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Abstract

Low-precision training has emerged as a promising low-cost technique to enhance1

the training efficiency of deep neural networks without sacrificing much accuracy.2

Its Bayesian counterpart can further provide uncertainty quantification and im-3

proved generalization accuracy. This paper investigates low-precision samplers4

via Stochastics Gradient Hamiltonian Monte Carlo (SGHMC) with low-precision5

and full-precision gradients accumulators for both strongly log-concave and non-6

log-concave distributions. Theoretically, our results show that, to achieve ϵ-error7

in the 2-Wasserstein distance for non-log-concave distributions, low-precision8

SGHMC achieves quadratic improvement (Õ
(
ϵ−2µ∗−2 log2

(
ϵ−1
))

) compared to9

the state-of-the-art low-precision sampler, Stochastic Gradient Langevin Dynam-10

ics (SGLD) (Õ
(
ϵ−4λ∗−1 log5

(
ϵ−1
))

). Moreover, we prove that low-precision11

SGHMC is more robust to the quantization error compared to low-precision SGLD12

due to the robustness of the momentum-based update w.r.t. gradient noise. Em-13

pirically, we conduct experiments on synthetic and MNIST, CIFAR-10 & CIFAR-14

100 datasets which successfully validate our theoretical findings. Our study high-15

lights the potential of low-precision SGHMC as an efficient and accurate sampling16

method for large-scale and resource-limited deep learning.17

1 Introduction18

In recent years, deep neural networks (DNNs) have achieved remarkable success, accompanied by19

an increase in model complexity [Simonyan and Zisserman, 2014, He et al., 2016, Vaswani et al.,20

2017, Radford et al., 2018, Chen et al., 2023]. Consequently, there is a growing interest in utilizing21

low-precision optimization techniques to address the computational and memory costs associated22

with these complex models [Wang et al., 2018, Banner et al., 2018, Wu et al., 2018, Lin et al.,23

2019, Sun et al., 2019, Wortsman et al., 2023]. As a counterpart of low-precision optimization, low-24

precision sampling is relatively unexplored but has shown promising preliminary results. Zhang25

et al. [2022] studied the effectiveness of Stochastic Gradient Langevin Dynamics (SGLD) [Welling26

and Teh, 2011] in the context of low-precision arithmetic, highlighting its superiority over the op-27

timization counterpart, Stochastic Gradient Descent (SGD). This superiority stems from SGLD’s28

inherent robustness to system noise compared with SGD.29

Other than SGLD, Stochastic Gradient Hamiltonian Monte Carlo (SGHMC) [Chen et al., 2014]30

is another popular gradient-based sampling method, closely related to the underdamped Langevin31

dynamics. Recently, Cheng et al. [2018], Gao et al. [2022] have shown that the SGHMC converges32

to its target distribution faster than the best-known convergence rate of SGLD in the 2-Wasserstein33

distance under both strongly log-concave and non-log-concave assumptions. Beyond this, SGHMC34

is analogous to stochastic gradient methods augmented with momentum, which is shown to have35
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more robust updates w.r.t. gradient estimation noise [Liu et al., 2020]. Note that the stochastic error36

induced by the quantization function in the low-precision update is equivalent to an extra noise of37

the stochastic gradient, causing an increase in the gradient variance. Thus, we believe the SGHMC38

is particularly suited for low-precision arithmetic.39

Our main contributions of this paper are threefold:40

First, we conduct the first study of low-precision SGHMC. We adopt low-precision arithmetic (in-41

cluding full- and low-precision gradient accumulators and variance correction (VC) version of low-42

precision gradient accumulators) to SGHMC.43

Second, we provide a comprehensive theoretical analysis of low-precision SGHMC for both strongly44

log-concave and non-log-concave target distributions. All our theoretical results are summarized in45

Table 3 (deferred in Appendix A), where we compare the 2-Wasserstein convergence limit and the46

required gradient complexity. Our analysis exhibits the superiority of HMC-based low-precision47

algorithms over SGLD counterpart w.r.t. convergence speed and robustness to quantization error,48

especially under the non-log concave distributions.49

Third, we provide promising empirical results in deep learning. We show the sampling capabilities50

of HMC-based low-precision algorithms and the effectiveness of the VC function in both strongly51

log-concave and non-log-concave target distributions. We also provide evidence of the superior52

performance of HMC-based low-precision algorithms compared to SGLD in real-world tasks.53

In summary, low-precision SGHMC emerges as a compelling alternative to standard SGHMC due54

to its ability to enhance speed and memory efficiency without sacrificing accuracy.55

2 Preliminaries56

2.1 Stochastic Gradient Hamiltonian Monte Carlo57

Given a dataset D, a model with weights (i.e., model parameters) x ∈ Rd, and a prior p(x), we58

are interested in sampling from the posterior p(x|D) ∝ exp(−U(x)), where U(x) is some energy59

function. In order to sample from the target distribution, SGHMC [Chen et al., 2014] is proposed and60

strongly related to the underdamped Langevin dynamics. Cheng et al. [2018] proposes the following61

discretization of underdamped Langevin dynamics (9) with stochastic gradient:62

vk+1 = vke
−γη − uγ−1(1− e−γη)∇Ũ(xk) + ξvk (1)

xk+1 = xk + γ−1(1− e−γη)vk + uγ−2(γη + e−γη − 1)∇Ũ(xk) + ξxk ,

where u, γ denote the hyperparameters of inverse mass and friction respectively, ∇Ũ is unbiased63

gradient estimation of U and ξvk , and η is the step size. ξxk are normal distributed in Rd satisfying64

that :65

Eξvk (ξvk )⊤ = u(1− e−2γη) · I,
Eξxk (ξxk )⊤ = uγ−2(2γη + 4e−γη − e−2γη − 3) · I, (2)

Eξxk (ξvk )⊤ = uγ−1(1− 2e−γη + e−2γη) · I.

2.2 Low-Precision Quantization66

Two popular formats to represent low-precision numbers are known as the fixed point (FP) and block67

floating point [Song et al., 2018] (BFP). The quantization error which is defined as the gap between68

two adjacent representable numbers is denoted as ∆. Furthermore, all representable numbers are69

truncated to an upper limit Ū and a lower limit L̄.70

Given the low-precision number representation, a quantization function is desired to round real-71

valued numbers to their low-precision counterparts. Two common quantization functions are de-72

terministic rounding and stochastic rounding. The deterministic rounding function, denoted as Qd,73

quantizes a number to its nearest representable neighbor. The stochastic rounding denoted as Qs74

(refer to (10) of Appendix A), randomly quantizes a number to the two closest representable neigh-75

bors satisfying the unbiased condition, i.e. E[Qs(θ)] = θ. In what follows, we use QW and QG76

2



to denote the stochastic rounding quantizer we used for the weights and gradients respectively, al-77

lowing different quantization errors. But for simplicity in the analysis and experiments, we use the78

same number of bits to represent the weights and gradients.79

3 Low-Precision Stochastic Gradient Hamiltonian Monte Carlo80

In this section, we investigate the convergence property of low-precision SGHMC for non-log-81

concave target distributions. We defer the analysis of the low-precision SGHMC under strongly82

log-concave target distributions, as well as the analysis of low-precision SGLD [Zhang et al., 2022]83

to Appendex A and B respectively. All of our theorems are based on the fixed point representation84

and omit the clipping effect.85

In order to derive a convergence analysis for non-log-concave target distribution, we assume the86

energy function U(·) is M -smooth (Assumption 1) also satisfied the dissaptiveness assumption (As-87

sumption 3), and the mean squared error of stochastic gradients is bounded by constant σ2 (As-88

sumption 4). Detailed assumptions and explanations are deferred in Appendix A. In the statement89

of theorems, the big-O notation Õ gives explicitly dependence on the quantization error ∆ and con-90

centration parameters (λ∗, µ∗) but hides multiplicative terms that depend polynomially on the other91

parameters (e.g., dimension d, friction γ, inverse mass u and gradients variance σ2).92

3.1 Full- and low-Precision Gradient Accumulators93

Adopting the updating rule in equations 1, we propose the low-precision SGHMC with full gradient94

accumulator (SGHMCLP-F) as the following:95

vk+1 = vke
−γη − uγ−1(1− e−γη)QG(∇Ũ(QW (xk))) + ξvk (3)

xk+1 = xk + γ−1(1− e−γη)vk + uγ−2(γη + e−γη − 1)QG(∇Ũ(QW (xk))) + ξxk ,

The storage and computation costs can be further reduced by the low-precision gradient accumula-96

tors, i.e., the low-precision SGHMC with low-precision gradient accumulators (SGHMCLP-L):97

vk+1 = QW

(
vke

−γη − uγ−1(1− eγη)QG(∇Ũ(xk)) + ξvk

)
, (4)

xk+1 = QW

(
xk + γ−1(1− e−γη)vk + uγ−2(γη + e−γη − 1)QG(∇Ũ(xk)) + ξxk

)
.

Our analysis for the above two algorithms utilizes similar techniques in Raginsky et al. [2017].98

Theorem 1 (Informal version of Theorem 5). Given the smoothness, dissaptivity and assumption99

for stochastic gradients, let p∗ denote the target distribution of x and v. Given initialization x0 =100

v0 = 0 and γ2 ≤ 4Mu, for some sufficiently small ϵ and step size η, the K-th iteration of the101

SGHMCLP-F update (3), i.e., xK and vK , satisfies102

W2(p(xK ,vK), p∗) ≤ Õ
(
ϵ+

√
∆ log (1/ϵ)

)
, (5)

for some K satisfying103

K = Õ
(

1

ϵ2µ∗2 log2
(
1

ϵ

))
,

where µ∗ is a constant w.r.t. dimension d, denoting the concentration rate of the underdamped104

Langevin dynamics [Zou et al., 2019].105

Theorem 2 (Informal version of Theorem 7). Given the smoothness, dissaptivity and assumption106

for stochastic gradients, let p∗ denote the target distribution of x and v. Given initialization x0 =107

v0 = 0 and γ2 ≤ 4Mu, for some sufficiently small ϵ and step size η, the K-th iteration of the108

SGHMCLP-L update (4), i.e., xK and vK , satisfies109

W2(p(xK ,vK), p∗) = Õ
(
ϵ+

√
max {σ2, σ} log

(
1

ϵ

)
+

log3/2
(
1
ϵ

)
ϵ2

√
∆

)
, (6)

for some K satisfying110

K = Õ
(

1

ϵ2µ∗2 log2
(
1

ϵ

))
.
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Similar to the convergence result of full-precision SGHMC or SGLD [Raginsky et al., 2017, Gao111

et al., 2022], the above upper bound (5) of SGHMCLP-F contains a ϵ term and a log(ϵ−1) term. The112

difference is that for the SGHMCLP-F algorithm, the quantization error ∆ affects the multiplicative113

constant of the log(ϵ−1) term. Without ∆, one can choose a small ϵ and a larger batch size (i.e., a114

smaller σ2) to offset log
(
ϵ−1
)

term, such that the 2-Wasserstein distance can be sufficiently small.115

With the same technical tools, we conduct a similar convergence analysis of SGLDLF-P for non-log-116

concave target distributions (refer to Theorem 10 of Appendix B). Comparing Theorems 1 and 10,117

we show that SGHMCLP-F can achieve lower 2-Wasserstein (i.e. Õ
(
ϵ+

(
log
(
ϵ−1
)
∆
)1/2)

ver-118

sus Õ
(
ϵ+ log

(
ϵ−1
)
∆1/2

)
) distance for non-log-concave target distribution within fewer iterations119

(i.e., Õ
(
ϵ−2µ∗−2 log2

(
ϵ−1
))

versus Õ
(
ϵ−4λ∗−1 log5

(
ϵ−1
))

).120

We verify the advantage of SGHMCLF-P over SGLDLF-P by our simulations in section 4.121

As for SGHMCLP-L, which additionally quantizes the weights after each update, a small stepsize122

can result in staying at the starting point. In such cases, ensuring convergence becomes challenging,123

and the output of the SGHMCLP-L has a worse convergence upper bound compared to Theorem 1.124

Empirically, we observe that the output xK’s distribution has an overdispersion problem (i.e. Fig-125

ure 1 (a) and 5 (a)). In Theorem 11, we generalize the result of the naı̈ve SGLDLP-L in [Zhang126

et al., 2022] to non-log-concave target distribution. Similarly, we observe that SGHMCLP-L needs127

fewer iterations than SGLDLP-L in terms of the order w.r.t. ϵ and achieves better upper bound128

Õ
(
ϵ−2 log3/2

(
ϵ−1
)
∆1/2

)
versus Õ

(
ϵ−4 log5

(
ϵ−1
)
∆1/2

)
.129

3.2 Variance Correction130

To resolve the overdispersion caused by the low-precision gradient accumulators, Zhang et al. [2022]131

propose a quantization functionQvc (refer to Algorithm 1 in Appendix A) that directly samples from132

the discrete weight space instead of quantizing a real-valued Gaussian sample. This quantization133

function aims to reduce the discrepancy between the ideal sampling variance (i.e., the required vari-134

ance of full-precision counterpart algorithms) and the actual sampling variance in our low-precision135

algorithms.136

In this work, we study the effect of Qvc on low-precision SGHMC. Let Varhmc
v = u(1 − e−2γη)137

and Varhmc
x = uγ−2(2γη + 4e−γη − e−2γη − 3), the VC SGHMCLP-L can be done as:138

vk+1 = Qvc
(
vke

−γη − uγ−1(1− e−γη)QG(∇Ũ(xk)),Var
hmc
v ,∆

)
(7)

xk+1 = Qvc
(
xk + γ−1(1− e−γη)vk + uγ−2(γη + e−γη − 1)QG(∇Ũ(xk)),Var

hmc
x ,∆

)
Now, we are ready to present the convergence analysis of VC SGHMC-L.139

Theorem 3 (Informal version of Theorem 9 ). Given the smoothness, dissaptivity and assumption140

for stochastic gradients, let p∗ denote the target distribution of x. Given initialization x0 = v0 = 0141

and γ2 ≤ 4Mu, for some sufficiently small ϵ and step size η, the K-th iteration of the VC142

SGHMCLP-L update (4), i.e., xK , satisfies143

W2(p(xK), p∗) = Õ
(
ϵ+

√
max {σ2, σ} log

(
1

ϵ

)
+

log
(
1
ϵ

)
ϵ

√
∆

)
, (8)

for some K satisfying144

K = Õ
(

1

ϵ2µ∗2 log2
(
1

ϵ

))
.

Comparing with Theorem 2, the variance corrected quantization can improve the upper bound145

w.r.t. ϵ from Õ
(
ϵ−2 log3/2

(
ϵ−1
)
∆1/2

)
to Õ

(
ϵ−1 log

(
ϵ−1
)
∆1/2

)
. In Theorem 12, we gener-146

alize the result of the VC SGLDLP-L in [Zhang et al., 2022] to non-log-concave target distribu-147

tion. Similarly, we observe that VC SGHMCLP-L needs fewer iterations than VC SGLDLP-L in148

terms of the order w.r.t. ϵ and achieves better upper bounds (Õ
(
ϵ+ log

(
ϵ−1
)
ϵ−1∆1/2

)
versus149

Õ
(
ϵ+ log3

(
ϵ−1
)
ϵ−2∆1/2

)
).150
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Figure 1: Low-precision SGHMC on Gaussian distribution. (a): SGHMCLP-L. (b): VC
SGHMCLP-L. (c): SGHMCLP-F.

(a) (b) (c)

Figure 2: Training NLL of low-precision SGHMC and SGLD on logistic model with MNIST in
terms of different numbers of fractional bits. (a): Methods with full-precision gradient accumulators.
(b): Methods with low-precision gradient accumulators. (c): Variance corrected quantization.

Interestingly, the naı̈ve SGHMCLP-L has similar dependence on the quantization error ∆ with VC151

SGLDLP-L but saves more computation resources since the variance corrected quantization requires152

sampling discrete random variables. We verify our finding in Table 2.153

4 Experiments154

We assess the performance of the proposed low-precision SGHMC algorithms through sampling a155

Gaussian distribution and implementing a Bayesian logistic regression to the MNIST dataset (Sec-156

tion 4.1), and training a Bayesian ResNet-18 on the CIFAR-10 and CIFAR-100 datasets (Section157

4.2). We compare our proposed algorithms with their SGLD counterparts. Details and additional ex-158

periment results (e.g., sampling Gaussian mixture distribution and MLP training on MNIST dataset)159

can be found in Appendix F. In all experiments, qtorch [Zhang et al., 2019] is employed for Low-160

Precision sampling with the same quantization.161

4.1 Sampling Gaussian distributions & MNIST162

We use a Gaussian distribution to represent the log-concave distribution. The simulation results163

are shown in Figure 1. It shows that the SGHMCLP-F samples fit the true Gaussian distribution164

well. Regarding the naı̈ve SGHMCLP-L, we observe an overdispersion problem and the variance165

corrected function solves this problem.166

We further examine the sampling performance of low-precision SGHMC and SGLD on real-world167

data. We use logistic models to represent the class of strongly log-concave distributions. The results168

are in Figure 2. We use fixed point numbers with 2 integer bits and vary the number of fractional169

bits which corresponds to varying the quantization gap ∆. We report train negative log-likelihood170

(NLL) with different numbers of fractional bits in Figure 2. From the results on MNIST, we can171

see that when adopted to full-precision gradient accumulators low-precision SGHMC are robust to172

the quantization error. Even when we use only 2 fractional bits, SGHMCLP-F can still converge173

to a good distribution but with more iteration. As the precision error increases, both SGHMCLP-174

L and SGLDLP-L have a worse convergence pattern compared to SGHMCLP-F and SGLDLP-F.175
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Figure 3: Log of training NLL of low-precision SGHMC and SGLD on ResNet-18 with CIFAR100
and constant step sizes. (a): 8-bit Fixed Point. (b): 8-bit Block Float Point.

Table 1: Test errors (%) of full-precision gradient accumulators on CIFAR with ResNet-18.

32-bit Floating 8-bit Fixed Point 8-bit Block Floating Point
SGD SGLD SGHMC SGD SGLD SGHMC SGD SGLD SGHMC

CIFAR-10 4.73 ± 0.10 4.52 ± 0.07 4.78 ± 0.08 5.19 ± 0.09 5.07 ± 0.04 5.08 ± 0.08 4.75 ± 0.21 4.58 ± 0.07 4.93 ± 0.09

CIFAR-100 22.34 ± 0.22 22.40 ± 0.04 22.37 ± 0.04 23.71 ± 0.18 23.36 ± 0.10 23.54 ± 0.10 22.86 ± 0.14 22.70 ± 0.22 22.39 ± 0.11

We showed empirically that SGHMCLP-L and VC SGHMCLP-L outperform SGLDLP-L and VC176

SGLDLP in Figure 2, showing low-precision SGHMC is more robust to the quantization error.177

4.2 CIFAR-10 & CIFAR-100178

We consider computer vision tasks CIFAR10 and CIFAR100 on the ResNet-18. We use 8-bit num-179

ber representation as it becomes increasingly popular and powered by new chips. We report the180

average test errors over 3 runs in Tables 1 and 2. We use 8-bit fixed point (FP) and block floating181

point (BFP) representing weights and gradients. SGHMCLP-F is comparable with SGDLP-F and the182

naı̈ve SGHMCLP-L significantly outperforms naı̈ve SGLDLP-L and SGDLP-L across datasets. Fur-183

thermore, from the result in Figure 3, we empirically show that the convergence speed of SGHMC184

is way better than the SGLD. Besides the variance corrected quantization function can bring some185

gain on the test accuracy, the performance of SGHMCLP-L is good enough and comparable with186

the performance of VC SGLDLP-L. By using BFP, the performance of all low-precision methods187

improves over fixed point, and we observe similar results as the FP.188

5 Conclusion189

We provide the first comprehensive investigation for low-precision SGHMC in both strongly log-190

concave and non-log-concave target distributions with several variants of low-precision training.191

In particular, we prove that for non-log-concave distributions, low-precision SGHMC with full-192

precision, low-precision, and variance-corrected gradient accumulators, all achieve an acceleration193

in iterations and have a better convergence upper bound w.r.t the quantization error compared to the194

low-precision SGLD counterpart. Moreover, we study the improvement of variance-corrected quan-195

tization applied to low-precision SGHMC under different cases. Under certain conditions, the naı̈ve196

SGHMCLP-L can replace the VC SGLDLP-L to get comparable results saving more computation197

Table 2: Test errors (%) of low-precision gradient accumulators on CIFAR with ResNet-18.

8-bit Fixed Point 8-bit Block Floating Point
SGD SGLD VC SGLD SGHMC VC SGHMC SGD SGLD VC SGLD SGHMC VC SGHMC

CIFAR-10 8.50 ± 0.22 7.81 ± 0.07 7.03 ± 0.23 6.63 ±0.01 6.60 ± 0.06 5.86 ± 0.18 5.75 ± 0.05 5.51 ± 0.01 5.38 ± 0.06 5.15 ± 0.08
CIFAR-100 28.42 ± 0.35 27.15 ± 0.35 26.73 ± 0.12 26.57 ± 0.10 26.43 ± 0.19 26.75 ± 0.11 26.11 ± 0.38 25.14 ± 0.11 25.29 ± 0.03 24.45 ± 0.16
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resources. We conduct empirical experiments on Gaussian, Gaussian mixture distribution, logistic198

regression, and Bayesian deep learning tasks to justify our theoretical findings.199
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A Additional Results for Low-precision Stochastic Gradient Hamiltonian260

Monte Carlo261

The underdamped Langevin dynamics has a continuous-time diffusion form:262

dvt = −γvtdt− u∇U(xt)dt+
√
2γudBt

dxt = vtdt.
(9)

And we formally define the stochastic rounding quantization function as:263

Qs(θ) =

{
∆
⌊

θ
∆

⌋
, w.p.

⌈
θ
∆

⌉
− θ

∆

∆
⌈

θ
∆

⌉
, w.p. 1−

(⌈
θ
∆

⌉
− θ

∆

)
.

(10)

Before diving into the theorems, we introduce some necessary assumptions.264

Assumption 1 (Smoothness). The energy function U is M -smooth, i.e., there exists a positive con-265

stant M such that266

∥∇U(x)−∇U(y)∥2 ≤M2 ∥x− y∥2 , for any x,y ∈ Rd.

267

Assumption 2 (Strongly Log-Convex). The energy function U is m-strongly log-convex, i.e., there268

exists a positive constant m such that,269

U(y) ≥ U(x) + ⟨∇U(x),y − x⟩+ m1

2
∥y − x∥2 , for any x,y ∈ Rd.

270

Assumption 3 (Dissaptiveness). There exist constants m2, b > 0, such that the following holds271

⟨∇U(x),x⟩ ≥ m2 ∥x∥2 − b, for any x ∈ Rd.

272

Assumption 4 (Bounded Variance). There exists a constant σ2 > 0, such that the following holds273

E
∥∥∥∇Ũ(x)−∇U(x)

∥∥∥2 ≤ σ2, for any x ∈ Rd.

274

Beyond the above assumptions, we further define κ1 = M/m1 and κ2 = M/m2 as the condition275

number for strongly log-concave and non-log-concave target distribution respectively, and denote the276

global minimum of U(x) as x∗. Assumption 3 is the standard assumption [Raginsky et al., 2017,277

Zou et al., 2019, Gao et al., 2022] in the analysis of sampling from non-log-concave distributions and278

is essential to guarantee the convergence of underdamped Langevin dynamics. Now we introduce279

the of SGHMCLP-F for strongly log-concave and non-log-concave target distribution in Theorem 4280

and 5 respectively.281

Theorem 4. Suppose Assumptions 1, 2 and 4 hold and the minimum satisfies ∥x∗∥2 < D2. Fur-282

thermore, let p∗ denote the target distribution of x and v. Given any sufficiently small ϵ, if we set283

the step size to be284

η = min

{
ϵκ−1

1√
479232/5(d/m1 +D2)

,
ϵ2

1440κ1u2
[
(M2 + 1)∆

2d
4 + σ2

]} ,
then after K steps starting with initial points x0 = v0 = 0, the output (xK ,vK) of the SGHMCLP-285

F in (3) satisfies286

W2(p(xK ,vK), p∗) ≤ Õ (ϵ+∆) ,

for some K satisfying287

K ≤ κ1
η

log

36
(

d
m1

+D2
)

ϵ

 = Õ
(
ϵ−2 log

(
ϵ−1
)
∆2
)
.
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Theorem 5. Suppose Assumptions 1, 3 and 4 hold. Furthermore, let p∗ denote the target distribution288

of x and v. Given initialization x0 = v0 = 0 and γ2 ≤ 4Mu, for any sufficiently small ϵ, if we set289

the step size to be η = Õ
(

µ∗ϵ2

log(1/ϵ)

)
and also satisfy290

η ≤ min

{
γ

4 (8Mu+ uγ + 22γ2)
,

√
4u2

4Mu+ 3γ2
,

6γbu

(4Mu+ 3γ2) d
,
1

8γ
,

γm2

12(21u+ γ)M2
,
8(γ2 + 2u)

(20u+ γ)γ

}
,

then, the K-th iteration of the SGHMCLP-F update (3), i.e., xK and vK , satisfies291

W2(p(xK ,vK), p∗) ≤ Õ
(
ϵ+ Ã

√
log

(
1

ϵ

))
,

for some K satisfying292

K = Õ
(

1

ϵ2µ∗2 log2
(
1

ϵ

))
,

where constants are defined as: Ã = max
{√

∆2d+ σ2, 4
√
∆2d+ σ2

}
, and µ∗ is a constant w.r.t.293

dimension d, denoting the concentration rate of the underdamped Langevin dynamics [Zou et al.,294

2019].295

Theorem 1 in Zhang et al. [2022] implies that for strongly log-concave target distribution, the296

low-precision SGLD with full-precision gradient accumulators can achieve ϵ accuracy within297

Õ
(
ϵ−2 log

(
ϵ−1
)
∆2
)

iterations.298

Thus, the theorem of SGHMCLP-F does not showcase any advantage over SGLDLP-F. This is not299

surprising, since the quantization applied to the gradients in the full-precision gradient accumulator300

algorithm is equivalent to adding extra noise to the stochastic gradients. As theoretically shown by301

Cheng et al. [2018] for strongly-log-concave target distribution, HMC doesn’t exhibit any advantage302

over the unadjusted Langevin algorithm when stochastic gradients are used.303

However, as shown in the Theorem 5, for non-log-concave distributions, the low-precision SGHMC304

displays faster convergence speed and a better dependence on the quantization error ∆ compared to305

SGLD. Besides the discussion in Theorem 1, we can discuss the upper w.r.t. to ∆, due to the fact306

that log(x) ≤ x1/e, one can tune the choice of ϵ and η, and achieve a Õ
(
∆e/(1+2e)

)
2-Wasserstein307

bound for non-log-concave target distribution. Furthermore, based on Theorem 10, after carefully308

choosing the stepsize η, the 2-Wasserstein distance of the SGLDLF-P algorithm can be further309

bounded by Õ
(
∆e/(2+2e)

)
which is worse than the bound Õ

(
∆e/(1+2e)

)
obtained by SGHMC.310

Next, we introduce the convergence analysis of SGHMCLP-L for strongly log-concave and non-311

log-concave target distribution in Theorem 6 and 7 respectively.312

Theorem 6. Let Assumption 1, 2 and 4 hold and the minimum satisfies ∥x∗∥2 < D2. Furthermore,313

let p∗ denote the target distribution of v and x. Given any sufficiently small ϵ, if we set the step size314

η to be315

η = min


ϵκ−1

1√
663552/5

(
d
m1

+D2
) , ϵ2

2880κ1u
(
∆2d
4 + σ2

)
 ,

then afterK steps starting with initial points x0 = v0 = 0, the output (xK ,vK) of the SGHMCLP-L316

in (4) satisfies317

W2(p(xK ,vK), p∗) = Õ
(
ϵ+

∆

ϵ

)
, (11)

for some K satisfying318

K ≤ κ1
η

log

36
(

d
m1

+D2
)

ϵ

 = Õ
(
ϵ−2 log

(
ϵ−1
)
∆2
)
.

10



Compared with Theorem 2 in Zhang et al. [2022], We cannot show the advantages of low-precision319

SGHMC over SGLD for strongly log-concave target distribution. However, for non-log-concave tar-320

get distribution, we show SGHMCLP-L can achieve lower distance in smaller iterations. Next, we321

present the convergence theorem of SGHMCLP-L for non-log-concave target distribution. Besides322

the discussion in Theorem 2, by the same argument in Theorem 1’s discussion after carefully choos-323

ing the stepsize η, the 2-Wasserstein distance of SGHMCLP-L to non-log-concave target distribution324

can be further bounded as Õ
(
∆e/(3+6e)

)
, and the distance of the sample obtained by SGLDLP-L325

can be bounded as Õ
(
∆e/10(1+e)

)
. Thus the low-precision SGHMC is more robust to the quan-326

tization error than SGLD. Next, we present the convergence analysis of VC SGHMCLP-L in (8).327

We begin with the formal definition of the variance-corrected quantization function Qvc. Instead of328

adding real value Gaussian noise and quantizing the weights, we can design a categorical sampler329

that samples from the space {∆,−∆, 0} with the desired expectation µ and variance v as330

Cat(µ, v) =


∆, w.p.v+µ2+µ∆

2∆2

−∆, w.p.v+µ2−µ∆
2∆2

0, otherwise.
(12)

Based on the sampler 12, we design the variance correction quantization function Qvc in the algo-331

rithm 1.332

Theorem 7. Let Assumptions 1, 3 and 4 hold. If γ2 ≤ 4Mu and we set the step size to be η =333

Õ
(

µ∗ϵ2

log(1/ϵ)

)
, also satisfied334

η ≤ min

{
γ

4 (8Mu+ uγ + 22γ2)
,

√
4u2

4Mu+ 3γ2
,

6γbu

(4Mu+ 3γ2) d
,
1

8γ
,

γm2

12(21u+ γ)M2
,
8(γ2 + 2u)

(20u+ γ)γ

}
,

let p∗ denote the target distribution of (x,v) then after K steps starting at the initial point x0 =335

v0 = 0 the output (xK ,vK) of SGHMCLP-L in 4 satisfies336

W2(p(xK ,vK), p∗) = Õ
(
ϵ+

√
max {σ2, σ} log

(
1

ϵ

)
+

log3/2
(
1
ϵ

)
ϵ2

√
∆

)
, (13)

for some K satisfying337

K = Õ
(

1

ϵ2µ∗2 log2
(
1

ϵ

))
.

Theorem 8. Let Assumption 1, 2 and 4 hold and the minimum satisfies ∥x∗∥2 < D2. Furthermore,338

let p∗ denote the target distribution of x and v. Given any sufficiently small ϵ, if we set the stepsize339

to be340

η = min

 ϵ2

663552/5
(

d
m1

+D2
)
κ21

,
ϵ2

90u2∆2dκ1 + 360u2σ2κ1


afterK steps starting from the initial point x0 = v0 = 0 the output (xK ,vK) of the VC SGHMCLP-341

L in algorithm 2 satisfies342

W2(p(xK ,vK), p∗) = Õ
(
ϵ+
√
∆
)
, (14)

for some K satisfying343

K ≤ κ1
η

log

36
(

d
m1

+D2
)

ϵ

 = Õ
(
ϵ−2 log

(
ϵ−1
)
∆2
)
.

Theorem 8 shows that the variance corrected quantization function can solve the overdispersion344

problem we observe for the naı̈ve SGHMCLP-L algorithm for strongly log-concave distribution.345

The W2 distance between the sample distribution and target distribution can be arbitrarily close346

to Õ(
√
∆). Compared to the Theorem 3 in Zhang et al. [2022], the VC SGHMCLP-L doesn’t347

showcase its advantage over VC SGLDLP-L for strongly log-concave distribtuion, however for348

non-log-concave target distribution we show VC SGHMCLP-L can achieve lower 2-Wasserstein349

distance in smaller iterations. Next, we provide the convergence analysis of the VC SGHMCLP-L350

for non-log-concave distribution.351
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Algorithm 1 Variance-Corrected Quantization Function Qvc.
input: (µ, v, ∆) {Qvc returns a variable with mean µ and variance v}
v0 ← ∆2/4 {∆2/4 is the largest possible variance that stochastic rounding can cause}
if v > v0 then {add a small Gaussian noise and sample from the discrete grid to make up the
remaining variance}
x← µ+

√
v − v0ξ, where ξ ∼ N (0, Id)

r ← x−Qd(x)
for all i do

sample ci from Cat(|ri|, v0) as in (12)
end for
θ ← Qd(x) + sign(r)⊙ c

else {sample from the discrete grid to achieve the target variance}
r ← µ−Qs(µ)
for all i do
vs ←

(
1− |ri|

∆

)
· r2i + |ri|

∆ · (−ri + sign(ri)∆)
2

if v > vs then
sample ci from Cat(0, v − vs) as in (12)
θi ← Qs(µ)i + ci

else
θi ← Qs(µ)i

end if
end for

end if
clip θ if outside representable range
return θ

Theorem 9. Let Assumption 1, 3 and 4 hold. If γ2 ≤ 4Mu and we set the step size to be η =352

Õ
(

µ∗ϵ2

log(1/ϵ)

)
, also satisfied353

η ≤ min

{
γ

4 (8Mu+ uγ + 22γ2)
,

√
4u2

4Mu+ 3γ2
,

6γbu

(4Mu+ 3γ2) d
,
1

8γ
,

γm2

12(21u+ γ)M2
,
8(γ2 + 2u)

(20u+ γ)γ

}
.

We further assume that E
∥∥∥QG(∇Ũ(x))

∥∥∥2
2
≤ G2, let p∗ be the target distribution of x then after354

K steps starting at the initial point x0 = v0 = 0 the output (xK) of the VC SGHMCLP-L in355

algorithm 2 satisfies356

W2(p(xK), p∗) = Õ
(
ϵ+

√
max {σ2, σ} log

(
1

ϵ

)
+

log
(
1
ϵ

)
ϵ

√
∆

)
, (15)

for some K satisfying357

K = Õ
(

1

ϵ2µ∗2 log2
(
1

ϵ

))
.

B Stochastic Gradient Langevin Dynamics Result358

In order to sample from the target distribution, Langevin dynamics-based samplers, such as over-359

damped Langevin MCMC and underdamped Langevin MCMC methods, are widely used when360

the evaluation of U(x) is expansive due to a large sample size. The continuous-time overdamped361

Langevin MCMC can be represented by the following stochastic differential equation(SDE):362

dxt = −∇U(xt) +
√
2dBt, (16)

where Bt represents the standard Brownian motion in Rd. Under some mild conditions, it can363

be proved that the invariant distribution of (16) converges the target distribution exp(−U(x)). To364
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Table 3: Theoretical results of the achievable 2-Wasserstein distance and the required gradient com-
plexity for both log-concave (italic) non-log-concave (bold) target distributions, where ϵ is any
sufficiently small constant, ∆ is the quantization error, and µ∗ and λ∗ denote the concentration rate
of underdamped and overdamped Langevin dynamics respectively.

Gradient Complexity Achieved 2-Wasserstein
Full-precision gradient accumulators

SGLD/SGHMC (Theorem 4) Õ
(
log
(
ϵ−1
)
ϵ−2
)

Õ (ϵ+∆)

SGLD (Theorem 10) Õ
(
ϵ−4λ∗−1 log5

(
ϵ−1
))

Õ
(
ϵ+ log

(
ϵ−1
)√

∆
)

SGHMC (Theorem 5) Õ
(
ϵ−2µ∗−2 log2

(
ϵ−1
))

Õ
(
ϵ+

√
log (ϵ−1)∆

)
Low-precision gradient accumulators

SGLD/SGHMC (Theorem 6) Õ
(
log
(
ϵ−1
)
ϵ−2
)

Õ
(
ϵ+ ϵ−1∆

)
VC SGLD/VC SGHMC (Theorem 8) Õ

(
log
(
ϵ−1
)
ϵ−2
)

Õ
(
ϵ+
√
∆
)

SGLD (Theorem 11) Õ
(
ϵ−4λ∗−1 log5

(
ϵ−1
))

Õ
(
ϵ+ log5

(
ϵ−1
)
ϵ−4
√
∆
)

VC SGLD (Theorem 12) Õ
(
ϵ−4λ∗−1 log3

(
ϵ−1
))

Õ
(
ϵ+ log3

(
ϵ−1
)
ϵ−2
√
∆
)

SGHMC (Theorem 7) Õ
(
ϵ−2µ∗−2 log2

(
ϵ−1
))

Õ
(
ϵ+ log3/2

(
ϵ−1
)
ϵ−2
√
∆
)

VC SGHMC (Theorem 9) Õ
(
ϵ−2µ∗−2 log2

(
ϵ−1
))

Õ
(
ϵ+ log

(
ϵ−1
)
ϵ−1
√
∆
)

reduce the computational cost of evaluating∇U(x), Welling and Teh [2011] proposed the Stochastic365

Gradient Langevin Dynamics (SGLD) and updates the weights using stochastic gradients:366

xk+1 = xk − η∇Ũ(xk) +
√
2ηξk+1, (17)

where η is the stepsize, the ξk+1 is a standard Gaussian noise, and∇Ũ(xk) is an unbiased estimation367

of∇U(xk). Despite the additional noise induced by stochastic gradient estimations, SGLD can still368

converge to the target distribution.369

The low-precision SGLD with full-precision gradient accumulators (SGLDLP-F) only quantizes370

weights before computing the gradient. The update rule can be defined as:371

xk+1 = xk − ηQG

(
∇Ũ(QW (xk))

)
+
√

2ηξk+1. (18)

Zhang et al. [2022] shows that the SGLDLP-F outperforms its counterpart low-precision SGD with372

full-gradient accumulators (SGDLP-F). The computation costs can be further reduced using low-373

precision gradient accumulators by only keeping low-precision weights. Low-precision SGLD with374

low-precision gradient accumulators (SGLDLP-L) can be defined as the following:375

xk+1 = QW

(
xk − ηQG(∇Ũ(xk)) +

√
2ηξk+1

)
. (19)

Zhang et al. [2022] studied the convergence property of both SGLDLP-F and SGLDLP-L under376

strongly-log-concave distributions, and showed that a small stepsize deteriorates the performance of377

SGLDLP-L. To mitigate this problem, Zhang et al. [2022] proposed a variance-corrected quantiza-378

tion function.379

Theorem 10. Suppose Assumptions 1, 3 and 4 hold. Let Ã have the same definition in Theorem 5,380

and λ∗ be the concentration number of (16). After K steps starting with initial point x0 = 0, if we381

set the stepsize to be η = Õ
((

ϵ
log(1/ϵ)

)4)
. The output xK of SGLDLP-F in (18) satisfies382

W2(p(xK), p∗) ≤ Õ
(
ϵ+ Ã log

(
1

ϵ

))
, (20)

provided383

K = Õ
(

1

ϵ4λ∗
log5

(
1

ϵ

))
.
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Algorithm 2 Variance-Corrected Low-Precision SGHMC (VC SGHMCLP-L).
given: Stepsize η, friction γ, inverse mass u, number of training iterations K, gradient quantizer
QG, quantization gap ∆ and upper bound of low-precision representation U . Let Varhmc

v =

u(1− e−2γη) and Varhmc
x = uγ−2(2γη+4e−γη− e−2γη−3) and Sv = 1 {Initialize the scaling

parameter}.
for k = 1 : K do

rescale vk = vk ∗ Sv {Restore the velocity before update}
update µ(vk+1) = vke

−γη − uγ−1(1− e−γη)QG(∇Ũ(xk))

update µ(xk+1) = xk + γ−1(1− e−γη)vk + uγ−2(γη + e−γη − 1)QG(∇Ũ(xk))

update Sv =
∥µ(vk+1)∥∞

Ū
{Update the Scaling}

update vk+1 ← Qvc
(
µ(vk+1)/Sv, V ar

hmc
v /S2

v,∆
)

update xk+1 ← Qvc
(
µ(xk+1), V ar

hmc
x ,∆

)
end for
output: samples {xk}

Theorem 10 shows that the low-precision SGLD with full-precision gradient accumulators can con-384

verge to the non-log-concave target distribution provided a small gradient variance and quantization385

error. Next, we present the SGLDLP-L’s result.386

Theorem 11. Let Assumptions 1, 3 and 4 hold. If we set the step size to be η = Õ
((

ϵ
log(1/ϵ)

)4)
,387

after K steps starting at the initial point x0 = 0 the output xK of the SGLDLP-L in (19) satisfies388

W2(p(xK), p∗) = Õ
(
ϵ+

√
max {σ2, σ} log

(
1

ϵ

)
+

log5
(
1
ϵ

)
ϵ4

√
∆

)
, (21)

provided389

K = Õ
(

1

ϵ4λ∗
log5

(
1

ϵ

))
.

The VC SGLDLP-L can be done as:390

xk+1 = Qvc
(
xk − ηQG(∇Ũ(xk)), 2η,∆

)
(22)

Theorem 12. Let Assumption 1, 3 and 4 hold. If we set the stepsize to be η = Õ
(

ϵ4

log4( 1
ϵ )

)
, after391

K steps from the initial point x0 = 0 the output xK of VC SGLDLP-L in (22) satisfies392

W2(p(xK), p∗) = Õ
(
ϵ+

√
max {σ2, σ} log

(
1

ϵ

)
+

log3
(
1
ϵ

)
ϵ2

√
∆

)
, (23)

provided393

K = Õ
(

1

ϵ4λ∗
log5

(
1

ϵ

))
.

C Technical Detail394

In this section, we disclose more details of empirical experiments. When implementing low-395

precision SGHMC on classification task in the CIFAR-10 and CIFAR-100 dataset, we observed that396

the momentum term v tend to gather in a small range around zero in which case the low-precision397

representations of v end up in gathering only few points, thus the momentum information is seri-398

ously lost and cause in performance degradation. In order to tackle this problem and fully utilize all399

the low-precision representations, we borrow the idea of rescaling from the bit centering trick and400

adopted to the low-precision SGHMC method. The detailed algorithm is listed in Algorithm 2.401

In Algorithm 2, we introduce the bit centering trick [De Sa et al., 2018] to enhance the variance402

corrected quantization function. Bit centering trick is a technique to increase the accuracy low-403

precision training algorithm by recentering and rescaling representable bits making low-precision404
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numbers closer to its real full-precision counterpart. We borrow the idea of rescaling to enhance405

the variance-corrected quantization function. Based on the discussion in previous paragraph, when406

the desired variance v is small the variance corrected quantization has a high chance to match the407

variance. By scaling up the weights, additional to increasing the accuracy of low-precision repre-408

sentation also increase the desired variance resulting in a lower chance of fail in variance corrected409

quantization.410

D Proof of Main Theorems411

D.1 Proof of Theorem 4412

Section 3.1 introduces low-precision HMC with full-precision gradient accumulators (SGHMCLP-413

F) as:414

vvk+1 = vke
−γη − uγ−1(1− e−γη)QG(∇Ũ(QW (xk))) + ξvk

vxk+1 = xk + γ−1(1− e−γη)vk + uγ−2(γη + e−γη − 1)QG(∇Ũ(QW (xk))) + ξxk ,

In this section, we prove the convergence of SGHMCLP-F in terms of 2-Wasserstein distance for415

strongly-log-concave target distribution via coupling argument. To simplify the notation we define416

the quantized stochastic gradients at x as:417

g̃(x) := QG(∇Ũ(QW (x))) (24)
=: ∇U(x) + ξ. (25)

Lemma 13. For any x ∈ Rd, the random noise ξ of the low-precision gradients defined in (25)418

satisfies:419

∥Eξ∥2 ≤M2∆
2d

4

E[∥ξ∥2] ≤ (M2 + 1)
∆2d

4
+ σ2.

420

We follow the proof in Cheng et al. [2018]. Denote by B(Rd) the Borel σ-field of Rd. Given421

probability measures µ and ν on (Rd,B(Rd)), we define a transference plan ζ between µ and ν as422

a probability measure on (Rd×Rd,B(Rd×Rd)) such that for all sets A ∈ Rd, ζ(A×Rd) = µ(A)423

and ζ(Rd × A) = ν(A). We denote Γ(µ, ν) as the set of all transference plans. A pair of random424

variables (x,y) is called a coupling if there exists a ζ ∈ Γ(µ, ν) such that (x,y) is distributed425

according to ζ. (With some abuse of notation, we will also refer to ζ as the coupling.)426

In order to calculate the Wasserstein distance from the proposed sample (xK ,vK) and the target427

distribution sample (x∗,v∗), we define sample qk = (xk,xk + vk) and the target distribution428

sample q∗ = (x∗,x∗ + v∗). Let pk = (xk,vk) and Φ̂η be the operator that maps from pk to pk+1429

i.e.430

pk+1 = Φ̂ηpk.
The solution (xt,vt) of the continuous underdamped Langevin dynamics with exact gradient satis-431

fies the following equations:432

vt = v0e
−γt − u

(∫ t

0

e−γ(t−s)∇U(xs)ds

)
+
√

2γu

∫ t

0

e−γ(t−s)dBs, (26)

xt = x0 +

∫ t

0

ṽsds.

Let Φη denote the operator that maps p0 to the solution of continuous underdamped Langevin dy-433

namics in (26) after time step η. Notice the solution (ṽt, x̃t) of the discrete underdamped Langevin434

dynamics with an exact gradient can be written as435

ṽt = ṽ0e
−γt − u

(∫ t

0

e−γ(t−s)∇U(x̃0)ds

)
+
√
2γu

∫ t

0

e−γ(t−s)dBs, (27)

x̃t = x̃0 +

∫ t

0

ṽsds.

15



We can also define a similar operator for the discrete underdamped Langevin dynamics solution436

p̃t = (x̃t, ṽt), let Φ̃t be the operator that maps p̃0 to p̃t. Furthermore the SGHMCLP-F can be437

written as:438

vt = v0e
−γt − u

(∫ t

0

e−γ(t−s)g̃(x0)ds

)
+
√
2γu

∫ t

0

e−γ(t−s)dBs, (28)

xt = x̃0 +

∫ t

0

vsds.

Given g̃(x0) = ∇U(x0) + ξ0 and x0 = x̃0, we know:439

vt = ṽt − u
(∫ t

0

e−γ(t−s)ds

)
ξ (29)

xt = x̃t − u
(∫ t

0

(∫ r

0

e−γ(t−s)ds

)
dr

)
ξ.

Lemma 14. Let q0 be some initial distribution and Φ̃η and Φη be the operator we defined above for440

discrete Langevin dynamics with exact full-precision gradients and low-precision gradients respec-441

tively. If the stepszie 1 > η > 0, then the Wasserstein distance satisfies442

W2
2 (Φηq0, q

∗) ≤
(
W2(Φ̃ηq0, q

∗) +
√
5/2uη

√
dM∆

)2
+ 5u2η2

(
(M2 + 1)

∆2d

4
+ σ2

)
.

The lemma 14 says that if starting from the same distribution after one step of low-precision update443

the Wasserstein distance from the target distribution is bounded by the distance after one step of444

exact gradients plus O(η2∆2). Furthermore from the corollary 7 in Cheng et al. [2018] we know445

that for any i ∈ {1, · · · ,K}:446

W2
2 (Φηqi, q

∗) ≤ e−η/2κ1W2
2 (qi, q

∗), (30)

where κ1 = M/m1 is the condtion number. Let EK denote the 26
(
d/m1 +D2

)
, and from the447

discretization error bound from Theorem 9 and Lemma 8 (sandwich inequality) in Cheng et al.448

[2018], we get449

W2(Φηqi, Φ̃ηqi) ≤ 2W2(Φηpi, Φ̃ηpi) ≤ η2
√

8EK
5
.

By triangle inequality:450

W2(Φ̃ηqi, q
∗) ≤ W2(Φηqi, Φ̃ηqi) +W2(Φηqi, q

∗)

≤ η2
√

8EK
5

+ e−η/2κ1W2(qi, q
∗).

Combine this with the result in Lemma 14 we have,451

W2
2 (Φ̂ηqi, q

∗) ≤
(
e−η/2κ1W2(qi, q

∗) + η2
√

8EK
5

+
√
5/2uη

√
dM∆

)2

+5u2η2
(
(M2 + 1)

∆2d

4
+ σ2

)
.

By invoking the Lemma 7 in Dalalyan and Karagulyan [2019] we can bound the 2-Wasserstein452

distance by:453

W2(qK , q
∗) ≤ e−Kη/2κ1W2(q0, q

∗) +
η2
√

8EK

5 + uηM∆
√
5d

2

1− e−η/2κ1

+
5u2η2

(
(M2 + 1)∆

2d
4 + σ2

)
η2
√

8EK

5 + uηM∆
√
5d

2 +
√
1− e−η/κ1

√
5u2η2

(
(M2 + 1)∆

2d
4 + σ2

) .
Finally by sandwich inequality we have:454

W2(pK , p
∗) ≤ 4e−Kη/2κW2(p0, p

∗) + 4
η2
√

8EK

5 + uηM∆
√
5d

2

1− e−η/2κ

+
20u2η2

(
(M2 + 1)∆

2d
4 + σ2

)
η2
√

8EK

5 + uηM∆
√
5d

2 +
√
1− e−η/κ

√
5u2η2

(
(M2 + 1)∆

2d
4 + σ2

) .
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Now we let the first term less than ϵ/3, from the lemma 13 in [Cheng et al., 2018] we know that455

W2(pK , p
∗) ≤ 3

(
d
m1

+D2
)

. So we can choose K as the following,456

K ≤ 2κ1
η

log

(
36

(
d

m1
+D2

))
.

Next, we choose a stepsize η ≤ ϵκ−1
1√

479232/5(d/m1+D2)
to ensure the second term is controlled below457

ϵ/3 + 16κ1uM∆
√
5d

2 . Since 1− e−η/2κ1 ≥ η/4κ1 and definition of EK ,458

4
η2
√

8EK

5 + uηM∆
√
5d

2

1− e−η/2κ
≤ 4

η2
√

8EK

5 + uηM∆
√
5d

2

η/4κ1
≤ 16κ1

(
η

√
8EK
5

+
uM∆

√
5d

2

)

≤ ϵ/3 + 16κ1uM∆
√
5d

2
.

Finally by choosing the stepsize satisfied that,459

η ≤ ϵM∆
√
5d

120u
[
(M2 + 1)∆

2d
4 + σ2

] ,
the third term can be bounded as:460

20u2η2
(
(M2 + 1)∆

2d
4 + σ2

)
η2
√

8EK

5 + uηM∆
√
5d

2 +
√
1− e−η/κ

√
5u2η2

(
(M2 + 1)∆

2d
4 + σ2

)
≤

20u2η2
(
(M2 + 1)∆

2d
4 + σ2

)
uηM∆

√
5d

2

= 40uη

(
(M2 + 1)∆

2d
4 + σ2

)
M∆
√
5d

≤ ϵ/3.

This complete the proof.461

D.2 Proof of Theorem 5462

In this section we analyze the Wasserstein distance between the sample (xk, vK) in (3) and the463

target distribution, given the target distribution satisfies the assumption 1 and 3. We follow the464

proof in Raginsky et al. [2017]. To analyze the Wasserstein distance, we first calculate the distance465

between solutions of low-precision discrete underdamped Langevin dynamics and solutions of the466

ideal continuous underdamped Langevin dynamics, also the distance between solutions of the ideal467

continuous underdamped Langevin dynamics and the target distribution.468

Again let pk = (xk, vk) denote the low-precision sample from (3) at k-th iteration, let p̂t = (x̂t, v̂t)469

denote the sample from the ideal continuous underdamped Langevin dynamics in 26 at time t. Then470

the Wasserstein distance between the pk and the target distribution p∗ can be bounded as:471

W2(pK , p
∗) ≤ W2(pK , p̂Kη) +W2(p̂Kη, p

∗).

We first boundW2(pK , p̂Kη) by invoking the weighted CKP inequality Bolley and Villani [2005],472

W2
2 (pK , p̂Kη) ≤ Λ

(√
DKL(pK ||p̂Kη) +

4

√
DKL(pK ||p̂Kη)

)
,

where Λ = 2 infθ>0

√
1/θ

(
3/2 + logEp̂Kη

[exp(θ(∥x̂Kη∥2 + ∥v̂Kη∥2))]
)
. We define a Lyapunov473

function for every (x, v) ∈ Rd × Rd474

E(x,v) = ∥x∥2 + ∥x+ 2v/γ∥2 + 8u(U(x)− U(x∗))/γ2.

Note that ∥a∥2 + ∥b∥2 ≥ ∥a− b∥2 /2 and U(x) ≥ U(x∗), we can have:475

E(x, v) ≥ ∥x∥2 + ∥x+ 2v/γ∥2 ≥ max{∥x∥2 , 2 ∥v/γ∥2}.
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Given assumptions 2 and 3 hold and apply Lemma B.4 in Zou et al. [2019], we can get476

Λ ≤2 inf
0<θ≤min{ γ

128u ,
m2
32 }

√
1

θ

(
3

2
+ 2θE(X0,V0) +

32Mθu(4d+ 2b+m2∥x∗∥2)
γ2m2

)

≤2
√

2E(X0,V0) +
32Mθu(4d+ 2b+m2∥x∗∥2) + 16(12um2 + 3γ2)

γ2m2
:= Λ̄.

It remains to bound the divergence between the distribution pK and p̂Kη . We first define a continuous477

interpolation of the low-precision sample (xk,vk),478

dvt = −γvtdt− uGtdt+
√
2γudBt (31)

dxt = vtdt, (32)

where Gt =
K∑

k=0

g̃(xk)1t∈[kη,(k+1)η). Integrating this equation from time 0 to t, we can get479

vt = v0 −
∫ t

0

γvsds−
∫ t

0

uGsdt+

∫ t

0

√
2γudBs

xt = x0 +

∫ t

0

vsds.

Notice that when t = kη, the solution of (31) has the same distribution with the low-precision480

sample (xk,vk). Now by Girsanov formula we can compute the Radon-Nikodym derivative of p̂Kη481

with respect to pK as follow:482

dp̂Kη

dpK
= exp

{√
γu

2

∫ t

0

(∇U(xs)−Gs)dBs−
γu

4

∫ T

0

∥∇U(xs)−Gs∥ds
}
.

It follows that483

DKL(pK ||p̂Kη) = EpK

[
log

(
dp̂Kη

dpK

)]
(33)

=
γu

4
E
∫ Kη

0

∥∇U(xs)−Gs∥2 ds

=
γu

4

K−1∑
k=0

∫ (k+1)η

kη

E
[
∥∇U(xs)−Gs∥2

]
ds

=
γu

4

K−1∑
k=0

∫ (k+1)η

kη

E
[
∥∇U(xs)− g̃(xk)∥2

]
ds.

Furthermore, in the k-th interval, we have484

E
[
∥∇U(xs)− g̃(xk)∥2

]
≤ 2E

[
∥∇U(xs)−∇U(xk)∥2

]
+ 2E

[
∥∇U(xk)− g̃(xk)∥2

]
. (34)

We now bound the first term in the RHS of the (34). By the smooth Assumption1, we have485

E
[
∥∇U(xs)−∇U(xk)∥2

]
≤M2E

[
∥xs − xk∥2

]
.

Notice that486

xs = xk +

∫ s

kη

vrdr

= xk +

∫ s

kη

(
vkηe

−γ(r−kη) − u
(∫ r

kη

e−γ(r−z)g̃(xk)dz

)
+
√

2γu

∫ r

kη

e−γ(r−z)dBz

)
dr.
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This further implies that:487

∥xs − xk∥2 =

∥∥∥∥∫ s

kη

(
vkηe

−γ(r−kη) − u
(∫ r

kη

e−γ(r−z)g̃(xk)dz

)
+
√
2γu

∫ r

kη

e−γ(r−z)dBz

)
dr

∥∥∥∥2
≤3
∥∥∥∥∫ s

kη

vkηe
γ(kη−r)dr

∥∥∥∥2 + 3

∥∥∥∥∫ s

kη

∫ r

kη

ug̃(xk)e
γ(z−r)dzdr

∥∥∥∥2 + 6ru

∥∥∥∥∫ s

kη

∫ s

0

e−γ(r−z)dBzdr

∥∥∥∥2
≤3η2 ∥vk∥2 + 3u2η4 ∥g̃(xk)∥2 + 3

[
u

γ2

(
2γ(s− kη) + 4e−γ(s−kη) − e−2γ(s−kη) − 3

)
d

]
≤3η2

(
∥vk∥2 + u2η2 ∥g̃(xk)∥2 + 2du

)
, (35)

where we use inequality 1− x ≤ e−x ≤ 1− x+ x2/2 for x > 0 and kη ≤ s ≤ (k + 1)η to get the488

last inequality. Given this analysis we can bound the first term in the RHS of (34)489

E
[
∥∇U(xs)−∇U(xk)∥2

]
≤ 3M2η2

(
E ∥vk∥2 + u2η2E ∥g̃(xk)∥2 + 2du

)
.

By lemma 13, the second term in the RHS of (34) can be bounded as:490

E
[
∥∇U(xk)− g̃(xk)∥2

]
≤ (M2 + 1)

∆2d

4
+ σ2.

We need to introduce a lemma to bound the sup
k
∥xk∥2, sup

k
∥vk∥2 and sup

k
∥g̃(xk)∥2.491

Lemma 15. Under Assumptions 1 and 3, if we set the stepsize statisfied the following condition:492

η ≤ min
{

γ

4 (8Mu+ uγ + 22γ2)
,

√
4u2

4Mu+ 3γ2
,

6γbu

(4Mu+ 3γ2) d
,

1

8γ
,

γm2

12(21u+ γ)M2
,
8(γ2 + 2u)

(20u+ γ)γ

}
,

then for all k ≥ 0 the E
[
∥xk∥2

]
, E
[
∥vk∥2

]
and E

[
∥g̃(xk)∥2

]
can be bounded as493

E
[
∥xk∥2

]
≤ E + C0

(
(M2 + 1)

∆2d

4
+ σ2

)
E
[
∥vk∥2

]
≤ γ2E/2 + γ2C0/2

(
(M2 + 1)

∆2d

4
+ σ2

)
E
[
∥g̃(xk)∥2

]
≤ 2

(
(M2 + 1)

∆2d

4
+ σ2

)
+ 4M2E + 4G2

where E and C0 are defined as:494

E = E [E(x0,v0)] +
24(21u+ γ)uM

m2γ3
G2 +

96(d+ b)uM

m2γ2
, G = ∥∇U(0)∥

C0 =
96u

(
γ2 + 2u

)
m2γ4

.
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We now ready to bound E
[
∥∇U(xs − g̃(xk))∥2

]
as:495

E
[
∥∇U(xs)− g̃(xk)∥2

]
≤ 2E

[
∥∇U(xs)−∇U(xk)∥2

]
+ 2E

[
∥∇U(xk)− g̃(xk)∥2

]
≤ 6M2η2

(
E ∥vk∥2 + u2η2E ∥g̃(xk)∥2 + 2du

)
+ 2

(
(M2 + 1)

∆2d

4
+ σ2

)
≤ 6M2η2

(
(γ2/2 + 4M2u2η2)E + (γ2C0/2 + 2u2η2)

(
(M2 + 1)

∆2d

4
+ σ2

)
+ 4u2η2G2 + 2du

)
+ 2

(
(M2 + 1)

∆2d

4
+ σ2

)
≤ 6M2η2

[
(γ2/2 + 4M2u2η2)E + 4u2η2G2 + 2du

]
+
(
6M2η2(γ2C0/2 + 2u2η2) + 2

)(
(M2 + 1)

∆2d

4
+ σ2

)
.

Thus the divergence can be bounded as:496

DKL(pK ||p̂Kη) ≤
3γu

2
M2Kη3

[
(γ2/2 + 4M2u2η2)E + 4u2η2G2 + 2du

]
+
γu

4
Kη

(
6M2η2(γ2C0/2 + 2u2η2) + 2

)(
(M2 + 1)

∆2d

4
+ σ2

)
.

By the weighted CKP inequality and given Kη ≥ 1,497

W2(pK , p̂Kη) ≤ Λ

(√
DKL(pK ||p̂Kη) +

4

√
DKL(pK ||p̂Kη)

)
≤ Λ

(
C̃0
√
η + C̃1Ã

)√
Kη,

where the constants C̃0, C̃1 and Ã are defined as:498

C̃0 =

√
3γu

2
M2

[
(γ2/2 + 4M2u2η2)E + 4u2η2G2 + 2du

]
+

4

√
3γu

2
M2

[
(γ2/2 + 4M2u2η2)E + 4u2η2G2 + 2du

]
C̃1 =

√
γu

4
(6M2η2(γ2C0/2 + 2u2η2) + 2) + 4

√
γu

4
(6M2η2(γ2C0/2 + 2u2η2) + 2)

Ã = max

{√(
(M2 + 1)

∆2d

4
+ σ2

)
, 4

√(
(M2 + 1)

∆2d

4
+ σ2

)}
.

Finally by the Lemma A.2 in Zou et al. [2019], we can have499

W2(p̂Kη, p
∗) ≤ Γ0e

−µ∗Kη,

where µ∗ = e−Õ(d) denotes the concentration rate of the underdamped Langevin dynamics and Γ0500

is a constant of order O(1/µ∗). Combining this inequality with previous analysis we can prove:501

W2(pK , p
∗) ≤ Λ

(
C̃0
√
η + C̃1Ã

)√
Kη + Γ0e

−µ∗Kη. (36)

In order to bound the Wasserstein distance, we need to set502

ΛC̃0

√
Kη2 =

ϵ

2
and Γ0e

−µ∗Kη =
ϵ

2
. (37)

Solving the equation (37), we can have503

Kη =
log
(
2Γ0

ϵ

)
µ∗ and η =

ϵ2

4Λ
2
C̃0

2
Kη

.

Combining these two we can have504

η =
ϵ2µ∗

4Λ
2
C̃0

2
log
(
2Γ0

ϵ

) and K =
4Λ

2
C̃0

2
log2

(
2Γ0

ϵ

)
ϵ2 (µ∗)

2 .

Plugging in (36) completes the proof.505
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D.3 Proof of Thoerem 10506

In this section we generalize the convergence analysis of LPSGLDLP-F in Zhang et al. [2022] to507

non-log-concave target distribution. We prove a more general version of theorem 10 following the508

same proof outlines in Raginsky et al. [2017]. We further introduce an assumption about the initial509

distribution p0.510

Assumption 5. The probability p0 of the initial hypothesis x0 has a bounded and strictly positive511

density and satisfies the following:512

κ0 := log

∫
Rd

e∥x∥
2

p0(x)dx <∞.

Note that the for initial distribution x0 = 0, the value κ0 = 0 is bounded and the assumption is513

satisfied. Recall the Overdamped Langevin dynamics is514

dxt = −∇U(xt)dt+
√
2dBt. (38)

We further define the value of the energy function and the gradient at point 0 at the following:515

|U(0)| = G0, ∥∇U(0)∥ = G1.

In order to analyze the convergence of SGLD for non-log-concave distribution, we need to introduce516

extra assumptions.517

Then the solution of the Langevin dynamics should satisfies518

xt = x0 −
∫ t

0

∇U(xs)ds+
√
2

∫ t

0

dBs. (39)

To analysis the LPSGLDLP-F in (18), we define a counituous interpolation of the low-precison519

sample as:520

x̂t = x̂0 −
∫ t

0

Gsds+
√
2

∫ t

0

dBs, (40)

where Gs =
K∑

k=0

g̃(x̂k)1s∈[kη,(k+1)η). The Wasserstein distance can bounded as521

W2(pK , p
∗) ≤ W2(pK , p̂Kη) +W2(p̂Kη, p

∗),

where the first term of the RHS can be bounded via the weighted CKP inequality522

W2(pK , p̂Kη) ≤ Cp̂Kη

[√
DKL (pK ||p̂Kη) +

(
DKL (pK ||p̂Kη)

2

)1/4
]
,

where the constant Cp̂Kη
= 2 inf

λ>0

(
1
λ

(
3
2 + log

∫
Rd

eλ∥ω∥2

P̂Kη(dω)

))
. By Lemma 4 in Raginsky523

et al. [2017] and assuming Kη > 1, we can wrtie:524

W2
2 (pK , p̂Kη) ≤ (12 + 8 (κ0 + 2b+ 2d)Kη)

(
DKL (pK ||p̂Kη) +

√
DKL (pK ||p̂Kη)

)
.

Now we bound the term DKL (pK ||p̂Kη). The Radon-Nikodym derivative of the P̂Kη w.r.t pK is525

the following526

dp̂Kη

dpK
= exp

{
1

2

∫ t

0

(∇U(xs)−Gs)dBs−
1

4

∫ T

0

∥∇U(xs)−Gs∥ds
}
.
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Thus, we have:527

DKL(pK ||p̂Kη) = EpK

[
log

(
dp̂Kη

dpK

)]
=

1

4

∫ Kη

0

E
[
∥∇U(xs)−Gs∥2

]
ds

=
1

4

K−1∑
k=0

∫ (k+1)η

kη

E
[
∥∇U(xs)− g̃(xk)∥2

]
ds

≤ 1

2

K−1∑
k=0

∫ (k+1)η

kη

E
[
∥∇U(xs)−∇U(xk)∥2

]
+

1

2

K−1∑
k=0

∫ (k+1)η

kη

E
[
∥∇U(xk)− g̃(xk)∥2

]
≤ M2

2

K−1∑
k=0

∫ (k+1)η

kη

E
[
∥xs − xk∥2

]
+

1

2

K−1∑
k=0

∫ (k+1)η

kη

E
[
∥∇U(xk)− g̃(xk)∥2

]
. (41)

We now bound the first term in the RHS of the equation 41, from the update rule in 40 we know:528

xs − xk = −(s− kη)g̃(xk) +
√
2 (Bs −Bkη)

= −(s− kη)∇U(xk) + (s− kη) (∇U(xk)− g̃(xk)) +
√
2 (Bs −Bkη) ,

thus,529

E
[
∥xs − xk∥2

]
≤ 3η2E

[
∥∇U(xk)∥2

]
+ 3η2E

[
∥∇U(xk)− g̃(xk)∥2

]
+ 6ηd

≤ 3η2 (ME [∥xk∥] +G)
2
+ 3η2

(
(M2 + 1)

∆2d

4
+ σ2

)
+ 6ηd. (42)

Similarly, we need a uniform bound of E
[
∥xk∥2

]
.530

Lemma 16. Under assumptions 1, 3 and 4, if we set the stepsize η ∈
(
0, 1 ∧ m2

2M2

)
, then for all531

k ≥ 0, the E
[
∥vxk∥2

]
can be bounded as532

E
[
∥xk∥2

]
≤ E + 2

(
M2 + 1

)
∆2d

4m2
,

provided E = E
[
∥x0∥2

]
+ M

m2

(
2b+ 2ηG2 + 2d

)
.533

Using this bound, we can further bound E
[
∥xs − xs∥2

]
as:534

E
[
∥xs − xs∥2

]
≤ 6η2M2

(
E + 2

(
M2 + 1

)
m2

∆2d

4

)
+ 6η2G2 + 3η2

(
(M2 + 1)

∆2d

4
+ σ2

)
+ 6ηd

≤ 6η2M2E + 6η2G2 + 6ηd+

(
12η2M2

(
M2 + 1

)
m2

+ 3(M2 + 1)

)
η2

∆2d

4
+ 3η2σ2

=: Eη + Cη2
∆2d

4
+ 3η2σ2

,

where the costant E and C are defined as:535

E = 6M2E + 6G2 + 6d

C =
12η2M2

(
M2 + 1

)
m2

+ 3(M2 + 1).
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Thus the divergence can be bounded as:536

DKL(pK ||p̂Kη) ≤
M2

2

(
E + Cη

∆2d

4
+ 3ησ2

)
Kη2 +

1

2

(
(M2 + 1)

∆2d

4
+ σ2

)
Kη

=
M2

2
EKη2 +

(
M2

2
Cη2 +

1

2
(M2 + 1)

)
∆2d

4
Kη +

3M2η2 + 1

2
σ2Kη

=
M2

2
EKη2 +

(
M2

2
C +

1

2
(M2 + 1)

)
∆2d

4
Kη +

3M2 + 1

2
σ2Kη

=: C0Kη
2 + C1

∆2d

4
Kη + C2σ

2Kη.

We are ready to bound the Wasserstein distance,537

W2
2 (pK , p̂Kη) ≤ (12 + 8 (κ0 + 2b+ 2d))

(
(C0 +

√
C0)
√
η +

(
C1 +

√
C1

)
A+

(
C2 +

√
C2

)
B
)
(Kη)

2

=:
(
C̃0

2√
η + C̃1

2
A+ C̃2

2
B
)
(Kη)

2
,

where the constants are defined as:538

A = max

{
∆2d

4
,

√
∆2d

4

}
B = max

{
σ2,
√
σ2
}

C̃0

2
= (12 + 8 (κ0 + 2b+ 2d))

(
C0 +

√
C0

)
C̃1

2
= (12 + 8 (κ0 + 2b+ 2d))

(
C1 +

√
C1

)
C̃2

2
= (12 + 8 (κ0 + 2b+ 2d))

(
C2 +

√
C2

)
.

From Proposition 9 in the paper Raginsky et al. [2017], we know that539

W2(p̂Kη, p
∗) ≤

√
2CLS

(
log ∥p0∥∞ +

d

2
log

3π

mβ
+ β

(
Mκ0
3

+B
√
κ0 +G0 +

b

2
log 3

))
e−Kη/βCLS

=: C̃3e
−Kη/βCLS

Finally, we can have540

W2(pK , p
∗) ≤

(
C̃0η

1/4 + C̃1

√
A+ C̃2

√
B
)
Kη + C̃3e

−Kη/βCLS . (43)

In order to bound the Wasserstein distance, we need to set541

C̃0Kη
5/4 =

ϵ

2
and C̃3e

−Kη/βCLS =
ϵ

2
. (44)

Solving the (37), we can have542

Kη = CLS log

(
2C̃3

ϵ

)
and η =

ϵ4

16C̃0

4
(Kη)

4
.

Combining these two we can have543

η =
ϵ4

16C̃0

4
C4

LS log4
(

2C̃3

ϵ

) and K =
16C̃0

4
C5

LS log5
(

2C̃3

ϵ

)
ϵ4

.

Plugging K and η into (43) completes the proof.544
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D.4 Proof of Theorem 6545

Recall the SGHMCLP-L the update rule:546

vk+1 = QW

(
vvke

−γη − uγ−1(1− eγη)QG(∇Ũ(xk)) + ξvk

)
xk+1 = QW

(
xk + γ−1(1− e−γη)vk + uγ−2(γη + e−γη − 1)QG(∇Ũ(xk)) + ξxk

)
.

If we let αx
k and αv

k denote the quantization error,547

αx
k = QW

(
vke

−γη − uγ−1(1− eγη)QG(∇Ũ(xs)) + ξvk

)
−
(
vke

−γη − uγ−1(1− eγη)QG(∇Ũ(xs)) + ξvk

)
αv
k = QW

(
xs + γ−1(1− e−γη)vk + uγ−2(γη + e−γη − 1)QG(∇Ũ(xs)) + ξxk

)
−
(
xs + γ−1(1− e−γη)vk + uγ−2(γη + e−γη − 1)QG(∇Ũ(xs)) + ξxk

)
,

we can rewrite the update rule as:548

vk+1 = vke
−γη − uγ−1(1− eγη)QG(∇Ũ(xs)) + ξvk + αv

k

xk+1 = xk + γ−1(1− e−γη)vk + uγ−2(γη + e−γη − 1)QG(∇Ũ(xk)) + ξxk + αx
k . (45)

Similarly, we can define a continuous interpolation of (45) for t ∈ (0, η].549

vt = v0e
−γt − u

(∫ t

0

e−γ(t−s) (∇U(x0) + ζ) ds

)
+
√

2γu

∫ t

0

e−γ(t−s)dBs +

∫ t

0

αv(s)ds

xt = x0 +

∫ t

0

vsds+

∫ t

0

αx(s)ds, (46)

where the ζ = QG

(
∇Ũ(x̂0)

)
−∇Ũ(x̂0) the function αv(s), αx(s) are defined as:550

αv(s) =

∞∑
k=0

αv
k/η1s∈(kη,(k+1)η)

αx(s) =

∞∑
k=0

αx
k/η1s∈(kη,(k+1)η).

If we let p̂0 = (x̂0, v̂0) be the initial sample and p̂t = (x̂t, v̂t) be the sample that satisfies the551

previous equations, we can define an operator Φ̂t that maps p̂0 to p̂t i.e., p̂t = Φ̂tp̂0. Notice that552

since p̂t is the continuous interpolation of (4), thus p̂kη = pk = (xk, vk). Similarly, we define553

qk = (xk, vk + xk) =: (xk, ωk) as a tool to analyze the convergence of pk.554

We are now ready to compute the Wasserstein distance between Φ̂ηq0 and q∗. Let Γ1 be all of the555

couplings between Φ̃ηq0 and q∗, and Γ2 be all of the couplings between Φ̂ηq0 and q∗. Let r1 be the556

optimal coupling between Φ̃ηq0 and q∗. By taking the difference between (46) and (27),557

[
x
ω

]
=

[
x̃
ω̃

]
+ u

[ (∫ η

0

(∫ r

0
e−γ(s−r)ds

)
dr
)
ζ +

∫ η

0
αx(s)ds(∫ η

0

(∫ r

0
e−γ(s−r)ds

)
dr +

∫ η

0
e−γ(s−η)ds

)
ζ +

∫ η

0
αx(s) + αv(s)ds

]
.
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Let us now analyze the Wasserstein distance between Φ̂ηq0 and q∗,558

W2
2

(
Φ̂ηq0, q

∗
)

≤ Er1

∥∥∥∥[x̃ω̃
]
+ u

[ (∫ η

0

(∫ r

0
e−γ(s−r)ds

)
dr
)
ζ +

∫ η

0
αx(s)ds(∫ η

0

(∫ r

0
e−γ(s−r)ds

)
dr +

∫ η

0
e−γ(s−η)ds

)
ζ +

∫ η

0
(αx(s) + αv(s)) ds

]
−
[
x∗

ω∗

]∥∥∥∥2
≤ Er1

∥∥∥∥[x̃ω̃
]
−
[
x∗

ω∗

]∥∥∥∥2 + u2E
∥∥∥∥[ (∫ η

0

(∫ r

0
e−γ(s−r)ds

)
dr
)
ζ +

∫ η

0
αx(s)ds(∫ η

0

(∫ r

0
e−γ(s−r)ds

)
dr +

∫ η

0
e−γ(s−η)ds

)
ζ +

∫ η

0
(αx(s) + αv(s)) ds

]∥∥∥∥2

≤ W2
2

(
Φ̃ηq0, q

∗
)
+ 4u2

(∫ δ

0

(∫ r

0

e−γ(s−r)ds

)
dr

)2

+

(∫ δ

0

e−γ(s−δ)ds

)2
(∆2d

4
+ σ2

)

+ u2E

[∥∥∥∥∫ η

0

(αx(s)) ds

∥∥∥∥2
]
+ u2E

[∥∥∥∥∫ η

0

(αx(s) + αv(s)) ds

∥∥∥∥2
]

≤ W2
2

(
Φ̃ηq0, q

∗
)
+ 4u2

(
η4

4
+ η2

)(
∆2d

4
+ σ2

)
+ u2E

[
∥αx

k∥2
]
+ u2E

[
∥αx

k + αv
k∥2
]

≤ W2
2

(
Φ̃ηq0, q

∗
)
+ 5u2η2

(
∆2d

4
+ σ2

)
+ 2u2

(
E ∥αx

k∥2 + E ∥αv
k∥2
)

≤ W2
2

(
Φ̃ηq0, q

∗
)
+ 5u2η2

(
∆2d

4
+ σ2

)
+ 2u2 (A+B) ,

where the constantA,B are the uniform bounds of E [∥αx
k∥] and E [∥αv

k∥] respectively. Furthermore559

from the corollary 7 in Cheng et al. [2018] we know that for any i ∈ {1, · · · ,K}:560

W2
2 (Φηqi, q

∗) ≤ e−η/2κ1W2
2 (qi, q

∗), (47)
where κ1 = M/m1 is the condtion number. From the discretization error bound from theorem 9561

and lemma 8(sandwich inequality) in Cheng et al. [2018], we get562

W2(Φηqi, Φ̃ηqi) ≤ 2W2(Φηpi, Φ̃ηpi) ≤ η2
√

8EK
5
.

By triangle inequality:563

W2(Φ̃ηqi, q
∗) ≤ W2(Φηqi, Φ̃ηqi) +W2(Φηqi, q

∗)

≤ η2
√

8EK
5

+ e−η/2κ1W2(qi, q
∗),

further implies the following inequality:564

W2
2

(
Φ̂ηqi, q

∗
)
≤
(
e−η/2κ1W2 (qi, q

∗) + η2
√

8EK
5

)2

+ 5u2η2
(
∆2d

4
+ σ2

)
+ 2u2 (A+B) .

By invoking the Lemma 7 in Dalalyan and Karagulyan [2019] we can bound the Wasserstein dis-565

tance by:566

W2(qK , q
∗) ≤ e−Kη/2κ1W2(q0, q

∗) +
η2
√

8EK

5

1− e−η/2κ1

+
5u2η2

(
∆2d
4 + σ2

)
+ 2u2 (A+B)

η2
√

8EK

5 +
√
1− e−η/2κ1

√
5u2η2

(
∆2d
4 + σ2

)
+ 2u2 (A+B)

.

Finally by sandwich inequality we have:567

W2(pK , p
∗) ≤ 4e−Kη/2κ1W2(q0, q

∗) +
4η2
√

8EK

5

1− e−η/2κ1
(48)

+
20u2η2

(
∆2d
4 + σ2

)
+ 8u2 (A+B)

η2
√

8EK

5 +
√
1− e−η/2κ1

√
5u2η2

(
∆2d
4 + σ2

)
+ 2u2 (A+B)

.
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And in this case, we know that E [∥αx
k∥] and E [∥αv

k∥] can be bouned by ∆2d
4 . Finally, we can have:568

W2(pK , p
∗) ≤ 4e−Kη/2κ1W2(q0, q

∗) +
4η2
√

8EK

5

1− e−η/2κ1

+
20u2η2

(
∆2d
4 + σ2

)
+ 4u2∆2d

η2
√

8EK

5 +
√
1− e−η/2κ1

√
5u2η2

(
∆2d
4 + σ2

)
+ u2∆2d

.

Now we let the first term less than ϵ/3, from the lemma 13 in [Cheng et al., 2018] we know that569

W2(q0, q
∗) ≤ 3

(
d
m1

+D2
)

. So we can choose K as the following,570

K ≤ 2κ1
η

log

(
36

(
d

m1
+D2

))
.

Next, we choose a stepsize η ≤ ϵκ−1
1√

479232/5(d/m1+D2)
to ensure the second term is controlled below571

ϵ/3. Since 1− e−η/2κ1 ≥ η/4κ1 and definition of EK ,572

4
η2
√

8EK

5

1− e−η/2κ
≤ 4

η2
√

8EK

5

η/4κ1
≤ 16κ1

(
η

√
8EK
5

)
≤ ϵ/3.

Finally by choosing the stepsize satisfied that,573

η ≤ ϵ2

2880κ1u
(
∆2d
4 + σ2

) ,
the third term can be bounded as:574

20u2η2
(
(M2 + 1)∆

2d
4 + σ2

)
+ 4u2∆2d

η2
√

8EK

5 +
√
1− e−η/2κ1

√
5u2η2

(
(M2 + 1)∆

2d
4 + σ2

)
≤

20u2η2
(
(M2 + 1)∆

2d
4 + σ2

)
+ 4u2∆2d

√
1− e−η/2κ1

√
5u2η2

(
(M2 + 1)∆

2d
4 + σ2

) ≤ 20u2η2
(
(M2 + 1)∆

2d
4 + σ2

)
+ 4u2∆2d√

η/4κ1

√
5u2η2

(
(M2 + 1)∆

2d
4 + σ2

)
≤ 4

√
20κ1u2η

(
(M2 + 1)

∆2d

4
+ σ2

)
+

8u2∆2d
√
κ1

η3/2
√
5u2η2

(
(M2 + 1)∆

2d
4 + σ2

)
≤ ϵ/3 + 8u2∆2d

√
κ1

η3/2
√

5u2η2
(
(M2 + 1)∆

2d
4 + σ2

) .
This complete the proof.575

D.5 Proof of Theorem 7576

In this section, we analyze the convergence of SGHMCLP-L when the target distribution is non-log-577

concave. Recall the continuous interpolation of the SGHMCLP-L,578

vt = v0 −
∫ t

0

γvsds− u
∫ t

0

Gsds+
√
2γu

∫ t

0

e−γ(t−s)dBs +

∫ t

0

αv(s)ds

xt = x0 +

∫ t

0

vsds+

∫ t

0

αx(s)ds,
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where Gs =
∞∑
k=0

QG (∇U(x′k))1s∈(kη,(k+1)η).And we define an intermediate process by let v′
t =579

vt + αx(t):580

v′t = v′0 −
∫ t

0

γ (v′s − αx(s)) ds− u
∫ t

0

Gsds+
√
2γu

∫ t

0

e−γ(t−s)dBs +

∫ t

0

(
αv(s) +

1

t
αx(t)

)
ds

x′t = x′0 +

∫ t

0

v′sds. (49)

By integrating the underdamped Langevin dynamic (9), we can have:581

vt = v0 −
∫ t

0

γ (vs − αx(s)) ds− u
∫ t

0

∇U(xs)ds+
√
2γu

∫ t

0

e−γ(t−s)dBs

xt = x0 +

∫ t

0

vsds. (50)

Notice that the process x′t has the same distribution with xt, thus in the following analysis we study582

the convergence of the intermediate process p′k = (x′kη, v
′
kη). By taking the difference of equation583

(49) with (50) and the Girsanov formula, we can derive the Radon-Nikodym derivative of P̂Kη w.r.t584

p′K :585

dp̂Kη

dp′K
= exp

{√
u

2γ

∫ T

0

(γαx(s) + αv(s) +
1

T
αx(T ) +∇U(xs)−Gs)dBs

− u

4γ

∫ T

0

∥γαx(s) + αv(s) +
1

T
αx(T ) +∇U(xs)−Gs∥2ds

}
.

Thus the divergence can be bouned as:586

DKL(pK ||p̂Kη) = EpK

[
log

(
dp̂Kη

dpK

)]
=

u

4γ

∫ T

0

E
∥∥∥∥γαx(s) + αv(s) +

1

T
αx(T ) +∇U(xs)−Gs

∥∥∥∥2 ds
=

u

4γT
E
[
∥αx(T )∥2

]
+

u

4γ

K∑
k=0

∫ (k+1)η

kη

E
[
∥γαv(s) + αx(s) +∇U(xs)−Gs∥2

]
ds

≤ u

4γTη2
E
[
∥αx

k∥2
]
+

u

4γ

K∑
k=0

∫ (k+1)η

kη

E
[
∥γαv(s)∥2

]
ds+

u

4γ

K∑
k=0

∫ (k+1)η

kη

E
[
∥αx(s)∥2

]
ds

+
u

4γ

K∑
k=0

∫ (k+1)η

kη

E
[
∥∇U(xs)−Gs∥2

]
ds

≤ u

4γTη2
E
[
∥αx

k∥2
]
+

u

4γ

K∑
k=0

∫ (k+1)η

kη

E
[
∥γαv

k/η∥2
]
ds+

u

4γ

K∑
k=0

∫ (k+1)η

kη

E
[
∥αx

k/η∥2
]
ds

+
u

4γ

K∑
k=0

∫ (k+1)η

kη

E
[
∥∇U(xs)−QG(∇U(xk))∥2

]
ds

≤ u

4γTη2
E
[
∥αx

k∥2
]
+

u

4γ

K∑
k=0

∫ (k+1)η

kη

E
[
∥γαv

k/η∥2
]
ds+

u

4γ

K∑
k=0

∫ (k+1)η

kη

E
[
∥αx

k/η∥2
]
ds

(51)

+
u

4γ

K∑
k=0

∫ (k+1)η

kη

E
[
∥∇U(xs)−∇U(xk)∥2

]
ds+

u

4γ

K∑
k=0

∫ (k+1)η

kη

E
[
∥∇U(xk)−QG(∇U(xk))∥2

]
ds.
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By assumption 1, we know that:587

E
[
∥∇U(xs)−∇U(xk)∥2

]
≤M2E

[
∥xs − xk∥2

]
.

From the same analysis in (35), we can derive:588

E
[
∥∇U(xs)−∇U(xk)∥2

]
≤ 3M2η2

(
E
[
∥v′

k∥
2
]
+ u2η2E

[
∥QG(∇U(xk))∥2

]
+ 2du

)
.

Now we need to derive a uniform bound of E
[
∥xk∥2

]
and E

[
∥v′

k∥
2
]
.589

Lemma 17. Let Assumptions 3 and 1 hold. If we set the step size to the following condition590

η ≤ min

{
γ

4 (8Mu+ uγ + 22γ2)
,

√
4u2

4Mu+ 3γ2
,

6γbu

(4Mu+ 3γ2) d
,

γm2

6 (22u+ γ)M2

}
,

then for all k > 0 E
[
∥xk∥2

]
and E

[
∥vk∥2

]
can be bouned as follow:591

E
[
∥xk∥2

]
≤ E + C∆2d, E

[
∥v′k∥

2
]
≤ γ2E/2 + γ2C∆2d/2,

where constants E and C are defined as:592

E = E [E(x0,v0)] +
54
(
4u+ γ2

)
u

m2γ4
σ2 +

12(22u+ γ)uM3

m2γ3
G2 +

96 (d+ b)uM

m2γ2

C =
27
(
4u+ γ2

)
u

2m2γ4
.

593

Thus,594

E
[
∥∇U(xs)−∇U(xk)∥2

]
≤ 3M2η2

(
E
[
∥vk∥2

]
+ u2η2

(
∆2d

4
+ σ2 + 2M2E

[
∥xk∥2

]
+ 2G2

)
+ 2du

)
≤ 3M2η2

(
γ2E/2 + γ2C∆2d/2 + u2η2

(
∆2d

4
+ σ2 + 2M2E + 2M2C∆2d+ 2G2

)
+ 2du

)
≤ 3M2η2

((
γ2 + 2u2M2

)
E +

(
γ2 + 2u2M2

)
C∆2d+ u2σ2 + 2u2G2 + 2du

)
.

Now we can go back to the divergence of pK and p̂Kη ,595

DKL(pK ||p̂Kη)

≤ u

4γTη2
E
[
∥αx

k∥2
]
+

u

4γ

K∑
k=0

∫ (k+1)η

kη

E
[
∥γαv

k/η∥2
]
ds+

u

4γ

K∑
k=0

∫ (k+1)η

kη

E
[
∥αx

k/η∥2
]
ds

+
u

4γ
3M2Kη3

((
γ2 + 2u2M2

)
E +

(
γ2 + 2u2M2

)
C∆2d+ u2σ2 + 2u2G2 + 2du

)
+

u

4γ
Kη

(
∆2d

4
+ σ2

)
≤ u

4γ
3M2Kη3

((
γ2 + 2u2M2

)
E +

(
γ2 + 2u2M2

)
C∆2d+ u2σ2 + 2u2G2 + 2du

)
+

u

4γ
Kη

(
∆2d

4
+ σ2

)
+

u∆2d

16γTη2
+
uK∆2d

8γη

≤ u

4γ
3M2Kη3

((
γ2 + 2u2M2

)
E + u2σ2 + 2u2G2 + 2du

)
+

u

4γ
Kησ2

+

(
u

4γ
3M2Kη3C

(
γ2 + 2u2M2

)
+
uKη

16γ
+

u

16γTη2
+
uK

8γη

)
∆2d

=: C0Kη
3 + C1Kησ

2 + C2K∆2,

where the constants C0, C1 and C2 are defined as:596

C0 =
u

4γ
3M2

((
γ2 + 2u2M2

)
E + u2σ2 + 2u2G2 + 2du

)
C1 =

u

4γ

C2 =

(
u

4γ
3M2η3C

(
γ2 + 2u2M2

)
+

u

16γ
+

u

16γT 2η
+

u

8γη

)
d.
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By the weighted CKP inequality and given Kη ≥ 1,597

W2(pK , p̂Kη) ≤ Λ

(√
DKL(pK ||p̂Kη) +

4

√
DKL(pK ||p̂Kη)

)
≤
(
C̃0
√
η + C̃1Ã

)√
Kη + C̃2

√
K∆, (52)

where the constants are defined as:598

C̃0 =
(√

C0 +
4
√
C0

)
C̃1 =

(√
C1 +

4
√
C1

)
C̃2 =

(√
C2 +

4
√
C2

)
Ã = max

{
σ,
√
σ
}
.

From the same analysis in (36), we can have:599

W2(pK , p
∗) ≤ Λ

(
C̃0
√
η + C̃1Ã

)√
Kη + C̃2

√
Kη + Γ0e

−µ∗Kη. (53)

In order to bound the Wasserstein distance, we need to set600

ΛC̃0

√
Kη2 =

ϵ

2
and Γ0e

−µ∗Kη =
ϵ

2
. (54)

Solving the equation (54), we can have601

Kη =
log
(
2Γ0

ϵ

)
µ∗ and η =

ϵ2

4Λ
2
C̃0

2
Kη

.

Combining these two we can have602

η =
ϵ2µ∗

4Λ
2
C̃0

2
log
(
2Γ0

ϵ

) and K =
4Λ

2
C̃0

2
log2

(
2Γ0

ϵ

)
ϵ2 (µ∗)

2 .

Plugging in (53) completes the proof.603

D.6 Proof o Theorem 11604

In this section we generalize the convergence analysis of SGLDLP-L in Zhang et al. [2022] to non-605

log-concave target distribution. Following the same proof outlines in Raginsky et al. [2017]. Recall606

the LPSGLDLP-L update rule 19 is the following,607

xk+1 = QW (xk − η∇Ũ(xk) +
√

2ηξk+1)

=: xk − η∇Ũ(xk) +
√
2ηξk+1 + αk,

where αk is define as:608

αk = QW (xk − η∇Ũ(xk) +
√
2ηξk+1)− xk − η∇Ũ(xk) +

√
2ηξk+1.

Thus, we can define a continuous interpolation of the SGLDLP-L as:609

xt = x0 −
∫ t

0

Gsds+
√
2

∫ t

0

dB(s) +

∫ t

0

α(s)ds,

where Gs =
∞∑
k=0

QG(∇Ũ(xk))1s∈(kη,(k+1)η) and α(s) =
∞∑
k=0

αk/η1s∈(kη,(k+1)η). By taking the610

difference of the interpolation with the discrete estimation of Langevin process in equation 39, we611

can derive the Radon-Nikodym derivative of the p̂Kη w.r.t pK as:612

dp̂Kη

dpK
= exp

{
1

2

∫ t

0

(∇U(xs)−Gs − α(s))dBs−
1

4

∫ T

0

∥∇U(xs)−Gs − α(s)∥2ds
}
.
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Thus, the divergence can be computed as:613

DKL(pK ||p̂Kη) =
1

4

∫ Kη

0

E
[
∥∇U(xs)−Gs − α(s)∥2

]
ds

=
1

4

K−1∑
k=0

∫ (k+1)η

kη

E
[∥∥∥∇U(xs)−QG(∇Ũ(xk))− αk/η

∥∥∥2] ds
=
1

4

K−1∑
k=0

∫ (k+1)η

kη

E
[∥∥∥∇U(xs)−QG(∇Ũ(xk))

∥∥∥2] ds+ 1

4

K−1∑
k=0

∫ (k+1)η

kη

E
[
∥αk/η∥2

]
ds

=
1

4

K−1∑
k=0

∫ (k+1)η

kη

E
[
∥∇U(xs)−∇U(xk)∥2

]
ds+

1

4

K−1∑
k=0

∫ (k+1)η

kη

E
[∥∥∥∇U(xk)−QG(∇Ũ(xk))

∥∥∥2] ds
+

1

4

K−1∑
k=0

∫ (k+1)η

kη

E
[
∥αk/η∥2

]
ds

≤M
2

4

K−1∑
k=0

∫ (k+1)η

kη

E
[
∥xs − xk∥2

]
ds+

1

4

K−1∑
k=0

∫ (k+1)η

kη

E
[∥∥∥∇U(xk)−QG(∇Ũ(xk))

∥∥∥2] ds
+

1

4

K−1∑
k=0

∫ (k+1)η

kη

E
[
∥αk/η∥2

]
ds. (55)

From the same analysis in (35), we know that614

E
[
∥xs − xk∥2

]
≤ 3η2E

[
∥∇U(xk)∥2

]
+ 3η2E

[∥∥∥∇U(xk)−QG(∇Ũ(xk))
∥∥∥2]+ 6ηd

≤ 3η2
(
ME

[
∥xk∥2

]
+G

)2
+ 3η2

(
∆2d

4
+ σ2

)
+ 6ηd.

Again, we need to derive a uniform bound of E
[
∥xk∥2

]
,615

E
[
∥xk+1∥2

]
=E

[∥∥∥xk − ηQG(∇Ũ(xk))
∥∥∥2]+ 2E

[
∥ξk+1∥2

]
+ E

[
∥αk∥2

]
=E

[∥∥∥xk − η∇U(xk) + η∇U(xk)− ηQG(∇Ũ(xk))
∥∥∥2]+ 2ηd+ E

[
∥αk∥2

]
=E

[∥∥∥xk − η∇U(xk) + η∇U(xk)− ηQG(∇Ũ(xk))
∥∥∥2]+ E

[
∥αk∥2

]
+ 2ηd

=E
[
∥xk − η∇U(xk)∥2

]
+ η2E

[∥∥∥∇U(xk)−QG(∇Ũ(xk))
∥∥∥2]+ E

[
∥αk∥2

]
+ 2ηd.

By plugging in the inequality we derived before:616

E
[
∥xk − η∇U(xk)∥2

]
≤
(
1− 2ηm2 + 2η2M2

)
E
[
∥xk∥2

]
+ 2ηb+ 2η2G2.

we can have:617

E
[
∥xk+1∥2

]
≤
(
1− 2ηm2 + 2η2M2

)
E
[
∥xk∥2

]
+ 2ηb+ 2η2G2 +

η2∆2d

4
+ η2σ2 + E

[
∥αk∥2

]
+ 2ηd.
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Thus for any η ∈ (0, 1 ∧ m2

2M2 ) and 1 − 2ηm2 + 2η2M2 > 0, we can bound E
[
∥xk∥2

]
for any618

k > 0 as:619

E
[
∥xk∥2

]
≤E

[
∥x0∥2

]
+

1

2 (m2 − ηM2)

(
2b+ 2G2 +

∆2d

4
+ σ2 + 2d

)
+

E
[
∥αk∥2

]
2η (m2 − ηM2)

≤E
[
∥x0∥2

]
+

1

m2

(
2b+ 2G2 +

∆2d

4
+ σ2 + 2d

)
+

E
[
∥αk∥2

]
ηm2

≤E + ∆2d

4m2
+

E
[
∥αk∥2

]
ηm2

,

where the constant E is defined as:620

E = E
[
∥x0∥2

]
+

1

m2

(
2b+ 2G2 + σ2 + 2d

)
.

Thus, we can have,621

E
[
∥xs − xk∥2

]
≤6η2

E + ∆2d

4m2
+

E
[
∥αk∥2

]
ηm2

+ 6η2G2 + 3η2
(
∆2d

4
+ σ2

)
+ 6ηd

≤Eη + 3η2σ2 +
6 + 3m2

4m2
η2∆2d+

6ηE
[
∥αk∥2

]
m2

.

Plugging this into the equation (55), we can have,622

DKL(pK ||p̂Kη) ≤
ME
4
Kη2 +

3Mσ2Kη3

4
+

(6 + 3m2)M∆2d

16m2
Kη3 +

6ME
[
∥αk∥2

]
Kη2

4m2
+

1

4

(
∆2d

4
+ σ2

)
Kη +

KE
[
∥αk∥2

]
4η

≤ME
4
Kη2 +

3M + 1

4
σ2Kη +

((6 + 3m2)M +m2) d

16m2
∆2Kη +

(
6Mη

4m2
+

1

4η

)
KE

[
∥αk∥2

]
.

By the fact that E
[
∥αk∥2

]
≤ ∆2d

4 , we can further bound the divergence as:623

DKL(pK ||p̂Kη) ≤
ME
4
Kη2 +

3M + 1

4
σ2Kη +

(
((12 + 3m2)M +m2) d

16m2
+

d

16η

)
∆2K

=:C0Kη
2 + C1σ

2Kη + C2∆
2K,

where the constants are defined as:624

C0 =
ME
4

C1 =
3M + 1

4

C2 =

(
((12 + 3m2)M +m2) d

16m2
+

d

16η

)
.

We are ready to bound the Wasserstein distance,625

W2
2 (pK , p̂Kη) ≤ (12 + 8 (κ0 + 2b+ 2d))

[(
C0 +

√
C0 +

(
C1 +

√
C1

)
A
)
(Kη)

2
+
(
C2 +

√
C2

)
∆K2η

]
=:
(
C̃0

2√
η + C̃1

2
A
)
(Kη)

2
+ C̃2

2
∆K2η,

where the constants are defined as:626

A = max
{
σ2,
√
σ2
}

C̃0

2
= (12 + 8 (κ0 + 2b+ 2d))

(
C0 +

√
C0

)
C̃1

2
= (12 + 8 (κ0 + 2b+ 2d))

(
C1 +

√
C1

)
C̃2

2
= (12 + 8 (κ0 + 2b+ 2d))

(
C2 +

√
C2

)
.
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From Proposition 9 in the paper Raginsky et al. [2017], we know that627

W2(p̂Kη, p
∗) ≤

√
2CLS

(
log ∥p0∥∞ +

d

2
log

3π

mβ
+ β

(
Mκ0
3

+B
√
κ0 +G0 +

b

2
log 3

))
e−Kη/βCLS

=: C̃3e
−Kη/βCLS

Finally, we can have628

W2(pK , p
∗) ≤

(
C̃0η

1/4 + C̃1

√
A
)
Kη + C̃2

√
∆
√
K2η + C̃3e

−Kη/βCLS . (56)

In order to bound the 2-Wasserstein distance, we need to set629

C̃0Kη
5/4 ≤ ϵ

2
and C̃3e

−Kη/βCLS =
ϵ

2
. (57)

Solving the (57), we can have630

Kη = CLS log

(
2C̃3

ϵ

)
and η ≤ ϵ4

16C̃0

4
(Kη)

4
.

Combining these two we can have631

η ≤ ϵ4

16C̃0

4
C4

LS log4
(

2C̃3

ϵ

) and K ≥
16C̃0

4
C5

LS log5
(

2C̃3

ϵ

)
ϵ4

.

Plugging K and η into (56) completes the proof.632

D.7 Proof of Theorem 8633

In this section, we analyze the convergence of VC SGHMCLP-L, recall the VC SGHMCLP-L up-634

date rule is the following,635

vk+1 = Qvc
(
vke

−γη − uγ−1
(
1− e−γη

)
QG

(
∇Ũ(xk)

)
, V arv,∆

)
xk+1 = Qvc

(
xk + γ−1

(
1− e−γη

)
vk + uγ−2

(
γη + e−γη − 1

)
QG(∇Ũ(xk)), V arx,∆

)
.

(58)

If we let αx
k and αv

k denote the quantization error,636

αv
k =Qvc

(
vke

−γη − uγ−1
(
1− e−γη

)
QG

(
∇Ũ(xk)

)
, V arv,∆

)
−
(
vke

−γη − uγ−1(1− eγη)QG(∇Ũ(xk)) + ξvk

)
αx
k =Qvc

(
xk + γ−1

(
1− e−γη

)
vk + uγ−2

(
γη + e−γη − 1

)
QG(∇Ũ(xk)), V arx,∆

)
−
(
xk + γ−1(1− e−γη)vk + uγ−2(γη + e−γη − 1)QG(∇Ũ(xk)) + ξxk

)
,

we can rewrite the update rule as:637

vk+1 = vke
−γη − uγ−1(1− eγη)QG(∇Ũ(xk)) + ξvk + αv

k

xk+1 = xk + γ−1(1− e−γη)vk + uγ−2(γη + e−γη − 1)QG(∇Ũ(xk)) + ξxk + αx
k .

Next, we first derive a uniform bound of E
[
∥αv

k∥
2
]
. In this section and the following section, we638

further assume the norm of quantized stochastic gradients are bounded.639

Assumption 6. For any x ∈ Rd, there exists a constant G and the quantized stochastic gradients at640

x satisfies the following641

E
[∥∥∥QG(∇Ũ(x))

∥∥∥2] ≤ G2.
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By the definition of the variance corrected quantization function Qvc, when V arv > ρ0 = ∆2

4 , if642

we let ψk denote vke−γη − uγ−1 (1− e−γη)QG

(
∇Ũ(xk)

)
,643

E
[
∥αv

k∥2
∣∣∣ψk

]
=E

[∥∥∥(vke−γη − uγ−1
(
1− e−γη

)
QG(∇Ũ(xk))

)
+
√
V arvξk

−Qd
(
vke

−γη − uγ−1
(
1− e−γη

)
QG(∇Ũ(xk)) +

√
V arv − ρ0ξk

)
− sign(r)c

∥∥∥2∣∣∣∣ψk

]
Let644

b = Qd
(
vke

−γη − uγ−1
(
1− e−γη

)
QG(∇Ũ(xk)) +

√
V arv − ρ0ξk

)
−
(
vke

−γη − uγ−1
(
1− e−γη

)
QG(∇Ũ(xk)) +

√
V arv − ρ0ξk

)
,

then645

E
[
∥αv

k∥2
∣∣∣ψk

]
=E

[∥∥∥(vke−γη − uγ−1
(
1− e−γη

)
QG(∇Ũ(xk))

)
+
√
V arvξk

−
(
vke

−γη − uγ−1
(
1− e−γη

)
QG(∇Ũ(xk)) +

√
V arv − ρ0ξk

)
− b− sign(r)c

∥∥∥2∣∣∣∣ψk

]
=E

[∥∥∥√V arvξk −√V arv − ρ0ξk − b− sign(r)c
∥∥∥2∣∣∣∣ψk

]
≤E

[∥∥∥√V arvξk −√V arv − ρ0ξk∥∥∥2]+ E
[
∥b+ sign(r)c∥2

∣∣∣ψk

]
≤2V arvd− ρ0d+ ρ0d

≤4γudη. (59)

When V arv <
∆2

W

4 ,646

E[∥αv
k∥2]

= E
[∥∥∥(vke

−γη − uγ−1
(
1− e−γη

)
QG(∇Ũ(xk))

)
− vk+1 +

√
V arvξk

∥∥∥2]
= E

[∥∥∥(vke
−γη − uγ−1

(
1− e−γη

)
QG(∇Ũ(xk))

)
− vk+1

∥∥∥2]+ E
[∥∥∥√V arvξk∥∥∥2]

≤ max

(
2E
[∥∥∥(vke

−γη − uγ−1
(
1− e−γη

)
QG(∇Ũ(xk))

)
−Qs

(
vke

−γη − uγ−1
(
1− e−γη

)
QG(∇Ũ(xk))

)∥∥∥2] , 2V arvd) .
(60)

Using the bound equation (6) in Li and De Sa [2019] gives us,647

E
[∥∥∥(vke

−γη − uγ−1
(
1− e−γη

)
QG(∇Ũ(xk))

)
−Qs

(
vke

−γη − uγ−1
(
1− e−γη

)
QG(∇Ũ(xk))

)∥∥∥2]
≤ ∆

(
1− e−γη

)
E
[∥∥∥vk − uγ−1QG(∇Ũ(xk))

∥∥∥
1

]
≤ ∆

(
1− e−γη

)√
d
(
E [∥vk∥] + E

[∥∥∥QG(∇Ũ(xk))
∥∥∥]) .

Now we need to derive a uniform bound of E [∥vk∥], by the update rule, we know that,648

E
[
∥vk+1∥2

]
= E

[∥∥∥vke
−γη − uγ−1(1− eγη)QG(∇Ũ(xk)) + ξvk + αv

k

∥∥∥2]
≤ (1 + γη/2) (1− γη/2)2E

[
∥vk∥2

]
+

(
2

γη
+ 1

)
u2η2E

[∥∥∥QG(∇Ũ)
∥∥∥2]+ 2γudη + E

[
∥αv

k∥2
]

≤ (1− γη/2)E
[
∥vk∥2

]
+ 3u2η/γG2 + 2γudη + E

[
∥αv

k∥2
]
.
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When E
[
∥αv

k∥
2
]
≤ 2V arvd < 4γudη, the inequality can be further written as:649

E
[
∥vk+1∥2

]
≤ (1− γη/2)E

[
∥vk∥2

]
+ 3u2η/γG2 + 6γudη

≤ E
[
∥v0∥2

]
+

6u2ηG2
γ2η

+
12γudη

γη

≤ E
[
∥v0∥2

]
+

6u2ηG2
γ2

+ 12ud.

If E
[
∥αv

k∥
2
]
≤ 2E

[∥∥∥(vke
−γη − uγ−1 (1− e−γη)QG(∇Ũ(xk))

)
−Qs

(
vke

−γη − uγ−1 (1− e−γη)QG(∇Ũ(xk))
)∥∥∥2],650

the ineuqality can be wirtten as:651

E
[
∥vk+1∥2

]
≤ (1− γη/2)E

[
∥vk∥2

]
+ 3u2η/γG2 + 2γudη + 2∆

(
1− e−γη

)√
d
(
E [∥vk∥] + E

[∥∥∥QG(∇Ũ(xk))
∥∥∥])

≤ (1− γη/2)E
[
∥vk∥2

]
+ 3u2η/γG2 + 2γudη + 2∆γη

√
d

(√
E
[
∥vk∥2

]
+ G

)

≤
(√

1− γη/2
√
E
[
∥vk∥2

]
+

∆γη
√
d√

1− γη/2

)2

+ 3u2η/γG2 + 2γudη + 2∆γη
√
dG.

Thus,652

E [∥vk∥] ≤
√
E
[
∥v0∥2

]
+

∆γη
√
d(

1−
√
1− γη/2

)√
1− γη/2

+
3u2η/γG2 + 2γudη + 2∆γη

√
dG

∆γη
√
d√

1−γη/2
+

√
γη/2

(
3u2η/γG2 + 2γudη + 2∆γη

√
dG
)

≤
√
E
[
∥v0∥2

]
+

∆γη
√
d

1− γη/2 +

√
6u2/γ2G2 + 4ud+ 4∆

√
dG

≤
√
E
[
∥v0∥2

]
+∆
√
d+

√
6u2/γ2G2 + 4ud+ 4∆

√
dG.

Finally, we can have:653

E [∥vk∥] ≤max

{√
E
[
∥v0∥2

]
+∆
√
d+

√
6u2/γ2G2 + 4ud+ 4∆

√
dG,

√
E
[
∥v0∥2

]
+

√
6u2ηG2
γ2

+
√
12ud

}
=: A′.

Thus, we can have,654

E
[∥∥∥(vke

−γη − uγ−1
(
1− e−γη

)
QG(∇Ũ(xk))

)
−Qs

(
vke

−γη − uγ−1
(
1− e−γη

)
QG(∇Ũ(xk))

)∥∥∥2]
≤ ∆γη

√
d (A′ + G) ,

and we can bound the E
[
∥αv

k∥
2
]

as,655

E
[
∥αv

k∥2
]
≤ max

{
∆γη
√
d (A′ + G) , 4γudη

}
= γηmax

{
∆
√
d (A′ + G) , 4ud

}
=: γηA. (61)
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Now we bound the E
[
∥αx

k∥
2
]
. When V arx ≥ ρ0, as the same analysis in (59) we can show,656

E
[
∥αx

k∥2
]
≤ 2V arxd ≤ 4udη2.

If V arx < ρ0, and let µx = xk + γ−1 (1− e−γη) vk + uγ−2 (γη + e−γη − 1)QG(∇Ũ(xk)), by657

the same analysis in (60) we can have:658

E
[
∥αx

k∥2
]

≤ max
{
2E
[
∥µx −Qs (µx)∥2

]
, 2V arxd

}
.

Again using the bound equation (6) in Li and De Sa [2019] gives us,659

E
[
∥µx −Qs(µx)∥2

]
≤ ∆E

[∥∥∥γ−1
(
1− e−γη

)
vk + uγ−2

(
γη + e−γη − 1

)
QG(∇Ũ(xk))

∥∥∥
1

]
≤ ∆ηE [∥vk∥1] +

uη2

2
E
[∥∥∥QG(∇Ũ(xk))

∥∥∥
1

]
≤ ∆η

√
dE [∥vk∥] +

uη2

2

√
dE
[∥∥∥QG(∇Ũ(xk))

∥∥∥]
≤ ∆η

√
dA′ +

uη2

2

√
dG.

Thus, we can have,660

E
[
∥αx

k∥2
]
≤ max

{
2∆η
√
dA′ + uη2

√
dG, 4udη2

}
≤ ηmax

{
2∆
√
dA′ + uη

√
dG, 4udη

}
=: ηB. (62)

Then follow the same analysis of (48), we can show661

W2(pK , p
∗) ≤ 4e−Kη/2κ1W2(q0, q

∗) +
4η2
√

8EK

5

1− e−η/2κ1

+
20u2η2

(
∆2d
4 + σ2

)
+ 8u2η (γA+B)

η2
√

8EK

5 +
√
1− e−η/κ1

√
5u2η2

(
∆2d
4 + σ2

)
+ 2u2η (γA+B)

.

Now we let the first term less than ϵ/3, from the Lemma 13 in [Cheng et al., 2018] we know that662

W2(q0, q
∗) ≤ 3

(
d
m1

+D2
)

. So we can choose K as the following,663

K ≤ 2κ1
η

log

(
36

(
d

m1
+D2

))
.

Next, we choose a stepsize η ≤ ϵκ−1
1√

479232/5(d/m1+D2)
to ensure the second term is controlled below664

ϵ/3. Since 1− e−η/2κ1 ≥ η/4κ1 and definition of EK ,665

4
η2
√

8EK

5

1− e−η/2κ1
≤ 4

η2
√

8EK

5

η/4κ1
≤ 16κ1

(
η

√
8EK
5

)
≤ ϵ/3.

Finally by choosing the stepsize satisfied that,666

η ≤ ϵ2

2880κ1u
(
∆2d
4 + σ2

) ,
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the third term can be bounded as:667

20u2η2
(

∆2d
4 + σ2

)
+ 8u2η (γA+B)

η2
√

8EK

5 +
√
1− e−η/κ1

√
5u2η2

(
∆2d
4 + σ2

)
+ 2u2η (γA+B)

≤
20u2η2

(
∆2d
4 + σ2

)
+ 8u2η (γA+B)

√
1− e−η/κ1

√
5u2η2

(
∆2d
4 + σ2

)
+ 2u2η (γA+B)

≤
20u2η2

(
∆2d
4 + σ2

)
+ 8u2η (γA+B)√

η/4κ1

√
5u2η2

(
∆2d
4 + σ2

)
+ 2u2η (γA+B)

≤ 4

√
20u2κ1η

(
∆2d

4
+ σ2

)
+ 8κ1u2 (γA+B)

≤ ϵ/3 + 8
√
2κ1u2 (γA+B).

This complete the proof.668

D.8 Proof of Theorem 9669

Similarily, from the analysis in (61), we know that670

E
[
∥αv

k∥2
]
≤ γηA, (63)

where A = max
{
∆
√
d (A′ + G) , 4ud

}
. By the analysis in (59), we know that if Varhmc

x ≥ ∆2

4 ,671

we can have672

E
[
∥αx

k∥2
]
≤ 4udη2 (64)

by (62), if Varhmc
x < ∆2

4 ,673

E
[
∥αx

k∥2
]
≤ ηB, (65)

where B = max
{
2∆
√
dA′ + uη

√
dG, 4udη

}
. Thus, we can define the following:674

E
[
∥αx

k∥2
]
= ηB, (66)

where B is defined as:675

B =

{
4udη, if Varhmc

x ≥ ∆2

4

B, else.
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Combining the bound of E
[
∥αx

k∥
2
]
, E
[
∥αv

k∥
2
]

with (51), we can show,676

DKL(pK ||p̂Kη)

≤ u

4γTη2
E
[
∥αx

k∥2
]
+

u

4γ

K∑
k=0

∫ (k+1)η

kη

E
[
∥γαv

k/η∥2
]
ds+

u

4γ

K∑
k=0

∫ (k+1)η

kη

E
[
∥αx

k/η∥2
]
ds

+
u

4γ
3M2Kη3

((
γ2 + 2u2M2

)
E +

(
γ2 + 2u2M2

)
C∆2d+ u2σ2 + 2u2G2 + 2du

)
+

u

4γ
Kη

(
∆2d

4
+ σ2

)
≤ u

4γ
3M2Kη3

((
γ2 + 2u2M2

)
E +

(
γ2 + 2u2M2

)
C∆2d+ u2σ2 + 2u2G2 + 2du

)
+

u

4γ
Kη

(
∆2d

4
+ σ2

)
+

uB
4γT

+
uKA
4

+
uKB
4γ

≤ u

4γ
3M2Kη3

((
γ2 + 2u2M2

)
E +

(
γ2 + 2u2M2

)
C∆2d+ u2σ2 + 2u2G2 + 2du

)
+

u

4γ
Kη

(
∆2d

4
+ σ2

)
+
uKA
4

+
uKB
2γ

≤ u

4γ
3M2Kη3

((
γ2 + 2u2M2

)
E + u2σ2 + 2u2G2 + 2du

)
+

u

4γ
Kησ2 +

u

16γ
Kη∆2d+

uKA
4

+
uKB
2γ

=: C0Kη
3 + C1Kησ

2 + C2Kη∆
2 + C3KA+ C4KB,

where the constants are defined as677

C0 =
u

4γ
3M2

((
γ2 + 2u2M2

)
E + u2σ2 + 2u2G2 + 2du

)
C1 =

u

4γ

C2 =
u

16γ
d

C3 =
u

4

C4 =
u

2γ
.

By the weighted CKP inequality and given Kη ≥ 1,678

W2(pK , p̂Kη) ≤ Λ

(√
DKL(pK ||p̂Kη) +

4

√
DKL(pK ||p̂Kη)

)
≤
(
C̃0
√
η + C̃1Ã+ C̃2

√
∆
)√

Kη + C̃3

√
KA+ C̃4

√
KB,

where the constants are defined as:679

C̃0 = Λ
(√

C0 +
4
√
C0

)
C̃1 = Λ

(√
C1 +

4
√
C1

)
C̃2 = Λ

(√
C2 +

4
√
C2

)
C̃3 = Λ

(√
C3 +

4
√
C3

)
C̃4 = Λ

(√
C4 +

4
√
C4

)
Ã2 = Λmax

{
σ2,
√
σ2
}
.

From the same analysis of (36), we can have:680

W2(pK , p
∗) ≤

(
C̃0
√
η + C̃1Ã

)√
Kη + C̃2

√
Kη∆+ C̃3

√
KA+ C̃4

√
KB + Γ0e

−µ∗Kη. (67)
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In order to bound the Wasserstein distance, we need to set681

ΛC̃0

√
Kη2 =

ϵ

2
and Γ0e

−µ∗Kη =
ϵ

2
. (68)

Solving the equation (68), we can have682

Kη =
log
(
2Γ0

ϵ

)
µ∗ and η =

ϵ2

4Λ
2
C̃0

2
Kη

.

Combining these two we can have683

η =
ϵ2µ∗

4Λ
2
C̃0

2
log
(
2Γ0

ϵ

) and K =
4Λ

2
C̃0

2
log2

(
2Γ0

ϵ

)
ϵ2 (µ∗)

2 .

Plugging in (67) completes the proof.684

D.9 Proof of Theorem 12685

Recall that the update of VC SGLDLP-L is686

xk+1 = Qvc
(
xk − ηQG(∇Ũ(xk)), 2η,∆

)
= xk − ηQG(∇Ũ(xk)) +

√
2ηξk + αk,

where αk is defined as687

αk = Qvc
(
xk − ηQG(∇Ũ(xk)), 2η,∆

)
− xk − ηQG(∇Ũ(xk)) +

√
2ηξk.

From analysis in Zhang et al. [2022], we know that688

E
[
∥αk∥2

]
≤ max (2∆ηG, 5ηd)

=: ηA.

Combining the analysis in section D.6, we can show,689

DKL(pK ||p̂Kη) ≤
ME
4
Kη2 +

3M + 1

4
σ2Kη +

((6 + 3m2)M +m2) d

16m2
∆2Kη +

(
6Mη

4m2
+

1

4η

)
KE

[
∥αk∥2

]
≤ME

4
Kη2 +

3M + 1

4
σ2Kη +

((6 + 3m2)M +m2) d

16m2
∆2Kη +

(
6Mη

4m2
+

1

4η

)
KηA

≤ME
4
Kη2 +

3M + 1

4
σ2Kη +

((6 + 3m2)M +m2) d

16m2
∆2Kη +

6M +m2

m2
KA

=:C0Kη
2 + C1Kησ

2 + C2Kη∆
2 + C3KA,

where the constant C0, C1, C2 and C3 are defined as:690

C0 =
ME
4

C1 =
3M + 1

4

C2 =
((6 + 3m2)M +m2) d

16m2

C3 =
6M +m2

m2

We are ready to bound the Wasserstein distance,691

W2
2 (pK , p̂Kη) ≤ (12 + 8 (κ0 + 2b+ 2d))

[((
C0 +

√
C0

)
η +

(
C1 +

√
C1

)
Ã
)
(Kη)

2
+
(
C2 +

√
C2

)
∆(Kη)2

+
(
C3 +

√
C3

)
AK2η

]
=:
(
C̃0

2
η + C̃1

2
Ã+ C̃2

2
∆
)
(Kη)

2
+ C̃3

2AK2η,
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where the constants are defined as:692

Ã = max
{
σ2,
√
σ2
}

A = max
{
A,
√
A
}

C̃0

2
= (12 + 8 (κ0 + 2b+ 2d))

(
C0 +

√
C0

)
C̃1

2
= (12 + 8 (κ0 + 2b+ 2d))

(
C1 +

√
C1

)
C̃2

2
= (12 + 8 (κ0 + 2b+ 2d))

(
C2 +

√
C2

)
C̃3

2
= (12 + 8 (κ0 + 2b+ 2d))

(
C3 +

√
C3

)
.

From Proposition 9 in the paper Raginsky et al. [2017], we know that693

W2(p̂Kη, p
∗) ≤

√
2CLS

(
log ∥p0∥∞ +

d

2
log

3π

mβ
+ β

(
Mκ0
3

+B
√
κ0 +G0 +

b

2
log 3

))
e−Kη/βCLS

=: C̃4e
−Kη/βCLS

Finally, we can have694

W2(pK , p
∗) ≤

(
C̃0
√
η + C̃1

√
A+ C̃2

√
∆
)
Kη + C̃3

√
A
√
K2η + C̃4e

−Kη/βCLS . (69)

In order to bound the 2-Wasserstein distance, we need to set695

C̃0Kη
5/4 =

ϵ

2
and C̃3e

−Kη/βCLS =
ϵ

2
. (70)

Solving the (70), we can have696

Kη = CLS log

(
2C̃3

ϵ

)
and η =

ϵ4

16C̃0

4
(Kη)

4
.

Combining these two we can have697

η =
ϵ4

16C̃0

4
C4

LS log4
(

2C̃3

ϵ

) and K =
16C̃0

4
C5

LS log5
(

2C̃3

ϵ

)
ϵ4

.

Plugging K and η into (69) completes the proof.698

E Techinical Proofs699

E.1 Proof of Lemma 13700

Proof. By the definition of ξ in (25)701

∥Eξ∥2 = ∥Eg̃(x)− E∇U(x)∥2

= ∥E∇U(Qw(x))− E∇U(x)∥2

≤ E
[
∥∇U(Qw(x))−∇U(x)∥2

]
≤M2E

[
∥Qw(x)−∇U(x)∥2

]
≤M∆2d

4
.
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We also know that from the definition that702

E ∥ξ∥2 = E ∥g̃(x)−∇U(x)∥2

= E
∥∥∥QG(∇Ũ(QW (x)))−∇Ũ(QW (x)) +∇Ũ(QW (x))−∇U(QW (x)) +∇U(QW (x))−∇U(x)

∥∥∥2
= E

∥∥∥QG(∇Ũ(QW (x)))−∇Ũ(QW (x))
∥∥∥2 + E

∥∥∥∇Ũ(QW (x))−∇U(QW (x))
∥∥∥2 + E ∥∇U(QW (x))−∇U(x)∥2

≤ ∆2d

4
+ σ2 +M2E ∥QW (x)− x∥2

≤ (M2 + 1)
∆2d

4
+ σ2,

where in the first inequality, we apply Assumptions 1 and 4.703

704

E.2 Proof of Lemma 14705

Proof. Let Γ1 be the set of all couplings between Φ̃ηq0 and q∗ and Γ2 be the set of all couplings706

between Φ̂ηq0 adn q∗. Let r1 be the optimal coupling between Φ̃ηq0 and q∗, i.e.707

E(θ,ϕ)∼r1 [∥θ − ϕ∥
2
] =W2

2 (Φ̃ηq0, q
∗).

Let
([

x̃
ω̃

]
,

[
x∗

ω∗

])
∼ r1. We define the random variable

[
x
ω

]
as708 [

x
ω

]
=

[
x̃
ω̃

]
+ u

[ (∫ η

0

(∫ r

0
e−γ(s−r)ds

)
dr
)
ξ(∫ η

0

(∫ r

0
e−γ(s−r)ds

)
dr +

∫ η

0
e−γ(s−η)ds

)
ξ

]
.

By equation (29),
([

x
ω

]
,

[
x∗

ω∗

])
define a valid coupling between Φηq0 and q∗. Now we can analyze709

the Wasserstein distance between Φηq0 and q∗.710

W2
2 (Φ̂ηq0, q

∗) ≤ Er1

∥∥∥∥∥
[
x̃
ω̃

]
+ u

[ (∫ η

0

(∫ r

0
e−γ(s−r)ds

)
dr
)
ξ(∫ η

0

(∫ r

0
e−γ(s−r)ds

)
dr +

∫ δ

0
e−γ(s−η)ds

)
ξ

]
−
[
x∗

ω∗

]∥∥∥∥∥
2

(71)

≤ Er1

∥∥∥∥∥
[
x̃− x∗
ω̃ − ω∗

]
+ u

[ (∫ η

0

(∫ r

0
e−γ(s−r)ds

)
dr
)
Eξ(∫ η

0

(∫ r

0
e−γ(s−r)ds

)
dr +

∫ δ

0
e−γ(s−η)ds

)
Eξ

]∥∥∥∥∥
2


+ Er1

[∥∥∥∥u [ (∫ η

0

(∫ r

0
e−γ(s−r)ds

)
dr
)
(ξ − Eξ)(∫ η

0

(∫ r

0
e−γ(s−r)ds

)
dr +

∫ η

0
e−γ(s−η)ds

)
(ξ − Eξ)

]∥∥∥∥2
]

≤
(
W2(Φ̃ηq0, q

∗) + 2u
√
η4/4 + η2 ∥Eξ∥

)2
+ 4u2(η4/4 + η2)Er1

[
∥ξ − Eξ∥2

]
≤
(
W2(Φ̃ηq0, q

∗) +
√
5/2uη

√
dM∆

)2
+ 5u2η2

(
(M2 + 1)

∆2d

4
+ σ2

)
.

711

E.3 Proof of Lemma 15712

Proof. In order to get the upper bound of ∥xk∥ and ∥vk∥, we bound the Lyapunov function713

E(xk,vk). By the smooth Assumption 1, we know714

U(xk+1)− U(x∗) ≤ U(xk) + ⟨∇U(xk),xk+1 − xk⟩+M2/2 ∥xk+1 − xk∥2 − U(x∗).

Recall the definition of the Lyapunov function715

E(xk+1,vk+1) = ∥xk+1∥2 + ∥xk+1 + 2vk+1/γ∥2 + 8u (U(xk+1)− U(x∗)) /γ2.
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For the first two terms we have716

∥xk+1∥2 = ∥xk∥2 + 2⟨xk,xk+1 − xk⟩+ ∥xk+1 − xk∥2

∥xk+1 + 2vk+1/γ∥2 = ∥xk + 2vk/γ∥2 + 2⟨xk + 2vk/γ,xk+1 − xk + 2(vk+1 − vk)/γ⟩
+ ∥xk+1 − xk + 2(vk+1 − vk)/γ∥2 .

This implies the following:717

E [E(xk+1,vk+1)] ≤ E [E(xk,vk)] + 4E [⟨xk,xk+1 − xk⟩] +
4

γ
E [⟨xk,vk+1 − vk⟩] +

4

γ
E (⟨vk,xk+1 − xk⟩)

(72)

+
8

γ2
E [⟨vk,vk+1 − vk⟩] +

8u

γ2
E
[
⟨∇U(xk),xk+1 − xk⟩+M/2 ∥xk+1 − xk∥2

]
+ E

[
∥xk+1 − xk∥2

]
+ E

[
∥xk+1 − xk + 2(vk+1 − vk)/γ∥2

]
.

By the update rule in (3), we know that718

E [⟨xk,xk+1 − xk⟩] =
1− e−γη

γ
E [⟨xk,vk⟩] +

u(γη + e−γη − 1)

γ2
E [⟨xk, g̃(xk)⟩] ,

E [⟨xk,vk+1 − vk⟩] = −(1− e−γη)E [⟨xk,vk⟩]−
u(1− e−γη)

γ
E [⟨xk, g̃(xk)⟩] ,

E [⟨vk,xk+1 − xk⟩] =
1− e−γη

γ
E
[
∥vk∥2

]
+
u(γη + e−γη − 1)

γ2
E [⟨vk, g̃(xk)⟩] ,

E [⟨vk,vk+1 − vk⟩] = −(1− e−γη)E
[
∥vk∥2

]
− u(1− e−γη)

γ
E [⟨vk, g̃(xk)⟩] .

Plug into the (72) yields:719

E [E(xk+1,vk+1)] ≤ E [E(xk,vk)]−
4u(2− γη − 2e−γη)

γ2
E [⟨xk, g̃(xk)⟩]−

4(1− e−γη)

γ2
E
[
∥vk∥2

]
+

4u(γη + e−γη − 1)

γ3
E [⟨vk, g̃(xk)⟩] +

8u(1− e−γη)

γ3
E [⟨vk,∇U(xk)− g̃(xk)⟩]

+
8u2(γη + e−γη − 1)

γ4
E [⟨∇U(xk), g̃(xk)⟩] +

(
4Mu

γ2
+ 3

)
E
[
∥xk+1 − xk∥2

]
+

8

γ2
E
[
∥vk+1 − vk∥2

]
. (73)

By Assumption 3, we know that ⟨xk,∇U(xk)⟩ ≥ m2 ∥xk∥2 − b. We then assume η ≤ 1/(8γ) and720

use the inequality −x ≤ e−x − 1 ≤ x2/2− x for any x ≥ 0, it follows that721

− 4u(2− γη − 2e−γη)

γ2
E [⟨xk, g̃(xk)⟩]

= −4u(2− γη − 2e−γη)

γ2
(E [⟨xk,∇U(xk)⟩] + E [⟨xk, g̃(xk)−∇U(xk)⟩])

≤ −4u(2− γη − 2e−γη)

γ2

(
m2E

[
∥xk∥2

]
− b
)
+

4u(2− γη − 2e−γη)

γ2

(
1

8
E
[
∥xk∥2

]
+ 2E

[
∥g̃(xk)−∇U(xk)∥2

])
≤ −3m2uη

γ
E
[
∥xk∥2

]
+

4uηb

γ
+

8uη

γ
E
[
∥g̃(xk)−∇U(xk)∥2

]
,

where the first inequality is because of the Young’s inequaltiy and Assumption 1 and the last in-722

equality is based on the inequality that γη − (γη)2 ≤ 2 − γη − 2e−γη ≤ γη. Again by Young’s723

inequality and the update rule in (3) we have:724

E
[
∥xk+1 − xk∥2

]
≤ 2η2E

[
∥vk∥2

]
+ u2η4/2E

[
∥g̃(xk)∥2

]
+ E

[
∥ξxk∥2

]
E
[
∥vk+1 − vk∥2

]
≤ 2γ2η2E

[
∥vk∥2

]
+ 2u2η2E

[
∥g̃(xk)∥2

]
+ E

[
∥ξvk∥2

]
.
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It is easy to verify the fact that E
[
∥ξvk∥

2
]
≤ 2γudη and E

[
∥ξxk∥

2
]
≤ 2udη2. Thus,725

E [E(xk+1,vk+1)]

≤ E [E(xk,vk)]−
3umη2

γ
E
[
∥xk∥2

]
− 3(1− e−γη)− η2(8Mu+ uγ + 22γ2)

γ2
E
[
∥vk∥2

]
+

36u2η2 + 2γuη2 +
(
4Mu+ 3γ2

)
η4

2γ2
E
[
∥g̃(xk)∥2

]
+

2u2η2

γ2
E
[
∥∇U(xk)∥2

]
+

8uη(γ2 + 2u)

γ3
E
[
∥∇U(xk)− g̃(xk)∥2

]
+

(8Mu+ 6γ2)udη2 + 4(4d+ b)uγη

η2
.

If we set726

η ≤ min

{
γ

4 (8Mu+ uγ + 22γ2)
,

√
4u2

4Mu+ 3γ2
,

6γbu

(4Mu+ 3γ2) d

}
,

we can obtain the following,727

E [E(xk+1,vk+1)] ≤ E [E(xk,vk)]−
3um2η

γ
E
[
∥xk∥2

]
− 2η

γ
E
[
∥vk∥2

]
+

(20u+ γ)uη2

γ2
E
[
∥g̃(xk)∥2

]
+

2u2η2

γ2
E
[
∥∇U(xk)∥2

]
+

8uη
(
γ2 + 2u

)
γ3

E
[
∥∇U(xk)− g̃(xk)∥2

]
+

16(d+ b)uη

γ
.

(74)

Furthermore we can bound E
[
∥g̃(xk)∥2

]
by the following analysis:728

E
[
∥g̃(xk)∥2

]
≤ 2E

[
∥g̃(xk)−∇U(xk)∥2

]
+ 2E

[
∥∇U(xk)∥2

]
≤ 2

(
(M2 + 1)

∆2d

4
+ σ2

)
+ 4M2E

[
∥xk∥2

]
+ 4G2,

(75)

where G2 is the bound of the gradient at 0, i.e. ∥∇U(0)∥2 ≤ G2. Thus we can have:729

E [E(xk+1,vk+1)] ≤ E [E(xk,vk)]−
3um2η

γ
E
[
∥xk∥2

]
− 2η

γ
E
[
∥vk∥2

]
+

(21u+ γ)4M2uη2

γ2
E
[
∥xk∥2

]
+

(
2(20u+ γ)uη2

γ2
+

8uη
(
γ2 + 2u

)
γ3

)(
(M2 + 1)

∆2d

4
+ σ2

)
+

(21u+ γ)4uη2

γ2
G2 +

16(d+ b)uη

γ
.

If we set the stepsize730

η ≤ min
{

γm2

12(21u+ γ)M2
,
8(γ2 + 2u)

(20u+ γ)γ

}
,

then we have:731

E [E(xk+1,vk+1)] ≤ E [E(xk,vk)]−
8um2η

3γ
E
[
∥xk∥2

]
− 2η

γ
E
[
∥vk∥2

]
+

(
16uη

(
γ2 + 2u

)
γ3

)(
(M2 + 1)

∆2d

4
+ σ2

)
+

(21u+ γ)4uη2

γ2
G2 +

16(d+ b)uη

γ
.

Furthermore by Young’s inequality and Assumption 1, we can bound the Lyapunov function by the732

following:733

E(x, v) ≤ 5/2 ∥x∥2 + 12

γ2
+

2uM

γ2

(
3 ∥x∥2 + 6 ∥x∗∥2

)
.
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Then if γ2 ≤ 4Mu, we have734

E(x, v) ≤ 16uM

γ2
∥x∥2 + 12

γ2
∥v∥2 + 12uM

γ2
∥x∗∥2 . (76)

Thus,735

E [E(xk+1,vk+1)] ≤
(
1− γm2η

6M

)
E [E(xk,vk)] +

(
16uη

(
γ2 + 2u

)
γ3

)(
(M2 + 1)

∆2d

4
+ σ2

)
+

(21u+ γ)4uη2

γ2
G2 +

16(d+ b)uη

γ
.

Finally we show that736

sup
k≥0

E [E(xk,vk)] ≤ E [E(x0, v0)] +
6M

γm2η

(
16uη

(
γ2 + 2u

)
γ3

)(
(M2 + 1)

∆2d

4
+ σ2

)
+

6M

γm2η

(21u+ γ)4uη2

γ2
G2 +

6M

γm2η

16(d+ b)uη

γ

≤ E [E(x0, v0)] +
96u

(
γ2 + 2u

)
m2γ4

(
(M2 + 1)

∆2d

4
+ σ2

)
+

24(21u+ γ)uM

m2γ3
G2 +

96(d+ b)uM

m2γ2

≤ E + C0

(
(M2 + 1)

∆2d

4
+ σ2

)
, (77)

where E = E [E(x0, v0)] + 24(21u+γ)uM
m2γ3 G2 + 96(d+b)uM

m2γ2 and C0 =
96u(γ2+2u)

m2γ4 . Moreover by the737

definition of Laypunov function, we know E(x, v) ≥ max{∥x∥2 , 2 ∥v/γ∥2}. This further implies738

that739

E
[
∥xk∥2

]
≤ E + C0

(
(M2 + 1)

∆2d

4
+ σ2

)
E
[
∥vk∥2

]
≤ γ2E/2 + γ2C0/2

(
(M2 + 1)

∆2d

4
+ σ2

)
.

Combining with equation (75) we can bound E
[
∥g̃(xk)∥2

]
as:740

E
[
∥g̃(xk)∥2

]
≤ 2

(
(M2 + 1)

∆2d

4
+ σ2

)
+ 4M2E + 4G2. (78)

741

E.4 Proof of Lemma 16742

Proof. By the update rule in (18), we have:743

E
[
∥xk+1∥2

]
=E

[
∥xk − ηg̃(xk)∥2

]
+
√
8ηE [⟨xk − ηg̃(xk), ξk+1⟩] + 2ηE

[
∥ξk+1∥2

]
=E

[
∥xk − ηg̃(xk)∥2

]
+ 2ηd

=E
[
∥xk − η∇U(xk)− η (g̃(xk)−∇U(QW (xk)))− η (∇U(QW (xk))−∇U(xk))∥2

]
+ 2ηd

=E
[
∥xk − η∇U(xk)− η (∇U(QW (xk))−∇U(xk))∥2

]
+ η2E

[
∥g̃(xk)−∇U(QW (xk))∥2

]
+ 2ηd

=(E [∥xk − η∇U(xk)∥] + ηE [∥∇U(QW (xk))−∇U(xk)∥])2 + η2
∆2d

4
+ 2ηd.

We know the fact that:744

E
[
∥xk − η∇U(xk)∥2

]
= E

[
∥xk∥2

]
− 2ηE [⟨xk,∇U(xk)⟩] + η2E

[
∥∇U(xk)∥2

]
= E

[
∥xk∥2

]
+ 2η

(
b−m2E

[
∥xk∥2

])
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(
M2E

[
∥xk∥2

]
+G2

)
=
(
1− 2ηm2 + 2η2M2

)
E
[
∥xk∥2

]
+ 2ηb+ 2η2G2.
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For any η ∈
(
0, 1 ∧ m2

2M2

)
, if 0 < 1 − 2ηm2 + 2η2M2 < 1 and set c = ηm2−η2M2

1−2ηm+2η2M2 , then we745

have:746

E
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]
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[
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+
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1
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4
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4
+
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(
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)
+ η2

∆2d

4
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For any k > 0 we can bound the recursive equations as:747
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Now if we let E = E
[
∥x0∥2

]
+ M

m2

(
2b+ 2ηG2 + 2d

)
, then we can write:748

E
[
∥xk∥2

]
≤ E + 2

(
M2 + 1

)
m2

∆2d

4
.

749

E.5 Proof of Lemma 17750

Proof. From the same analysis in (74), if we set751

η ≤ min

{
γ

4 (8Mu+ uγ + 22γ2)
,

√
4u2

4Mu+ 3γ2
,

6γbu

(4Mu+ 3γ2) d

}
,

we can obtain the following,752
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(79)

By assumption 1, we can bound E
[∥∥∥QG(∇Ũ(xk))

∥∥∥2] by the following,753
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4
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Plugging this bound into equation 79, we can have:754
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If we set the step size η ≤ γm2

6(22u+γ)M2 , we can have:755
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Again from the same analysis in (76), if γ2 ≤ 4Mu, we have756

E(x, v) ≤ 16uM

γ2
∥x∥2 + 12

γ2
∥v∥2 + 12uM

γ2
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Thus,757
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Finally, we show that for any k > 0,758
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Finally by the fact that E
[
∥xk∥2

]
≤ E [E(xk,vk)] and E

[
∥vk∥2

]
≤ γ2E [E(xk,vk)] /2 we can759

get our claim in Lemma 17.760

761

F Additional Experiment Results762

In this section, we provide additional experiment results.763
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Figure 5: Low-precision SGHMC with stepsize equal to 0.01 on a Gaussian mixture distribution.
(a): SGHMCLP-L. (b): VC SGHMCLP-L. (c): SGHMCLP-F.

F.1 Sampling from Gaussian mixture Distribution764

We first demonstrate the performance of Low-precision SGHMC for fitting a strongly log-concave765

distribution. In this case, we use the standard Gaussian distribution as the representative of the766

strongly log-concave distribution. The simulation result is shown in Figure 1. As in the Figure 1767

and 5 displayed, the sample obtained from naı̈ve SGHMCLP-L has a larger variance than the target768

distribution. This verifies the results we prove in Theorem 6 and 7. This is because in addition to the769

Gaussian noise the naı̈ve quantizer in order to be unbiased introduces an extra noise which increases770

the variance of the sample. The variance corrected quantizer solves this problem by quantizing the771

mean of each sample and letting the variance of the quantizer equal to the variance Varhmc
x de-772

fined by the Hamiltonian dynamics 9. The variance-corrected SGHMC with low-precision gradient773

accumulators (VC SGHMCLP-L) doesn’t suffer from the larger variance problem as the variance774

corrected quantization matches the variance defined in (2).775
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Figure 4: Wasserstein Distance Ratio of VC
SGHMCLP-L & SGHMCLP-L (Smaller is bet-
ter). The dashed line is the 2-Wasserstein distance
to the target distribution ratio between the sample
obtained by VC SGHMCLP-L and SGHMCLP-L.

We also study in which case the variance cor-776

rected quantization function is advantageous777

over the naı̈ve stochastic quantization func-778

tion. We test the 2-Wasserstein distance of VC779

SGHMCLP-L and SGHMCLP-L over different780

variances. The result is shown in Figure 4. We781

found that when the variance Varhmc
x is close782

to the largest quantization variance ∆2/4, the783

variance corrected quantization function shows784

the largest advantage over the naı̈ve quantiza-785

tion. When the variance Varhmc
x is less than786

∆2/4 the correction has a chance to fail and787

when it is 100 times the quantization variance,788

the advantage of variance corrected quantiza-789

tion shows less advantage. One possible reason790

is the quantization noise eliminated by variance791

corrected quantization function is not critical792

compared with the intrinsic variance needed.793

F.2 Multi-layer perception794

We present the low-precision SGHMC with MLP on the MNIST dataset in Figure 6. We observe795

similar results as the low-precision SGHMC with the logistic model.796

F.3 CIFAR-10 & CIFAR-100797

In this section, we present some additional results for experiments on computer vision tasks in798

CIFAR datasets.799
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(a) (b) (c)

Figure 6: Training NLL of low-precision SGHMC and SGLD on MLP with MNIST in terms of
different numbers of fractional bits. (a): Methods with Full-Precision Gradients Accumulators.
(b): Methods with Low-Precision Gradients Accumulators. (c): Variance corrected quantization.
The low-precision SGHMC adopted with full-precision gradient accumulators achieves comparable
results with SGLD. However, when adopted with low-precision gradient accumulators and variance-
corrected quantization SGHMC shows more robustness to quantization error especially when the
number of representable bits is low.

Table 4: Test errors (%) of Low-precision gradient accumulators on CIFAR with ResNet-18.

CIFAR-10 CIFAR-100
32-bit Float

SGD 4.73 ± 0.10 22.34 ± 0.22
SGLD 4.52 ± 0.07 22.40 ± 0.04

SGHMC 4.78 ± 0.08 22.37 ± 0.04

8-bit Fixed Point

SGD 8.50 ± 0.22 28.42 ± 0.35

SGLD 7.81 ± 0.07 27.15 ± 0.35

VC SGLD 7.03 ±0.23 26.73 ±0.12

SGHMC 6.63 ± 0.10 26.57 ± 0.10

VC SGHMC 6.60 ± 0.06 26.43 ± 0.19

8-bit Block Float Point

SGD 5.86 ±0.18 26.75 ±0.11

SGLD 5.75 ±0.05 26.11±0.38

VC SGLD 5.51 ±0.01 25.14 ±0.11

SGHMC 5.38 ±0.06 25.29 ±0.03

VC SGHMC 5.15 ±0.08 24.45 ±0.16
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