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Abstract

The integration of deep learning systems into healthcare has been hindered by the resource-
intensive process of data annotation and the inability of these systems to generalize to
different data distributions. Foundation models, which are models pre-trained on large
datasets, have emerged as a solution to reduce reliance on annotated data and enhance
model generalizability and robustness. DINOv2 is an open-source foundation model pre-
trained with self-supervised learning on 142 million curated natural images that exhibits
promising capabilities across various vision tasks. Nevertheless, a critical question remains
unanswered regarding DINOv2’s adaptability to radiological imaging, and whether its fea-
tures are sufficiently general to benefit radiology image analysis. Therefore, this study
comprehensively evaluates the performance DINOv2 for radiology, conducting over 200 ex-
periments across diverse modalities (X-ray, CT, and MRI). To measure the effectiveness and
generalizability of DINOv2’s feature representations, we analyze the model across medical
image analysis tasks including disease classification and organ segmentation on both 2D and
3D images, and under different settings like kNN, few-shot learning, linear-probing, end-to-
end fine-tuning, and parameter-efficient fine-tuning. Comparative analyses with established
supervised, self-supervised, and weakly-supervised models reveal DINOv2’s superior perfor-
mance and cross-task generalizability. The findings contribute insights to potential avenues
for optimizing pre-training strategies for medical imaging and enhancing the broader un-
derstanding of DINOv2’s role in bridging the gap between natural and radiological image
analysis.

1 Introduction

Radiology imaging plays a pivotal role in modern medicine, serving as an indispensable tool
for accurate and timely diagnosis (Hussain et al., 2022). The importance of radiological
imaging lies in its ability to provide detailed and non-invasive visualizations (Peng et al.,
2022) of the internal structures and functions of the human body. Deep learning-based com-
puter vision methods have been successful at analyzing and processing radiological imaging,
leading to systems that can extract clinically-relevant information with high accuracy (Ra-
jpurkar et al., 2017). However, the success of these systems has been reliant on annotated
medical data, which is expensive to obtain because it requires the time and effort of trained
radiologists (Khan et al., 2023). Moreover, these systems can achieve high-level accuracy
only within a specified scope, but fail to generalize across domains, tasks, and slight data
distribution shifts (Kelly et al., 2019).
Recently, the field of computer vision has seen a rise in interest for general-purpose models
that are optimized to function across different tasks and domains (Yuan et al., 2021; Radford
et al., 2021; Oquab et al., 2023; Kirillov et al., 2023). These models, grouped under the
term “Foundation Models" (FMs), usually contain parameters ranging from hundreds of
millions to tens of billions and are trained on large datasets, on the order of tens of millions.
As a result of this large-scale training, these FMs often achieve state-of-the-art (SoTA)

1



Under review as submission to TMLR

6 5 4 3 2 1

6

5

4

3

2

1
DINOv2ViT-g

DINOv2ViT-L

OpenCLIP

CLIP

MAE

MSN

Segmentation Rank

C
la

ss
ifi

ca
tio

n
R

an
k

Relative Performance for Classification and Segmentation

Figure 1: Cross-task generalizability of DINOv2 compared to other models. The horizontal axis shows the
relative performance or ranking of each of the models on segmentation tasks, while the vertical axis does
the same for classification tasks. The ranking is calculated as the average ranking across all segmentation (5
Datasets) or classification tasks (4 Datasets), where rank 1 means the model performs the best relative to
other models. Models pre-trained with weakly-supervised learning perform well only on classification tasks,
while MAE performs well only on segmentation. DINOv2 can generalize across both tasks and outperforms
all other models for classification.

results and impressive zero-shot and few-shot performance and generalizability (Oquab et al.,
2023; Kirillov et al., 2023). For these reasons, foundation models have gained traction in
deep learning-based medical image analysis research (Zhou et al., 2023; Wang et al., 2023;
Caro et al., 2023; Qiu et al., 2023; Ma et al., 2023), as they hold promise for reducing
the reliance on the expensive process of annotating medical data and towards the goal of
building generalist medical artificial intelligence systems that can function across a variety
of tasks and domains (Moor et al., 2023).

1.1 What Are Foundation Models?

The term “Foundation Model" encompasses a broad spectrum of models that may initially
appear distinct. In the most general sense, foundation models are large models trained on
large datasets and can generalize across tasks and/or domains (Merritt, 2023). To make
the term more useful in our analysis, we categorize foundation models using two distinct
methods. First, we divide FMs depending on their training paradigm into three groups:
self-supervised, weakly-supervised, and supervised foundation models. Weakly-supervised
and supervised foundation models require correspondence in the training data. In these
paradigms, the training data is required to be available in pairs: an X-ray examination
and a corresponding interpretation, diagnosis, or segmentation mask for example. Models
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like OpenAI’s CLIP (Radford et al., 2021) and Meta’s Segment Anything Model (SAM)
(Kirillov et al., 2023) fall under this category. Self-supervised foundation models, on the
other hand, require one input data to train (an image, text, audio, etc.) Meta’s DINOv2
(Oquab et al., 2023) and Google’s Universal Speech Model (USM) (Zhang et al., 2023)
belong to this category.
Additionally, we categorize FMs into two groups depending on the generalizability of their
produced representations: general purpose (also called task-agnostic), and task-specific FMs.
General purpose foundation models produce features that generalize across more than one
task, segmentation and classification for example, while task-specific models specialize on
only one task. DINOv2 (Oquab et al., 2023) and USM (Zhang et al., 2023) fall under the
former category while SAM (Kirillov et al., 2023) is under the latter.
Because of the less restrictive training dependencies for self-supervised FMs, we believe that
they are a promising option to explore for future research especially for the medical imaging
domain, since the shortage of training data is one of the main constraints for applications
in the field (Khan et al., 2023). Reducing the requirement for annotated data significantly
increases the set of possible data used for training, and using unannotated data makes
it possible to combine data that are paired with different labels (for example, combining
those with class labels and those with segmentation masks). Moreover, FMs that produce
representations that can be used across a variety of tasks are desired because it is usually a
signal of model robustness. As a result, we focus our attention on self-supervised general-
purpose FMs for medical image analysis. Specifically, we adopt Meta’s DINOv2 (Oquab
et al., 2023) model, a publicly available general-purpose vision foundation model that can
extract robust representations across different vision tasks, for experimentation on a wide
range of medical disease classification and organ segmentation benchmarks, across different
radiological exams and under different evaluation settings.

1.2 What is DINOv2?

DINOv2 is a successor of DINO (Caron et al., 2021) and constitutes both a self-supervised
pre-training method based on DINO and iBOT (Zhou et al., 2022), and a collection of models
pre-trained using that method. It was released to the public by Meta in April 2023 and
promises robust representations that enable general-purpose functionality with visual-only
data (Oquab et al., 2023). The released models were pre-trained on a dataset of 142 million
carefully curated natural images, called LVD-142M. Roughly 100 million of these are images
that are similar to ImageNet, curated from calculating similarly of web-scarpered images
with ImageNet21k dataset (Deng et al., 2009). The remaining images were retrieved based
on their similarity to Caltech 101 (Fei-Fei et al., 2004), ADE20k (Zhou et al., 2017), and
Google Landmarks v2 (Weyand et al., 2020), among others. The models achieve competitive
performance on classification, segmentation, depth estimation, and image retrieval tasks
across both image and video benchmarks. Moreover, because of the adopted discriminative
self-distillation approach, DINOv2 performs well “out-of-the-box" without the need to fine-
tune the encoder. The giant version of the model (ViT-g/14) achieves an accuracy of
86.5% and 83.5% on Linear-probing and kNN evaluations, respectively, on ImageNet-1k,
outperforming other weakly-supervised and self-supervised methods. This capability to
perform well out-of-the-box is appealing, especially in the medical domain, as it implies
competitive performance even in low-data and low-computation settings.

1.3 Contribution

In this paper, we set to work towards vision-only general-purpose foundation models for
the medical domain by adopting DINOv2 for disease classification and organ segmentation
benchmarks. We perform comprehensive evaluations of DINOv2 across various scenarios
for multiple radiology modalities, exploring both low (few-shot) and high data settings
spanning X-ray, CT, and MRI examinations. We benchmark DINOv2’s performance with

3



Under review as submission to TMLR

Figure 2: PCA component visualization. Following Oquab et al. (2023), the PCA is computed between
patches of scans that are in the same column, and the first 3 components are shown. Thresholding is used
on the first component to remove the background. Just like in natural images [8], the colors of the three
PCA components correspond well with the same parts of images in the same category. This is an easier
task however, compared to natural images, because there is less variability between examinations on medical
images compared to natural images.

other natural-image supervised, self-supervised, and weakly-supervised models like CLIP,
OpenCLIP, and SAM, among others shown in Table 2.

We evaluate DINOv2 on both disease classification and organ segmentation benchmarks.
For disease classification tasks, we evaluate the model on kNN, linear-probing, few-shot
learning, parameter-efficient fine-tuning, and end-to-end fine-tuning scenarios. For organ
segmentation tasks we compare lightweight and non-lightweight decoders, while we keep the
DINOv2 backbone frozen. We compared the results to supervised, weakly-supervised, and
self-supervised models. As far as we know, there is no comprehensive analysis of DINOv2
on medical benchmarks that evaluates the model across disease classification and organ
segmentation tasks and on different radiological examinations. Our contributions can be
summarized as follows:

• Evaluate DINOv2 on disease classification and organ segmentation radiology bench-
marks, under different evaluation settings. We conclude that DINOv2 outperforms
self-supervised and weakly-supervised models on classification tasks and is competi-
tive with supervised models pre-trained on ImageNet21K. For segmentation tasks, we
observe that DINOv2 outperforms weakly-supervised methods by a large margin, and
outperforms or is competitive with supervised methods trained end-to-end.

• Analyze the cross-task generalizability of DINOv2 compared to supervised, self-
supervised, and weakly-supervised models. Our analysis concludes that weakly-
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supervised models perform well on classification tasks only, and masked imaged model-
ing self-supervision performs well only on segmentation tasks, while DINOv2 can gen-
eralize across both tasks. DINOv2 also outperforms supervised classification models
when evaluated on segmentation tasks, and outperforms SAM for disease classification.

• Employ parameter-efficient fine-tuning with a DINOv2 ViT-g/14 model on large X-ray
classification datasets and provide a performance and efficiency comparison of PEFT
with end-to-end fine-tuning and linear-probing. We conclude that using PEFT can
yield performance that is competitive with end-to-end fine-tuning using less than 1%
of the total model parameters.

2 Related Works

Supervised foundation models. Training a large-scale network with supervised learning
is non-trivial because it is difficult to combine different labels together. This is even more
true in the medical domain where labeled data is scarce. Even still when labels are seemingly
similar, other issues can arise. Cohen et al. (2020) have attempted to train a large-scale
X-ray foundation model with supervised learning by combining public chest X-ray disease
classification datasets that share diseases. their analysis highlights the fact that discrepan-
cies in labeling caused by disease concept shift across hospitals and observers can lead to
worse generalizations for deep learning models.

Regardless, there successful attempts at building a large-scale supervised foundation model.
The Segment Anything Model (SAM) (Kirillov et al., 2023), a supervised foundation model
for prompt-based segmentation trained with automatically extracted segmentation masks,
is one of those attempts. Since the release of SAM, its applicability for the medical images
has been explored (He et al., 2023; Zhang & Jiao, 2023; Mazurowski et al., 2023). It’s
performance for medical segmentation was found to be inadequate in most cases and highly
variable. Because of that, Ma et al. (2023) have developed MedSAM by adopting SAM for
the medical domain using a dataset of more than one million medical images across diverse
segmentation tasks and examination modalities. MedSAM significantly outperforms SAM
on medical tasks and achieves comparable performance to U-Net (Ronneberger et al., 2015)
models. Still, MedSAM is limited to medical segmentation, and it is unclear whether it can
be generalized to other medical image analysis tasks.

Weakly-supervised foundation models. Previous research has explored weakly-
supervised vision-language models for zero-shot classification, visual question answering,
and image generation in the medical domain, achieving SoTA or competitive performance
on radiology benchmarks (Wang et al., 2022; Chambon et al., 2022b; Zhang et al., 2022;
Chambon et al., 2022a). Zhang et al. (2022) applied contrastive learning to paired X-ray
image-report for learning visual representations. However, the availability of correspond-
ing image-text pairs is a stringent requirement to be applicable for most medical datasets.
Moreover, as highlighted by Wang et al. (2022), a false negative issue exists when apply-
ing this learning paradigm in the medical domain because, unlike diverse natural images,
medical reports can describe other patients that are not necessarily paired. Instead, Wang
et al. (2022) proposed MedCLIP, employing an extension of CLIP’s contrastive pre-training
method that utilizes unpaired examination-report samples, using the MIMIC-CXR (Johnson
et al., 2019) and CheXpert (Irvin et al., 2019) datasets. They outperform previous SoTA on
zero-shot and supervised classification on four radiology benchmarks. Yet, the performance
of MedCLIP, along with other vision-language models, is still limited by the availability of
text-image data.

Self-supervised foundation models. Self-supervised pre-training applied to medical
datasets has recently achieved SoTA on CT and MRI segmentation benchmarks (Vala-
narasu et al., 2023; Tang et al., 2022). For example, Tang et al. (2022) pre-trained a Swin
UNETR (Hatamizadeh et al., 2022) architecture with self-supervision on 5,050 CT volumes
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and outperformed previous SoTA on the BTCV (Landman et al., 2015) and MSD (An-
tonelli et al., 2022) competitions. However, to the best of our knowledge, there is still no
self-supervised general-purpose FM for the medical domain that has achieved consistently
competitive results across tasks and radiological examinations.

3 Methodology

In this section, we describe the motivation for adopting DINOv2 for this study and outline
the settings under which we performed our experiments. All the details about the pre-
processing and hyperparameter tuning pipeline are publicly available in our code (available
in Section 6).

3.1 Motivation for Using DINOv2

There are many vision foundation models trained with supervised, self-supervised, and
weakly-supervised learning on natural images (Radford et al., 2021; Kirillov et al., 2023;
Yuan et al., 2021; Xiao et al., 2023; Ilharco et al., 2021). However, we decided to employ
DINOv2 in our analysis because of the robustness of its representations, achieving competi-
tive performance in multiple downstream tasks, across vision modalities (image and video),
and, most importantly, in out-of-the-box evaluations. The DINOv2 training paradigm was
specifically designed to generate powerful representations on out-of-the-box kNN evalua-
tions and outperforms many other weakly-supervised and self-supervised foundation models
in kNN and linear-probing (Oquab et al., 2023).

3.2 Datasets

We evaluated DINOv2 on 9 public radiology benchmarks, spanning X-ray, CT, and MRI
examinations (Exam.) for disease classification (CLS, 4 datasets) and organ segmentation
(SEG, 5 datasets) tasks. A summary of the used datasets is shown in Table 1. “# Classes"
describes the number of classes and “# Images/Volumes" describes the number of images
for 2D datasets and volumes for 3D datasets, respectively. They describe the number of
images or volumes that we use for each dataset, and not the number in the original dataset.
This is because some of the datasets used have subsets that are not publicly accessible, like
the test sets in MSD (Antonelli et al., 2022). Moreover, we only used a subset of AMOS (Ji
et al., 2022) because of computational constraints, and only selected the frontal views from
CheXpert (Irvin et al., 2019).
Moreover, some of the datasets used do not have a predefined test set. On these datasets,
we used systemic sampling to divide the dataset into train, evaluation, and test subsets. All
the datasets used are publicly available, and we provide a link for downloading our specific
train, validation, and test split in Section 6. Moreover, The data pre-processing pipeline is
also available in the GitHub repository in Section 6.
The datasets were chosen based on the diversity of tasks and modalities and not on their
clinical usefulness or value. Classifying different brain tumors types might not be a clinically
applicable task, but we still included it in our analysis to gauge how each model performs
in disease classification with MRI examinations.

3.3 Evaluation Settings

In our analysis, we focused mainly on the “out-of-the-box" performance of DINOv2, where
we trained classification or segmentation heads while keeping the backbone frozen. This re-
sulted in preferable lightweight training that requires fewer labeled instances, computational
resources, and training time. Additionally, we also performed end-to-end fine-tuning and
parameter-efficient fine-tuning evaluations for performance comparison to this lightweight
training paradigm.
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Table 1: The datasets used. For datasets that do not have a standardized test set, we chose the test set
using systematic sampling. All the datasets and splits are public.

Dataset Exam. Task Labels # Classes # Images/Volumes Dim
NIH Chest X-ray (Wang et al., 2017) X-ray CLS Thorax Diseases 14 112,120 2D

CheXpert (Irvin et al., 2019) X-ray CLS Thorax Diseases 5 161,792 2D
Montgomery County (MC) (Jaeger et al., 2014) X-ray SEG Lung 3 138 2D

SARS-CoV-2 (Soares et al., 2020) CT CLS COVID-19 Diagnosis 2 210 3D
AMOS (Ji et al., 2022) CT SEG Abdominal Organs 15 150 3D

MSD Spleen (Antonelli et al., 2022) CT SEG Spleen 2 40 3D
MSD Hipp (Antonelli et al., 2022) MRI SEG Hippocampus Head and Body 3 260 3D
MSD Heart (Antonelli et al., 2022) MRI SEG Left Atrium 2 20 3D
Brain Tumor (Cheng et al., 2015) MRI CLS Tumor Types 3 3,064 2D

We experimented with the original DINOv2 ViT-g/14 and the three smaller distilled versions
(ViT-L/14, ViT-B/14, and ViT-S/14). We compared the performance and generalizability
of DINOv2 to supervised, self-supervised, and weakly-supervised models. Table 2 detailed
all the models used.

Table 2: Models used. Description of the backbones used along with their parameter count and pre-training
settings. "Used For" describes what we used each model for and "# Images" describes the number of images
in the pre-training dataset.

Method Architecture Dataset Used For # Images # Params. Citation
Supervised

CLS

DenseNet201 ImageNet1k CLS 1.3M 20M (Huang et al., 2018)
ResNet152 ImageNet1k CLS 1.3M 60M (He et al., 2016)
VGG19 ImageNet1k CLS 1.3M 144M (Simonyan & Zisserman, 2015)
ViT-L/16 ImageNet21k CLS, SEG 14M 300M (Dosovitskiy et al., 2021)

SAM ViT-L/16 SA-1B CLS, SEG 11M 300M (Kirillov et al., 2023)
Weakly-Supervised

CLIP ViT-L/14 WIT-400M CLS, SEG 400M 300M (Radford et al., 2021)
OpenCLIP ViT-H/14 LAION-2B CLS, SEG 2,000M 632M (Ilharco et al., 2021)

Self-Supervised
MAE ViT-L/16 ImageNet1k CLS, SEG 1.3M 300M (He et al., 2021)
MSN ViT-L/16 ImageNet1k CLS, SEG 1.3M 300M (Assran et al., 2022)

DINOv2

ViT-S/14 LVD-142M CLS 142M 21M (Oquab et al., 2023)
ViT-B/14 LVD-142M CLS 142M 86M (Oquab et al., 2023)
ViT-L/14 LVD-142M CLS, SEG 142M 300M (Oquab et al., 2023)
ViT-g/14 LVD-142M CLS, SEG 142M 1,100M (Oquab et al., 2023)

A critical part of our work is that we standardized the training and hyperparameter tuning
pipeline for each model and evaluation task, with the goal of isolating model performance.
In this way, we can gain a clearer understanding of which models perform best under the
same evaluation settings.
Disease Classification. We performed four main types of experiments: kNN, linear-
probing, few-shot learning, and fine-tuning. (1) kNN was performed on the normalized
features of the last backbone layer. (2) For linear-probing, a single linear layer was attached
on top of the backbone. (3) In few-shot learning, we trained a linear layer on top of frozen
features. (4) For fine-tuning, we used both parameter-efficient fine-tuning methods like
LoRA (Hu et al., 2021) and BitFit (Zaken et al., 2022) and end-to-end fine-tuning.
When performing linear-probing with ViT architectures (Dosovitskiy et al., 2021), the linear
layer takes either the CLS token or the CLS token concatenated with the average of all patch
tokens, depending on which method yielded higher performance in the validation set. In
multi-labeled classification, we predicted each class as a binary and averaged the model’s
result across all classes, and we used the method described by (Zhang & Zhou, 2007) for
kNN. For 3D volumes, the embeddings for all slices were averaged before being passed into
the classification head.
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Organ Segmentation. For organ segmentation evaluations, we kept the encoder frozen
and attached a U-Net, hierarchical decoder on top. The U-Net decoder is made up of four
blocks, where each block consists of one convolutional layer along with ReLU activation
function and batch normalization. Skip connections were obtained from the previous four
blocks of the transformer model and concatenated to the features at each U-Net layer, as is
done in the classical U-Net architecture (Ronneberger et al., 2015).
We also compared the performance of DINOv2 to segmentation architectures that are com-
monly used in medical image analysis including U-Net and TransUnet, trained end-to-end in
a supervised fashion, and experimented with using a lightweight single linear layer decoder
as a comparison with the U-Net decoder. For processing 3D volumes, we segmented each
slice independently.
Comparison with medical-image pre-trained models. It is important to note that
we do not compare DINOv2 to domain specific models like MedCLIP (Wang et al., 2022),
BiomedCLIP Zhang et al. (2024), MedSAM (Ma et al., 2023), or other medical image pre-
trained models. The goal of this work is evaluate whether DINOv2 pre-trained models can
learn general-purpose representations in the medical domain that are useful across medical
image analysis tasks like disease classification and organ segmentation, and across different
radiology modalities like X-ray, CT, and MRI. All models used are pre-trained on natural
images.

4 Results

In this section, we report our results across the different evaluation settings, tasks, and
radiological modalities. We compare the performance of DINOv2 to weakly-supervised
models including CLIP (Radford et al., 2021) and OpenCLIP (Ilharco et al., 2021), and
self-supervised models including MAE (He et al., 2021) and MSN (Assran et al., 2022), and
supervised models. We used the area under the operating receiver curve (AUROC) as a
performance metric for classification tasks, and the average of the dice and jaccard scores
as a metric for segmentation. We report only the best checkpoint across the epochs tested
for each model.
In Section 4.1 and we will evaluate DINOv2 on disease classification and organ segmenta-
tion tasks. For segmentation, we will also show a comparison between using a linear layer
decoder and a U-Net, hierarchical decoder on top of the frozen DINOv2 ViT-L/14 features.
After that, in Section 4.2, we will analyze the cross-task generalizability of DINOv2 com-
pared to the other models on disease classification and organ segmentation tasks. Then,
in Section 4.3, we will explore the few-shot learning capability of DINOv2 on both disease
classification and organ segmentation tasks. In Section 4.4, we perform parameter-efficient
fine-tuning to compare the performance and efficiency of using PEFT with end-to-end fine-
tuning and linear probing. Finally, 4.5 shows qualitative results of DINOv2 features on
X-ray, CT, MRI modalities, and organ segmentation results of linear and U-Net decoders
trained on top of frozen DINOv2 ViT-L/14 features.

4.1 Disease Classification and Organ Segmentation

We will start by analyzing the performance of DINOv2 ViT-g/14 and ViT-L/14 on linear-
probing. Figure 3 shows the AUROC scores of both DINOv2 models compared to weakly-
supervised and self-supervised models on four disease classification benchmarks. DINOv2
outperforms all other models on the more difficult large X-ray datasets and achieves per-
formance closer to weakly-supervised models that are trained on much larger datasets. The
ViT-L version of the model seemingly underperforms on 3D CT classification but is com-
petitive with the ViT-g/14 version on all other classification tasks. Additionally Table 3
shows the linear-probing performance of all DINOv2 models compared to supervised learn-
ing methods on X-ray, CT, and MRI disease classification datasets. DINOv2 performs on
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Figure 3: Linear probing for disease classification compared to self-supervised and weakly-supervised meth-
ods. The figure shows the performance of linear probing DINOv2 compared to other self-supervised and
weakly-supervised models.

par or slightly better compared to supervised methods, and outperforms by a relatively
larger margin commonly-used CNN supervised models.

Table 3: Linear probing for disease classification compared to supervised methods. The Table compares
supervised models with DINOv2 pre-trained models in Linear-probing settings on X-ray, CT, and MRI
datasets. All models were tested under the same settings.

Method Architecture NIH Chest X-ray CheXpert SARS-CoV-2 Brain Tumor

Supervised

DenseNet201 0.735 0.795 0.973 0.960
ResNet152 0.718 0.779 0.936 0.948
VGG19 0.696 0.750 0.891 0.933
ViT-L/16 0.751 0.829 0.983 0.975

DINOv2

ViT-S/14 0.747 0.805 0.943 0.962
ViT-B/14 0.755 0.812 0.922 0.972
ViT-L/14 0.763 0.821 0.950 0.974
ViT-g/14 0.759 0.818 0.978 0.976

Table 4 shows the kNN, linear-probing, and end-to-end fine-tuning results of DINOv2 com-
pared to other supervised, weakly-supervised, and self-supervised methods on the NIH
Chest X-ray and CheXpert datasets. Just like in linear probing, DINOv2 outperforms self-
supervised methods in end-to-end fine-tuning but is competitive with weakly-supervised
and supervised methods. Also important to highlight that DINOv2 under-performs on kNN
evaluations compared to other methods, even though its features were designed to maximize
kNN results. This might be explained by the domain shift between natural images in the
pre-training and medical images, making the out-of-the-box kNN evaluations more random.
Moreover, we provide a comparison for segmentation tasks in Table 5. When comparing
just image sizes of 224x224, DINOv2 performs the second-best, just behind MAE, which
outperforms DINOv2 on all but one segmentation task. This can be explained given MAE’s
inherently pixel-level learning objective. An important point to note here is that all models
except DINOv2 were pre-trained on image sizes of 224x224. At the end of the DINOv2
pre-training, it was adapted to image size 518x518, leading to worse performance on smaller
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Table 4: DINOv2 performance comparison on large X-ray datasets. DINOv2 outperforms other methods on
Linear-probing and fine-tuning but under performs on kNN evaluations. Multiple learning rates for tuning
each backbones were tested, and only the best is shown.

NIH Chest X-ray CheXpert
Method Architecture kNN Linear-probing Fine-tuning kNN Linear-probing Fine-tuning

Supervised

DenseNet201 0.675 0.735 0.769 0.783 0.795 0.882
Resnet152 0.668 0.718 0.752 0.766 0.779 0.868
VGG19 0.644 0.696 0.711 0.728 0.750 0.870
ViT-L/16 0.663 0.751 0.761 0.777 0.829 0.873

MAE ViT-L/16 0.659 0.724 0.743 0.785 0.789 0.821
MSN ViT-L/16 0.692 0.742 0.707 0.807 0.753 0.802
CLIP ViT-L/14 0.655 0.739 0.697 0.742 0.816 0.842
OpenCLIP ViT-H/14 0.659 0.737 0.770 0.744 0.814 0.847

DINOv2 ViT-L/14 0.663 0.763 0.717 0.771 0.821 0.786
ViT-g/14 0.659 0.759 0.769 0.768 0.818 0.848

Table 5: DINOv2 on organ segmentation. A comparison between using a frozen DINOv2 backbone and
other commonly-used segmentation models initialized from scratch.

Method Architecture MC AMOS MSD Heart MSD Hipp MSD Spleen
MAE ViT-L/16 0.969 0.547 0.864 0.799 0.853
MSN ViT-L/16 0.961 0.407 0.810 0.788 0.784
CLIP ViT-L/14 0.955 0.445 0.762 0.748 0.747
OpenCLIP ViT-H/14 0.962 0.501 0.793 0.779 0.803

DINOv2

ViT-L/14224 0.966 0.512 0.792 0.812 0.813
ViT-L/14448 0.974 0.592 0.869 0.789 0.898
ViT-g/14224 0.966 0.511 0.804 0.761 0.802
ViT-g/14448 0.973 0.642 0.875 0.729 0.900

image sizes due to positional encoding interpolation (Oquab et al., 2023). Even then, DI-
NOv2 still outperforms weakly-supervised models and MSN pre-training. When using image
sizes closer to DINOv2’s pre-training, it outperforms all other methods. However, it is dif-
ficult to determine how much of this increased performance is due to reduced interpolation
of positional encoding or to higher details resulting from the larger images.

Table 6: DINOv2 compared to segmentation architectures. A comparison between using a frozen DINOv2
backbone and other commonly-used segmentation models initialized from scratch. The parameter count
given is when there is one output class.

Method Architecture Trainable Params. Total Params. MC AMOS MSD Heart MSD Hipp MSD Spleen

Scratch U-Net 31M (100%) 31M 0.973 0.432 0.911 0.593 0.826
TransUnet 324M (100%) 324M 0.974 0.535 0.892 0.821 0.855

DINOv2 ViT-L/14 17M (5%) 317M 0.974 0.592 0.869 0.789 0.898
ViT-g/14 38M (3%) 1,138M 0.973 0.642 0.875 0.729 0.900

DINOv2 compared to segmentation architectures. In Table 6 we compare U-Net
decoders on top of frozen DINOv2 ViT-L/14 and ViT-g/14 features with U-Net and Tran-
sUnet models trained end-to-end from scratch. The results of all models are similar on the
easier MC dataset, but DINOv2 outperforms the other U-Net and TransUnet on the more
difficult AMOS multi-organ segmentation task even with a frozen encoder and less trainable
parameters. On the MSD datasets, DINOv2 is competitive but there is variability in the
performance.
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U-Net vs linear decoders. Table 4 shows a performance comparison between using a
linear layer decoder and a U-Net decoder on top of frozen DINOv2 ViT-L/14 features on the
organ segmentation datasets. The linear layer decoder evaluations are used to isolate the
performance of the DINOv2 encoder, analogous to the purpose of kNN classification evalu-
ations. On the MC dataset where the target mask is large, linear and U-Net performance is
comparable, highlighting the strong out-of-the-box features of DINOv2. The gap in perfor-
mance increases, however, on MSD datasets where target masks are usually much smaller,
making them harder to predict with a single layer. Figure 6 shows qualitative segmentation
for both methods.
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Figure 4: Linear vs. U-Net decoder. Comparison of the Linear and U-Net decoders on the four segmentation
tasks used in this analysis. The backbones used in both is a DINOv2 ViT-L/14.

4.2 Cross-task Generalizability Analysis

In this section, we evaluate whether DINOv2 can produce representations that are more
generalizable across tasks, compared to other models. To accomplish this task, we plot in
Figure 1 the relative performance of weakly-supervised and self-supervised methods across
disease classification and organ segmentation. The horizontal axis shows the relative perfor-
mance or ranking of each of the models on segmentation tasks, while the vertical axis does
the same for classification tasks. The ranking is calculated as the average ranking across
all segmentation or classification tasks, where rank 1 means the model performs the best
relative to the other models. Specifically, we assigned a score between 1 to 6 for each model
on each dataset where a score of 6 means that the model achieved the highest result and
1 means the lowest. We averaged the scores for all datasets and plotted the ranking for
each model based on this score, by assigning rank 1 to the highest score. An interesting
observation is that models pre-trained with weakly-supervised learning perform well only on
classification tasks, while MAE performs well only on segmentation. DINOv2 can generalize
across both tasks and outperforms all other models for classification.

11



Under review as submission to TMLR

DINOv2 corss-task generalizability compared to supervised methods. Addition-
ally, we carry out two experiments to compare the task-generalizability of DINOv2 with
supervised methods. First, we compare the segmentation performance of a DINOv2 pre-
trained ViT-L/14 with a ViT-L/16 pre-trained with supervised learning on ImageNet21k.
Table 7 shows the results. DINOv2 outperforms the supervised ViT on 4 out of the 5 organ
segmentation tasks, especially in the challenging AMOS multi-organ segmentation task.
Our second experiment compares the performance of the SAM image encoder with DINOv2
on classification tasks. SAM was trained for prompt-based segmentation and does not have
a CLS token. To perform classification with SAM we averaged all the patch embeddings and
treated the result as a CLS token. Table 8 shows the results. Images are of size 1024x1024
and only a subset of each dataset was used because of computational limits. DINOv2
significantly outperforms SAM on both datasets, highlighting the cross-task generalizability
of the model.

Table 7: DINOv2 vs. ImageNet21k pre-trained ViT on organ segmentation. DINOv2 outperforms the
supervised pre-trained ViT on 4 of the 5 tasks.

Method Architecture Image Size Montgomery County AMOS MSD Heart MSD Hipp MSD Spleen
Supervised ViT-L/16 224 0.963 0.433 0.825 0.750 0.773

DINOv2 ViT-L/14 224 0.966 0.512 0.792 0.812 0.813
ViT-L/14 448 0.974 0.592 0.869 0.789 0.898

Table 8: SAM vs DINOv2 on X-ray on disease classification. Only a subset of the entire dataset was and all
the images are of size 1024x1024. The average of patch embeddings were used as a CLS token for SAM.

Method Architecture NIH Chest X-ray CheXpert
SAM ViT-L/16 0.714 0.792
DINOv2 ViT-L/14 0.755 0.816

4.3 Few-shot Learning

To measure DINOv2’s ability to adapt to new distributions using a few labeled instances, we
perform few-shot learning for both disease classification and organ segmentation on X-ray
datasets.
At the top row of Figure 5, we start by comparing DINOv2 ViT-L/14 to weakly-supervised
and self-supervised methods. The top-left subplot shows the performance on the NIH Chest
X-ray disease classification dataset, while the top-right subplot shows the performance on
the MC lung segmentation datasets. For disease classification, there is no clear trend when
the number of patients used for each class is between 1 and 4, but when 8 patients are used,
DINOv2 outperforms all other methods. For organ segmentation, DINOv2 outperforms all
other methods from the start and is only worse than MAE when the entire dataset is used.
A similar trend can be observed at the bottom row of Figure 5, where we compare DINOv2
with supervised methods. The bottom-left subplot shows that DINOv2 outperforms other
methods when the number of patients are 8 or more, but to a lesser degree compared to self-
supervised and weakly-supervised methods. For organ segmentation, DINOv2 outperforms
other models by a large margin when using less than eight instances, which is somewhat
expected given it was pre-trained while the other segmentation models were not.

4.4 Parameter-efficient Fine-tuning

We experiment with parameter-efficient fine-tuning (PEFT) techniques on DINOv2 ViT-
g/14, which, as a whole, contains 1.1 billion parameters. PEFT methods are used to enable
efficient adaptation of large models to downstream tasks, usually achieving performance
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Figure 5: Few-shot disease classification and organ segmentation. The top row compares DINOv2 ViT-L/14
with weakly-supervised and self-supervised methods on the NIH Chest X-ray and MC datasets. The bottom
row provides a comparison with supervised methods. For disease classification, there is no clear trend when
the number of patients used for each class is between 1 and 4, but when 8 patients are used, DINOv2 clearly
outperforms all other methods. For organ segmentation DINOv2 outperforms all other methods from the
start.
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that is on par with end-to-end fine-tuning while requiring a lot less compute and memory.
Previous work by Dutt et al. (2023) has highlighted the opportunity of employing PEFT to
tune large foundation models for medical image analysis.
We employ two different PEFT techniques: LoRA (Hu et al., 2021) and BitFit (Zaken et al.,
2022). LoRA is an additive method that inserts trainable decomposition matrices in the
layers of a transformer, while BitFit is a selective method that unfreezes only the bias terms
of the model. Table 9 shows a result and efficiency comparison between the two PEFT
methods with a comparison to end-to-end fine-tuning and linear-probing on the NIH Chest
X-ray and CheXpert datasets using the DINOv2 ViT-g/14 model.

Table 9: PEFT on DINOv2 ViT-g/14. Both LoRA and BitFit achieve results that are better than linear-
probing while adapting less than 1% of the total parameters.

Method Trainable Params. (%) NIH Chest X-ray CheXpert
Fine-tuning 1,100M (100%) 0.769 0.848
Linear-probing 1,500 (1e-6%) 0.759 0.818
LoRA 8M (0.7%) 0.767 0.823
BitFit 0.8M (0.07%) 0.768 0.817

Image Ground Truth Linear U-Net

Figure 6: Linear vs. U-Net visualization. The figure shows a qualitative comparison between segmentation
masks generated by the linear layer and the U-Net decoder.
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4.5 Qualitative Results

In this section we will show qualitative results of DINOv2 features using principal component
analysis (PCA) performed on DINOv2 patch features on X-ray, CT, and MRI scans, follow-
ing the method delineated in (Oquab et al., 2023). We will also provide organ segmentation
results of linear compared U-Net decoders.
PCA visualization. Figure 2 shows the first three PCA components. The PCA is com-
puted between patches of images that are in the same column, and the first 3 components
are shown for X-ray, CT, and MRI scans. Thresholding is used on the first PCA component
to remove the background. Just like in natural images (Oquab et al., 2023), the colors of the
three PCA components correspond well with the same parts of images in the same category.
This is an easier task however, compared to natural images, because there is less variability
between examinations on medical images compared to natural images.
U-Net and linear decoder visualization. We also show a visualization of linear and
U-Net decoders trained on top of DINOv2 ViT-L/14 features. The linear layer decoder
performs surprisingly well, but is limited, especially on smaller masks, due to the smaller
decoding map (32x32 pixels interpolated to 448x448) and less adjustable parameters. As
expected, the U-Net segmentation results are smoother and represents the ground truth
mask more accurately, but is still limited due to the frozen encoder.

5 Discussion

Foundation models have shown promise for reducing the data annotation problem and in-
creasing model generalizability and robustness. Thus they are a direction towards increas-
ing performance and adoption of deep learning systems in healthcare. However, training a
foundation model from scratch is extremely challenging for most institutions, demanding
substantial amounts of well-organized data and computational resources. This challenge is
particularly pronounced in the realm of medical image analysis, where data annotation is
markedly more expensive than in other fields, and the data itself comprises high-dimensional
volumes. This paper examines DINOv2, a foundation model trained on natural images, for
medical applications. The DINOv2 pre-training approach is specifically promising given its
ability to learn general-purpose representations and perform well out-of-the-box, without
needing to fine-tune the encoder. We believe that using DINOv2 pre-training on medi-
cal data is a promising approach for future research aimed at building large-scale medical
foundation models without supervision.

6 Conclusion

In this work, we examine DINOv2, a self-supervised foundation model pre-trained on 142
million natural images, for applications to radiology image analysis across X-ray, CT, and
MRI modalities. We conclude that DINOv2 is a strong feature extractor across both disease
classification and organ segmentation tasks, and outperforms traditional ImageNet pre-
trained CNN methods and other weakly-supervised and self-supervised pre-trained ViTs.

Reproducibility

All of the data used for this work is publicly available, and our train, validation, and test
split are available here. All the training and validation logs, hyper-parameters, and model
weights are available here.
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