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ABSTRACT

In this paper, we study a novel episodic risk-sensitive Reinforcement Learning
(RL) problem, named Iterated CVaR RL, which aims to maximize the tail of the
reward-to-go at each step, and focuses on tightly controlling the risk of getting
into catastrophic situations at each stage. This formulation is applicable to real-
world tasks that demand strong risk avoidance throughout the decision process,
such as autonomous driving, clinical treatment planning and robotics. We investi-
gate two performance metrics under Iterated CVaR RL, i.e., Regret Minimization
and Best Policy Identification. For both metrics, we design efficient algorithms
ICVaR-RM and ICVaR-BPI, respectively, and provide nearly matching upper and
lower bounds with respect to the number of episodes K. We also investigate an
interesting limiting case of Iterated CVaR RL, called Worst Path RL, where the
objective becomes to maximize the minimum possible cumulative reward. For
Worst Path RL, we propose an efficient algorithm with constant upper and lower
bounds. Finally, our techniques for bounding the change of CVaR due to the value
function shift and decomposing the regret via a distorted visitation distribution are
novel, and can find applications in other risk-sensitive RL problems.

1 INTRODUCTION

Reinforcement Learning (RL) (Kaelbling et al., 1996; Szepesvári, 2010; Sutton & Barto, 2018) is a
classic online decision-making formulation, where an agent interacts with an unknown environment
with the goal of maximizing the obtained reward. Despite the empirical success and theoretical
progress of recent RL algorithms, e.g., (Szepesvári, 2010; Agrawal & Jia, 2017; Azar et al., 2017;
Zanette & Brunskill, 2019), they focus mainly on the risk-neutral criterion, i.e., maximizing the ex-
pected cumulative reward, and can fail to avoid rare but disastrous situations. As a result, existing
algorithms cannot be applied to tackle real-world risk-sensitive tasks, such as autonomous driv-
ing (Wen et al., 2020) and clinical treatment planning (Coronato et al., 2020), where policies that
ensure low risk of getting into catastrophic situations at all decision stages are strongly preferred.

Motivated by the above facts, we investigate Iterated CVaR RL, a novel episodic RL formula-
tion equipped with an important risk-sensitive criterion, i.e., Iterated Conditional Value-at-Risk
(CVaR) (Hardy & Wirch, 2004). Here, CVaR (Artzner et al., 1999) is a popular static (single-stage)
risk measure which stands for the expected tail reward. Iterated CVaR is a dynamic (multi-stage)
risk measure defined upon CVaR by backward iteration, and focuses on the worst portion of the
reward-to-go at each stage. In the Iterated CVaR RL problem, an agent interacts with an unknown
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episodic Markov Decision Process (MDP) in order to maximize the worst α-portion of the reward-
to-go at each step, where α ∈ (0, 1] is a given risk level. Under this model, we investigate two
important performance metrics, i.e., Regret Minimization (RM), where the goal is to minimize the
cumulative regret over all episodes, and Best Policy Identification (BPI), where the performance is
measured by the number of episodes required for identifying an optimal policy.

Compared to existing CVaR MDP model, e.g., (Boda & Filar, 2006; Ott, 2010; Bäuerle & Ott,
2011; Chow et al., 2015), which aims to maximize the CVaR (i.e., the worst α-portion) of the total
reward, our Iterated CVaR RL concerns the worst α-portion of the reward-to-go at each step, and
prevents the agent from getting into catastrophic states more carefully. Intuitively, CVaR MDP takes
more cumulative reward into account and prefers actions which have better performance in general,
but can have larger probabilities of getting into catastrophic states. Thus, CVaR MDP is suitable for
scenarios where bad situations lead to a higher cost instead of fatal damage, e.g., finance. In contrast,
our Iterated CVaR RL prefers actions which have smaller probabilities of getting into catastrophic
states. Hence, Iterated CVaR RL is suitable for safety-critical applications, where catastrophic states
are unacceptable and need to be carefully avoided, e.g., clinical treatment planning (Wang et al.,
2019) and unmanned helicopter control (Johnson & Kannan, 2002). For example, consider the case
where we fly an unmanned helicopter to complete some task. There is a small probability that, at
each time during execution, the helicopter encounters a sensing or control failure and does not take
the scheduled action. To guarantee the safety of surrounding workers and the helicopter, we need
to make sure that even if the failure occurs, the taken policy ensures that the helicopter does not
crash and cause fatal damage (see Appendix C.2, C.3 for more detailed comparisons with existing
risk-sensitive MDP models).

Iterated CVaR RL faces several unique challenges as follows. (i) The importance (contribution to
regret) of a state in Iterated CVaR RL is not proportional to its visitation probability. Specifically,
there can be states which are critical (risky) but have a small visitation probability. As a result, the
regret for Iterated CVaR RL cannot be decomposed into the estimation error at each step with respect
to the visitation distribution, as in standard RL analysis (Jaksch et al., 2010; Azar et al., 2017; Zanette
& Brunskill, 2019). (ii) In Iterated CVaR RL, the calculation of estimation error involves bounding
the change of CVaR when the true value function shifts to optimistic value function, which is very
different from typically bounding the change of expected rewards as in existing RL analysis (Jaksch
et al., 2010; Azar et al., 2017; Jin et al., 2018). Therefore, Iterated CVaR RL demands brand-
new algorithm design and analytical techniques. To tackle the above challenges, we design two
efficient algorithms ICVaR-RM and ICVaR-BPI for the RM and BPI metrics, respectively, equipped
with delicate CVaR-adapted value iteration and exploration bonuses to allocate more attention on
rare but potentially dangerous states. We also develop novel analytical techniques, for bounding the
change of CVaR due to the value function shift and decomposing the regret via a distorted visitation
distribution. Lower bounds for both metrics are established to demonstrate the optimality of our
algorithms with respect to the number of episodes K. Moreover, we present experiments to validate
our theoretical results and show the performance superiority of our algorithm (see Appendix A).

We further study an interesting limiting case of Iterated CVaR RL when α approaches 0, called Worst
Path RL, where the goal becomes to maximize the minimum possible cumulative reward (optimize
the worst path). This setting corresponds to the scenario where the decision maker is extremely risk-
adverse and concerns the worst situation (e.g., in clinical treatment planning (Coronato et al., 2020),
the worst case can be disastrous). We emphasize that Worst Path RL cannot be directly solved by
taking α → 0 in Iterated CVaR RL’s results, as the results there have a dependency on 1

α in both
upper and lower bounds. To handle this limiting case, we design a simple yet efficient algorithm
MaxWP, and obtain constant upper and lower regret bounds which are independent of K.

The contributions of this paper are summarized as follows.

• We propose a novel Iterated CVaR RL formulation, where an agent interacts with an
unknown environment, with the objective of maximizing the worst α-percent tail of the
reward-to-go at each step. This formulation enables one to tightly control risk throughout
the decision process, and is most suitable for applications where such safety-at-all-time is
critical.

• We investigate two important metrics of Iterated CVaR RL, i.e., Regret Minimization
(RM) and Best Policy Identification (BPI), and propose efficient algorithms ICVaR-RM
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and ICVaR-BPI. We establish nearly matching regret/sample complexity upper and lower
bounds with respect to K. Moreover, we develop novel techniques to bound the change
of CVaR due to the value function shift and decompose the regret via a distorted visitation
distribution, which can be applied to other risk-sensitive decision making problems.

• We further investigate a limiting case of Iterated CVaR RL when α approaches 0, called
Worst Path RL, where the objective is to maximize the minimum possible cumulative re-
ward. We develop a simple and efficient algorithm MaxWP, and provide constant regret
upper and lower bounds (independent of K).

Due to space limit, we defer all proofs and experiments to Appendix.

2 RELATED WORK

Below we review the most related works, and defer a full literature review to Appendix B.

CVaR-based MDPs (Known Transition). Boda & Filar (2006); Ott (2010); Bäuerle & Ott (2011);
Chow et al. (2015) study the CVaR MDP where the objective is to minimize the CVaR of the total
cost, and show that the optimal policy for CVaR MDP is history-dependent (see Appendix C.2 for
a detailed comparison with CVaR MDP). Hardy & Wirch (2004) firstly define the Iterated CVaR
measure, and Osogami (2012); Chu & Zhang (2014); Bäuerle & Glauner (2022) consider iterated
coherent risk measures (including Iterated CVaR) in MDPs, and demonstrate the existence of Marko-
vian optimal policies. The above works focus mainly on the planning side, i.e., proposing algorithms
and error guarantees for MDPs with known transition, while our work develops RL algorithms (in-
teracting with the environment) and regret/sample complexity results for unknown transition.

Risk-sensitive Reinforcement Learning (Unknown Transition). Tamar et al. (2015); Keramati
et al. (2020) study CVaR MDP with unknown transition and provide convergence analysis. Borkar
& Jain (2014); Chow & Ghavamzadeh (2014); Chow et al. (2017) investigate RL with CVaR-based
constraints. Heger (1994); Coraluppi & Marcus (1997; 1999) consider minimizing the worst-case
cost in RL and design heuristic algorithms. Fei et al. (2020; 2021a;b) study risk-sensitive RL with
the exponential utility criterion, which takes all successor states into account with an exponential
reweighting scheme. In contrast, our Iterated CVaR RL primarily concerns the worst α-portion
successor states, and focuses on optimizing the performance under bad situations (see Appendix C.3
for a detailed comparison).

3 PROBLEM FORMULATION

In this section, we present the problem formulations of Iterated CVaR RL and Worst Path RL.

Conditional Value-at-Risk (CVaR). We first introduce two risk measures, i.e., Value-at-Risk (VaR)
and Conditional Value-at-Risk (CVaR). Let X be a random variable with cumulative distribution
function F (x) = Pr[X ≤ x]. Given a risk level α ∈ (0, 1], the VaR at risk level α is the α-quantile
of X , i.e., VaRα(X) = min{x|F (x) ≥ α}, and the CVaR at risk level α is defined as (Rockafellar
et al., 2000):

CVaRα(X) = sup
x∈R

{
x− 1

α
E
[
(x−X)+

] }
,

where (x)+ := max{x, 0}. If there is no probability atom at VaRα(X), CVaR can also be written
as CVaRα(X) = E[X|X ≤ VaRα(X)] (Shapiro et al., 2021). Intuitively, CVaRα(X) is a dis-
torted expectation of X conditioning on its α-portion tail, which depicts the average value when
bad situations happen. When α = 1, CVaRα(X) = E[X], and when α → 0, CVaRα(X) tends to
min(X) (Chow et al., 2015).

Iterated CVaR RL. We consider an episodic Markov Decision Process (MDP)M(S,A, H, p, r).
Here S is the state space, A is the action space, and H is the length of horizon in each episode. p
is the transition distribution, i.e., p(s′|s, a) gives the probability of transitioning to s′ when starting
from state s and taking action a. r : S × A 7→ [0, 1] is a reward function, and r(s, a) gives
a deterministic reward for taking action a in state s. A policy π is defined as a collection of H
functions, i.e., π = {πh : S 7→ A}h∈[H], where [H] := {1, 2, ...,H}.
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The episodic RL game is as follows. In each episode k, an agent chooses a policy πk, and starts
from a fixed initial state s1, i.e., sk1 := s1, as assumed in many prior RL works (Fiechter, 1994;
Kaufmann et al., 2021; Ménard et al., 2021). At each step h ∈ [H], the agent observes the state skh
and takes an action akh = πk

h(s
k
h). After that, it receives a reward r(skh, a

k
h) and transitions to a next

state skh+1 according to the transition distribution p(·|skh, akh). The episode ends after H steps and
the agent enters the next episode.

In Iterated CVaR RL, for any risk level α ∈ (0, 1] and a policy π, we use value function V α,π
h : S 7→

R and Q-value function Qα,π
h : S × A 7→ R to denote the cumulative reward that can be obtained

when the agent transitions to the worst α-portion states at each step, starting from s and (s, a) at step
h, respectively. For simplicity of notation, when the value of α is clear, we omit the superscript α and
use the notations V π

h and Qπ
h. Formally, Qπ

h and V π
h are recurrently defined in Eq. (i) below. Since

S, A and H are finite and the maximization of V π
h (s) in Iterated CVaR RL satisfies the optimal

substructure property, there exists an optimal policy π∗ which gives the optimal value V ∗
h (s) =

maxπ V
π
h (s) for all s ∈ S and h ∈ [H] (Chu & Zhang, 2014). Therefore, the Bellman equation and

the Bellman optimality equation are given in Eqs. (i),(ii) below, respectively (Chu & Zhang, 2014).
Qπ

h(s, a) =r(s, a)+CVaRα
s′∼p(·|s,a)(V

π
h+1(s

′))

V π
h (s) = Qπ

h(s, πh(s))

V π
H+1(s) = 0, ∀s ∈ S, (i)


Q∗

h(s, a) =r(s, a)+CVaRα
s′∼p(·|s,a)(V

∗
h+1(s

′))

V ∗
h (s) = max

a∈A
Q∗

h(s, a)

V ∗
H+1(s) = 0, ∀s ∈ S, (ii)

where CVaRα
s′∼p(·|s,a)(V

π
h+1(s

′)) denotes the CVaR value of random variable V π
h+1(s

′) with s′ ∼
p(·|s, a) at risk level α. We also provide the expanded version of value function definitions for
Iterated CVaR RL (Eqs. (i), (ii)) in Appendix C.1.

We consider two performance metrics for Iterated CVaR RL, i.e., Regret Minimization (RM) and
Best Policy Identification (BPI). In Iterated CVaR RL-RM, the agent aims to minimize the cumula-
tive regret in K episodes, defined as

R(K) =

K∑
k=1

(V ∗
1 (s1)− V πk

1 (s1)) . (1)

In Iterated CVaR RL-BPI, given a confidence parameter δ ∈ (0, 1] and an accuracy parameter ε > 0,
the agent needs to use as few trajectories (episodes) as possible to identify an ε-optimal policy π̂,
which satisfies V π̂

1 (s1) ≥ V ∗
1 (s1) − ε, with probability as least 1 − δ. That is, the performance of

BPI is measured by the number of trajectories used, i.e., sample complexity.

Worst Path RL. Furthermore, we investigate an interesting limiting case of Iterated CVaR RL when
α approaches 0, called Worst Path RL. In this case, the objective becomes maximizing the minimum
possible reward (Heger, 1994). The Bellman (optimality) equations become

Qπ
h(s, a) = r(s, a) + min

s′∼p(·|s,a)
(V π

h+1(s
′))

V π
h (s) = Qπ

h(s, πh(s))

V π
H+1(s) = 0, ∀s ∈ S,


Q∗

h(s, a) = r(s, a) + min
s′∼p(·|s,a)

(V ∗
h+1(s

′))

V ∗
h (s) = max

a∈A
Q∗

h(s, a)

V ∗
H+1(s) = 0, ∀s ∈ S,

(2)

where mins′∼p(·|s,a)(V
π
h+1(s

′)) denotes the minimum value of random variable V π
h+1(s

′) with s′ ∼
p(·|s, a). From Eq. (2), one sees that

Qπ
h(s, a) = min

(st,at)∼π

[
H∑
t=h

r(st, at)
∣∣∣sh = s, ah = a, π

]
, V π

h (s) = min
(st,at)∼π

[
H∑
t=h

r(st, at)
∣∣∣sh = s, π

]
.

Thus, Qπ
h(s, a) and V π

h (s) denote the minimum possible cumulative reward under policy π, starting
from (s, a) and s at step h, respectively. The optimal policy π∗ maximizes the minimum possible
cumulative reward (i.e., optimizes the worst path) for all starting states and steps. Formally, π∗ gives
the optimal value V ∗

h (s) = maxπ V
π
h (s) for all s ∈ S and h ∈ [H].

For Worst Path RL, in this paper we mainly consider the regret minimization setting, where the
regret is defined the same as Eq. (1). Note that this case cannot be directly solved by taking α → 0
in Iterated CVaR RL, as the results there have a dependency on 1

α . Thus, changing from CVaR(·) to
min(·) in Worst Path RL requires a different algorithm design and analysis.
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Algorithm 1: ICVaR-RM

Input: δ, α, δ′ := δ
5 , L := log(KHSA

δ′ ), V̄ k
H+1(s) = 0 for any k > 0 and s ∈ S

1 for k = 1, 2, . . . ,K do
2 for h = H,H − 1, . . . , 1 do
3 Q̄k

h(s, a)←min{r(s, a)+CVaRα
s′∼p̂k(·|s,a)(V̄

k
h+1(s

′))+H
α

√
L

nk(s,a)
, H}, ∀(s, a)∈S×A;

4 V̄ k
h (s)← maxa∈A Q̄k

h(s, a), π
k
h(s)← argmaxa∈A Q̄k

h(s, a), ∀s ∈ S;

5 Play the episode k with policy πk, and update nk+1(s, a) and p̂k+1(s′|s, a);

The best policy identification setting of Worst Path RL, on the other hand, is very challenging. This
is because we cannot establish confidence intervals under the min(·) operation, and it is difficult
to determine when the estimated optimal policy is accurate enough and when the algorithm should
stop. We will further investigate this setting in future work.

4 ITERATED CVAR RL WITH REGRET MINIMIZATION

In this section, we consider regret minimization (Iterated CVaR RL-RM). We propose an algorithm
ICVaR-RM with CVaR-adapted exploration bonuses, and demonstrate its sample efficiency.

4.1 ALGORITHM ICVaR-RM AND REGRET UPPER BOUND

We propose a value iteration-based algorithm ICVaR-RM (Algorithm 1), which adopts Brown-
type (Brown, 2007) (CVaR-adapted) exploration bonuses and delicately pays more attention to rare
but risky states. Specifically, in each episode k, ICVaR-RM computes the empirical CVaR for the
values of next states CVaRα

s′∼p̂k(·|s,a)(V̄
k
h+1(s

′)) and Brown-type exploration bonuses H
α

√
L

nk(s,a)
.

Here nk(s, a) is the number of times (s, a) was visited up to episode k, and p̂k(s′|s, a) is the em-
pirical estimate of transition probability p(s′|s, a). Then, ICVaR-RM constructs optimistic Q-value
function Q̄k

h(s, a), optimistic value function V̄ k
h (s), and a greedy policy πk with respect to Q̄k

h(s, a).
After calculating the value functions and policy, ICVaR-RM plays episode k with policy πk, observes
a trajectory, and updates nk(s, a) and p̂k+1(s′|s, a). The calculation of CVaR (Line 3) can be im-
plemented efficiently, and costs O(S logS) computation complexity (Shapiro et al., 2021).

We summarize the regret performance of ICVaR-RM as follows.

Theorem 1 (Regret Upper Bound). With probability at least 1−δ, the regret of algorithm ICVaR-RM
is bounded by

O

(
min

{
1√

minπ,h,s: wπ,h(s)>0 wπ,h(s)
,

1√
αH−1

}
· HS

√
KHA

α
log

(
KHSA

δ

))
,

where wπ,h(s) denotes the probability of visiting state s at step h under policy π.

Remark 1. The regret depends on the minimum between an MDP-intrinsic visitation factor
(minπ,h,s: wπ,h(s)>0 wπ,h(s))

− 1
2 and 1√

αH−1
. When α is small, the first term dominates the bound,

which stands for the minimum probability of visiting an available state under any feasible policy.
Note that minπ,h,s: wπ,h(s)>0 wπ,h(s) takes the minimum over only the policies under which s is
reachable, and thus, this factor will never be zero. Indeed, this factor also exists in the lower bound
(see Section 4.2). Thus, it characterizes the essential problem hardness, i.e., when the agent is highly
risk-adverse, her regret will be heavily influenced by exploring critical but hard-to-reach states.

When α is large, 1√
αH−1

instead dominates the bound. The intuition behind the factor 1√
αH−1

is that
for any state-action pair, the ratio of the visitation probability conditioning on transitioning to bad
successor states over the original visitation probability can be upper bounded by 1

αH−1 . This ratio is
critical and will appear in the regret bound (see Lemma 9 for a formal statement).

In the special case when α = 1, our Iterated CVaR RL problem reduces to the classic RL formu-
lation, and our regret bound becomes Õ(HS

√
KHA), which matches the result in existing classic
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RL work (Jaksch et al., 2010). This bound has a gap of
√
HS to the state-of-the-art regret bound for

classic RL (Azar et al., 2017; Zanette & Brunskill, 2019). This is because our algorithm is mainly
designed for general risk-sensitive cases (which require CVaR-adapted exploration bonuses), and
does not use the Bernstein-type exploration bonuses (which only work for classic expectation max-
imization criterion). Such phenomenon also appears in existing risk-sensitive RL works (Fei et al.,
2020; 2021a). Designing an algorithm which achieves an optimal regret simultaneously for both
risk-sensitive cases and classic expectation maximization case is still an open problem, which we
leave for future work. To validate our theoretical analysis, we also conduct experiments to exhibit
the influences of parameters α, δ, H , S, A and K on the regret of ICVaR-RM in practice, and the
empirical results well match our theoretical bound (see Appendix A).

Challenges and Novelty in Regret Analysis. The analysis of Iterated CVaR RL faces several chal-
lenges. (i) First of all, in Iterated CVaR RL, the contribution of a state to the regret is not proportional
to its visitation probability as in standard RL analysis (Jaksch et al., 2010; Azar et al., 2017; Zanette
& Brunskill, 2019). Instead, the regret is influenced more by risky but hard-to-reach states. Thus, the
regret cannot be decomposed into estimation error with respect to visitation distribution. (ii) Second,
unlike existing RL analysis (Jaksch et al., 2010; Azar et al., 2017; Jin et al., 2018) which typically
calculates the change of expected rewards between optimistic and true value functions, in Iterated
CVaR RL, we need to instead analyze the change of CVaR when the true value function shifts to
an optimistic value function. To tackle these challenges, we develop a new analytical technique to
bound the change of CVaR due to the value function shift via conditional transition probabilities,
which can be applied to other CVaR-based RL problems. Furthermore, we establish a novel regret
decomposition for Iterated CVaR RL via a distorted (conditional) visitation distribution, and quan-
tify the deviation between this distorted visitation distribution and the original visitation distribution.

Below we present a proof sketch for Theorem 1 (see Appendix D.1 for a complete proof).

Proof sketch of Theorem 1. First, we introduce a key inequality (Eq. (3)) to bound the change of
CVaR when the true value function shifts to an optimistic one. To this end, let βα,V (·|s, a) ∈ RS

denote the conditional transition probability conditioning on transitioning to the worst α-portion
successor states s′, i.e., with the lowest values V (s′). It satisfies that

∑
s′∈S βα,V (s′|s, a) ·V (s′) =

CVaRα
s′∼p(·|s,a)(V (s′)). Then, for any (s, a) and value functions V̄ , V such that V̄ (s′) ≥ V (s′) for

any s′ ∈ S, we have

CVaRα
s′∼p(·|s,a)(V̄ (s′))− CVaRα

s′∼p(·|s,a)(V (s′)) ≤ βα,V (·|s, a)⊤
(
V̄ − V

)
. (3)

Eq. (3) implies that the deviation of CVaR between optimistic and true value functions can be
bounded by their value deviation under the conditional transition probability, which resolves the
aforementioned challenge (ii), and serves as the basis of our recurrent regret decomposition.

Now, since V̄ k
h is an optimistic estimate of V ∗

h , we decompose the regret in episode k as

V̄ k
1 (sk1)−V πk

1 (sk1)
(a)
≤H

α

√
L

nk(sk1 , a
k
1)

+ CVaRα
s′∼p̂k(·|sk1 ,ak

1 )
(V̄ k

2 (s′))− CVaRα
s′∼p(·|sk1 ,ak

1 )
(V̄ k

2 (s′))

+ CVaRα
s′∼p(·|sk1 ,ak

1 )
(V̄ k

2 (s′))− CVaRα
s′∼p(·|sk1 ,ak

1 )
(V πk

2 (s′))

(b)
≤H

α

√
L

nk(sk1 , a
k
1)

+
4H

α

√
SL

nk(sk1 , a
k
1)

+ βα,V πk

2 (·|sk1 , ak1)⊤(V̄ k
2 − V πk

2 )

(c)
≤

H∑
h=1

∑
(s,a)

wCVaR,α,V πk

kh (s, a) · H
√
L+ 4H

√
SL

α
√
nk(s, a)

(4)

Here wCVaR,α,V πk

kh (s, a) denotes the conditional probability of visiting (s, a) at step h of episode
k, conditioning on transitioning to the worst α-portion successor states s′ (i.e., with the lowest α-

portion values V πk

h′+1(s
′)) at each step h′ = 1, . . . , h− 1. Intuitively, wCVaR,α,V πk

kh (s, a) is a distorted

visitation probability under the conditional transition probability βα,V πk

(·|·, ·). Inequality (b) uses
the concentration of CVaR and Eq. (3). Inequality (c) follows from recurrently applying steps (a)-

(b) to unfold V̄ k
h (·) − V πk

h (·) for h = 2, . . . ,H , and the fact that wCVaR,α,V πk

kh (s, a) is the visitation
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probability under conditional transition probability βα,V πk

(·|·, ·). Eq. (4) decomposes the regret
into estimation error at all state-action pairs via the distorted (conditional) visitation distribution

wCVaR,α,V πk

kh (s, a), which overcomes the aforementioned challenge (i).

Summing Eq. (4) over all episodes k ∈ [K] and using the Cauchy–Schwarz inequality, we have

E[R(K)] ≤5H
√
SL

α

√√√√ K∑
k=1

H∑
h=1

∑
(s,a)

wCVaR,α,V πk

kh (s, a)

nk(s, a)
·

√√√√ K∑
k=1

H∑
h=1

∑
(s,a)

wCVaR,α,V πk

kh (s, a)

(d)
=
5H
√
SL ·

√
KH

α

√√√√ K∑
k=1

H∑
h=1

∑
(s,a)

wCVaR,α,V πk

kh (s, a)

wkh(s, a)
· wkh(s, a)

nk(s, a)
· 1 {wkh(s, a) ̸= 0}

(e)
≤5H

√
KHSL

α

√√√√√min

{
1

min
π,h,(s,a): wπ,h(s,a)>0

wπ,h(s, a)
,

1

αH−1

} K∑
k=1

H∑
h=1

∑
(s,a)

wkh(s, a)

nk(s, a)
,

Here wkh(s, a) denotes the probability of visiting (s, a) at step h of episode k, and wπ,h(s, a)
denotes the probability of visiting (s, a) at step h under policy π. Equality (d) uses the facts

that
∑

(s,a) w
CVaR,α,V πk

kh (s, a) = 1, and if the visitation probability wkh(s, a) = 0, the con-

ditional visitation probability wCVaR,α,V πk

kh (s, a) must be 0 as well. Inequality (e) is due to

that wCVaR,α,V πk

kh (s, a)/wkh(s, a) can be bounded by both 1/minπ,h,(s,a): wπ,h(s,a)>0 wπ,h(s, a)

and 1/αH−1. Specifically, the bound 1/minπ,h,(s,a): wπ,h(s,a)>0 wπ,h(s, a) follows from
minπ,h,(s,a): wπ,h(s,a)>0 wπ,h(s, a) ≤ wkh(s, a), and the bound 1/αH−1 comes from the fact that

the conditional visitation probability wCVaR,α,V πk

kh (s, a) is at most 1/αH−1 times the visitation prob-
ability wkh(s, a). Having established the above, we can use a similar analysis as that in classic
RL (Azar et al., 2017; Zanette & Brunskill, 2019) to bound

∑K
k=1

∑H
h=1

∑
(s,a)

wkh(s,a)
nk(s,a)

, and then,
we can obtain Theorem 1. □

4.2 REGRET LOWER BOUND

We now present a regret lower bound to demonstrate the optimality of algorithm ICVaR-RM.

Theorem 2 (Regret Lower Bound). There exists an instance of Iterated CVaR RL-RM, where
minπ,h,s: wπ,h(s)>0 wπ,h(s) > αH−1 and the regret of any algorithm is at least

Ω

(
H

√
AK

αminπ,h,s: wπ,h(s)>0 wπ,h(s)

)
. (5)

In addition, there exists an instance of Iterated CVaR RL-RM, where αH−1 >

minπ,h,s: wπ,h(s)>0 wπ,h(s) and the regret of any algorithm is at least Ω(
√

AK
αH−1 ).

Remark 2. Theorem 2 demonstrates that when α is small, the factor minπ,h,s: wπ,h(s)>0 wπ,h(s) is
inevitable in general. This reveals the intrinsic hardness of Iterated CVaR RL, i.e., when the agent
is highly sensitive to bad situations, she must suffer a regret due to exploring risky but hard-to-reach
states. This lower bound also validates that ICVaR-RM is near-optimal with respect to K.

𝑠1 𝑠2 𝑠𝑛−1 𝑠𝑛

𝑥1

𝑥2

𝑥3

𝜇 𝜇 𝜇 𝜇

1 − 3𝜇
1 − 𝜇

1 − 𝜇

Reward 1

Reward 0.8

Reward 0.2

1 − 𝛼
1 − 𝛼 + 𝜂

𝛼
𝛼 − 𝜂

…

𝜇

𝜇

Figure 1: Instance for the lower bound.

Lower Bound Analysis. Here we provide the proof idea of
the first lower bound (Eq. (5)) in Theorem 2, and defer the
full proof to Appendix D.2. We construct an instance with
a hard-to-reach bandit state (which has an optimal action
and multiple sub-optimal actions), and show that this state
is critical for minimizing the regret, but difficult for any
algorithm to learn. As shown in Figure 1, we consider
an MDP with A actions, n regular states s1, . . . , sn and
three absorbing states x1, x2, x3, where n < 1

2H . The
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Algorithm 2: MaxWP

Input: δ, δ′ := δ
2 , L := log(SA

δ′ ), V̂
k
H+1(s) = 0 for any k > 0 and s ∈ S

1 for k = 1, 2, . . . ,K do
2 for h = H,H − 1, . . . , 1 do
3 Q̂k

h(s, a)← r(s, a) + mins′∼p̂k(·|s,a)(V̂
k
h+1(s

′)), ∀(s, a) ∈ S ×A;
4 V̂ k

h (s)← maxa∈A Q̂k
h(s, a), π

k
h(s)← argmaxa∈A Q̂k

h(s, a), ∀s ∈ S;

5 Play the episode k with policy πk, and update nk+1(s, a) and p̂k+1(s′|s, a);

reward function r(s, a) depends only on the states, i.e.,
s1, . . . , sn generate zero reward, and x1, x2, x3 generate rewards 1, 0.8 and 0.2, respectively. Let µ
be a parameter such that 0 < α < µ < 1

3 . Under all actions, state s1 transitions to s2, x1, x2, x3 with
probabilities µ, 1 − 3µ, µ and µ, respectively, and state si (2 ≤ i ≤ n − 1) transitions to si+1, x1

with probabilities µ and 1 − µ, respectively. For the bandit state sn, under the optimal action, sn
transitions to x2, x3 with probabilities 1−α+η and α−η, respectively. Under sub-optimal actions,
sn transitions to x2, x3 with probabilities 1− α and α, respectively.

In this MDP, under the Iterated CVaR criterion, the value function mainly depends on the path
s1 → s2 → · · · → sn → x2/x3, and especially on the action choice in the bandit state sn.
Thus, to distinguish the optimal action in sn, any algorithm must suffer a regret dependent on the
probability of visiting sn, which is exactly the minimum visitation probability over all reachable
states minπ,h,s: wπ,h(s)>0 wπ,h(s). Note that in this instance, minπ,h,s: wπ,h(s)>0 wπ,h(s) = µn−1,
which does not depend on α and H . This demonstrates that there is an essential dependency on
minπ,h,s: wπ,h(s)>0 wπ,h(s) in the lower bound.

5 ITERATED CVAR RL WITH BEST POLICY IDENTIFICATION

In this section, we design an efficient algorithm ICVaR-BPI, and establish sample complexity upper
and lower bounds for Iterated CVaR RL with best policy identification (BPI).

5.1 ALGORITHM ICVaR-BPI AND SAMPLE COMPLEXITY UPPER BOUND

Algorithm ICVaR-BPI introduces a novel distorted (conditional) empirical transition probability to
construct estimation error, which effectively assigns more attention to bad situations and fits the
main focus of the Iterated CVaR criterion. Due to space limit, we defer the pseudo-code and detailed
description of ICVaR-BPI to Appendix E.1. Below we present the sample complexity of ICVaR-BPI.

Theorem 3 (Sample Complexity Upper Bound). The number of trajectories used by algorithm
ICVaR-BPI to return an ε-optimal policy with probability at least 1− δ is bounded by

O

(
min

{ 1

minπ,h,s: wπ,h(s)>0 wπ,h(s)
,

1

αH−1

}H3S2A

ε2α2
· C
)
,

where C := log2(min{ 1
minπ,h,s: wπ,h(s)>0 wπ,h(s)

, 1
αH−1 }HSA

εαδ ).

Similar to Theorem 1, minπ,h,s: wπ,h(s)>0 wπ,h(s) and αH−1 dominate the bound for a large α and
a small α, respectively. When α = 1, the problem reduces to the classic RL formulation with best
policy identification, and our sample complexity becomes Õ(H

3S2A
ε2 ), which recovers the result in

prior classic RL work (Dann et al., 2017). Similar to Theorem 1, this bound has a gap of HS to
the state-of-the-art sample complexity for classic RL (Ménard et al., 2021). This gap is due to the
fact that the result in (Ménard et al., 2021) is obtained using the Bernstein-type exploration bonuses,
which are more fine-grained for the classic RL problem but do not work for general risk-sensitive
cases, because it cannot be used to quantify the estimation error of CVaR.

To validate the tightness of Theorem 3, we further provide sample complexity lower bounds
Ω( H2A

ε2αminπ,h,s: wπ,h(s)>0 wπ,h(s)
log
(
1
δ

)
) and Ω( A

αH−1ε2
log
(
1
δ

)
) for different instances, which

demonstrate that the factor min{1/minπ,h,s: wπ,h(s)>0 wπ,h(s), 1/α
H−1} is indispensable in gen-

eral (see Appendix E.3 for a formal statement of lower bound).
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6 WORST PATH RL

In this section, we investigate an interesting limiting case of Iterated CVaR RL when α→ 0, called
Worst Path RL, in which case the agent aims to maximize the minimum possible cumulative reward.

Worst Path RL has a unique feature that, the value function (Eq. (2)) concerns only the minimum
value of successor states, which are independent of specific transition probabilities. Therefore, once
we learn the connectivity among states, we can perform a planning to compute the optimal policy.
Yet, this feature does not make the Worst Path RL problem trivial, because it is still challenging to
distinguish whether a successor state is hard to reach or does not exist. As a result, a careful scheme
is needed to both explore undetected successor states and exploit observations to minimize regret.

6.1 ALGORITHM MaxWP AND REGRET UPPER BOUND

We design an algorithm MaxWP (Algorithm 2) based on a simple and efficient empirical Q-value
function, which makes full use of the unique feature of Worst Path RL, and simultaneously explores
undetected successor states and exploits the current best action. Specifically, in episode k, MaxWP
constructs empirical Q-value/value functions Q̂k

h(s, a), V̂
k
h (s) using the estimated lowest value of

next states, and then, takes a greedy policy πk
h(s) with respect to Q̂k

h(s, a) in this episode.

The intuition behind MaxWP is as follows. Since the Q-value function for Worst Path RL uses the
min operator, if the Q-value function is not accurately estimated, it can only be over-estimated (not
under-estimated). If over-estimation happens, MaxWP will be exploring an over-estimated action and
urging its empirical Q-value to get back to its true Q-value. Otherwise, if the Q-value function
is already accurate, MaxWP just selects the optimal action. In other words, MaxWP combines the
exploration of over-estimated actions (which lead to undetected successor states) and exploitation
of current best actions. Below we provide the regret guarantee for algorithm MaxWP.

Theorem 4. With probability at least 1− δ, the regret of algorithm MaxWP is bounded by

O

( ∑
(s,a)∈S×A

H

minπ: υπ(s,a)>0 υπ(s, a) ·mins′∈supp(p(·|s,a)) p(s′|s, a)
log
(SA

δ

))
,

where υπ(s, a) denotes the probability (s, a) is visited at least once in an episode under policy π.

Remark 3. The factor minπ: υπ(s,a)>0 υπ(s, a) stands for the minimum probability of visiting (s, a)
at least once in an episode over all feasible policies, and mins′∈supp(p(·|s,a)) p(s

′|s, a) denotes the
minimum transition probability over all successor states of (s, a). Note that this result cannot be
implied by Theorem 1, because the result for Iterated CVaR RL there depends on 1

α , and simply
taking α→ 0 leads to a vacuous bound.

Theorem 4 demonstrates that algorithm MaxWP enjoys a constant regret with respect to K. This
constant regret is made possible by the unique feature of Worst Path RL that, under the worst path
metric, once the agent determines the connectivity among states, she can accurately estimate the
value function and find the optimal policy. Furthermore, determining the connectivity among states
(with a given confidence) only requires a number of samples independent of K. MaxWP effectively
utilizes this problem feature, and efficiently explores the connectivity among states.

To validate the optimality of our regret upper bound, we also provide a lower bound
Ω(max(s,a):∃h, a ̸=π∗

h(s)
H

minπ:υπ(s,a)>0 υπ(s,a)·mins′∈supp(p(·|s,a)) p(s
′|s,a) ) for Worst Path RL, which

demonstrates the tightness of the factors minπ: υπ(s,a)>0 υπ(s, a) and mins′∈supp(p(·|s,a)) p(s
′|s, a).

7 CONCLUSION

In this paper, we investigate a novel Iterated CVaR RL problem with the regret minimization and
best policy identification metrics. We design two efficient algorithms ICVaR-RM and ICVaR-BPI,
and provide nearly matching regret/sample complexity upper and lower bounds with respect to K.
We also study an interesting limiting case called Worst Path RL, and propose a simple and efficient
algorithm MaxWP with rigorous regret guarantees. There are several interesting directions for future
work, e.g., further closing the gap between upper and lower bounds, and extending our model and
results from the tabular setting to the function approximation framework.
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APPENDIX

A EXPERIMENTS

In this section, we provide experimental results to evaluate the empirical performance of our al-
gorithm ICVaR-RM, and compare it to the state-of-the-art algorithms EULER (Zanette & Brunskill,
2019) and RSVI2 (Fei et al., 2021a) for classic RL and risk-sensitive RL, respectively.

In our experiments, we consider an H-layered MDP with S = 3(H − 1) + 1 states and A actions.
There is a single state s0 (initial state) in layer 1. For any 2 ≤ h ≤ H , there are three states
s3(h−2)+1, s3(h−2)+2 and s3(h−2)+3 in layer h, which induce rewards 1, 0 and 0.4, respectively. The
agent starts from s0 in layer 1, and for each step h ∈ [H], she takes an action from {a1, . . . , aA},
and then transitions to one of three states in the next layer. For any a ∈ {a1, . . . , aA−1}, action a
leads to s3(h−1)+1 and s3(h−1)+2 with probabilities 0.5 and 0.5, respectively. Action aA leads to
s3(h−1)+2 and s3(h−1)+3 with probabilities 0.001 and 0.999, respectively.

We set α ∈ {0.05, 0.1, 0.15}, δ ∈ {0.5, 0.005, 0.00005}, H ∈ {2, 5, 10}, S ∈ {7, 13, 25}, A ∈
{3, 5, 12} and K ∈ [0, 10000] (the change of K can be seen from the X-axis in Figure 2). We take
α = 0.05, δ = 0.005, H = 5, S = 13, A = 5 and K = 10000 as the basic setting, and change
parameters α, δ, H , S, A and K to see how they affect the empirical performance of algorithm
ICVaR-RM. For each algorithm, we perform 20 independent runs and report the average regret across
runs with 95% confidence intervals.

As shown in Figure 2, our algorithm ICVaR-RM achieves a significantly lower regret than the other
algorithms EULER (Zanette & Brunskill, 2019) and RSVI2 (Fei et al., 2021a), which demonstrates
that ICVaR-RM can effectively control the risk under the Iterated CVaR criterion and shows perfor-
mance superiority over the baselines. Moreover, the influences of parameters α, δ, H , S, A and K
on the regret of algorithm ICVaR-RM match our theoretical bounds. Specifically, as α or δ increases,
the regret of ICVaR-RM decreases. As H,S or A increases, the regret of ICVaR-RM increases as well.
As the number of episodes K increases, the regret of ICVaR-RM increases at a sublinear rate.

B RELATED WORK

Below we present a complete review of related works.

CVaR-based MDPs (Known Transition). Boda & Filar (2006); Ott (2010); Bäuerle & Ott (2011);
Haskell & Jain (2015); Chow et al. (2015) study the CVaR MDP problem where the objective is to
minimize the CVaR of the total cost with known transition, and demonstrate that the optimal policy
for CVaR MDP is history-dependent (not Markovian) and is inefficient to exactly compute. Hardy
& Wirch (2004) firstly define the Iterated CVaR measure, and prove that it is a coherent dynamic
risk measure, and applicable to equity-linked insurance. Osogami (2012); Chu & Zhang (2014);
Bäuerle & Glauner (2022) investigate iterated coherent risk measures (including Iterated CVaR) in
MDPs, and prove the existence of Markovian optimal policies for these MDPs. The above works
focus mainly on designing planning algorithms and derive planning error guarantees for known
transition, while our work develops RL algorithms (interacting with the environment online) and
provides regret and sample complexity guarantees for unknown transition.

Risk-Sensitive Reinforcement Learning (Unknown Transition). Heger (1994); Coraluppi & Mar-
cus (1997; 1999) consider minimizing the worst-case cost in RL, and present dynamic programming
of value functions and heuristic algorithms without theoretical analysis. Borkar (2001; 2002) study
risk-sensitive RL with the exponential utility measure, and design algorithms based on actor–critic
learning and Q-learning, respectively. Di Castro et al. (2012); La & Ghavamzadeh (2013) inves-
tigate variance-related risk measures, and devise policy gradient and actor-critic-based algorithms
with convergence analysis. Tamar et al. (2015) consider maximizing the CVaR of the total reward,
and propose a sampling-based estimator for the CVaR gradient and a stochastic gradient decent al-
gorithm to optimize CVaR. Keramati et al. (2020) also investigate optimizing the CVaR of the total
reward, and design an algorithm based on an optimistic version of the distributional Bellman opera-
tor. Borkar & Jain (2014); Chow & Ghavamzadeh (2014); Chow et al. (2017) study how to minimize
the expected total cost with CVaR-based constraints, and develop policy gradient, actor-critic and
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(a) α = 0.05 (b) α = 0.1 (c) α = 0.15

(d) δ = 0.00005 (e) δ = 0.005 (f) δ = 0.5

(g) H = 2 (h) H = 5 (i) H = 10

(j) S = 7 (k) S = 13 (l) S = 25

(m) A = 3 (n) A = 5 (o) A = 12

Figure 2: Experimental results for Iterated CVaR RL.

stochastic approximation-style algorithms. The above works mainly give convergence analysis, and
do not provide finite-time regret and sample complexity guarantees as in our work.

To our best knowledge, there are only a few risk-sensitive RL works which provide finite-time regret
analysis (Fei et al., 2020; 2021a;b). Fei et al. (2020) consider risk-sensitive RL with the exponen-
tial utility criterion, and propose algorithms based on logarithmic-exponential transformation and
least-squares updates. Fei et al. (2021a) further improve the regret bound in (Fei et al., 2020) by
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developing an exponential Bellmen equation and a Bellman backup analytical procedure. Fei et al.
(2021b) extend the model and results in (Fei et al., 2020; 2021a) from the tabular setting to the func-
tion approximation framework. Our work is very different from the above works (Fei et al., 2020;
2021a;b) in formulation, algorithms and results. The above works (Fei et al., 2020; 2021a;b) use the
exponential utility criterion to characterize the risk and take all successor states into account in deci-
sion making. They design algorithms based on exponential Bellmen equations and doubly decaying
exploration bonuses. In contrast, we interpret the risk by the Iterated CVaR criterion, which pri-
marily concerns the worst α-portion successor states. We develop algorithms using CVaR-adapted
exploration bonuses.

The works we discuss above fall in the literature of RL with risk-sensitive criteria. There are also
other RL works which focus on state-wise safety. Cheng et al. (2019) utilize control barrier functions
(CBFs) to ensure the agent within a set of safe sets and guide the learning by constraining explorable
polices. Fatemi et al. (2019; 2021) define the notion of dead-end states (which lead to suboptimal
terminal state with probability 1 in finite steps) and aim to avoid getting into dead-end states. The
formulations and algorithms in these works greatly differ from ours, and they do not provide finite-
time regret and sample complexity analysis as us. We refer interested readers to the survey (Garcıa
& Fernández, 2015) for detailed categorization and discussion on safe RL.

C MORE DISCUSSION ON ITERATED CVAR RL

In this section, we first present the expanded value function definitions for Iterated CVaR RL.
Then, we compare Iterated CVaR RL with existing risk-sensitive MDP models, including CVaR
MDP (Boda & Filar, 2006; Ott, 2010; Bäuerle & Ott, 2011; Chow et al., 2015) and the exponential
utility-based RL (Fei et al., 2020; 2021a).

C.1 VALUE FUNCTION DEFINITIONS FOR ITERATED CVAR RL

The value function definition for Iterated CVaR RL, i.e., Eq. (i) in Section 3, can be expanded as

Qπ
h(s, a) = r(s, a) + CVaRα

sh+1∼p(·|s,a)

(
r(sh+1, πh+1(sh+1))

+ CVaRα
sh+2∼p(·|sh+1,πh+1(sh+1))

(
. . .CVaRα

sH∼p(·|sH−1,πH−1(sH−1))
(r(sH , πH(sH)))

))
,

V π
h (s) = r(s, πh(s)) + CVaRα

sh+1∼p(·|s,πh(s))

(
r(sh+1, πh+1(sh+1))

+ CVaRα
sh+2∼p(·|sh+1,πh+1(sh+1))

(
. . .CVaRα

sH∼p(·|sH−1,πH−1(sH−1))
(r(sH , πH(sH)))

))
.

Similarly, the optimal value function definition, e.g., Eq. (ii) in Section 3, can be expanded as

Q∗
h(s, a)=max

π

{
r(s, a) + CVaRα

sh+1∼p(·|s,a)

(
r(sh+1, πh+1(sh+1))

+ CVaRα
sh+2∼p(·|sh+1,πh+1(sh+1))

(
. . .CVaRα

sH∼p(·|sH−1,πH−1(sH−1))
(r(sH , πH(sH)))

))}
,

V ∗
h (s)=max

π

{
r(s, πh(s)) + CVaRα

sh+1∼p(·|s,πh(s))

(
r(sh+1, πh+1(sh+1))

+ CVaRα
sh+2∼p(·|sh+1,πh+1(sh+1))

(
. . .CVaRα

sH∼p(·|sH−1,πH−1(sH−1))
(r(sH , πH(sH)))

))}
. (6)
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Figure 3: Illustrating example for the comparison between CVaR MDP and Iterated CVaR RL.

From the above value function definitions, we can see that, Iterated CVaR RL aims to maximize the
worst α-portion tail of the reward-to-go at each step, i.e., taking the CVaR operator on the reward-
to-go at each step. Intuitively, Iterated CVaR RL wants to optimize the performance even when bad
situations happen at each decision stage.

C.2 COMPARISON WITH CVAR MDP

The objective of CVaR MDP, e.g., (Boda & Filar, 2006; Ott, 2010; Bäuerle & Ott, 2011; Chow et al.,
2015), is to maximize the worst α-portion of the total reward, which is formally defined as

max
π

CVaRα
(sh,ah)∼p,π

(
H∑

h=1

r(sh, ah)

)
.

Compared to our Iterated CVaR RL (Eq. (6) and Eq. (ii) in Section 3) which concerns bad situations
at each step, CVaR MDP takes more cumulative reward into account and prefers actions which
have better performance in general, but can have larger probabilities of getting into catastrophic
states. Thus, CVaR MDP is suitable for scenarios where bad situations lead to a higher cost but
not fatal damage, e.g., finance. In contrast, Iterated CVaR RL prefers actions which have smaller
probabilities of getting into catastrophic states. Hence, Iterated CVaR RL is most suitable for safety-
critical applications, where catastrophic states are unacceptable and need to be carefully avoid, e.g.,
clinical treatment planning.

We emphasize that Iterated CVaR is not equivalent to simply taking the worst αH -portion of the total
reward. In fact, the good (1 − αH)-portion of the total reward also contributes to Iterated CVaR.
This is because Iterated CVaR accounts bad situations for all states (both good and bad states) in its
iterated computation, instead of just considering bad situations upon bad states.

Below we provide an example of clinical treatment planning to illustrate the difference between
Iterated CVaR and CVaR MDP. Here we interpret the objective as cost minimization for ease of
understanding, and set the risk level α = 0.05.
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Consider a 4-layered binary tree-structured MDP shown in Figure 3. The state sets in layers 1, 2, 3
and 4 are {s1}, {s2, s3}, {s4, . . . , s7} and {s8, . . . , s15}, respectively. There are two actions a1, a2
in each state, and a1, a2 have the same transition distribution in all states except the initial state s1.
Thus, a policy is to decide whether to choose a1 or a2 in state s1, which leads to different subsequent
costs.

The agent starts from the initial state s1 in layer 1. If the agent takes action a1, she will transition to
state s2 deterministically, and goes into the left sub-tree. On the other hand, if the agent takes action
a2 in state s1, she will transition to state s3 deterministically, and enters the right sub-tree.

If the agent goes into the left sub-tree (state s2) in layer 2, she will transition to s4 and s5 in layer
3 with probabilities 0.05 and 0.95, respectively. Then, if she starts from state s4 in layer 3, she will
transition to s8 and s9 in layer 4 with probabilities 0.05 and 0.95, respectively. Otherwise, if she
starts from state s5 in layer 3, she will transition to s10 and s11 in layer 4 with probabilities 0.05 and
0.95, respectively.

On the other hand, if the agent goes into the right sub-tree (state s3) in layer 2, she will transition to
s6 and s7 in layer 3 with probabilities 0.01 and 0.99, respectively. Then, if she starts from state s6
in layer 3, she will transition to s12 and s13 in layer 4 with probabilities 0.01 and 0.99, respectively.
Otherwise, if she starts from state s7 in layer 3, she will transition to s14 and s15 in layer 4 with
probabilities 0.01 and 0.99, respectively.

The costs are state-dependent, and only the states in layer 4 produce non-zero costs. To be concrete,
we use the clinical trial example and the costs represent the patient status. Specifically, in layer 4, s8
and s12 give costs 1, which denote death. s13 and s14 produce costs 0.5, which means the patient is
getting better. s9 and s10 induce costs 0.4, which denote that the patient gets much better. s11 and
s15 produce costs 0, which stand for that the patient is fully cured.

Under the CVaR criterion, we have that

QCVaR,α(s1, a1) =
0.0025

0.05
· 1 + 0.05− 0.0025

0.05
· 0.4 = 0.43,

and

QCVaR,α(s1, a2) =
0.0001

0.05
· 1 + 0.05− 0.0001

0.05
· 0.5 = 0.501.

Thus, CVaR MDP will choose action a1 (and goes into the left sub-tree), since a1 leads to better
medium states s9 and s10, which give a lower cost 0.4 than the cost 0.5 produced by the right
sub-tree.

On the other hand, under the Iterated CVaR criterion, we have that

QICVaR,α(s1, a1) =
0.05

0.05
·QICVaR,α(s4, ·) =

0.05

0.05
·
(
0.05

0.05
·QICVaR,α(s8, ·)

)
=

0.05

0.05
·
(
0.05

0.05
· 1
)

= 1,

and
QICVaR,α(s1, a2)

=
0.01

0.05
·QICVaR,α(s6, ·) +

0.05− 0.01

0.05
·QICVaR,α(s7, ·)

=
0.01

0.05
·
(
0.01

0.05
·QICVaR,α(s12, ·) +

0.05− 0.01

0.05
·QICVaR,α(s13, ·)

)
+

0.05− 0.01

0.05
·
(
0.01

0.05
·QICVaR,α(s14, ·) +

0.05− 0.01

0.05
·QICVaR,α(s15, ·)

)
=
0.01

0.05
·
(
0.01

0.05
· 1 + 0.05− 0.01

0.05
· 0.5

)
+

0.05− 0.01

0.05
·
(
0.01

0.05
· 0.5 + 0.05− 0.01

0.05
· 0
)

=0.2.

Thus, Iterated CVaR RL will instead choose action a2, because a2 has a smaller probability of going
into the bad left direction (which leads to the catastrophic state s12).
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The above example shows that, Iterated CVaR RL prefers actions with a smaller probability of get-
ting into catastrophic states. In contrast, CVaR MDP favors actions with better average therapeutic
effects, but has a larger probability of causing death.

Note that the above example also demonstrates that Iterated CVaR is not equivalent to the worst
αH -portion of the total cost. To see this, we have that (here we consider α3 because there are 3
transition steps):

QCVaR,α3

(s1, a2) =
0.0001

0.000125
· 1 + 0.000125− 0.0001

0.000125
· 0.5 = 0.9,

and
QICVaR,α(s1, a2)

=
0.01

0.05
·
(
0.01

0.05
· 1 + 0.05− 0.01

0.05
· 0.5

)
+

0.05− 0.01

0.05
·
(
0.01

0.05
· 0.5 + 0.05− 0.01

0.05
· 0
)

=0.2.

In addition, one can see that, the good state which gives cost 0 (i.e., s15) also contributes to
QICVaR,α(s1, a2), which shows that the good (1 − αH)-portion of the total cost also matters for
Iterated CVaR.

C.3 COMPARISON WITH EXPONENTIAL UTILITY-BASED RISK-SENSITIVE RL

The Bellman optimality equation for risk-sensitive RL with the exponential utility criterion (Fei
et al., 2020; 2021a) is defined as

Q∗
h(s, a) = rh(s, a) +

1

β
log{Es′∼p(·|s,a)[exp(β · V ∗

h+1(s
′))]},

which takes all successor states s′ into account, i.e., all successor states s′ contribute to the compu-
tation of the Q-value. Here β < 0 is a risk-sensitivity parameter.

In contrast, in Iterated CVaR RL, the Bellman optimality equation is defined as
Q∗

h(s, a) = r(s, a) + CVaRα
s′∼p(·|s,a)(V

∗
h+1(s

′)),

which focuses only on the worst α-portion successor states s′ (i.e., with the lowest α-portion values
V ∗
h+1(s

′)), i.e., only the worst α-portion successor states s′ contribute to the computation of the
Q-value.

Besides the formulation, our algorithm design and results are also very different from those in (Fei
et al., 2020; 2021a). The algorithms in (Fei et al., 2020; 2021a) are based on exponential Bellman
equations and doubly decaying exploration bonuses, and their results depend on exp(|β|H). In con-
trast, our algorithms are based on value iteration for Iterated CVaR with CVaR-adapted exploration
bonuses, and our results depend on the minimum between an MDP-intrinsic visitation measure
1/minπ,h,s: wπ,h(s)>0 wπ,h(s) and a risk-level-dependent factor 1/αH−1.

D PROOFS FOR ITERATED CVAR RL WITH REGRET MINIMIZATION

In this section, we present the proofs of regret upper and lower bounds (Theorems 1 and 2) for
Iterated CVaR RL-RM.

D.1 PROOFS OF REGRET UPPER BOUND

D.1.1 CONCENTRATION

For any k > 0, h ∈ [H] and (s, a) ∈ S×A, let nkh(s, a) denote the number of times that (s, a) was
visited at step h before episode k, and let nk(s, a) :=

∑H
h=1 nkh(s, a) denote the number of times

that (s, a) was visited before episode k.
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Figure 4: Illustrating example for Lemma 2. For each s′ ∈ {s1, s2, s3, s4}, the height of the bar
denotes the value V (s′) (fixed), and the width of the bar denotes the transition probability p(s′|s, a)
or p̂k(s′|s, a). The colored part of the bars denotes the worst α-portion successor states (i.e., with
the lowest α-portion values V (s′)). In this example, α = 0.5.

Lemma 1 (Concentration for V ∗). It holds that

Pr

[ ∣∣∣CVaRα
s′∼p̂k(·|s,a)(V

∗
h (s

′))− CVaRα
s′∼p(·|s,a)(V

∗
h (s

′))
∣∣∣ ≤ H

α

√
log
(
KHSA

δ′

)
nk(s, a)

,

∀k ∈ [K], ∀h ∈ [H], ∀(s, a) ∈ S ×A

]
≥ 1− 2δ′.

Proof of Lemma 1. Using Brown’s inequality (Brown, 2007) (Theorem 2 in (Thomas & Learned-
Miller, 2019)) and a union bound over (s, a) ∈ S × A and nk(s, a) ∈ [KH], we can obtain this
lemma.

For any risk level α ∈ (0, 1], function V : S 7→ R and (s′, s, a) ∈ S × S × A, βα,V (s′|s, a) is
the conditional transition probability from (s, a) to s′, conditioning on transitioning to the worst
α-portion successor states s′ (i.e., with the lowest α-portion values V (s′)). Let µα,V (s′|s, a) denote
how large the transition probability of successor state s′ belongs to the worst α-portion, which
satisfies that µα,V (s′|s,a)

α = βα,V (s′|s, a) and
∑

s′∈S µα,V (s′|s, a) = α. In addition, for any risk
level α ∈ (0, 1], function V : S 7→ R and (s, a) ∈ S ×A,

CVaRα
s′∼p(·|s,a)(V (s′)) =

∑
s′∈S µα,V (s′|s, a) · V (s′)

α
=
∑
s′∈S

βα,V (s′|s, a) · V (s′).

Lemma 2 (Concentration for any V ). It holds that[ ∣∣∣CVaRα
s′∼p̂k(·|s,a)(V (s′))− CVaRα

s′∼p(·|s,a)(V (s′))
∣∣∣ ≤ 2H

α

√
2S log

(
KHSA

δ′

)
nk(s, a)

,

∀V : S 7→ [0, H], ∀k ∈ [K], ∀(s, a) ∈ S ×A

]
≥ 1− 2δ′.

Proof of Lemma 2. As shown in Figure 4, we sort all successor states s′ ∈ S by V (s′) in ascending
order (from the left to the right). Add a virtual line at the α-quantile, denoted by α-quantile line.
Fix the value function V (·), and the transition probability changes from p(·|s, a) to p̂k(·|s, a).
Without loss of generality, below we consider the case where as the transition probability changes
from p(·|s, a) to p̂k(·|s, a), the α-quantile line shifts from left to right (the analysis of the contrary
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case can also be obtained by interchanging p(·|s, a) and p̂k(·|s, a)). We use original α-quantile line
and shifted α-quantile line to denote the α-quantile line before and after the shift, respectively.

We divide the successor states s′ ∈ S into five subsets as follows. Let Sleft and Sright denote
the sets of states which are always on the left and right sides of the original and shifted α-quantile
lines, respectively. Let Smiddle denote the set of states which are in the middle of the original and
shifted α-quantile lines. Let sline-l and sline-r denote the states which lie on the original and shifted
α-quantile lines, respectively.

For any s′ ∈ Sleft, we have that µα,V (s′|s, a) = p(s′|s, a) and µ̂k;α,V (s′|s, a) = p̂k(s′|s, a).

For any s′ ∈ Sright, we have µα,V (s′|s, a) = µ̂k;α,V (s′|s, a) = 0.

For any s′ ∈ Smiddle, we have that µα,V (s′|s, a) = 0 and µ̂k;α,V (s′|s, a) = p̂k(s′|s, a).
For state sline-l, we have that µα,V (sline-l|s, a) = p(sline-l|s, a) − (

∑
s′∈Sleft

p(s′|s, a) +

p(sline-l|s, a)− α) and µ̂k;α,V (sline-l|s, a) = p̂k(sline-l|s, a).
For state sline-r, we have that µα,V (sline-r|s, a) = 0 and µ̂k;α,V (sline-r|s, a) = α −∑

s′∈Sleft
p̂k(s′|s, a)−

∑
s′∈Smiddle

p̂k(s′|s, a)− p̂k(sline-l|s, a).

Then, we obtain∑
s′∈S

∣∣µ̂k;α,V (s′|s, a)− µα,V (s′|s, a)
∣∣

≤
∑

s′∈Sleft

∣∣µ̂k;α,V (s′|s, a)− µα,V (s′|s, a)
∣∣+ ∑

s′∈Sright

∣∣µ̂k;α,V (s′|s, a)− µα,V (s′|s, a)
∣∣

+
∑

s′∈Smiddle

∣∣µ̂k;α,V (s′|s, a)− µα,V (s′|s, a)
∣∣+ ∣∣µ̂k;α,V (sline-l|s, a)− µα,V (sline-l|s, a)

∣∣
+
∣∣µ̂k;α,V (sline-r|s, a)− µα,V (sline-r|s, a)

∣∣
≤

∑
s′∈Sleft

∣∣p̂k(s′|s, a)− p(s′|s, a)
∣∣+ ∑

s′∈Smiddle

p̂k(s′|s, a)

+

∣∣∣∣∣∣p̂k(sline-l|s, a)− p(sline-l|s, a) +

 ∑
s′∈Sleft

p(s′|s, a) + p(sline-l|s, a)− α

∣∣∣∣∣∣
+

α−
∑

s′∈Sleft

p̂k(s′|s, a)−
∑

s′∈Smiddle

p̂k(s′|s, a)− p̂k(sline-l|s, a)


≤

∑
s′∈Sleft

∣∣p̂k(s′|s, a)− p(s′|s, a)
∣∣+ ∑

s′∈Smiddle

p̂k(s′|s, a)

+
∣∣p̂k(sline-l|s, a)− p(sline-l|s, a)

∣∣+
∣∣∣∣∣∣
∑

s′∈Sleft

p(s′|s, a) + p(sline-l|s, a)− α

∣∣∣∣∣∣
+

α−
∑

s′∈Sleft

p̂k(s′|s, a)−
∑

s′∈Smiddle

p̂k(s′|s, a)− p̂k(sline-l|s, a)


(a)
≤

∑
s′∈Sleft

∣∣p̂k(s′|s, a)− p(s′|s, a)
∣∣+ ∑

s′∈Smiddle

p̂k(s′|s, a)

+
∣∣p̂k(sline-l|s, a)− p(sline-l|s, a)

∣∣+
 ∑

s′∈Sleft

p(s′|s, a) + p(sline-l|s, a)− α


+

α−
∑

s′∈Sleft

p̂k(s′|s, a)−
∑

s′∈Smiddle

p̂k(s′|s, a)− p̂k(sline-l|s, a)
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=
∑

s′∈Sleft

∣∣p̂k(s′|s, a)− p(s′|s, a)
∣∣+ ∣∣p̂k(sline-l|s, a)− p(sline-l|s, a)

∣∣
+

∑
s′∈Sleft

p(s′|s, a)−
∑

s′∈Sleft

p̂k(s′|s, a) + p(sline-l|s, a)− p̂k(sline-l|s, a)

≤
∑

s′∈Sleft

∣∣p̂k(s′|s, a)− p(s′|s, a)
∣∣+ ∣∣p̂k(sline-l|s, a)− p(sline-l|s, a)

∣∣
+

∑
s′∈Sleft

∣∣p(s′|s, a)− p̂k(s′|s, a)
∣∣+ ∣∣p(sline-l|s, a)− p̂k(sline-l|s, a)

∣∣
≤2

∑
s′∈S

∣∣p̂k(s′|s, a)− p(s′|s, a)
∣∣ , (7)

where (a) is due to
∑

s′∈Sleft
p(s′|s, a) + p(sline-l|s, a)− α ≥ 0 by the definition of state sline-l.

Thus, we have ∣∣∣CVaRα
s′∼p̂k(·|s,a)(V (s′))− CVaRα

s′∼p(·|s,a)(V (s′))
∣∣∣

=

∣∣∣∣∣
∑

s′∈S µ̂k;α,V (s′|s, a) · V (s′)

α
−
∑

s′∈S µα,V (s′|s, a) · V (s′)

α

∣∣∣∣∣
=

∣∣∑
s′∈S

(
µ̂k;α,V (s′|s, a)− µα,V (s′|s, a)

)
· V (s′)

∣∣
α

≤
∑

s′∈S
∣∣µ̂k;α,V (s′|s, a)− µα,V (s′|s, a)

∣∣ ·H
α

≤
2
∑

s′∈S
∣∣pk(s′|s, a)− p(s′|s, a)

∣∣ ·H
α

(8)

Using Eq. (55) in (Zanette & Brunskill, 2019) (originated from (Weissman et al., 2003)), we have
that with probability at least 1− 2δ′, for any k ∈ [K] and (s, a) ∈ S ×A,∑

s′∈S

∣∣p̂k(s′|s, a)− p(s′|s, a)
∣∣ ≤

√
2S log

(
KHSA

δ′

)
nk(s, a)

. (9)

Plugging Eq. (9) into Eq. (8), we obtain that with probability at least 1 − 2δ′, for any k ∈ [K],
(s, a) ∈ S ×A and function V : S 7→ [0, H],∣∣∣CVaRα

s′∼p̂k(·|s,a)(V (s′))− CVaRα
s′∼p(·|s,a)(V (s′))

∣∣∣ ≤ 2H

α

√
2S log

(
KHSA

δ′

)
nk(s, a)

.

For any k > 0, h ∈ [H] and (s, a) ∈ S ×A, let wkh(s, a) denote the probability of visiting (s, a) at
step h of episode k. Then, it holds that for any k > 0, h ∈ [H] and (s, a) ∈ S×A, wkh(s, a) ∈ [0, 1]
and

∑
(s,a)∈S×A wkh(s, a) = 1.

Lemma 3 (Concentration of Visitation). It holds that

Pr

[
nk(s, a) ≥

1

2

k−1∑
k′=1

H∑
h=1

wk′h(s, a)−H log

(
HSA

δ′

)
, ∀k > 0, ∀(s, a) ∈ S ×A

]
≥ 1− δ′.

Proof of Lemma 3. Applying Lemma F.4 in (Dann et al., 2017), we have that for any fixed h ∈ [H],

Pr

[
nkh(s, a) ≥

1

2

k−1∑
k′=1

wk′h(s, a)− log

(
HSA

δ′

)
, ∀k > 0, ∀(s, a) ∈ S ×A

]
≥ 1− δ′

H
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By a union bound over h ∈ [H], we have

Pr

[
nk(s, a) ≥

1

2

k−1∑
k′=1

H∑
h=1

wk′h(s, a)−H log

(
HSA

δ′

)]
≥ 1− δ′.

To sum up, we define several concentration events which will be used in the following proof.

E1 :=

{∣∣∣CVaRα
s′∼p̂k(·|s,a)(V

∗
h (s

′))− CVaRα
s′∼p(·|s,a)(V

∗
h (s

′))
∣∣∣ ≤ H

α

√
log
(
KHSA

δ′

)
nk(s, a)

,

∀k ∈ [K], ∀h ∈ [H], ∀(s, a) ∈ S ×A

}

E2 :=

{∣∣∣CVaRα
s′∼p̂k(·|s,a)(V (s′))− CVaRα

s′∼p(·|s,a)(V (s′))
∣∣∣ ≤ 2H

α

√
2S log

(
KHSA

δ′

)
nk(s, a)

,

∀V : S 7→ [0, H], ∀k ∈ [K], ∀(s, a) ∈ S ×A

}

E3 :=

{
nk(s, a) ≥

1

2

k−1∑
k′=1

H∑
h=1

wk′h(s, a)−H log

(
HSA

δ′

)
, ∀k > 0, ∀(s, a) ∈ S ×A

}
E :=E1 ∩ E2 ∩ E3

Lemma 4. Letting δ′ = δ
5 , it holds that

Pr [E ] ≥ 1− δ.

Proof of Lemma 4. This lemma can be obtained by combining Lemmas 1-3.

D.1.2 OPTIMISM, VISITATION AND CVAR GAP

Recall that L := log
(
KHSA

δ′

)
.

Lemma 5 (Optimism). Suppose that event E holds. Then, for any k ∈ [K], h ∈ [H] and s ∈ S , we
have

V̄ k
h (s) ≥ V ∗

h (s).

Proof of Lemma 5. We prove this lemma by induction.

First, for any k ∈ [K], s ∈ S, it holds that V̄ k
H+1(s) = V ∗

H+1(s) = 0.

Then, for any k ∈ [K], h ∈ [H] and (s, a) ∈ S×A, if Q̄k
h(s, a) = H , Q̄k

h(s, a) ≥ Q∗
h(s, a) trivially

holds, and otherwise,

Q̄k
h(s, a) =r(s, a) + CVaRα

s′∼p̂k(·|s,a)(V̄
k
h+1(s

′)) +
H

α

√
L

nk(s, a)

(a)
≥r(s, a) + CVaRα

s′∼p̂k(·|s,a)(V
∗
h+1(s

′)) +
H

α

√
L

nk(s, a)

(b)
≥r(s, a) + CVaRα

s′∼p(·|s,a)(V
∗
h+1(s

′))

=Q∗
h(s, a),

where (a) uses the induction hypothesis and (b) comes from Lemma 1.

Thus, we have
V̄ k
h (s) ≥ Q̄k

h(s, π
∗
h(s)) ≥ Q∗

h(s, π
∗
h(s)) = V ∗

h (s),
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which concludes the proof.

Following (Zanette & Brunskill, 2019), for any episode k > 0, we define the set of state-action pairs
which have sufficient visitations in expectation as follows.

Lk :=

{
(s, a) ∈ S ×A :

1

4

k−1∑
k′=1

H∑
h=1

wk′h(s, a) ≥ H log

(
HSA

δ′

)
+H

}
. (10)

Lemma 6 (Sufficient Visitation). Suppose that event E holds. Then, for any k > 0 and (s, a) ∈ Lk,

nk(s, a) ≥
1

4

k∑
k′=1

H∑
h=1

wk′h(s, a).

Proof of Lemma 6. This proof is the same as that of Lemma 6 in (Zanette & Brunskill, 2019).

Using Lemma 3, we have

nk(s, a) ≥
1

2

k−1∑
k′=1

H∑
h=1

wk′h(s, a)−H log

(
HSA

δ′

)

=
1

4

k−1∑
k′=1

H∑
h=1

wk′h(s, a) +
1

4

k−1∑
k′=1

H∑
h=1

wk′h(s, a)−H log

(
HSA

δ′

)
(a)
≥1

4

k−1∑
k′=1

H∑
h=1

wk′h(s, a) +H

(b)
≥1

4

k−1∑
k′=1

H∑
h=1

wk′h(s, a) +

H∑
h=1

wkh(s, a)

=
1

4

k∑
k′=1

H∑
h=1

wk′h(s, a)

where (a) uses the fact that (s, a) ∈ Lk and the definition of Lk, and (b) is due to that for any k > 0,
h ∈ [H] and (s, a) ∈ S ×A, wkh(s, a) ∈ [0, 1].

Lemma 7 (Standard Visitation Ratio). For any K > 0, we have√√√√ K∑
k=1

H∑
h=1

∑
(s,a)∈Lk

wkh(s, a)

nk(s, a)
≤2

√
SA log

(
KHSA

δ′

)
.

Proof of Lemma 7. This proof is the same as that of Lemma 13 in (Zanette & Brunskill, 2019).

Recall that for any k > 0, let wk(s, a) :=
∑

(s,a)∈S×A wkh(s, a). Then, we have√√√√ K∑
k=1

H∑
h=1

∑
(s,a)∈Lk

wkh(s, a)

nk(s, a)
=

√√√√ K∑
k=1

∑
(s,a)∈Lk

wk(s, a)

nk(s, a)

=

√√√√ K∑
k=1

∑
(s,a)∈S×A

wk(s, a)

nk(s, a)
· 1 {(s, a) ∈ Lk}

(a)
≤2

√√√√ K∑
k=1

∑
(s,a)∈S×A

wk(s, a)∑k
k′=1 wk′(s, a)

· 1 {(s, a) ∈ Lk}

=2

√√√√ ∑
(s,a)∈S×A

K∑
k=1

wk(s, a)∑k
k′=1 wk′(s, a)

· 1 {(s, a) ∈ Lk}
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where (a) is due to Lemma 6.

According to the definition of Lk (Eq. (10)), for any (s, a) ∈ S×A, once (s, a) satisfies (s, a) ∈ Lk

in some episode k, it will always satisfy (s, a) ∈ Lk′ for all k′ ≥ k. For any (s, a) ∈ S × A, let
k0(s, a) denote the first episode k where (s, a) ∈ Lk.

Then, for any k > 0 and (s, a) ∈ S ×A, if (s, a) ∈ Lk, we have
k∑

k′=1

wk′(s, a) =

k0(s,a)−1∑
k′=1

wk′(s, a) +

k∑
k′=k0(s,a)

wk′(s, a)

(a)
≥H +

k∑
k′=k0(s,a)

wk′(s, a),

where (a) uses the fact that (s, a) ∈ Lk0(s,a) and the definition of Lk (Eq. (10)).

Thus, we have√√√√ K∑
k=1

H∑
h=1

∑
(s,a)∈Lk

wkh(s, a)

nk(s, a)
≤2

√√√√ ∑
(s,a)∈S×A

K∑
k=k0(s,a)

wk(s, a)

H +
∑k

k′=k0(s,a)
wk′(s, a)

.

Let a1 := wk0(s,a)(s, a), a2 := wk0(s,a)+1(s, a), . . . , aK−k0(s,a)+1 := wK(s, a). Define function
F (x) =

∑⌊x⌋
i=1 ai + a⌈x⌉(x − ⌊x⌋), where 0 ≤ x ≤ K − k0(s, a) + 1. If x is an integer, we have

F (x) =
∑x

i=1 ai, and otherwise, F (x) interpolates between the function values for integers x. The
derivative of F (s) is f(x) = a⌈x⌉.

Hence, we have
K∑

k=k0(s,a)

wk(s, a)

H +
∑k

k′=k0(s,a)
wk′(s, a)

=

K−k0(s,a)+1∑
k=1

f(k)

H + F (k)

=

∫ K−k0(s,a)+1

0

f(⌈x⌉)
H + F (⌈x⌉)

dx

(a)
≤
∫ K−k0(s,a)+1

0

f(x)

H + F (x)
dx

= log (H + F (K − k0(s, a) + 1))− log (H + F (0))

(b)
≤ log (KH)

≤ log

(
KHSA

δ′

)
,

where (a) uses the fact that for any 0 ≤ x ≤ K− k0(s, a)+1, f(x) = f(⌈x⌉) and F (x) ≤ F (⌈x⌉),
and (b) is due to that k0(s, a) ≥ 2 by the definitions of Lk (Eq. (10)) and k0(s, a).

Therefore, we have√√√√ K∑
k=1

H∑
h=1

∑
(s,a)∈Lk

wkh(s, a)

nk(s, a)
≤2

√√√√ ∑
(s,a)∈S×A

log

(
KHSA

δ′

)

≤2

√
SA log

(
KHSA

δ′

)

Recall that for any (s′, s, a) ∈ S × S × A, p(s′|s, a) is the transition probability from (s, a) to
s′. For any risk level α ∈ (0, 1], function V : S 7→ R and (s′, s, a) ∈ S × S × A, βα,V (s′|s, a)
is the conditional probability of transitioning to s′ from (s, a), conditioning on transitioning to the
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worst α-portion successor states s′ (i.e., with the lowest α-portion values V (s′)), and it holds that
CVaRα

s′∼p(s′|s,a)(V (s′)) =
∑

s′∈S βα,V (s′|s, a) · V (s′).

For any k > 0, h ∈ [H] and (s, a) ∈ S × A, wkh(s, a) is the probability of visiting (s, a) at
step h of episode k (under transition probability p(·|·, ·)), and it holds that wkh(s, a) ∈ [0, 1] and∑

(s,a)∈S×A wkh(s, a) = 1. For any risk level α ∈ (0, 1], k > 0, h ∈ [H] and (s, a) ∈ S × A,

wCV aR,α,V πk

kh (s, a) is the conditional probability of visiting (s, a) at step h of episode k, condi-
tioning on transitioning to the worst α-portion successor states s′ (i.e., with the lowest α-portion
values V πk

h′+1(s
′)) at each step h′ = 1, . . . , h − 1. Here πk is the policy taken in episode k, and

V πk

h (·) : S 7→ R is the value function at step h for policy πk. Intuitively, wCV aR,α,V πk

kh (s, a)
is the probability of visiting (s, a) at step h of episode k under conditional transition probability

βα,V πk

h′+1(·|·, ·) for each step h′ = 1, . . . , h − 1. It holds that for any risk level α ∈ (0, 1], k > 0,

h ∈ [H] and (s, a) ∈ S×A, wCV aR,α,V πk

kh (s, a) ∈ [0, 1] and
∑

(s,a)∈S×A wCV aR,α,V πk

kh (s, a) = 1.

Lemma 8. For any risk level α ∈ (0, 1], k > 0, h ∈ [H] and (s, a) ∈ S ×A, if wkh(s, a) = 0, then

wCV aR,α,V πk

kh (s, a) = 0.

Proof of Lemma 8. If wkh(s, a) = 0, then the algorithm has zero probability to visit (s, a) at step h
of episode k, which means that (s, a) is unreachable under transition probability p(·|·, ·).

Note that for each step h′ = 1, . . . , h − 1, the conditional transition probability βα,V πk

h′+1(s′|s, a)
just renormalizes the transition probability and assigns more weights to the worst α-portion suc-
cessor states s′ (i.e., with the lowest α-portion values V πk

h′+1(s
′)), but will not make an unreachable

successor state reachable. Thus, (s, a) is also unreachable under conditional transition probability

βα,V πk

h′+1(·|·, ·) for each step h′ = 1, . . . , h− 1, and therefore wCV aR,α,V πk

kh (s, a) = 0.

Lemma 9. For any functions V1, . . . , VH : S 7→ R, k > 0, h ∈ [H] and (s, a) ∈ S × A such that
wkh(s, a) > 0,

wCVaR,α,V
kh (s, a)

wkh(s, a)
≤min

 1

min
π,h,(s,a): wπ,h(s,a)>0

wπ,h(s, a)
,

1

αh−1

 ,

where wCVaR,α,V
kh (s, a) denotes the conditional probability of visiting (s, a) at step h of episode k,

conditioning on transitioning to the worst α-portion successor states s′ (i.e., with the lowest α-
portion values Vh′+1(s

′)) at each step h′ = 1, . . . , h− 1.

Proof of Lemma 9. Since wCVaR,α,V
kh (s, a) is the conditional probability of visiting (s, a), we have

wCVaR,α,V
kh (s, a) ∈ [0, 1]. Since wkh(s, a) is the probability of visiting (s, a) at step h under policy

πk and minπ,h,(s,a): wπ,h(s,a)>0 wπ,h(s, a) is the minimum probability of visiting any reachable
(s, a) at any step h over all policies π, we have

wkh(s, a) ≥ min
π,h,(s,a): wπ,h(s,a)>0

wπ,h(s, a).

Hence, we have

wCVaR,α,V
kh (s, a)

wkh(s, a)
≤ 1

min
π,h,(s,a): wπ,h(s,a)>0

wπ,h(s, a)
. (11)

Let s1 be the initial state. Since wkh(s, a) and wCVaR,α,V
kh (s, a) are the probabilities of visiting (s, a)

at step h with policy πk under transition probability p(·|·, ·) and conditional transition probability
βα,Vh′+1(·|·, ·) for each step h′ = 1, . . . , h− 1, respectively, we have that

wkh(s, a) =
∑

(s2,...,sh−1)∈Sh−2

h−1∏
h′=1

p(sh′+1|sh′ , ah′)
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and

wCVaR,α,V
kh (s, a) =

∑
(s2,...,sh−1)∈Sh−2

h−1∏
h′=1

βα,Vh′+1(sh′+1|sh′ , ah′),

where s1 is the initial state, sh := s, and ah′ := πk(sh′) for h′ = 1, . . . , h− 1.

Recall that for any risk level α ∈ (0, 1], function V : S 7→ R and (s′, s, a) ∈ S×S×A, µα,V (s′|s, a)
denotes how large the transition probability of successor state s′ belongs to the worst α-portion
successor states (i.e., with the lowest α-portion values V (·)), which satisfies that µα,V (s′|s,a)

α =

βα,V (s′|s, a) and 0 ≤ µα,V (s′|s, a) ≤ p(s′|s, a).
Thus, we have

wCVaR,α,V
kh (s, a) =

∑
(s2,...,sh−1)∈Sh−2

h−1∏
h′=1

µα,Vh′+1(sh′+1|sh′ , ah′)

α

≤
∑

(s2,...,sh−1)∈Sh−2

h−1∏
h′=1

p(sh′+1|sh′ , ah′)

α

=
1

αh−1

∑
(s2,...,sh−1)∈Sh−2

h−1∏
h′=1

p(sh′+1|sh′ , ah′)

=
1

αh−1
· wkh(s, a)

Therefore,

wCVaR,α,V
kh (s, a)

wkh(s, a)
≤ 1

αh−1
. (12)

Combining Eqs. (11) and (12), we obtain this lemma.

Lemma 10 (Insufficient Visitation). It holds that
K∑

k=1

H∑
h=1

∑
(s,a)/∈Lk

wCVaR,α,V πk

kh (s, a) ≤min

 1

min
π,h,s: wπ,h(s)>0

wπ,h(s)
,

1

αH−1

 ·(
4SAH log

(
HSA

δ′

)
+ 5SAH

)
.

Proof of Lemma 10. According to the definition of Lk (Eq. (10)), for any (s, a) ∈ S × A, once
(s, a) satisfies (s, a) ∈ Lk in some episode k, it will always satisfy (s, a) ∈ Lk′ for all k′ ≥ k. For
any (s, a) ∈ S ×A, let k̃(s, a) denote the last episode k where (s, a) /∈ Lk. Then, we have

K∑
k=1

H∑
h=1

∑
(s,a)/∈Lk

wkh(s, a) =
∑

(s,a)∈S×A

K∑
k=1

H∑
h=1

wkh(s, a) · 1 {(s, a) /∈ Lk}

=
∑

(s,a)∈S×A

k̃(s,a)∑
k=1

H∑
h=1

wkh(s, a)

=
∑

(s,a)∈S×A

k̃(s,a)−1∑
k=1

H∑
h=1

wkh(s, a) +

H∑
h=1

wk̃(s,a),h(s, a)


(a)
<

∑
(s,a)∈S×A

(
4H log

(
HSA

δ′

)
+ 4H +H

)
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Figure 5: Illustrating example for Lemma 11. For each s′ ∈ {s1, s2, s3}, the height of the bar
denotes the value V (s′) or V̄ (s′), and the width of the bar denotes the transition probability p(s′|s, a)
(fixed). The colored part of the bars denotes the worst α-portion successor states (i.e., with the lowest
α-portion values V (s′) or V̄ (s′)). In this example, α = 0.5.

≤4SAH log

(
HSA

δ′

)
+ 5SAH,

where (a) is due to that (s, a) /∈ Lk̃(s,a), and for any k > 0, h ∈ [H] and (s, a) ∈ S × A,
wkh(s, a) ∈ [0, 1].

For any policy π, h ∈ [H] and (s, a) ∈ S × A, let wπ,h(s, a) and wπ,h(s) denote the probabilities
of visiting (s, a) and s at step h under policy π, respectively. Then, we have

K∑
k=1

H∑
h=1

∑
(s,a)/∈Lk

wCVaR,α,V πk

kh (s, a)

(a)
=

K∑
k=1

H∑
h=1

∑
(s,a)/∈Lk

wCVaR,α,V πk

kh (s, a)

wkh(s, a)
· wkh(s, a) · 1 {wkh(s, a) ̸= 0}

(b)
≤min

 1

min
π,h,(s,a): wπ,h(s,a)>0

wπ,h(s, a)
,

1

αH−1


K∑

k=1

H∑
h=1

∑
(s,a)/∈Lk

wkh(s, a)

(c)
≤min

 1

min
π,h,s: wπ,h(s)>0

wπ,h(s)
,

1

αH−1


(
4SAH log

(
HSA

δ′

)
+ 5SAH

)
,

Here (a) is due to Lemma 8. (b) comes from Lemma 9. (c) uses the fact that for any deterministic
policy π, h ∈ [H] and (s, a) ∈ S ×A, we have either wπ,h(s, a) = wπ,h(s) or wπ,h(s, a) = 0, and
thus minπ,h,(s,a): wπ,h(s,a)>0 wπ,h(s, a) = minπ,h,s: wπ,h(s)>0 wπ,h(s).

Recall that for any risk level α ∈ (0, 1], function V : S 7→ R and (s′, s, a) ∈ S×S×A, βα,V (s′|s, a)
is the conditional probability of transitioning to s′ from (s, a), conditioning on transitioning to the
worst α-portion successor states s′ (i.e., with the lowest α-portion values V (s′)), and it holds that
CVaRα

s′∼p(s′|s,a)(V (s′)) =
∑

s′∈S βα,V (s′|s, a) · V (s′).

Lemma 11 (CVaR Gap due to Value Function Shift). For any (s, a) ∈ S×A, distribution p(·|s, a) ∈
△S , and functions V, V̄ : S 7→ [0, H] such that V̄ (s′) ≥ V (s′) for any s′ ∈ S,

CVaRα
s′∼p(·|s,a)(V̄ (s′))− CVaRα

s′∼p(·|s,a)(V (s′)) ≤ βα,V (·|s, a)⊤
(
V̄ − V

)
.
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Proof of Lemma 11. Recall that for any risk level α ∈ (0, 1], function V : S 7→ R and (s′, s, a) ∈
S × S ×A, βα,V (s′|s, a) is the conditional transition probability from (s, a) to s′, conditioning on
transitioning to the worst α-portion successor states s′ (i.e., with the lowest α-portion values V (s′)),
and µα,V (s′|s, a) denotes how large the transition probability of successor state s′ belongs to the
worst α-portion, which satisfies that µα,V (s′|s,a)

α = βα,V (s′|s, a) and
∑

s′∈S µα,V (s′|s, a) = α.
Then, for any risk level α ∈ (0, 1], function V : S 7→ R and (s′, s, a) ∈ S × S ×A,

CVaRα
s′∼p(·|s,a)(V (s′)) =

∑
s′∈S µα,V (s′|s, a) · V (s′)

α
=
∑
s′∈S

βα,V (s′|s, a) · V (s′),

As shown in Figure 5, we sort all successor states s′ ∈ S by their values V (s′) in ascending order
(from left to right). Fix the transition probability p(·|s, a) and the value function shifts from V (·)
to V̄ (·). Then, below we divide all successor states s′ ∈ S into three subsets, i.e., Sup, Sdown and
Sunch, according to how µα,V (s′|s, a) changes to µα,V̄ (s′|s, a) as V (s′) shifts to V̄ (s′).

• For any s′ ∈ Sup, µα,V̄ (s′|s, a) < µα,V (s′|s, a), the rank of s′ goes up, and the position of
s′ moves to the right (here “rank” means to rank all successor states s′ ∈ S by their values
V (s′) or V̄ (s′) from highest to lowest).

• For any s′ ∈ Sdown, µα,V̄ (s′|s, a) > µα,V (s′|s, a), the rank of s′ goes down, and the
position of s′ moves to the left.

• For any s′ ∈ Sunch, µα,V̄ (s′|s, a) = µα,V (s′|s, a), the rank and position of s′ keep un-
changed.

Then, it holds that∑
s′∈Sup

(
µα,V̄ (s′|s, a)− µα,V (s′|s, a)

)
+

∑
s′∈Sdown

(
µα,V̄ (s′|s, a)− µα,V (s′|s, a)

)
= 0. (13)

Next, we have
CVaRα

s′∼p(·|s,a)(V̄ (s′))− CVaRα
s′∼p(·|s,a)(V (s′))

=
1

α
·

( ∑
s′∈Sup

(
µα,V̄ (s′|s, a) · V̄ (s′)− µα,V (s′|s, a) · V (s′)

)
+

∑
s′∈Sdown

(
µα,V̄ (s′|s, a) · V̄ (s′)− µα,V (s′|s, a) · V (s′)

)
+

∑
s′∈Sunch

(
µα,V̄ (s′|s, a) · V̄ (s′)− µα,V (s′|s, a) · V (s′)

))

=
1

α
·

( ∑
s′∈Sup

(
µα,V (s′|s, a) ·

(
V̄ (s′)− V (s′)

)
+
(
µα,V̄ (s′|s, a)− µα,V (s′|s, a)

)
· V̄ (s′)

)

+
∑

s′∈Sdown

(
µα,V (s′|s, a) ·

(
V̄ (s′)− V (s′)

)
+
(
µα,V̄ (s′|s, a)− µα,V (s′|s, a)

)
· V̄ (s′)

)

+
∑

s′∈Sunch

µα,V (s′|s, a) ·
(
V̄ (s′)− V (s′)

))

=
1

α
·

(∑
s∈S

µα,V (s′|s, a) ·
(
V̄ (s′)− V (s′)

)
−
∑

s′∈Sup

(
µα,V (s′|s, a)− µα,V̄ (s′|s, a)

)
· V̄ (s′)

+
∑

s′∈Sdown

(
µα,V̄ (s′|s, a)− µα,V (s′|s, a)

)
· V̄ (s′)

)
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(a)
≤ 1

α

(∑
s∈S

µα,V (s′|s, a) ·
(
V̄ (s′)− V (s′)

)
− min

s′∈Sup

V̄ (s′) ·
∑

s′∈Sup

(
µα,V (s′|s, a)− µα,V̄ (s′|s, a)

)

+ min
s′∈Sup

V̄ (s′) ·
∑

s′∈Sdown

(
µα,V̄ (s′|s, a)− µα,V (s′|s, a)

))
(b)
=
1

α
·
∑
s∈S

µα,V (s′|s, a) ·
(
V̄ (s′)− V (s′)

)
=βα,V (·|s, a)⊤

(
V̄ − V

)
Here (a) is due to that for any s′ ∈ Sup, µα,V̄ (s′|s, a) < µα,V (s′|s, a), and for any s ∈ Sup,
s′ ∈ Sdown, V̄ (s) ≥ V̄ (s′). (b) comes from Eq. (13).

D.1.3 PROOF OF THEOREM 1

Proof of Theorem 1. Suppose that event E holds. Then, for any k ∈ [K],

V ∗
1 (s

k
1)− V πk

1 (sk1)

(a)
≤V̄ k

1 (sk1)− V πk

1 (sk1)

=min

{
r(sk1 , a

k
1) + CVaRα

s′∼p̂k(·|sk1 ,ak
1 )
(V̄ k

2 (s′)) +
H

α

√
L

nk(sk1 , a
k
1)

, H

}
−
(
r(sk1 , a

k
1) + CVaRα

s′∼p(·|sk1 ,ak
1 )
(V πk

2 (s′))
)

≤r(sk1 , ak1) + CVaRα
s′∼p̂k(·|sk1 ,ak

1 )
(V̄ k

2 (s′)) + min

{
H

α

√
L

nk(sk1 , a
k
1)

, H

}
−
(
r(sk1 , a

k
1) + CVaRα

s′∼p(·|sk1 ,ak
1 )
(V πk

2 (s′))
)

=min

{
H

α

√
L

nk(sk1 , a
k
1)

, H

}
+ CVaRα

s′∼p̂k(·|sk1 ,ak
1 )
(V̄ k

2 (s′))− CVaRα
s′∼p(·|sk1 ,ak

1 )
(V̄ k

2 (s′))

+ CVaRα
s′∼p(·|sk1 ,ak

1 )
(V̄ k

2 (s′))− CVaRα
s′∼p(·|sk1 ,ak

1 )
(V πk

2 (s′))

(b)
≤min

{
H

α

√
L

nk(sk1 , a
k
1)

, H

}
+min

{
4H

α

√
SL

nk(sk1 , a
k
1)

, H

}
+βα,V πk

2 (·|sk1 , ak1)⊤(V̄ k
2 − V πk

2 )

(c)
≤min

{
H
√
L+ 4H

√
SL

α
√
nk(sk1 , a

k
1)

, 2H

}
+
∑
s2∈S

βα,V πk

2 (s2|sk1 , ak1) · (V̄ k
2 (s2)− V πk

2 (s2))

(d)
≤min

{
H
√
L+ 4H

√
SL

α
√
nk(sk1 , a

k
1)

, 2H

}
+
∑
s2∈S

βα,V πk

2 (s2|sk1 , ak1)·(
min

{
H
√
L+ 4H

√
SL

α
√
nk(s2, a2)

, 2H

}
+
∑
s3∈S

βα,V πk

3 (s3|s2, a2) · (V̄ k
3 (s3)− V πk

3 (s3))

)
(e)
≤min

{
H
√
L+ 4H

√
SL

α
√
nk(sk1 , a

k
1)

, 2H

}
+
∑
s2∈S

βα,V πk

2 (s2|sk1 , ak1)·(
min

{
H
√
L+ 4H

√
SL

α
√
nk(s2, a2)

, 2H

}
+
∑
s3∈S

βα,V πk

3 (s3|s2, a2)·
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(
· · ·

∑
sH∈S

βα,V πk

H (sH |sH−1, aH−1) ·

(
min

{
H
√
L+ 4H

√
SL

α
√

nk(sH , aH)
, 2H

})))

(f)
=

H∑
h=1

∑
(s,a)∈S×A

wCV aR,α,V πk

kh (s, a) ·min

{
H
√
L+ 4H

√
SL

α
√
nk(s, a)

, 2H

}

≤
H∑

h=1

∑
(s,a)∈Lk

wCV aR,α,V πk

kh (s, a) · H
√
L+ 4H

√
SL

α
√
nk(s, a)

+

H∑
h=1

∑
(s,a)/∈Lk

wCV aR,α,V πk

kh (s, a) · 2H (14)

Here ah := πk(sh) for h = 2, . . . ,H . (a) is due to Lemma 5. (b) uses Lemma 2 and the fact that for
any k > 0, h ∈ [H] and s ∈ S, V̄ k

h (s) ∈ [0, H], and thus for any k > 0, h ∈ [H] and (s, a) ∈ S×A,
CVaRα

s′∼p̂k(·|s,a)(V̄
k
h+1(s

′))−CVaRα
s′∼p(·|s,a)(V̄

k
h+1(s

′)) ≤ H , and also uses Lemma 11. (c) comes
from the property of min{·, ·}. (d) and (e) follow from recurrently applying steps (a)-(c). (f) is due

to that wCV aR,α,V πk

kh (s, a) is defined as the probability of visiting (s, a) at step h of episode k under

the conditional transition probability βα,V πk

h′+1(·|·, ·) for each step h′ = 1, . . . , h− 1.

Since the second term in Eq. (14) can be bounded by Lemma 10, below we analyze the first term.

Recall that for any policy π, h ∈ [H] and (s, a) ∈ S × A, wπ,h(s, a) and wπ,h(s) denote the
probabilities of visiting (s, a) and s at step h under policy π, respectively. Summing the first term
in Eq. (14) over k ∈ [K], we have

K∑
k=1

H∑
h=1

∑
(s,a)∈Lk

wCVaR,α,V πk

kh (s, a)
H
√
L+ 4H

√
SL

α
√
nk(s, a)
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√
L+ 4H
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α

√√√√ K∑
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H∑
h=1

∑
(s,a)∈Lk

wCVaR,α,V πk

kh (s, a)

nk(s, a)
·

√√√√ K∑
k=1

H∑
h=1

∑
(s,a)∈Lk

wCVaR,α,V πk

kh (s, a)

(a)
=
H
√
L+ 4H

√
SL

α

√√√√ K∑
k=1

H∑
h=1

∑
(s,a)∈Lk

wCVaR,α,V πk

kh (s, a)

nk(s, a)
· 1 {wkh(s, a) ̸= 0} ·

√
KH

=
(H
√
L+ 4H

√
SL)
√
KH

α

√√√√ K∑
k=1

H∑
h=1

∑
(s,a)∈Lk

wCVaR,α,V πk

kh (s, a)

wkh(s, a)
·wkh(s, a)

nk(s, a)
·1 {wkh(s, a) ̸= 0}

(b)
≤ (H

√
L+4H

√
SL)
√
KH

α

√√√√√min

{
1

min
π,h,(s,a): wπ,h(s,a)>0

wπ,h(s, a)
,

1

αH−1

} K∑
k=1

H∑
h=1

∑
(s,a)∈Lk

wkh(s, a)

nk(s, a)

(c)
≤ (H

√
L+ 4H

√
SL)
√
KH

α
· 2
√
SAL ·min


1√

min
π,h,s: wπ,h(s)>0

wπ,h(s)
,

1√
αH−1


≤10HSL

√
KHA

α
·min


1√

min
π,h,s: wπ,h(s)>0

wπ,h(s)
,

1√
αH−1

 .

Here (a) is due to Lemma 8 and the fact that for any k > 0 and h ∈ [H],∑
(s,a)∈S×A wCVaR,α,V πk

kh (s, a) = 1. (b) comes from Lemma 9. (c) uses Lemma 7 and the fact that
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for any deterministic policy π, h ∈ [H] and (s, a) ∈ S × A, we have either wπ,h(s, a) = wπ,h(s)
or wπ,h(s, a) = 0, and thus minπ,h,(s,a): wπ,h(s,a)>0 wπ,h(s, a) = minπ,h,s: wπ,h(s)>0 wπ,h(s).

Then, summing the first and second terms in Eq. (14) over k ∈ [K] and using Lemma 10, we have

R(K) =

K∑
k=1

(
V ∗
1 (s

k
1)− V πk

1 (sk1)
)

≤
K∑

k=1

H∑
h=1

∑
(s,a)∈Lk

wCVaR,α,V πk

kh (s, a)
H
√
L+ 4H

√
SL

α
√
nk(s, a)

+

K∑
k=1

H∑
h=1

∑
(s,a)/∈Lk

wCVaR,α,V πk

kh (s, a) · 2H

≤min


1√

min
π,h,s: wπ,h(s)>0

wπ,h(s)
,

1√
αH−1


10HS

√
KHA

α
log

(
KHSA

δ′

)

+min

 1

min
π,h,s: wπ,h(s)>0

wπ,h(s)
,

1

αH−1


(
8SAH2 log

(
HSA

δ′

)
+ 10SAH2

)

When K is large enough, the first term dominates the bound, and thus we obtain Theorem 1.

D.2 PROOF OF REGRET LOWER BOUND

Below we prove the regret lower bound (Theorem 2) for Iterated CVaR RL-RM.

Proof of Theorem 2. First, we construct an instance where minπ,h,s: wπ,h(s)>0 wπ,h(s) > αH−1,

and prove that on this instance any algorithm must suffer a Ω( H√
minπ,h,s: wπ,h(s)>0 wπ,h(s)

√
AK
α )

regret.

Consider the instance shown in Figure 6 (the same as Figure 1 in the main text):

The state space is S = {s1, s2, . . . , sn, x1, x2, x3}, where s1 is the initial state, and n = S − 3 <
S < 1

2H .

The reward functions are as follows. For any a ∈ A, r(x1, a) = 1, r(x2, a) = 0.8 and r(x3, a) =
0.2. For any i ∈ [n] and a ∈ A, r(si, a) = 0.

The transition distributions are as follows. Let µ be a parameter which satisfies that 0 < α < µ < 1
3 .

For any a ∈ A, p(s2|s1, a) = µ, p(x1|s1, a) = 1 − 3µ, p(x2|s1, a) = µ and p(x3|s1, a) = µ. For
any i ∈ {2, . . . , n − 1} and a ∈ A, p(si+1|si, a) = µ and p(x1|si, a) = 1 − µ. x1, x2 and x3

are absorbing states, i.e., for any a ∈ A, p(x1|x1, a) = 1, p(x2|x2, a) = 1 and p(x3|x3, a) = 1.
Let aJ be the optimal action in state sn, which is uniformly drawn from A. For the optimal action
aJ , p(x2|sn, aJ) = 1 − α + η and p(x3|sn, aJ) = α − η, where η is a parameter which satisfies
0 < η < α and will be chosen later. For any suboptimal action a ∈ A \ {aJ}, p(x2|sn, a) = 1− α
and p(x3|sn, a) = α.

For any aj ∈ A, let Ej [·] and Prj [·] denote the expectation and probability operators under the
instance with aJ = aj . Let Eunif [·] and Prunif [·] denote the expectation and probability operators
under the uniform instance where all actions a ∈ A in state sn have the same transition distribution,
i.e., p(x2|sn, a) = 1− α and p(x3|sn, a) = α.

Fix an algorithm A. Let πk denote the policy taken by algorithm A in episode k. Let Nsn,aj
=∑K

k=1 1
{
πk(sn) = aj

}
denote the number of episodes that the policy chooses aj in state sn. Let

Vsn,aj denote the number of episodes that the algorithm A visits (sn, aj). Let w(sn) denote the
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Figure 6: Instance of lower bounds (Theorems 2 and 5) for the minπ,h,s: wπ,h(s)>0 wπ,h(s) > αH−1

case.

probability of visiting sn in an episode (the probability of visiting sn is the same for all policies).
Then, it holds that E[Vsn,aj ] = w(sn) · E[Nsn,aj ].

Recall that aJ is the optimal action in state sn. According to the definition of the value function for
Iterated CVaR RL, we have that

V ∗
1 (s1) =

(α− η) · 0.2(H − n) + η · 0.8(H − n)

α
,

and for any policy π,

V π
1 (s1) =

(α− η) · 0.2(H − n) + η · 0.8(H − n)

α
· 1 {π(sn) = aJ}

+ 0.2(H − n) · (1− 1 {π(sn) = aJ}) .

If J = j, for any policy π,

V ∗
1 (s1)− V π

1 (s1) =
η · 0.6(H − n)

α
· (1− 1 {π(sn) = aj}) , (15)

and summing over all episodes k ∈ [K], we have

Ej [R(K)] =

K∑
k=1

(
V ∗
1 (s1)− V πk

1 (s1)
)

=
η · 0.6(H − n)

α
·

(
K −

K∑
k=1

1 {π(sn) = aj}

)

=
η · 0.6(H − n)

α
·
(
K − Ej [Nsn,aj ]

)
Therefore, we have

E [R(K)] =
1

A

A∑
j=1

K∑
k=1

(
V ∗
1 (s1)− V πk

1 (s1)
)

=
1

A

A∑
j=1

η

α
· 0.6(H − n)

(
K − Ej [Nsn,aj

]
)

=0.6(H − n) · η
α
·

K − 1

A

A∑
j=1

Ej [Nsn,aj
]

 (16)

For any j ∈ [A], using Pinsker’s inequality and 0 < α < 1
3 , we have that

KL(punif (sn, aj)∥pj(sn, aj)) = KL(Ber(α)∥Ber(α − η)) ≤ η2

(α−η)(1−α+η) ≤
c1η

2

α for some
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constant c1 and small enough η. Then, using Lemma A.1 in (Auer et al., 2002), we have that for any
j ∈ [A],

Ej [Nsn,aj
] ≤Eunif [Nsn,aj

] +
K

2

√
Eunif [Vsn,aj

] · KL (punif (sn, aj)||pj(sn, aj))

≤Eunif [Nsn,aj
] +

K

2

√
w(sn) · Eunif [Nsn,aj

] · c1η
2

α

Then, using
∑A

j=1 Eunif [Nsn,aj
] = K and the Cauchy–Schwarz inequality, we have

1

A

A∑
j=1

Ej [Nsn,aj ] ≤
1

A

A∑
j=1

Eunif [Nsn,aj ] +
Kη

2A

A∑
j=1

√
c1
α
· w(sn) · Eunif [Nsn,aj ]

≤ 1

A

A∑
j=1

Eunif [Nsn,aj ] +
Kη

2A

√√√√A

A∑
j=1

c1
α
· w(sn) · Eunif [Nsn,aj ]

≤K

A
+

Kη

2

√
c1 · w(sn)K

αA
(17)

By plugging Eq. (17) into Eq. (16), we have

E [R(K)] ≥ 0.6(H − n) · η
α
·

(
K − K

A
− Kη

2

√
c1 · w(sn)K

αA

)
.

Let η = c2
√

αA
w(sn)K

for a small enough constant c2. We have

E [R(K)] =Ω

(
H

√
A

α · w(sn)K
·K

)

=Ω

(
H

√
AK

α · w(sn)

)

Recall that n < 1
2H and 0 < α < µ < 1

3 . Thus, we have that minπ,h,s: wπ,h(s)>0 wπ,h(s) =

w(sn) = µn−1 > αH−1, and

E [R(K)] =Ω

H

√√√√ AK

α · min
π,h,s: wπ,h(s)>0

wπ,h(s)

 .

Next, we construct another instance where αH−1 > minπ,h,s: wπ,h(s)>0 wπ,h(s), and prove that on

this instance any algorithm must suffer a Ω(
√

AK
αH−1 ) regret.

Consider the instance shown in Figure 7:

The state space is S = {s1, . . . , sn, s′2, . . . , s′n, x1, x2, x3, x4}, where n = H − 1 and s1 is the
initial state. Let 0 < α < 1

4 .

The reward functions are as follows. For any a ∈ A, r(x1, a) = r(x4, a) = 1, r(x2, a) = 0.8 and
r(x3, a) = 0.2. For any i ∈ [n] and a ∈ A, r(si, a) = 0. For any i ∈ {2, . . . , n} and a ∈ A,
r(s′i, a) = 0.

The transition distributions are as follows. For any a ∈ A, p(s2|s1, a) = α, p(s′2|s1, a) = γ and
p(x1|s1, a) = 1−γ−α. For any i ∈ {2, . . . , n−1} and a ∈ A, p(si+1|si, a) = α and p(x1|si, a) =
1− α. For any i ∈ {2, . . . , n− 1} and a ∈ A, p(s′i+1|s′i, a) = γ and p(x1|s′i, a) = 1− γ. For any
a ∈ A, p(x4|s′n, a) = γ and p(x1|s′n, a) = 1 − γ. x1, x2, x3 and x4 are absorbing states, i.e., for
any a ∈ A and i ∈ [4], p(xi|xi, a) = 1. Let aJ be the optimal action in state sn, which is uniformly
drawn from A. For the optimal action aJ , p(x2|sn, aJ) = 1 − α + η and p(x3|sn, aJ) = α − η,
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Figure 7: Instance of lower bounds (Theorems 2 and 5) for the αH−1 > minπ,h,s: wπ,h(s)>0 wπ,h(s)
case.

where η is a parameter which satisfies 0 < η < α and will be chosen later. For any suboptimal
action a ∈ A \ {aJ}, p(x2|sn, a) = 1− α and p(x3|sn, a) = α.

According to the definition of the value function for Iterated CVaR RL, we have that

V ∗
1 (s1) =

0.2(α− η) + 0.8η

α
,

and for any policy π,

V π
1 (s1) =

0.2(α− η) + 0.8η

α
· 1 {π(sn) = aJ}+ 0.2 (1− 1 {π(sn) = aJ}) .

If J = j, for any policy π,

V ∗
1 (s1)− V π

1 (s1) =
0.6η

α
(1− 1 {π(sn) = aj}) , (18)

and summing over all episodes k ∈ [K], we have

Ej [R(K)] =

K∑
k=1

(
V ∗
1 (s1)− V πk

1 (s1)
)

=
0.6η

α
·

(
K −

K∑
k=1

1 {π(sn) = aj}

)

=
0.6η

α
·
(
K − Ej [Nsn,aj

]
)

Therefore, we have

E [R(K)] =
1

A

A∑
j=1

K∑
k=1

(
V ∗
1 (s1)− V πk

1 (s1)
)

=
1

A

A∑
j=1

0.6η

α

(
K − Ej [Nsn,aj

]
)

=
0.6η

α

K − 1

A

A∑
j=1

Ej [Nsn,aj
]

 (19)

Recall that 0 < α < 1
4 . For any j ∈ [A], we have that KL(punif (sn, aj)∥pj(sn, aj)) =

KL(Ber(α)∥Ber(α − η)) ≤ η2

(α−η)(1−α+η) ≤
c1η

2

α for some constant c1 and small enough η.
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Then, using Lemma A.1 in (Auer et al., 2002), we have that for any j ∈ [A],

Ej [Nsn,aj
] ≤Eunif [Nsn,aj

] +
K

2

√
Eunif [Vsn,aj

] · KL (punif (sn, aj)||pj(sn, aj))

≤Eunif [Nsn,aj
] +

K

2

√
w(sn) · Eunif [Nsn,aj

] · c1η
2

α

Then, using
∑A

j=1 Eunif [Nsn,aj
] = K and the Cauchy–Schwarz inequality, we have

1

A

A∑
j=1

Ej [Nsn,aj ] ≤
1

A

A∑
j=1

Eunif [Nsn,aj ] +
Kη

2A

A∑
j=1

√
c1
α
· w(sn) · Eunif [Nsn,aj ]

≤ 1

A

A∑
j=1

Eunif [Nsn,aj ] +
Kη

2A

√√√√A

A∑
j=1

c1
α
· w(sn) · Eunif [Nsn,aj ]

≤K

A
+

Kη

2

√
c1 · w(sn)K

αA
(20)

By plugging Eq. (20) into Eq. (19), we have

E [R(K)] ≥0.6η

α
·

(
K − K

A
− Kη

2

√
c1 · w(sn)K

αA

)
.

Let η = c2
√

αA
w(sn)K

for a small enough constant c2. We have

E [R(K)] =Ω

(√
A

α · w(sn)K
·K

)

=Ω

(√
AK

α · w(sn)

)

Recall that 0 < γ < α and n = H − 1. Thus, we have minπ,h,s: wπ,h(s)>0 wπ,h(s) = w(x4) =

γH−1 < αH−1. In addition, since w(sn) = αn−1 = αH−2, we have

E [R(K)] =Ω

(√
AK

α · αH−2

)

=Ω

(√
AK

αH−1

)
.

E PROOFS FOR ITERATED CVAR RL WITH BEST POLICY IDENTIFICATION

In this section, we present the pseudo-code and detailed description of algorithm ICVaR-BPI, and
formally state the sample complexity lower bound for Iterated CVaR-BPI (Theorem 5). We also give
the proofs of sample complexity upper and lower bounds (Theorems 3 and 5).

E.1 ALGORITHM ICVaR-BPI

Algorithm ICVaR-BPI (Algorithm 3) constructs optimistic and pessimistic value func-
tions, estimation error, and a hypothesized optimal policy in each episode, and returns
the hypothesized optimal policy when the estimation error shrinks within ε. Specif-
ically, in each episode k, ICVaR-BPI calculates the empirical CVaR for values of
next states CVaRα

s′∼p̂k(·|s,a)(V̄
k
h+1(s

′)),CVaRα
s′∼p̂k(·|s,a)(V

k
h+1(s

′)) and exploration bonuses
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Algorithm 3: ICVaR-BPI

Input: ε, δ, α, δ′ := δ
7 , L̃(k) := log( 2HSAk3

δ′ ) for any k > 0,
Jk
H+1(s) = V̄ k

H+1(s) = V k
H+1(s) = 0 for any k > 0 and s ∈ S.

1 for k = 1, 2, . . . ,K do
2 for h = H,H − 1, . . . , 1 do
3 for s ∈ S do
4 for a ∈ A do
5 Q̄k

h(s, a)← min
{
r(s, a) + CVaRα

s′∼p̂k(·|s,a)(V̄
k
h+1(s

′)) + H
α

√
L̃(k)

nk(s,a)
, H

}
;

6 Qk

h
(s, a)← max

{
r(s, a) + CVaRα

s′∼p̂k(·|s,a)(V
k
h+1(s

′))− 4H
α

√
SL̃(k)
nk(s,a)

, 0
}

;

7 Gk
h(s, a)← min

{
H(1+4

√
S)
√

L̃(k)

α
√

nk(s,a)
+ β̂k;α,V k

h+1(·|s, a)⊤Jk
h+1, H

}
;

8 πk
h(s)← argmaxa∈A Q̄k

h(s, a). V̄
k
h (s)← maxa∈A Q̄k

h(s, a).
V k

h(s)← Qk

h
(s, πk

h(s)). J
k
h (s)← Gk

h(s, π
k
h(s));

9 if Jk
1 (s) ≤ ε then

10 return πk(s)

11 else
12 Play the episode k with policy πk, and update nk+1(s, a) and p̂k+1(s′|s, a)

H
α

√
L̃(k)

nk(s,a)
, 4H

α

√
SL̃(k)
nk(s,a)

, to establish the optimistic and pessimistic Q-value functions Q̄k
h(s, a)

and Qk

h
(s, a), respectively. ICVaR-BPI further maintains a hypothesized optimal policy πk, which

is greedy with respect to Q̄k
h(s, a). Let β̂k;α,V k

h+1(·|s, a) denote the conditional empirical transition
probability in episode k, conditioning on transitioning to the worst α-portion successor states s′ (i.e.,
with the worst α-portion values V k

h+1(s
′)), and it satisfies

∑
s′∈S β̂k;α,V k

h+1(s′|s, a) · V k
h+1(s

′) =

CVaRα
s′∼p̂k(·|s,a)(V

k
h+1(s

′)) (Line 7). Then, ICVaR-BPI computes estimation error Gk
h(s, a) and

Jk
h (s) using conditional transition probability β̂k;α,V k

h+1(·|s, a). Once estimation error Jk
h (s)

shrinks within accuracy parameter ε, ICVaR-BPI returns the hypothesized optimal policy πk.

E.2 PROOFS OF SAMPLE COMPLEXITY UPPER BOUND

E.2.1 CONCENTRATION

In the best policy identification analysis, we introduce several useful lemmas and concentration
events. Different from the regret minimization analysis where the logrithmic factor log(KHSA

δ′ )

in the exploration bonuses is an universal constant, here the logrithmic factor log( 2k
3HSA
δ′ ) will

increase as the index of the episode k increases.
Lemma 12 (Concentration for V ∗ – BPI). It holds that

Pr

[ ∣∣∣CVaRα
s′∼p̂k(·|s,a)(V

∗
h (s

′))− CVaRα
s′∼p(·|s,a)(V

∗
h (s

′))
∣∣∣ ≤ H

α

√
log
(
2k3HSA

δ′

)
nk(s, a)

,

∀k > 0, ∀h ∈ [H], ∀(s, a) ∈ S ×A

]
≥ 1− 2δ′.

Proof of Lemma 12. Using the same analysis as Lemma 1, we have that for a fixed k,

Pr

[ ∣∣∣CVaRα
s′∼p̂k(·|s,a)(V

∗
h (s

′))− CVaRα
s′∼p(·|s,a)(V

∗
h (s

′))
∣∣∣ ≤ H

α

√
log
(
2k3HSA

δ′

)
nk(s, a)

,

∀h ∈ [H], ∀(s, a) ∈ S ×A

]
≥ 1− 2 · δ′

2k2
.
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By a union bound over k = 1, 2, . . . , we have

Pr

[ ∣∣∣CVaRα
s′∼p̂k(·|s,a)(V

∗
h (s

′))− CVaRα
s′∼p(·|s,a)(V

∗
h (s

′))
∣∣∣ ≤ H

α

√
log
(
2k3HSA

δ′

)
nk(s, a)

,

∀k > 0, ∀h ∈ [H], ∀(s, a) ∈ S ×A

]

≥1− 2 ·
∞∑
k=1

(
δ′

2k2

)
≥1− 2δ′.

Lemma 13 (Concentration for any V – BPI). It holds that

Pr

[ ∣∣∣CVaRα
s′∼p̂k(·|s,a)(V (s′))− CVaRα

s′∼p(·|s,a)(V (s′))
∣∣∣ ≤ 2H

α

√
2S log

(
2k3HSA

δ′

)
nk(s, a)

,

∀V : S 7→ [0, H], ∀k > 0, ∀(s, a) ∈ S ×A

]
≥ 1− 2δ′.

Proof of Lemma 13. Using the same analysis as Lemma 2, we have that for a fixed k,

Pr

[ ∣∣∣CVaRα
s′∼p̂k(·|s,a)(V (s′))− CVaRα

s′∼p(·|s,a)(V (s′))
∣∣∣ ≤ 2H

α

√
2S log

(
2k3HSA

δ′

)
nk(s, a)

,

∀V : S 7→ [0, H], ∀(s, a) ∈ S ×A

]
≥ 1− 2 · δ′

2k2
.

By a union bound over k = 1, 2, . . . , we have

Pr

[ ∣∣∣CVaRα
s′∼p̂k(·|s,a)(V (s′))− CVaRα

s′∼p(·|s,a)(V (s′))
∣∣∣ ≤ 2H

α

√
2S log

(
2k3HSA

δ′

)
nk(s, a)

,

∀V : S 7→ [0, H], ∀k > 0, ∀(s, a) ∈ S ×A

]

≥1− 2 ·
∞∑
k=1

(
δ′

2k2

)
≥1− 2δ′.

For any risk level α ∈ (0, 1], function V : S 7→ R, k > 0 and (s′, s, a) ∈ S × S ×A, βα,V (s′|s, a)
and β̂k;α,V (s′|s, a) are the conditional transition probability from (s, a) to s′ and the conditional
empirical transition probability from (s, a) to s′ in episode k, conditioning on transitioning to
the worst α-portion successor states s′ (i.e., with the lowest α-portion values V (s′)), respectively.
µα,V (s′|s, a) and µ̂k;α,V (s′|s, a) denote how large the transition probability of successor state s′ and
the empirical transition probability of successor state s′ in episode k belong to the worst α-portion,
respectively. It holds that

µα,V (s′|s, a)
α

= βα,V (s′|s, a),

and
µ̂k;α,V (s′|s, a)

α
= β̂k;α,V (s′|s, a).
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Lemma 14 (Concentration for conditional transition probability). It holds that

Pr

[ ∣∣∣β̂k;α,V (s′|s, a)− βα,V (s′|s, a)
∣∣∣ ≤ 2

α

√
2S log

(
2k3HSA

δ′

)
nk(s, a)

,

∀V : S 7→ R, ∀k > 0, ∀(s, a) ∈ S ×A

]
≥ 1− 2δ′.

Proof of Lemma 14. Using the analysis of Eq. (7), we have that for any risk level α ∈ (0, 1], function
V : S 7→ R, k > 0 and (s, a) ∈ S ×A,∑

s′∈S

∣∣µ̂k;α,V (s′|s, a)− µα,V (s′|s, a)
∣∣ ≤ 2

∑
s′∈S

∣∣p̂k(s′|s, a)− p(s′|s, a)
∣∣ . (21)

Using Eq. (55) in (Zanette & Brunskill, 2019) (originated from (Weissman et al., 2003)), we have
that for any fixed k, with probability at least 1− 2 · ( δ′

2k2 ), for any (s, a) ∈ S ×A,

∑
s′∈S

∣∣p̂k(s′|s, a)− p(s′|s, a)
∣∣ ≤

√
2S log

(
2k3HSA

δ′

)
nk(s, a)

,

and thus,∑
s′∈S

∣∣∣β̂k;α,V (s′|s, a)− βα,V (s′|s, a)
∣∣∣ =∑

s′∈S

∣∣∣∣ µ̂k;α,V (s′|s, a)
α

− µα,V (s′|s, a)
α

∣∣∣∣
=

∑
s′∈S

∣∣µ̂k;α,V (s′|s, a)− µα,V (s′|s, a)
∣∣

α

≤
2
∑

s′∈S
∣∣p̂k(s′|s, a)− p(s′|s, a)

∣∣
α

≤ 2

α

√
2S log

(
2k3HSA

δ′

)
nk(s, a)

By a union bound over k = 1, 2, . . . , we have

Pr

[ ∑
s′∈S

∣∣∣β̂k;α,V (s′|s, a)− βα,V (s′|s, a)
∣∣∣ ≤ 2

α

√
2S log

(
2k3HSA

δ′

)
nk(s, a)

,

∀V : S 7→ R, ∀k > 0, ∀(s, a) ∈ S ×A

]

≥1− 2 ·
∞∑
k=1

(
δ′

2k2

)
≥1− 2δ′.

To sum up, we define the following concentration events and recall event E3.

F1 :=

{∣∣∣CVaRα
s′∼p̂k(·|s,a)(V

∗
h (s

′))− CVaRα
s′∼p(·|s,a)(V

∗
h (s

′))
∣∣∣ ≤ H

α

√
log
(
2k3HSA

δ′

)
nk(s, a)

,

∀k > 0, ∀h ∈ [H], ∀(s, a) ∈ S ×A

}

F2 :=

{∣∣∣CVaRα
s′∼p̂k(·|s,a)(V (s′))− CVaRα

s′∼p(·|s,a)(V (s′))
∣∣∣ ≤ 2H

α

√
2S log

(
2k3HSA

δ′

)
nk(s, a)

,
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∀V : S 7→ [0, H], ∀k > 0, ∀(s, a) ∈ S ×A

}

F3 :=

{∣∣∣β̂k;α,V (s′|s, a)− βα,V (s′|s, a)
∣∣∣ ≤ 2

α

√
2S log

(
2k3HSA

δ′

)
nk(s, a)

,

∀V : S 7→ R, ∀k > 0, ∀(s, a) ∈ S ×A

}

E3 :=

{
nk(s, a) ≥

1

2

k−1∑
k′=1

H∑
h=1

wk′h(s, a)−H log

(
HSA

δ′

)
, ∀k > 0, ∀(s, a) ∈ S ×A

}
F :=F1 ∩ F2 ∩ F3 ∩ E3

Lemma 15. Letting δ′ = δ
7 , it holds that

Pr [F ] ≥ 1− δ.

Proof of Lemma 15. This lemma can be obtained by combining Lemmas 12-14 and 3.

E.2.2 OPTIMISM AND ESTIMATION ERROR

For any k > 0, let L̃(k) := log
(

2HSAk3

δ′

)
.

Lemma 16 (Optimism and Pessimism). Suppose that event F holds. Then, for any k > 0, h ∈ [H]
and s ∈ S,

V̄ k
h (s) ≥ V ∗

h (s),

V k
h(s) ≤ V πk

h (s).

Proof of Lemma 16. The proof of V̄ k
h (s) ≥ V ∗

h (s) is similar to Lemma 5. Below we prove V k
h(s) ≤

V πk

h (s) by induction.

First, for any k > 0, s ∈ S, it holds that V k
H+1(s) = V πk

H+1(s) = 0.

Then, for any k > 0, h ∈ [H] and (s, a) ∈ S × A, if Qk

h
(s, a) = 0, Qk

h
(s, a) ≤ Qπk

(s, a) trivially
holds, and otherwise,

Qk

h
(s, a) =r(s, a) + CVaRα

s′∼p̂k(·|s,a)(V
k
h+1(s

′))− 4H

α

√
SL̃(k)

nk(s, a)

(a)
≤r(s, a) + CVaRα

s′∼p̂k(·|s,a)(V
πk

h+1(s
′))− 4H

α

√
SL̃(k)

nk(s, a)

(b)
≤r(s, a) + CVaRα

s′∼p̂k(·|s,a)(V
πk

h+1(s
′))

−
(

CVaRα
s′∼p̂k(·|s,a)(V

πk

h+1(s
′))− CVaRα

s′∼p(·|s,a)(V
πk

h+1(s
′))
)

=r(s, a) + CVaRα
s′∼p(·|s,a)(V

πk

h+1(s
′))

=Qπk

(s, a),

where (a) uses the induction hypothesis, and (b) comes from Lemma 2.

Thus, we have

V k
h(s) = Qk

h
(s, πk

h(s)) ≤ Qπk

h (s, πk
h(s)) = V πk

h (s),

which concludes the proof.
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For any risk level α ∈ (0, 1], k > 0, h ∈ [H] and (s′, s, a) ∈ S × S × A, β̂k;α,V k
h+1(s′|s, a) is

the conditional empirical transition probability from (s, a) to s′ in episode k, conditioning on transi-
tioning to the worst α-portion successor states s′ (i.e., with the lowest α-portion values V k

h+1(s
′)).

It holds that CVaRα
s′∼p̂k(·|s,a)(V

k
h+1(s

′)) =
∑

s′∈S β̂k;α,V k
h+1(s′|s, a) · V k

h+1(s
′).

Lemma 17 (Estimation Error). Suppose that event F holds. Then, for any k > 0,

V ∗
1 (s1)− V πk

1 (s1) ≤ Jk
1 (s1).

Proof of Lemma 17. In the following, we prove by induction that for any k > 0, h ∈ [H] and s ∈ S,

V̄ k
h (s)− V k

h(s) ≤ Jk
h (s). (22)

First, for any k > 0 and s ∈ S, it holds that V̄ k
H+1(s)− V k

H+1(s) = Jk
H+1(s) = 0.

Then, for any k > 0, h ∈ [H] and (s, a) ∈ S×A, if Gk
h(s, a) = H , Q̄k

h(s, a)−Q
k

h
(s, a) ≤ Gk

h(s, a)
holds trivially, and otherwise,

Q̄k
h(s, a)−Qk

h
(s, a) =

H

α

√
L̃(k)

nk(s, a)
+

4H

α

√
SL̃(k)

nk(s, a)

+ CVaRα
s′∼p̂k(·|s,a)(V̄

k
h+1(s

′))− CVaRα
s′∼p̂k(·|s,a)(V

k
h+1(s

′))

(a)
≤
H
√
L̃(k)(1 + 4

√
S)

α
√

nk(s, a)
+ β̂k;α,V k

h+1(·|s, a)⊤
(
V̄ k
h+1 − V k

h+1

)
(b)
≤
H
√

L̃(k)(1 + 4
√
S)

α
√

nk(s, a)
+ β̂k;α,V k

h+1(·|s, a)⊤Jk
h+1

=Gk
h(s, a),

where (a) uses Lemma 11 with empirical transition probability p̂k(·|s, a), conditional empirical
transition probability β̂k;α,V k

h+1(·|s, a), and values V̄ k
h+1, V

k
h+1, and (b) is due to the induction hy-

pothesis.

Thus,
V̄ k
h (s)− V k

h(s) = Q̄k
h(s, π

k
h(s))−Qk

h
(s, πk

h(s)) ≤ Gk
h(s, π

k
h(s)) = Jk

h (s),

which completes the proof of Eq. (22).

Hence, for any k > 0,

V̄ k
1 (s1)− V k

1(s1) ≤ Jk
1 (s1).

Using Lemma 16, we have

V ∗
1 (s)− V πk

1 (s1) ≤ V̄ k
1 (s1)− V k

1(s1) ≤ Jk
1 (s1).

E.2.3 PROOF OF THEOREM 3

Proof of Theorem 3. Suppose that event F holds.

First, we prove the correctness. Using Lemma 17, when algorithm ICVaR-BPI stops, we have

V ∗
1 (s1)− V πk

1 (s1) ≤ Jk
1 (s1) ≤ ε.

Thus, the output policy πk is ε-optimal.

Next, we prove the sample complexity.
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Unfolding Jk
1 (s1), we have

Jk
1 (s1)

(a)
=min

H(1 + 4
√
S)
√

L̃(k)

α
√
nk(s1, a1)

+
∑
s2∈S

β̂k;α,V k
2 (s2|s1, a1) · Jk

2 (s2), H


=min

{
H(1 + 4

√
S)
√
L̃(k)

α
√
nk(s1, a1)

+
∑
s2∈S

βα,V k
2 (s2|s1, a1) · Jk

2 (s2)

+
∑
s2∈S

(
β̂k;α,V k

2 (s2|s1, a1)− βα,V k
2 (s2|s1, a1)

)
· Jk

2 (s2), H

}

(b)
≤min

{
H(1 + 4

√
S)
√
L̃(k)

α
√
nk(s1, a1)

+
∑
s2∈S

βα,V k
2 (s2|s1, a1) · Jk

2 (s2)

+H
∑
s2∈S

∣∣∣(β̂k;α,V k
2 (s2|s1, a1)− βα,V k

2 (s2|s1, a1)
)∣∣∣ , H}

(c)
≤min

{
H(1 + 4

√
S)
√
L̃(k)

α
√
nk(s1, a1)

+
∑
s2∈S

βα,V k
2 (s2|s1, a1) · Jk

2 (s2) +
4H

α

√
S · L̃(k)
nk(s1, a1)

, H

}

(d)
≤min

H(1 + 8
√
S)
√

L̃(k)

α
√
nk(s1, a1)

, H

+
∑
s2∈S

βα,V k
2 (s2|s1, a1) · Jk

2 (s2)

(e)
≤min

H(1 + 8
√
S)
√

L̃(k)

α
√
nk(s1, a1)

, H

+
∑
s2∈S

βα,V k
2 (s2|s1, a1)·

min

H(1 + 8
√
S)
√
L̃(k)

α
√
nk(s2, a2)

, H

+
∑
s3∈S

βα,V k
3 (s3|s2, a2) · Jk

3 (s3)


(f)
≤min

H(1 + 8
√
S)
√

L̃(k)

α
√
nk(s1, a1)

, H

+
∑
s2∈S

βα,V k
2 (s2|s1, a1)·

(
min

H(1 + 8
√
S)
√

L̃(k)

α
√
nk(s2, a2)

, H

+
∑
s3∈S

βα,V k
3 (s3|s2, a2)·

(
· · ·

∑
sH∈S

βα,V k
H (sH |sH−1, aH−1) ·min

H(1 + 8
√
S)
√

L̃(k)

α
√

nk(sH , aH)
, H


))

(g)
=

H∑
h=1

∑
(s,a)∈S×A

w
CVaR,α,V k

kh (s, a) ·min

H(1 + 8
√
S)
√

L̃(k)

α
√

nk(sH , aH)
, H


≤

H∑
h=1

∑
(s,a)∈Lk

w
CVaR,α,V k

kh (s, a) ·
H(1 + 8

√
S)
√
L̃(k)

α
√

nk(s, a)
+

H∑
h=1

∑
(s,a)/∈Lk

w
CVaR,α,V k

kh (s, a) ·H

Here (b) is due to that for any k > 0, h ∈ [H] and s ∈ S, Jk
h (s) ∈ [0, H]. (c) comes from Lemma 14.

(e) and (f) follow from recurrently applying steps (a)-(d). (g) uses the fact that wCVaR,α,V k

kh (s, a) is
defined as the probability of visiting (s, a) at step h of episode k under the conditional transition
probability βα,V k

h′+1(·|·, ·) for each step h′ = 1, . . . , h− 1.
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Let τ denote the episode in which algorithm ICVaR-BPI stops (ICVaR-BPI will not sample any
trajectory in the stopping episode τ ). Then, for any k < τ , we have ε < Jk

1 (s1). Summing over
k < τ , we have

(τ − 1) · ε <
τ−1∑
k=1

Jk
1 (s1)

≤
τ−1∑
k=1

H∑
h=1

∑
(s,a)∈Lk

w
CVaR,α,V k

kh (s, a) ·
H(1 + 8

√
S)
√
L̃(k)

α
√
nk(s, a)

+

τ−1∑
k=1

H∑
h=1

∑
(s,a)/∈Lk

w
CVaR,α,V k

kh (s, a) ·H

(a)
≤
H(1 + 8

√
S)
√
L̃(τ − 1)

α

√√√√τ−1∑
k=1

H∑
h=1

∑
(s,a)∈Lk

w
CVaR,α,V k

kh (s, a)

nk(s, a)
·

√√√√τ−1∑
k=1

H∑
h=1

∑
(s,a)∈Lk

w
CVaR,α,V k

kh (s, a)

+ min

 1

min
π,h,s: wπ,h(s)>0

wπ,h(s)
,

1

αH−1


(
4SAH2 log

(
HSA

δ′

)
+ 5SAH2

)

(b)
≤
H(1 + 8

√
S)
√
L̃(τ − 1)

α
·
√
(τ − 1)H ·

√√√√τ−1∑
k=1

H∑
h=1

∑
(s,a)∈Lk

w
CVaR,α,V k

kh (s, a)

nk(s, a)

+ min

 1

min
π,h,s: wπ,h(s)>0

wπ,h(s)
,

1

αH−1


(
4SAH2 log

(
HSA

δ′

)
+ 5SAH2

)

(c)
≤
(1 + 8

√
S)H

√
H · L̃(τ − 1) · (τ − 1)

α
·√√√√τ−1∑

k=1

H∑
h=1

∑
(s,a)∈Lk

w
CVaR,α,V k

kh (s, a)

wkh(s, a)
· wkh(s, a)

nk(s, a)
1 {wkh(s, a) ̸= 0}

+min

 1

min
π,h,s: wπ,h(s)>0

wπ,h(s)
,

1

αH−1


(
4SAH2 log

(
HSA

δ′

)
+ 5SAH2

)

≤
(1 + 8

√
S)H

√
H ·L̃(τ − 1)·(τ − 1)

α
·min

{
1√

min
π,h,s: wπ,h(s)>0

wπ,h(s)
,

1√
αH−1

}
·

√√√√τ−1∑
k=1

H∑
h=1

∑
(s,a)∈Lk

wkh(s, a)

nk(s, a)
+ min

 1

min
π,h,s: wπ,h(s)>0

wπ,h(s)
,

1

αH−1

 ·(
4SAH2 log

(
HSA

δ′

)
+ 5SAH2

)
(d)
≤
(1 + 8

√
S)H

√
H · L̃(τ − 1) · (τ − 1)

α
min

{
1√

min
π,h,s: wπ,h(s)>0

wπ,h(s)
,

1√
αH−1

}
·
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2

√
SAL̃(τ − 1) + min

 1

min
π,h,s: wπ,h(s)>0

wπ,h(s)
,

1

αH−1

 ·(
4SAH2 log

(
HSA

δ′

)
+ 5SAH2

)

≤min


1√

min
π,h,s: wπ,h(s)>0

wπ,h(s)
,

1√
αH−1


18SH · L̃(τ − 1)

√
HA(τ − 1)

α

+min

 1

min
π,h,s: wπ,h(s)>0

wπ,h(s)
,

1

αH−1


(
4SAH2 log

(
HSA

δ′

)
+ 5SAH2

)
,

where (a) is due to Lemma 10, (b) uses the fact that for any risk level α ∈ (0, 1], k > 0 and h ∈ [H],∑
(s,a)∈S×A w

CV aR,α,V k

kh (s, a) = 1, (c) comes from Lemma 8, and (d) is due to Lemma 7.

Thus, when log
(
HSA
δ′

)
≥ 1, we have

τ − 1 ≤min

{
1√

min
π,h,s: wπ,h(s)>0

wπ,h(s)
,

1√
αH−1

}
18SH

√
HA

εα
·
√
τ − 1·log

(
2HSA(τ − 1)3

δ′

)

+min

 1

min
π,h,s: wπ,h(s)>0

wπ,h(s)
,

1

αH−1

 4SAH2 log
(
HSA
δ′

)
+ 5SAH2

ε

≤min

{
1√

min
π,h,s: wπ,h(s)>0

wπ,h(s)
,

1√
αH−1

}
54SH

√
HA

εα
·
√
τ − 1·log

(
2HSA(τ − 1)

δ′

)

+min

 1

min
π,h,s: wπ,h(s)>0

wπ,h(s)
,

1

αH−1

 9SAH2

ε
log

(
HSA

δ′

)

Using Lemma 24 with A = 1, B = 0, C = min{ 1√
minπ,h,s: wπ,h(s)>0 wπ,h(s)

, 1√
αH−1

} 54SH
√
HA

εα ,

D = min{ 1
minπ,h,s: wπ,h(s)>0 wπ,h(s)

, 1
αH−1 } 9SAH2

ε , E = 0, β = 2HSA
δ′ and T = τ − 1, and

recalling that algorithm ICVaR-BPI does not sample any trajectory in the stopping episode τ , we
have that the number of used trajectories is bounded by

τ − 1 = O

(
min

{
1

min
π,h,s: wπ,h(s)>0

wπ,h(s)
,

1

αH−1

}
H3S2A

ε2α2
·

log2

(
min

{
1

min
π,h,s: wπ,h(s)>0

wπ,h(s)
,

1

αH−1

}
HSA

εαδ

))
.

E.3 SAMPLE COMPLEXITY LOWER BOUND

Below we present the sample complexity lower bound for Iterated CVaR RL-BPI and provide its
proof.

We say algorithmA is (δ, ε)-correct ifA returns an ε-optimal policy π̂ such that V π̂
1 (s1) ≥ V ∗

1 (s1)−
ε with probability 1− δ.
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Theorem 5 (Sample Complexity Lower Bound). There exists an instance of Iterated CVaR RL-
BPI, where minπ,h,s: wπ,h(s)>0 wπ,h(s) > αH−1 and the number of trajectories used by any (δ, ε)-
correct algorithm is at least

Ω

(
H2A

ε2α min
π,h,s: wπ,h(s)>0

wπ,h(s)
log

(
1

δ

))
.

In addition, there also exists an instance of Iterated CVaR RL-BPI, where αH−1 >
minπ,h,s: wπ,h(s)>0 wπ,h(s) and the number of trajectories used by any (δ, ε)-correct algorithm is
at least

Ω

(
A

αH−1ε2
log

(
1

δ

))
.

Theorem 5 corroborates that when α is small, the factor minπ,h,s: wπ,h(s)>0 wπ,h(s) is unavoidable
in general. This reveals the intrinsic hardness of Iterated CVaR RL, i.e., when the agent is highly
risk-sensitive, she needs to spend a number of trajectories on exploring critical but hard-to-reach
states in order to identify an optimal policy.

Proof of Theorem 5. This proof uses a similar analytical procedure as Theorem 2 in (Dann & Brun-
skill, 2015).

First, we consider the instance in Figure 6 as in the proof of Theorem 2, where
minπ,h,s: wπ,h(s)>0 wπ,h(s) > αH−1. Below we prove that on this instance any algorithm must
suffer a O( 1

min
π,h,s: wπ,h(s)>0

wπ,h(s)
· H

3S2A
ε2α2 log( 1δ )) regret.

Fix an algorithm A. Define Esn := {π̂(sn) = aJ} as the event that the output policy π̂ of algorithm
A chooses the optimal action in state sn.

Using the similar analysis as in the proof of Theorem 2 (Eq. (15)), we have

V ∗
1 (s1)− V π

1 (s1) =0.6(H − n) · η
α
· (1− 1 {Esn}).

For π to be ε-optimal, we need

ε ≥ V ∗
1 (s1)− V π

1 (s1) = 0.6(H − n) · η
α
· (1− 1 {Esn}),

which is equivalent to

1 {Esn} ≥ 1− εα

0.6(H − n) · η
.

Let η = 8e4εα
0.6c0(H−n) for some constant c0 and small enough ε. Then, for π to be ε-optimal, we need

1 {Esn} ≥ 1− c0
8e4

.

Let ϕ := 1− c0
8e4 . For algorithm A to be (ε, δ)-correct, we need

1− δ ≤Pr[V ∗ − V π ≥ ε]

≤Pr[1 {Esn} ≥ ϕ]

≤E[Esn ]
ϕ

≤ 1

ϕ
Pr[Esn ],

which is equivalent to
Pr[Ēsn ] = 1− Pr[Esn ] ≤ 1− ϕ+ ϕδ.
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Recall that 0 < α < 1
3 . For any j ∈ [A], KL(punif (sn, aj)∥pj(sn, aj)) = KL(Ber(α)∥Ber(α −

η)) ≤ η2

(α−η)(1−α+η) ≤
c1·η2

α for some constant c1 and small enough η. Let Vsn be the number of
times that algorithm A visited state sn. To ensure Pr[Ēsn ] ≤ 1− ϕ+ ϕδ, we need

E[Vsn ] ≥
A∑

j=1

1

KL(punif (sn, aj)∥pj(sn, aj))
log

(
c2

1− ϕ+ ϕδ

)

≥ αA

c1 · η2
log

(
c2

1− ϕ+ ϕδ

)
=
αA · 0.62c20(H − n)2

c1 · 64e8ε2α2
log

(
c2

c0
8e4 + δ

)
for some constant c2.

Let c0 be a small constant such that c0
8e4 < δ. Let w(sn) denote the probability of visiting sn in

an episode, and this probability is the same for all policies. Let τ denote the number of trajectories
required by A to be (ε, δ)-correct. Then, τ must satisfy

τ ≥ A · 0.62c20(H − n)2

c1 · 64e8ε2α · w(sn)
log

(
c2

c0
8e4 + δ

)
=Ω

(
H2A

ε2α · w(sn)
log

(
1

δ

))
.

Recall that n < 1
2H and 0 < α < µ < 1

3 . Thus, in the constructed instance (Figure 6), we have that
minπ,h,s: wπ,h(s)>0 wπ,h(s) = w(sn) = µn−1 > αH−1, and

τ =Ω

 H2A

ε2α · min
π,h,s: wπ,h(s)>0

wπ,h(s)
log

(
1

δ

) .

Next, we consider the instance in Figure 7 as in the proof of Theorem 2, where αH−1 >
minπ,h,s: wπ,h(s)>0 wπ,h(s). Below we prove that on this instance any algorithm must suffer a
O( 1

αH−1 · H
3S2A
ε2α2 log( 1δ )) regret.

Define Esn := {π̂(sn) = aJ} as the event that the output policy π̂ of algorithm A chooses the
optimal action in state sn.

Using the similar analysis as in the proof of Theorem 2 (Eq. (18)), we have

V ∗
1 (s1)− V π

1 (s1) =
0.6η

α
· (1− 1 {Esn}).

For π to be ε-optimal, we need

ε ≥ V ∗
1 (s1)− V π

1 (s1) =
0.6η

α
· (1− 1 {Esn}),

which is equivalent to

1 {Esn} ≥ 1− εα

0.6η
.

Let η = 8e4εα
0.6c0

for some constant c0 and small enough ε. Then, for π to be ε-optimal, we need

1 {Esn} ≥ 1− c0
8e4

.

Let ϕ := 1− c0
8e4 . For algorithm A to be (ε, δ)-correct, we need

1− δ ≤Pr[V ∗ − V π ≥ ε]

≤Pr[1 {Esn} ≥ ϕ]
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≤E[Esn ]
ϕ

≤ 1

ϕ
Pr[Esn ],

which is equivalent to
Pr[Ēsn ] = 1− Pr[Esn ] ≤ 1− ϕ+ ϕδ.

Recall that 0 < α < 1
4 . For any j ∈ [A], KL(punif (sn, aj)∥pj(sn, aj)) = KL(Ber(α)∥Ber(α −

η)) ≤ η2

(α−η)(1−α+η) ≤
c1·η2

α for some constant c1 and small enough η. Let Vsn be the number of
times that algorithm A visited state sn. To ensure Pr[Ēsn ] ≤ 1− ϕ+ ϕδ, we need

E[Vsn ] ≥
A∑

j=1

1

KL(punif (sn, aj)∥pj(sn, aj))
log

(
c2

1− ϕ+ ϕδ

)

≥ αA

c1 · η2
log

(
c2

1− ϕ+ ϕδ

)
=

αA · 0.62c20
c1 · 64e8ε2α2

log

(
c2

c0
8e4 + δ

)
for some constant c2.

Let c0 be a small constant such that c0
8e4 < δ. Let w(sn) denote the probability of visiting sn in

an episode, and this probability is the same for all policies. Let τ denote the number of trajectories
required by A to be (ε, δ)-correct. Then, τ must satisfy

τ ≥ A · 0.62c20
c1 · 64e8ε2α · w(sn)

log

(
c2

c0
8e4 + δ

)
=Ω

(
A

ε2α · w(sn)
log

(
1

δ

))
.

Recall that n = H − 1. Thus, in the constructed instance (Figure 7), we have that w(sn) = αn−1 =
αH−2, and

τ =Ω

(
A

ε2α · αH−2 log
(
1
δ

))

=Ω

(
A

ε2αH−1 log
(
1
δ

)) .

F PROOFS FOR WORST PATH RL

In this section, we provide the proofs of regret upper and lower bounds (Theorems 4 and 6) for Worst
Path RL.

F.1 PROOFS OF REGRET UPPER BOUND

F.1.1 CONCENTRATION

Recall that for any k > 0 and (s, a) ∈ S ×A, nk(s, a) is the number of times that (s, a) was visited
before episode k. For any k > 0 and (s′, s, a) ∈ S × S × A, let nk(s

′, s, a) denote the number of
times that (s, a) was visited and transitioned to s′ before episode k.

For any policy π and (s, a) ∈ S × A, let υπ(s, a) and υπ(s) denote the probabilities that (s, a) and
s are visited at least once in an episode under policy π, respectively.
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Lemma 18. It holds that

Pr

[
nk(s, a) ≥

1

2

k−1∑
k′=1

υπk′ (s, a)− log

(
SA

δ′

)
, ∀k > 0, ∀(s, a) ∈ S ×A

]
≥ 1− δ′

Proof of Lemma 18. For any k and (s, a) ∈ S × A, conditioning on the filtration generated by
episodes 1, . . . , k − 1, whether the algorithm visited (s, a) at least once in episode k is a Bernoulli
random variable with success probability υπk(s, a). Then, using Lemma F.4 in (Dann et al., 2017),
we can obtain this lemma.

Lemma 19. It holds that

Pr

{
nk(s

′, s, a) ≥1

2
· nk(s, a) · p(s′|s, a)− 2 log

(
SA

δ′

)
,

∀k > 0, ∀(s′, s, a) ∈ S × S ×A

}
≥ 1− δ′.

Proof of Lemma 19. For any k, h ∈ [H] and (s, a) ∈ S × A, conditioning on the event {skh =
s, akh = a}, the indicator 1

{
skh+1 = s′

}
is a Bernoulli random variable with success probability

p(s′|s, a). Then, using Lemma F.4 in (Dann et al., 2017), we can obtain this lemma.

To summarize, we define some concentration events which will be used in the following proof.

G1 :=

{
nk(s, a) ≥

1

2

k−1∑
k′=1

υπk′ (s, a)− log

(
SA

δ′

)
, ∀k > 0, ∀(s, a) ∈ S ×A

}

G2 :=

{
nk(s

′, s, a) ≥ 1

2
· nk(s, a) · p(s′|s, a)− 2 log

(
SA

δ′

)
, ∀k > 0, ∀(s′, s, a) ∈ S × S ×A

}
G :=G1 ∩ G2

Lemma 20. Letting δ′ = δ
2 , it holds that

Pr [G] ≥ 1− δ.

Proof of Lemma 20. This lemma can be obtained by combining Lemmas 18 and 19.

F.1.2 OVERESTIMATION AND GOOD STAGE

Recall that in Worst Path RL, for any k > 0, h ∈ [H] and (s, a) ∈ S × A, Q∗
h(s, a) := r(s, a) +

mins′∼p(·|s,a)(V
∗
h+1(s

′)) and V ∗
h (s) := maxa∈A Q∗

h(s, a). In addition, Q̂k
h(s, a) := r(s, a) +

mins′∼p̂k(·|s,a)(V̂
k
h+1(s

′)) and V̂ k
h (s) := maxa∈A Q̂k

h(s, a).

Lemma 21 (Overestimation). For any k > 0, h ∈ [H] and (s, a) ∈ S × A, Q̂k
h(s, a) ≥ Q∗

h(s, a)

and V̂ k
h (s) ≥ V ∗

h (s).

Remark. Lemma 21 shows that if the Q-value of some state-action pair is not accurately estimated,
it can only be overestimated (not underestimated). This feature is due to the min metric in the Worst
Path RL formulation (Eq. (2)).

Proof of Lemma 21. We prove this lemma by induction.

For any k > 0 and s ∈ S, V̂ k
H+1(s) = V ∗

H+1(s) = 0.

For any k > 0, h ∈ [H] and (s, a) ∈ S ×A, since r(s, a) is known and V̂ k
h+1(s) ≥ V ∗

h+1(s) (due to
the induction hypothesis), if p̂k(·|s, a) has detected all successor states, then Q̂k

h(s, a) ≥ Q∗
h(s, a).

Otherwise, if p̂k(·|s, a) has not detected all successor states, due to the property of min, we also
have Q̂k

h(s, a) ≥ Q∗
h(s, a). Therefore, we have V̂ k

h (s) ≥ V ∗
h (s), which completes the proof.
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Lemma 22 (Non-increasing Estimated Value). For any k1, k2 > 0 such that k1 ≤ k2, h ∈ [H] and
(s, a) ∈ S ×A, Q̂k1

h (s, a) ≥ Q̂k2

h (s, a) and V̂ k1

h (s) ≥ V k2

h (s).

Proof of Lemma 22. We prove this lemma by induction.

For any k1, k2 > 0 such that k1 ≤ k2 and s ∈ S, V̂ k1

H+1(s) = V k2

H+1(s) = 0.

For any k1, k2 > 0 such that k1 ≤ k2, h ∈ [H] and (s, a) ∈ S × A, since r(s, a) is known and
V̂ k1

h+1(s) ≥ V k2

h+1(s) (due to the induction hypothesis), if p̂k1(·|s, a) has detected all successor states,
then Q̂k1

h (s, a) ≥ Q̂k2

h (s, a). Otherwise, if p̂k1(·|s, a) has not detected all successor states, due to
the min metric and that p̂k2(·|s, a) will detect more (or the same) successor states than p̂k1(·|s, a),
we also have Q̂k1

h (s, a) ≥ Q̂k2

h (s, a). Therefore, we have V̂ k1

h (s) ≥ V k2

h (s), which completes the
proof.

Remark. Combining Lemmas 21 and 22, we have that as the episode k increases, the estimated
value Q̂k

h(s, a) (V̂ k
h (s)) will decrease to its true value Q∗

h(s, a) (V ∗
h (s)) or keep the same.

Let S∗ := {s ∈ S : vπ∗(s) > 0} denote the set of states which are reachable for an optimal policy.

Lemma 23 (Good Stage). If there exists some episode k̄ > 0 which satisfies that for any h ∈ [H]

and s ∈ S∗, V̂ k̄
h (s) = V ∗

h (s) and πk̄
h(s) suggests an optimal action, then we have that for any k ≥ k̄,

h ∈ [H] and s ∈ S∗, V̂ k
h (s) = V ∗

h (s) and πk
h(s) suggests an optimal action, and thus for any k ≥ k̄,

algorithm MaxWP takes an optimal policy.

Remark. Lemma 23 reveals that if in some episode k̄, for any step h and state s ∈ S∗, algorithm
MaxWP estimates the V-value accurately and chooses an optimal action, then hereafter, algorithm
MaxWP always takes an optimal policy.

We say algorithm MaxWP enters a good stage, if starting from some episode k̄, for any k ≥ k̄,
h ∈ [H] and s ∈ S∗, V̂ k

h (s) = V ∗
h (s) and πk

h(s) suggests an optimal action.

Proof of Lemma 23. Suppose that in episode k̄, we have that for any h ∈ [H] and s ∈ S∗, V̂ k̄
h (s) =

V ∗
h (s) and πk̄

h(s) suggests an optimal action. This is equivalent to the statement that in episode k̄,
for any h ∈ [H] and s ∈ S∗, for each optimal action a (such that Q∗

h(s, a) = V ∗
h (s)), Q̂

k̄
h(s, a) =

Q∗
h(s, a), and for each suboptimal action a (such that Q∗

h(s, a) < V ∗
h (s)), Q

∗
h(s, a) ≤ Q̂k̄

h(s, a) <
V ∗
h (s).

Using Lemmas 21 and 22, we have that for any h ∈ [H] and s ∈ S∗, as k increases, Q̂k
h(s, a) will

either decrease to the true value Q∗
h(s, a) or keep the same. Therefore, we have that for any k ≥ k̄,

h ∈ [H] and s ∈ S∗, for each optimal action a, Q̂k̄
h(s, a) = Q∗

h(s, a), and for each suboptimal action
a, Q∗

h(s, a) ≤ Q̂k̄
h(s, a) < V ∗

h (s), which completes the proof.

F.1.3 PROOF OF THEOREM 4

Proof of Theorem 4. Suppose that event G holds.

Let

T̄ :=
∑
(s,a)

1

min
π: υπ(s,a)>0

υπ(s, a) · min
s′∈supp(p(·|s,a))

p(s′|s, a)
· 8
(
2 log

(
SA

δ

)
+ 1

)
.

For any (s, a) ∈ S ×A, let

T̄ (s, a) :=
1

min
π: υπ(s,a)>0

υπ(s, a) · min
s′∈supp(p(·|s,a))

p(s′|s, a)
· 8
(
2 log

(
SA

δ

)
+ 1

)
.

It holds that T̄ =
∑

(s,a)∈S×A T̄ (s, a).
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According to Lemma 23, in order to prove Theorem 4, it suffices to prove that in episode T̄ + 1, for
any h ∈ [H] and s ∈ S∗, V̂ T̄+1

h (s) = V ∗
h (s) and πT̄+1

h (s) suggests an optimal action, i.e., algorithm
MaxWP has entered the good stage in episode T̄ + 1. We prove this statement by contradiction.

Suppose that in episode T̄ + 1, there exists some h ∈ [H] and some s ∈ S∗ which satisfy that
V̂ T̄+1
h (s) > V ∗

h (s) (the value function can only be overestimated) or πT̄+1
h (s) suggests a suboptimal

action.

If the policy πT̄+1 taken in episode T̄ + 1 is optimal, then there exists some h ∈ [H], some s ∈ S∗
and some optimal action a which satisfy that vπT̄+1(s) > 0 and Q̂T̄+1

h (s, a) > Q∗
h(s, a). Otherwise,

if the policy πT̄+1 taken in episode T̄ + 1 is suboptimal, then there exists some h ∈ [H], some
s ∈ S∗ and some suboptimal action a which satisfy that vπT̄+1(s) > 0 and Q̂T̄+1

h (s, a) > Q∗
h(s, a).

Hence, no matter which of the above cases happen, we have that there exists some h ∈ [H] and
some (s, a) ∈ S ×A which satisfy that vπT̄+1(s, a) > 0 and Q̂T̄+1

h (s, a) > Q∗
h(s, a).

Under the min metric in Worst Path RL, the overestimation of a Q-value comes from the following
reasons: (i) Algorithm MaxWP has not detected the successor state with the lowest V-value. (ii) The
V-values of successor states at the next step are overestimated.

If the overestimation of Q̂T̄+1
h (s, a) comes from the overestimation of the V-values at the next step

(reason (ii)), then we have that at the next step, there exists some state-action pair whose Q-value is
overestimated. Then, we can trace the overestimation from (s, a) at step h to some (s′, a′) at some
step h′ ≥ h, which satisfies that Q̂T̄+1

h′ (s′, a′) > Q∗
h′(s′, a′) and V̂ T̄+1

h′+1(x) = V ∗
h′+1(x) for any

x ∈ S. In other words, the overestimation of Q̂T̄+1
h′ (s′, a′) is purely due to that at (s′, a′), algorithm

MaxWP has not detected the successor state x with the lowest value V ∗
h′+1(x).

For any k > 0 and (s, a) ∈ S × A, let T k(s, a) = {k′ < k : υπk′ (s, a) > 0} denote the set of
episodes where (s, a) is reachable before episode k. We consider the following two cases according
to whether |T T̄+1(s′, a′)| is large enough to detect all successor states of (s′, a′).

Case (1): If |T T̄+1(s′, a′)| ≥ T̄ (s′, a′), using Lemma 18, we have

nk(s
′, a′) ≥1

2

k−1∑
k′=1

υπk′ (s′, a′)− log

(
SA

δ′

)
≥1

2
· T̄ (s′, a′) · min

π: υπ(s
′,a′)>0

υπ(s
′, a′)− log

(
SA

δ

)
=

4
(
2 log

(
SA
δ

)
+ 1
)

min
s′∈supp(p(·|s,a))

p(s′|s, a)
− log

(
SA

δ

)

≥
2
(
2 log

(
SA
δ

)
+ 1
)

min
s′∈supp(p(·|s,a))

p(s′|s, a)

Then, using Lemma 19, we have that for any s ∈ supp(p(·|s′, a′)),

nk(s, s
′, a′) ≥1

2
· nk(s

′, a′) · min
s∈supp(p(·|s′,a′))

p(s|s′, a′)− 2 log

(
SA

δ

)
≥1

2
· 2
(
2 log

(
SA

δ

)
+ 1

)
− 2 log

(
SA

δ

)
=1

which contradicts that Q̂k
h′(s′, a′) is overestimated.

Case (2): If |T T̄+1(s′, a′)| < T̄ (s′, a′), we say the overestimation in episode T̄ + 1 is due to the
insufficient visitation on (s′, a′). Then, among episodes 1, . . . , T̄ , we exclude the episodes contained
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in T T̄+1(s′, a′), i.e., we ignore the episodes where (s′, a′) is reachable and can be the source of the
overestimation. Then, the number of excluded episodes due to (s′, a′) is |T T̄+1(s′, a′)| < T̄ (s′, a′).

According to Lemma 23, since episode T̄ +1 has not entered the good stage, for any k ≤ T̄ , episode
k has also not entered the good stage. Then, for any k ≤ T̄ , there exists some h ∈ [H] and some
s ∈ S∗ which satisfy that V̂ k

h (s) > V ∗
h (s) or πk

h(s) suggests a suboptimal action. This implies
that there exists some h ∈ [H] and some (s, a) ∈ S × A which satisfy that vπk(s, a) > 0 and
Q̂k

h(s, a) > Q∗
h(s, a).

Consider the last episode k among episodes 1, . . . , T̄ which is not excluded. Using the above argu-
ment, let (sk, ak) denote the source of overestimation in episode k which satisfies that Q̂k

h′(s′, a′) >

Q∗
h′(s′, a′) and V̂ k

h′+1(x) = V ∗
h′+1(x) for any x ∈ S . Since we have excluded all the episodes

where (s′, a′) is reachable among episodes 1, . . . , T̄ and episode k is not excluded, it holds that
(sk, ak) ̸= (s′, a′). We repeat the above analysis on T k(sk, ak). If Case (1) happens, i.e.,
|T k(sk, ak)| ≥ T̄ (sk, ak), then we can derive a contradiction and complete the proof. If Case
(2) happens, i.e., |T k(sk, ak)| < T̄ (sk, ak), we exclude episode k and the episodes contained in
T k(sk, ak). Then, the number of excluded episodes due to (sk, ak) among episodes 1, . . . , T̄ is at
most |T k(sk, ak)|+ 1 ≤ |T̄ (sk, ak)|.
We repeat the above procedure. Once Case (1) happens, we can derive a contradiction and com-
plete the proof. Otherwise, if Case (2) keeps happening, we will exclude the episodes due to the
reachability and possible overestimation of (s, a) for all (s, a) ∈ S × A, and the total number of
excluded episodes is strictly smaller than

∑
(s,a)∈S×A T̄ (s, a) = T̄ . Thus, there exists some episode

k0 among episodes 1, . . . , T̄ which satisfies that for any (s, a) ∈ S×A, υπk0 (s, a) = 0, which gives
a contradiction.

F.2 REGRET LOWER BOUND

In the following, we establish a regret lower bound for Worst Path RL and give its proof.

To exclude trivial instance-specific algorithms and formally state our lower bound, we first define
an o(K)-consistent algorithm as an algorithm which guarantees an o(K) regret on any instance of
Worst Path RL.

Theorem 6. There exists an instance of Worst Path RL, for which the regret of any o(K)-consistent
algorithm is at least

Ω

(
max

(s,a): ∃h, a ̸=π∗
h(s)

H

min
π: υπ(s,a)>0

υπ(s, a) · min
s′∈supp(p(·|s,a))

p(s′|s, a)

)
,

where max(s,a):∃h, a ̸=π∗
h(s)

takes the maximum over all (s, a) such that a is sub-optimal in state s
at some step.

The intuition behind this lower bound is as follows. For a critical but hard-to-reach state s, any
o(K)-consistent algorithm must explore all actions a in state s, in order to detect their induced
successor states s′ and distinguish the optimal action. This process incurs a regret dependent on
factors minπ:υπ(s,a)>0 υπ(s, a) and mins′∈supp(p(·|s,a)) p(s

′|s, a), and hence the lower bound.

Proof of Theorem 6. Consider the instance I as shown in Figure 8:

The action space contains two actions, i.e., A = {a1, a2}. The state space is S =
{s1, s2, . . . , sn, x1, x2, x3}, where n = S−3 and s1 is the initial state. Let H ≫ S and 0 < α < 1

4 .

The reward functions are as follows. For any a ∈ A, r(x1, a) = 1, r(x2, a) = 0.8 and r(x3, a) =
0.2. For any i ∈ [n] and a ∈ A, r(si, a) = 0.

The transition distributions are as follows. For any a ∈ A, p(s2|s1, a) = α, p(x1|s1, a) = 1 − 3α,
p(x2|s1, a) = α and p(x3|s1, a) = α. For any i ∈ {2, . . . , n − 1} and a ∈ A, p(si+1|si, a) = α
and p(x1|si, a) = 1 − α. x1, x2 and x3 are absorbing states, i.e., for any a ∈ A, p(x1|x1, a) = 1,
p(x2|x2, a) = 1 and p(x3|x3, a) = 1. The state sn is a bandit state, which has an optimal action and
a suboptimal action. Let a∗ denote the optimal action in state sn, which is uniformly drawn from
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Figure 8: The instance for lower bound under the min metric (Theorem 6).

{a1, a2}, and let asub denote the other sub-optimal action in state sn. For the optimal action a∗,
p(x2|sn, a∗) = 1. For the sub-optimal action asub, p(x2|sn, asub) = 1−α and p(x3|sn, asub) = α.

Fix an o(K)-consistent algorithm A, which guarantees a sub-linear regret on any instance of Worst
Path RL. We have that A needs to observe the transition from (sn, asub) to x3 at least once. Oth-
erwise, without any observation of the transition from (sn, asub) to x3, A can only trivially choose
a1 or a2 in state sn, and no matter A chooses a1 or a2, it will suffer a linear regret in the counter
instance where the unchosen action is optimal.

Thus, any o(K)-consistent algorithm must observe the transition from (sn, asub) to x3 at least once,
and needs at least

1

υπsub
(sn, asub) · p(x3|sn, asub)

episodes with sub-optimal policies. Here πsub denotes a policy which chooses asub in state sn, and
υπsub

(sn, asub) denotes the probability that (sn, asub) is visited at least once in an episode under
policy πsub.

Once the agent takes a sub-optimal policy in an episode, she will suffer regret 0.6(H − n) in this
episode.

Therefore, A needs to suffer at least

Ω

(
1

υπsub
(sn, asub) · p(x3|sn, asub)

· 0.6(H − n)

)
regret in expectation.

Since in the constructed instance (Figure 8)

max
(s,a): ∃h, a ̸=π∗

h(s)

1

min
π: υπ(s,a)>0

υπ(s, a) · min
s′∈supp(p(·|s,a))

p(s′|s, a)
=

1

υ(sn, asub) · p(x3|sn, asub)
,

we have that A needs to suffer at least

Ω

 max
(s,a): ∃h, a ̸=π∗

h(s)

H

min
π: υπ(s,a)>0

υπ(s, a) · min
s′∈supp(p(·|s,a))

p(s′|s, a)


regret.

G TECHNICAL TOOL

In this section, we present a useful technical tool.
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Lemma 24 (Lemma 13 in (Ménard et al., 2021)). Let A,B,C,D,E and β be positive scalars such
that 1 ≤ B ≤ E and β ≥ e. If T ≥ 0 satisfies

T ≤ C
√
T
(
A log (βT ) +B log2 (βT )

)
+D

(
A log (βT ) + E log2 (βT )

)
,

then we have

T ≤ C2 (A+B)C2
1 +

(
D + 2

√
DC

)
(A+ E)C2

1 + 1,

where

C1 =
8

5
log
(
11β2 (A+ E) (C +D)

)
.
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