution MRCNF 92.19 104.35 135.58 186.71 250.39 313.39

Table 7: FID v/s temperature for MRCNF models trained on CIFAR10.
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