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Figure 1. We propose 3DLLM-MEM, a memory-enhanced 3D embodied agent that explores and incorporates feedback from the envi-
ronment, interacts with objects, and incrementally builds and maintains a task-relevant long-term memory throughout its trajectory. For
illustration purposes, agents from multiple time steps are shown simultaneously.

Abstract

Humans excel at performing complex tasks by leveraging
long-term memory across temporal and spatial experiences.
In contrast, current Large Language Models (LLMs) strug-
gle to effectively plan and act in dynamic, multi-room 3D
environments. We posit that part of this limitation is due to
the lack of proper 3D spatial-temporal memory modeling in
LLMs. To address this, we first introduce 3DMEM-BENCH,
a comprehensive benchmark comprising over 26,000 trajec-
tories and 2,892 embodied tasks, question-answering and
captioning, designed to evaluate an agent’s ability to rea-
son over long-term memory in 3D environments. Second,
we propose 3DLLM-MEM, a novel dynamic memory man-
agement and fusion model for embodied spatial-temporal

reasoning and actions in LLMs. QOur model uses work-
ing memory tokens, which represents current observations,
as queries to selectively attend to and fuse the most use-
ful spatial and temporal features from episodic memory,
which stores past observations and interactions. Our ap-
proach allows the agent to focus on task-relevant informa-
tion while maintaining memory efficiency in complex, long-
horizon environments. Experimental results demonstrate
that 3DLLM-MEM achieves state-of-the-art performance
across various tasks, outperforming the strongest baselines
by 16.5% in success rate on 3DMEM-BENCH s most chal-
lenging in-the-wild embodied tasks.


https://3dllm-mem.github.io

1. Introduction

Picture yourself traversing an unfamiliar home, as illus-
trated in Figure 1, on a mission to explore multiple rooms
and evaluate various gift boxes to find the most suitable one
for wrapping a teddy bear. As you navigate from room to
room, your brain instinctively creates a 3D cognitive map
of the environment, maintains a working memory of ob-
jects you’ve encountered, forms episodic memories that link
observations across space and time, and plans efficient ac-
tions. This seamless integration of 3D spatial understand-
ing, long-term memory encoding and retrieval, fluid switch-
ing between working and episodic memory, and purposeful
action planning — cognitive processes that humans take for
granted — remain formidable challenges for embodied Al
systems today.

Recent extensions of Large Language Models (LLMs)
to 3D environments have birthed 3D-LLMs [14, 15, 17, 20,
45] that can perceive and reason about 3D spaces, while 3D
Vision-Language-Action models [21, 54, 55] further incor-
porate the ability to plan and act within these environments.
Despite these advances, several critical limitations persist
that prevent models from performing the kinds of tasks de-
scribed above. First, current models struggle to maintain
long-term memory chains when performing complex tasks
that unfold across multiple visual scenarios, such as several
rooms in a house, and extended time frames. Real-world 3D
physical scenes are remarkably vast and information-dense,
where every detail can matter for long-horizon embodied
tasks — for instance, in Figure 1, finding the most suitable
gift box requires remembering all the gift boxes encoun-
tered along the way and their characteristics and interac-
tion with teddy bear. Dense 3D representations are particu-
larly valuable as they capture comprehensive spatial infor-
mation, preserving intricate geometric relationships and en-
vironmental details that sparse or object-centric approaches
might miss. However, how to accurately and efficiently
store dense 3D memory remains a fundamental challenge
- retrieving the entire history would overwhelm the model’s
context limits, while selective retrieval [42, 44, 49] risks
omitting critical information needed for accurate reason-
ing and decision-making. The second challenge resides in
the entanglement of spatial and temporal memory — agents
must track both where objects are and how they change over
time through exploration and interaction. As environments
evolve, maintaining coherent representations of previously
seen spaces while incorporating new information continues
to exceed the capabilities of current embodied Al models.

Our efforts at solving this challenge are two-fold. First,
we introduce a novel benchmark for reasoning, planning
and acting with long-term spatial-temporal memory in em-
bodied environments. Our benchmark, 3DMEM-BENCH,
encompasses multi-room 3D scenes from the Habitat envi-
ronment, augmented with interactive objects to enable ma-

nipulation tasks across extended spatial-temporal horizons.
Notably, we define fine-grained embodied tasks across
varying levels of difficulty—from simple to hard—enabling
deeper insight into model performance, which we believe
is not addressed in prior benchmarks as shown in Table 1.
Our task set spans a wide range of complexities, from
straightforward object collection to challenging compara-
tive reasoning tasks that require integrating observations
across multiple rooms and time steps. Additionally, we in-
clude in-the-wild challenge tasks to evaluate the model’s
generalization capabilities beyond seen environments. The
benchmark includes three evaluation categories: (1) embod-
ied tasks requiring extended action sequences across multi-
ple rooms, (2) spatial-temporal embodied question answer-
ing (EQA) that evaluates understanding of spatial relation-
ships over time, and (3) long-term scene captioning that
tests memorization of previously observed environments.
Our dataset includes 26,000+ trajectory examples spanning
182+ unique scenes with an average of 18 rooms per scene.

Second, we introduce 3DLLM-MEM, a 3D embod-
ied LLM with dynamic memory management capabilities
designed specifically for embodied spatial-temporal rea-
soning, planning and acting. To our knowledge, we are
among the first to explore dense 3D representations as mem-
ory for embodied 3D LLMs — addressing a significant
gap in current research as noted in [49]. Unlike standard
approaches that rely solely on context windows [17, 20,
57], 3ADLLM-MEM implements a dual-memory system: a
limited-capacity working memory for current observations
and an expandable episodic memory that stores past spatial-
temporal information as dense 3D representations. The key
innovation is our memory fusion module that actively in-
tegrates information from both memory systems based on
task relevance and spatial-temporal relationships. This al-
lows the model to leverage the benefits of dense 3D rep-
resentations while mitigating their computational demands,
maintaining coherent spatial-temporal understanding across
extended task horizons. The fusion process preserves crit-
ical spatial relationships while accounting for their evolve-
ment through agent interactions over time.

We evaluate popular 3D-LLMs and memory mecha-
nisms on 3DMEM-BENCH. Experimental results demon-
strate 3DLLM-MEM significantly outperforms all exist-
ing approaches in both in-domain and in-the-wild embod-
ied tasks. Notably, while the performance of other meth-
ods drops sharply in the challenging in-the-wild setting, our
method remains robust, achieving an average success rate
of 32.1%—demonstrating strong generalization capabili-
ties. As task complexity increases from simple to hard, all
existing approaches degrade significantly, achieving only
~5% success rate in hard in-the-wild tasks. In contrast,
3DLLM-MEM maintains a strong performance of 27.8%,
demonstrating its scalability and effectiveness in managing



Benchmark #Test Tasks #Train Traj. Memory Fine-grain EQA Cap.
ALFWorld [35] 274 3,553 X X NA NA
Behavior-1K [25] 1,000 NA X X NA NA
VisualAgentBench [27] 746 4,482 X X NA NA
EmbodiedBench [48] 1,128 NA X X NA NA
3DMEM-BENCH (ours) 1,860 26,276 865 167

Table 1. Comparison with related benchmarks. 3DMEM-BENCH
focus on spatial-temporal memory through fine-grained embod-
ied tasks and EQA that span multiple “pieces” of long-term mem-
ory, distinguishing it from prior benchmarks that typically target
single-step or short-horizon reasoning. Train Traj. indicates train
trajectories. Fine-grain is short for fine-grained complexity which
indicates our embodied task spans from simple to medium to hard.
Cap. stands for Captioning.

longer-term memory representations.

Our contributions can be summarized as below:

* We propose a novel task that requires agents to execute
action chains while maintaining and utilizing long-term
spatial-temporal memory.

* We construct 3DMEM-BENCH, a comprehensive bench-
mark comprising over 26,000 trajectories and 1,860
fine-grained long-term memory embodied tasks—ranging
from simple to hard—along with question-answering tasks
that target memory changes across time and space, and
captioning tasks in complex 3D environments.

* We propose 3DLLM-MEM, an embodied 3D LLM with
a novel memory fusion module for spatial-temporal rea-
soning, planning, and acting-which utilizes working mem-
ory tokens as queries to selectively fuse relevant features
from episodic memory for efficient, task-aware decision-
making.

e Experimental results on embodied tasks, question-
answering, and captioning demonstrate that 3DLLM-
MEM outperforms baselines by a large margin.

2. The Embodied 3D Long-Term Spatial-
Temporal Memory Benchmark

2.1. Overview of 3DMEM-BENCH

Design principles Long-term memory [3, 12, 58] can be
categorized into explicit memory and implicit memory. Ex-
plicit memory includes semantic memory, which stores gen-
eral knowledge and facts about the world, and episodic
memory, which consists of personal experiences that are
time-stamped and context-specific. In contrast, implicit
memory primarily involves procedural memory, such as
learned skills and habits.

To comprehensively evaluate 3D long-term memory for
real-world applications, we design 3DMEM-BENCH fol-
lowing three core task categories: embodied tasks, long-
term memory EQA, and captioning. As illustrated in Fig-
ure 2, embodied tasks require an embodied agent to solve
realistic indoor environment challenges by leveraging both

implicit and explicit long-term memory. Long-term mem-
ory EQA tests the agent’s ability to answer complex em-
bodied questions using spatial-temporal memory. This task
includes five subcategories: spatial reasoning questions,
long-term object navigation, comparative reasoning, multi-
room layout understanding, and semantic object counting.
Captioning tasks involve summarizing the agent’s episodic
memory to highlight shared and distinctive features across
experiences, enabling more informed decision-making un-
der the current task context.

2.2. Data Collection

Base environment construction We build our scenes
on top of the Habitat-Matterport 3D (HM3D) semantics
dataset [31], which has 1000 3D spaces and 10,600 rooms
within those spaces. Pre-processing for the axis-aligned
bounding box and using valid semantic label annotation, we
filter to 182 3D spaces and 2,602 rooms. However, exist-
ing objects in HM3D scene are not interactive in Habitat-
sim [36]. To expand our task diversity and enable embod-
ied tasks, we add interactive objects from Objaverse [10]
which consists of 800K 3D objects spanning rich categories.
More environment construction details are illustrated in Ap-
pendix B.

Generating task trajectories Following Hong et al.
[17, 18], we adopt box-demonstration-instruction-based
prompting, which utilizes the axis-aligned bounding boxes
(AABB) of both rooms and objects within the 3D scenes to
prompt Gemini [38] to generate diverse tasks. We further
prompt Gemini to incorporate interactive objects based on
task requirements and their appropriateness within indoor
environments. Detailed prompt instructions and few-shot
demonstration examples are provided in Appendix E. To
ensure the validity of the generated trajectories, we develop
a trajectory simulation pipeline that verifies each trajectory
step-by-step. At every step, the simulator checks: (1) the
correctness of the agent’s location, (2) the existence and va-
lidity of referenced objects, and (3) the correctness of pick-
up and put-down actions. Finally, we ensure that high-level
actions can be executed in the simulator, following [37, 48].
Details of this implementation are in Appendix F.1. On av-
erage, our filtering process yields a validation rate of ap-
proximately 24%, ensuring the correctness and feasibility
of the generated trajectories.

Embodied data collection In our task settings, an em-
bodied agent first performs random exploration within the
environment to collect RGB-D observations and corre-
sponding camera poses. Then the agent follows the task
trajectory, incrementally exploring new environments, ex-
ecuting interaction actions, and receiving feedback with
new RGB-D observation data. All interaction results are
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Figure 2. Overview of 3DMEM-BENCH. For long-term memory embodied tasks, we further incorporate in-the-wild challenges to test 3D
agent’s generalization abilities. For complete embodied task trajectories, please refer to Appendix C.

recorded and the reconstructed point cloud data is precom-
puted and stored locally to enable faster loading during both
training and inference.

2.3. Data Curation

As mentioned previously, we collect embodied data by
prompting Gemini. To enable a fine-grained analysis of
long-term memory capacity, we divide the tasks into three
subcategories: simple, medium, and hard, comprising of 3,
5 and 10 multi-room scene settings respectively. In total,
we collect 51K trajectories, with 31K in the simple setting,
10K in the medium, and 10K in the hard.

To construct in-domain evaluation sets, we first remove
training tasks and filter for instances that never shown in
the agent’s working memory. For the in-the-wild evalua-
tion set, we apply additional filtering to assess the agent’s

generalization capabilities. Specifically, we select instances
involving unseen objects and entirely unseen memory con-
text, and we introduce novel in-the-wild challenges that dif-
fer from those encountered during training, as illustrated in
Figure 2.

For EQA data curation, we extract complete trajectories
explored by agents and then prompt Gemini to generate
question-answer pairs. The questions are categorized into
spatial reasoning, long-term object navigation, comparative
reasoning, multi-room layout understanding, and semantic
object counting. As shown in Figure 2, these questions eval-
uate models on spatial-temporal changes in memory during
embodied task execution. For long-term memory caption-
ing, which primarily targets semantic episodic memory, we
collect data across multiple rooms before and after the exe-
cution of each trajectory, enabling comparison and summa-
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Figure 3. (a) We propose 3DLLM-MEM, a memory-enhanced 3D embodied agent that gradually form its long-term memory while
executing tasks. Multiple timesteps are shown together but in different colors, with each timestep’s memory including the prior one. The
task is “prepare a simple breakfast” as shown in Figure 2. (b) Overview of our memory fusion mechanism.

rization of memory-relevant experiences.

Quality control After constructing the entire benchmark,
we implement two quality control procedures: automatic
validation using trajectory simulation rules and a man-
ual review of each benchmark instance. The automatic
check involves re-running the trajectory simulation valida-
tion pipeline, as described in §2.2, particularly for the in-
the-wild tasks. For human validation, four student experts
in the field manually inspect each benchmark example. We
render multi-view images of the entire scene using the sim-
ulator and verify whether the benchmark annotations accu-
rately correspond to the simulated environment. More de-
tails are in Appendix F.2.

3. 3D Long-Term Spatial-Temporal Memory
Model (3DLLM-MEM)

3.1. Preliminary

Recent work on 3D Large Language Models (3D-LLMs)
has showcased robust capabilities. We choose LLaVA-
3D [57] as the base model to build our long-term mem-
ory 3D-LLM. LLaVA-3D directly builds on 2D-LLM with
multi-view images as input and utilizing the 3D position
embeddings to bring the 2D patches within a 3D spatial con-
text to construct 3D patches. For each frame image, a CLIP
encoder splits the image X € R3*"W > into patches at the
patch size P. For each 3D scene, V multi-view image patch
features are encoded and then projected into LLM space as
X, € RV*dxwxh where h = L%J W = L%J and d
represents LLM’s hidden dimension. The 3D positions in
the 3D world are obtained with known depth image, camera

intrinsic and extrinsic parameters and are further encoded
into 3D position embeddings P € RV *@Xwx"  These are
directly added to the 2D patch visual tokens X, resulting
in pixel-aligned 3D patches X3p € RV*dxwxh o re-
duce redundancy in 3D patches, we adopt the Farthest Point
Sampling (FPS) strategy to downsample the 3D features to
a fixed number of tokens, resulting in X3p peg € RV >,

3.2. 3DLLM-MEM Memory Module

A 3D embodied agent gradually explores the environment
by collecting observations and interacting with surrounding
environments. For humans, current observations are held in
working memory, while longer-term observations and expe-
riences are stored in episodic memory. Inspired by human
cognitive structure, 3DLLM-MEM is designed with a sim-
ilar paradigm as illustrated in Figure 3. The current obser-
vation at time step ¢ = 4, denoted as X[*=1 ¢ RN*d  re
mains within the context window and serves as the agent’s
working memory. As the agent accumulates more experi-
ences, past observations from time steps 1 to 7', represented
as X[=1T1 ¢ RT*xNxd are stored as part of its episodic
memory, where T' denotes the total number of timesteps.

Episodic memory To manage episodic memory, we pro-
pose the use of a memory feature bank. For each obser-
vation at time step j, where 1 < 5 < T, we first apply
a multi-layer perceptron (MLP) layer to project the obser-
vation into a memory-specific feature space, which is then
stored in the memory bank for future retrieval. To further
enhance the temporal understanding of the agent’s explo-



ration, we incorporate sinusoidal positional embeddings to
encode each time step ¢ = 7, and then directly added to the
corresponding memory feature representations.

Memory fusion Our motivation is that an agent should
leverage its current observations to recall the most relevant
information from its episodic memory in order to complete
the current task. To achieve this, we propose a mechanism
called 3D memory fusion. Specifically, we encode the 3D
features from the working memory into a shared memory
space and use this representation as the query feature, de-
noted as ftQ € RN*M where M is the dimensionality of
the memory feature space.

The episodic memory bank stores the corresponding key
and value features from past observations: f% ¢ RT*NxM
and fV € RTXNxM respectively. Here, T' is the number of
past timesteps and N is the number of memory tokens per
timestep. This structure allows the agent to retrieve task-
relevant information through memory-query attention. The
fused memory feature is then concatenated with the work-
ing memory feature to produce the final memory-enhanced
representation f* for the agent:

Q
fiine = Softmax (W) v (1)
fM = Concat [ff?se; ftQ} )

Memory update The working memory is dynamic and
updated online. As the agent interacts with the environment,
changes in the environment are immediately reflected in
the working memory through updated 3D representations.
When the agent moves to a new environment, the previ-
ous working memory is transferred to the episodic mem-
ory bank. If the corresponding environment already exists
in the memory bank and has been modified by the agent,
the memory entry is updated accordingly. Thus, the mem-
ory bank remains dynamic and reflects the latest state of the
explored environments. As described in §2.2, environment
changes and corresponding observations are pre-collected
and stored locally to facilitate efficient data loading during
both training and inference.

4. Experiments

In this section, we first introduce the experimental setup and
existing memory management baselines in §4.1. Then, we
benchmark existing approaches on 3DMEM-BENCH, and
present comprehensive results on embodied tasks, EQA,
and captioning tasks to demonstrate the effectiveness of our
3DLLM-MEM in §4.2, along with qualitative results. Fi-
nally, in §4.3, we conduct an ablation study of key design
choices in 3DLLM-MEM, demonstrating the effectiveness
of our proposed memory fusion mechanism.

4.1. Experimental Setup

Implementation details We implement our model based
on LLaVA-3D [57], modifying it to be compatible with
Google TPUs with PyTorch/XLA frameworks [30, 39] . We
first expand the model’s context window to 8192 tokens to
accommodate long-term memory inputs. We then fine-tune
our proposed memory module along with the LLM decoder
using our training split. Training is conducted on 8 Google
Cloud TPU v5p cores with a batch size of 256. Our model
is trained using supervised fine-tuning (SFT) with a stan-
dard language modeling loss. More details are provided in
Appendix D.

Baselines We compare 3DLLM-MEM against a broad

range of memory management approaches:

* Everything in Context. For a small subset of scenes, it
is feasible to fit all observations directly into the model’s
context window.

* Most Recent Memory. Since retaining all observations
in context is infeasible, we keep the most recent observa-
tions, assuming they are most relevant to the current task.

* Retrieval-Augmented Memory. Inspired by retrieval-
based techniques, we adopt a memory bank that stores past
observations. During inference, the most relevant mem-
ory entries are retrieved and appended before the working
memory to augment reasoning.

*3D-LLM [17]. A popular 3D LLM recognized by the
community. We finetune it on our training data and report
its performance using the “everything in context” strategy
with the longest context window supported. Further de-
tails are provided in Appendix G.

*3D-Mem [49]. A framework designed for 3D scene mem-
ory in embodied exploration and reasoning. However, this
method does not support embodied interaction or action
execution.

4.2. Experimental Results

Results on embodied tasks As shown in Table 2a,
3DLLM-MEM significantly outperforms all existing ap-
proaches on both in-domain and in-the-wild embodied
tasks. Notably, while the performance of other methods
drops sharply in the in-the-wild setting, our method demon-
strates strong generalization capabilities with a average suc-
cess rate of 32.1%. 3D-LLM showcases the lowest perfor-
mance even under simple task settings, highlighting the ne-
cessity of incorporating an explicit memory module. Both
the Most Recent Memory and Retrieval-Augmented Mem-
ory (RAG) baselines perform poorly in this setting, with
RAG showing only a slight improvement, highlighting the
challenges of retrieving relevant episodic memory. Inter-
estingly, the Everything in Context baseline performs better
than both recent memory and RAG approaches, suggesting
that when all information can fit within the context window,



‘ Simple ‘ Medium ‘ Hard ‘ Average
Model ‘ In-domain  In-the-wild  In-domain  In-the-wild  In-domain  In-the-wild  In-domain  In-the-wild
‘ SR Sub-SR SR Sub-SR‘ SR Sub-SR SR Sub-SR‘ SR Sub-SR SR Sub-SR‘ SR Sub-SR SR Sub-SR
3D-LLM (Finetuned) 104 203 9.1 185 - - - - - - - - -
Everything in Context 355 639 324 452 - - - - - - - - - - - -
Most Recent Memory 328 623 234 38.6 |20.1 348 124 253 |104 207 54 12.1 |21.1 393 137 253
Retrieval-Augmented Memory |34.2  63.0 283 46.2 |21.8 402 137 28.0 |108 216 48 106 |223 416 156 283
3DLLM-MEM (Ours) ‘45.5 734 370 654 ‘ 368 67.8 316 574 ‘ 305 462 27.8 42.1 ‘ 37.6 625 321 550

(a) Results on 3DMEM-BENCH embodied tasks. SR stands for success rate. Sub-SR stands for sub-success rate. Our model outperforms existing approaches

by a large margin.

‘ Embodied Task ‘ Embodied Question Answering (EQA) ‘ Captioning

Model | In-domain In-the-wild | Spatial Nav. Comparative Layout Count| BLEU1 BLEU4 METEOR
3D-LLM (Finetuned) - - 29 58 0.0 7.7 0.0 423 12.0 30.6
3D-Mem (GPT4-0) - - 399 110 25.8 19.1 7.8 41.7 4.7 31.8
3D-Mem (Gemini-2.5-Flash) - - 41.6 182 37.6 302 127 | 428 4.8 29.6
3D-Mem (Gemini-2.5-Pro) - - 39.7 277 36.0 352 164 | 415 3.0 28.6
Most Recent Memory 21.1 13.7 27.5 302 243 20.1 105 | 324 10.1 25.6
Retrieval-Augmented Memory 22.3 15.6 38.0 334 31.8 29.7 156 | 40.8 11.5 29.3
3DLLM-MEM (Ours) \ 37.6 32.1 \ 62.8 40.6 414 399 263 \ 58.2 18.8 37.3

(b) Results on all tasks in 3DMEM-BENCH. Average success rate is reported for embodied tasks. Nav. stands for long-term object navigation. We report
accuracy score for open-ended EQA evaluation and follow the standard LLM-as-judge evaluation protocol by prompting Gemini. Evaluation details are

provided in Appendix E.

Table 2. Comparison with 3D memory models and standard memory management approaches. Our model, 3DLLM-MEM, achieves the

best performance across embodied, EQA and captioning tasks.

the model can effectively utilize it. However, 3DLLM-
MEM still outperforms Everything in Context, indicating
the benefits of selectively fusing task-relevant memory fea-
tures to better guide embodied reasoning and execution. As
task complexity increases from simple to hard, all existing
approaches degrade significantly, achieving only ~5% suc-
cess rate in hard in-the-wild tasks. In contrast, 3DLLM-
MEM maintains a strong performance of 27.8%, demon-
strating its scalability and effectiveness in managing longer-
term memory representations.

Results on long-term EQA and captioning As shown in
Table 2b, 3DLLM-MEM consistently outperforms all ex-
isting approaches across all tasks in our benchmark. No-
tably, 3D-LLM achieves the second-best performance on
the captioning task, highlighting its strong ability to sum-
marize object-centric semantic memory. However, due to
limited context length, it performs poorly on the EQA tasks,
which require long-term spatial-temporal reasoning. 3D-
Mem demonstrates improved performance in EQA over
other baseline approaches. However, it falls short on spatial
relation, navigation and object counting tasks, indicating
the limitation of relying solely on aggregated image-centric
memories. 3DLLM-MEM significantly outperforms both
Most Recent Memory and RAG Memory, which further
demonstrates the effectiveness of our memory fusion tech-
nique.

Qualitative results We provide qualitative examples in
Figure 4 and a more detailed version with explanations in
Figure 6 (Appendix H), demonstrating that 3DLLM-MEM
is capable of maintaining long-term memory and executing
complex tasks in embodied environments. Additional ex-
amples are included in the supplementary materials.

4.3. Ablation Study

Our approach initializes the fused memory using working
memory features, aiming to fuse the most relevant memo-
ries for the current task. We ablate several design choices
for initializing the fusion query, as shown in Table 3 (Ap-
pendix A). When using either the most recent episodic
memory or learnable zero parameters, performance de-
grades compared to our proposed method. Interestingly,
using the most recent memory outperforms zero initializa-
tion in the simple setting but underperforms in the hard set-
ting. One possible explanation is that recent memory initial-
ization encourages fusion with nearby observations, which
may be sufficient for simple tasks and leads to faster con-
vergence. In contrast, zero initialization is guided solely by
training supervision to learn which memories are most use-
ful. In summary, the ablation results demonstrate that ini-
tializing fusion queries with working memory tokens pro-
vides the most effective and robust design choice for long-
term memory fusion.



Prepare a cozy
reading nook in the
living room with two
books and a teacup.

Figure 4. Qualitative example of 3DLLM-MEM, which maintains and utilizes a long-term memory to complete the task. Detailed task

execution trajectory can be found in Figure 6.

5. Related Works

3D Large Language Models 3D Large Language Mod-
els (3D-LLMs) have demonstrated promising results across
a wide variety of tasks, including 3D scene understand-
ing, object detection, and segmentation [6, 17, 19, 45, 56].
In parallel, 3D embodied agents have expanded these ca-
pabilities to planning and action in interactive environ-
ments [1, 2, 5, 20]. Yet, existing models face significant
challenges when performing long-horizon embodied tasks
in densely populated 3D environments that require reason-
ing over long-term spatial-temporal memory. To address
this, we propose an explicit memory module inspired by
the structure of human implicit and explicit memory. Our
model employs a memory fusion mechanism that efficiently
retrieves and learns task-relevant information, resulting in
enhanced performance on complex embodied tasks.

Long-term Embodied Trajectories Embodied Al sim-
ulators [4, 23, 32, 36] have fostered the development of
embodied Al agents. Grounded in these environments,
some existing benchmarks focus on high-level planning
tasks, typically involving short trajectories that can often
be completed within single-room settings, thereby requir-
ing minimal spatial-temporal memory [25, 26, 34, 35, 37,
48]. Other benchmarks emphasize long-term scene explo-
ration with extended trajectories, but are primarily centered
around navigation tasks and often lack embodied interac-
tion support [9, 22, 24, 31]. To bridge this gap, we intro-
duce 3DMEM-BENCH, a benchmark specifically designed
to evaluate long-horizon task execution that requires rich
spatial-temporal memory and full embodied task support,
as summarized in Table 1.

Embodied Question Answering Benchmark Embod-
ied Question Answering (EQA) benchmarks [8, 43, 50]
have been developed to advance goal-driven agents that
can perceive their environment. Some EQA benchmarks

also include embodied memory QA evaluation, such as
OpenEQA [28], which includes an episodic memory QA
split, and Yang et al. [47], which focuses on spatial memory
QA. In contrast, our benchmark, 3DMEM-BENCH jointly
targets both spatial and episodic memory, especially their
changes over time, while also supporting embodied action
tasks, EQA and captioning. For specific comparison on
EQA, our long-term memory EQA tasks are designed to re-
quire reasoning over multiple “pieces” of memory and their
changes across time and space. Additionally, we consider
the agent’s location in the scene at the moment of answering
each question during evaluation.

Memory System Memory is a fundamental component of
Al systems, with early work in the context of LLM agents
that utilize memory for decision-making in web-based and
sandbox environments [29, 33, 51, 52]. Most existing ap-
proaches construct an experience pool or memory bank and
focus on improving the retrieval of useful past informa-
tion [13, 46, 53]. In the computer vision domain, temporal
memory has been studied extensively in video understand-
ing and generation tasks [11, 41], while spatial memory has
been applied to scene-level visual understanding and 3D re-
construction [40, 59]. Recent work such as 3D-Mem [49]
has investigated 3D scene memory for exploration and rea-
soning by prompting vision-language models. In contrast,
our work focuses on dense 3D memory representations that
are critical for real-world embodied scenarios, where task
execution depends heavily on maintaining and reasoning
over long-term spatial-temporal memory.

6. Conclusion

In this work, we introduce 3DMEM-BENCH, a comprehen-
sive benchmark containing fine-grained long-term mem-
ory embodied tasks—ranging from simple to hard—along
with question-answering tasks that target memory changes
across time and space, and captioning task in complex 3D
environments. We propose 3DLLM-MEM, an embodied



3D-LLM with novel memory fusion approach for spatial-
temporal reasoning, planning, and acting. One limitation of
our model is that currently 3DLLM-MEM does not involve
low-level navigation and control policy, but utilizes high-
level pre-defined policies in simulator for carrying out the
actions. We think that such aspects are orthogonal to our
study, and could be explored and seamlessly integrated into
our framework in the future.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail,
Michael Equi, Chelsea Finn, Niccolo Fusai, Lachy Groom,
Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim
Jones, Liyiming Ke, Sergey Levine, Adrian Li-Bell, Mohith
Mothukuri, Suraj Nair, Karl Pertsch, Lucy Xiaoyang Shi,
James Tanner, Quan Vuong, Anna Walling, Haohuan Wang,
and Ury Zhilinsky. 7o: A vision-language-action flow model
for general robot control, 2024. 8

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen
Chebotar, Xi Chen, Krzysztof Choromanski, Tianli Ding,
Danny Driess, Avinava Dubey, Chelsea Finn, Pete Florence,
Chuyuan Fu, Montse Gonzalez Arenas, Keerthana Gopalakr-
ishnan, Kehang Han, Karol Hausman, Alex Herzog, Jasmine
Hsu, Brian Ichter, Alex Irpan, Nikhil Joshi, Ryan Julian,
Dmitry Kalashnikov, Yuheng Kuang, Isabel Leal, Lisa Lee,
Tsang-Wei Edward Lee, Sergey Levine, Yao Lu, Henryk
Michalewski, Igor Mordatch, Karl Pertsch, Kanishka Rao,
Krista Reymann, Michael Ryoo, Grecia Salazar, Pannag
Sanketi, Pierre Sermanet, Jaspiar Singh, Anikait Singh, Radu
Soricut, Huong Tran, Vincent Vanhoucke, Quan Vuong,
Ayzaan Wahid, Stefan Welker, Paul Wohlhart, Jialin Wu, Fei
Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Bri-
anna Zitkovich. Rt-2: Vision-language-action models trans-
fer web knowledge to robotic control. 2023. 8

Eduardo Camina and Francisco Giiell. The neuroanatomi-
cal, neurophysiological and psychological basis of memory:
Current models and their origins. Frontiers in Pharmacol-
ogy, 8:438,2017. 3

Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Hal-
ber, Matthias Niessner, Manolis Savva, Shuran Song, Andy
Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-
d data in indoor environments. International Conference on
3D Vision (3DV), 2017. 8

Boyuan Chen, Zhuo Xu, Sean Kirmani, Brian Ichter, Dorsa
Sadigh, Leonidas J. Guibas, and Fei Xia. Spatialvim: En-
dowing vision-language models with spatial reasoning capa-
bilities. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR 2024, Seattle, WA, USA, June
16-22, 2024, pages 14455-14465. IEEE, 2024. 8

Yilun Chen, Shuai Yang, Haifeng Huang, Tai Wang, Ruiyuan
Lyu, Runsen Xu, Dahua Lin, and Jiangmiao Pang. Grounded
3d-1lm with referent tokens. ArXiv preprint, abs/2405.10370,
2024. 8

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph,
Yi Tay, William Fedus, Yunxuan Li, Xuezhi Wang, Mostafa
Dehghani, Siddhartha Brahma, et al. Scaling instruction-

(8]

(91

(10]

(1]

(12]

[13]

(14]

(15]

(16]

(17]

finetuned language models. ArXiv preprint, abs/2210.11416,
2022. 3

Abhishek Das, Samyak Datta, Georgia Gkioxari, Stefan Lee,
Devi Parikh, and Dhruv Batra. Embodied question answer-
ing. In 2018 IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2018, Salt Lake City, UT, USA, June
18-22, 2018, pages 1-10. IEEE Computer Society, 2018. 8

Matt Deitke, Winson Han, Alvaro Herrasti, Aniruddha
Kembhavi, Eric Kolve, Roozbeh Mottaghi, Jordi Salvador,
Dustin Schwenk, Eli VanderBilt, Matthew Wallingford, Luca
Weihs, Mark Yatskar, and Ali Farhadi. Robothor: An
open simulation-to-real embodied Al platform. In 2020
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2020, Seattle, WA, USA, June 13-19,
2020, pages 3161-3171. IEEE, 2020. 8

Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs,
Oscar Michel, Eli VanderBilt, Ludwig Schmidt, Kiana
Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse:
A universe of annotated 3d objects. In IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, CVPR
2023, Vancouver, BC, Canada, June 17-24, 2023, pages
13142-13153. IEEE, 2023. 3

Xingjian Diao, Chunhui Zhang, Weiyi Wu, Zhongyu
Ouyang, Peijun Qing, Ming Cheng, Soroush Vosoughi, and
Jiang Gui. Temporal working memory: Query-guided seg-
ment refinement for enhanced multimodal understanding,
2025. 8

Gary N Friedman, Luke Johnson, and Zachary M Williams.
Long-term visual memory and its role in learning suppres-
sion. Frontiers in Psychology, 9:1896, 2018. 3

Jinglong Gao, Xiao Ding, Yiming Cui, Jianbai Zhao, Hepeng
Wang, Ting Liu, and Bing Qin. Self-evolving gpt: A lifelong
autonomous experiential learner, 2024. 8

Qiao Gu, Ali Kuwajerwala, Sacha Morin, Krishna Murthy
Jatavallabhula, Bipasha Sen, Aditya Agarwal, Corban
Rivera, William Paul, Kirsty Ellis, Rama Chellappa, et al.
Conceptgraphs: Open-vocabulary 3d scene graphs for per-
ception and planning. In 2024 IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 5021-5028.
IEEE, 2024. 2

Ziyu Guo, Renrui Zhang, Xiangyang Zhu, Yiwen Tang, Xi-
anzheng Ma, Jiaming Han, Kexin Chen, Peng Gao, Xianzhi
Li, Hongsheng Li, and Pheng-Ann Heng. Point-bind &
point-llm: Aligning point cloud with multi-modality for 3d

understanding, generation, and instruction following, 2023.
2

Yining Hong, Chunru Lin, Yilun Du, Zhenfang Chen,
Joshua B. Tenenbaum, and Chuang Gan. 3d concept learn-
ing and reasoning from multi-view images. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023,
pages 9202-9212. IEEE, 2023. 1

Yining Hong, Haoyu Zhen, Peihao Chen, Shuhong Zheng,
Yilun Du, Zhenfang Chen, and Chuang Gan. 3d-llm: In-
jecting the 3d world into large language models. In Ad-
vances in Neural Information Processing Systems 36: An-
nual Conference on Neural Information Processing Systems



(18]

[19]

(20]

(21]

(22]

(23]

[24]

(25]

2023, NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023,2023. 2,3,6,8

Yining Hong, Zishuo Zheng, Peihao Chen, Yian Wang,
Junyan Li, and Chuang Gan. Multiply: A multisensory
object-centric embodied large language model in 3d world.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2024, Seattle, WA, USA, June 16-22,
2024, pages 26396-26406. IEEE, 2024. 3

Haifeng Huang, Yilun Chen, Zehan Wang, Rongjie Huang,
Runsen Xu, Tai Wang, Luping Liu, Xize Cheng, Yang Zhao,
Jiangmiao Pang, and Zhou Zhao. Chat-scene: Bridging 3d
scene and large language models with object identifiers. In
Advances in Neural Information Processing Systems 38: An-
nual Conference on Neural Information Processing Systems
2024, NeurIPS 2024, Vancouver, BC, Canada, December 10
- 15,2024,2024. 8

Jiangyong Huang, Silong Yong, Xiaojian Ma, Xiongkun
Linghu, Puhao Li, Yan Wang, Qing Li, Song-Chun Zhu,
Baoxiong Jia, and Siyuan Huang. An embodied generalist
agent in 3d world. In Forty-first International Conference on
Machine Learning, ICML 2024, Vienna, Austria, July 21-27,
2024. OpenReview.net, 2024. 2, 8

Physical Intelligence, Kevin Black, Noah Brown, James
Darpinian, Karan Dhabalia, Danny Driess, Adnan Esmail,
Michael Equi, Chelsea Finn, Niccolo Fusai, Manuel Y. Gal-
liker, Dibya Ghosh, Lachy Groom, Karol Hausman, Brian
Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke, Devin
LeBlanc, Sergey Levine, Adrian Li-Bell, Mohith Mothukuri,
Suraj Nair, Karl Pertsch, Allen Z. Ren, Lucy Xiaoyang Shi,
Laura Smith, Jost Tobias Springenberg, Kyle Stachowicz,
James Tanner, Quan Vuong, Homer Walke, Anna Walling,
Haohuan Wang, Lili Yu, and Ury Zhilinsky. mo5: a
vision-language-action model with open-world generaliza-
tion, 2025. 2

Mukul Khanna, Ram Ramrakhya, Gunjan Chhablani, Sriram
Yenamandra, Théophile Gervet, Matthew Chang, Zsolt Kira,
Devendra Singh Chaplot, Dhruv Batra, and Roozbeh Mot-
taghi. Goat-bench: A benchmark for multi-modal lifelong
navigation. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR 2024, Seattle, WA, USA,
June 16-22, 2024, pages 16373-16383. IEEE, 2024. 8

Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt,
Luca Weihs, Alvaro Herrasti, Daniel Gordon, Yuke Zhu, Ab-
hinav Gupta, and Ali Farhadi. AI2-THOR: An Interactive 3D
Environment for Visual Al. arXiv, 2017. 8

Jacob Krantz, Stefan Lee, Jitendra Malik, Dhruv Batra, and
Devendra Singh Chaplot. Instance-specific image goal nav-
igation: Training embodied agents to find object instances,
2022. 8

Chengshu Li, Ruohan Zhang, Josiah Wong, Cem Gokmen,
Sanjana Srivastava, Roberto Martin-Martin, Chen Wang,
Gabrael Levine, Wensi Ai, Benjamin Martinez, Hang Yin,
Michael Lingelbach, Minjune Hwang, Ayano Hiranaka, Su-
jay Garlanka, Arman Aydin, Sharon Lee, Jiankai Sun, Mona
Anvari, Manasi Sharma, Dhruva Bansal, Samuel Hunter,
Kyu-Young Kim, Alan Lou, Caleb R Matthews, Ivan Villa-
Renteria, Jerry Huayang Tang, Claire Tang, Fei Xia, Yunzhu
Li, Silvio Savarese, Hyowon Gweon, C. Karen Liu, Jiajun

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

Wu, and Li Fei-Fei. Behavior-1k: A human-centered, em-
bodied ai benchmark with 1,000 everyday activities and re-
alistic simulation, 2024. 3, 8

Manling Li, Shiyu Zhao, Qineng Wang, Kangrui Wang, Yu
Zhou, Sanjana Srivastava, Cem Gokmen, Tony Lee, Li Er-
ran Li, Ruohan Zhang, Weiyu Liu, Percy Liang, Li Fei-Fei,
Jiayuan Mao, and Jiajun Wu. Embodied agent interface:
Benchmarking 1lms for embodied decision making. In Ad-
vances in Neural Information Processing Systems 38: An-
nual Conference on Neural Information Processing Systems
2024, NeurlPS 2024, Vancouver, BC, Canada, December 10
- 15,2024,2024. 8

Xiao Liu, Tianjie Zhang, Yu Gu, Iat Long Iong, Yifan Xu,
Xixuan Song, Shudan Zhang, Hanyu Lai, Xinyi Liu, Han-
lin Zhao, et al. Visualagentbench: Towards large multi-

modal models as visual foundation agents. ArXiv preprint,
abs/2408.06327, 2024. 3

Arjun Majumdar, Anurag Ajay, Xiaohan Zhang, Pranav
Putta, Sriram Yenamandra, Mikael Henaff, Sneha Sil-
wal, Paul McVay, Oleksandr Maksymets, Sergio Ar-
naud, Karmesh Yadav, Qiyang Li, Ben Newman, Mo-
hit Sharma, Vincent-Pierre Berges, Shiqi Zhang, Pulkit
Agrawal, Yonatan Bisk, Dhruv Batra, Mrinal Kalakrishnan,
Franziska Meier, Chris Paxton, Alexander Sax, and Aravind
Rajeswaran. Openeqa: Embodied question answering in the
era of foundation models. In [EEE/CVF Conference on Com-
puter Vision and Pattern Recognition, CVPR 2024, Seattle,
WA, USA, June 16-22, 2024, pages 16488-16498. IEEE,
2024. 8

Charles Packer, Sarah Wooders, Kevin Lin, Vivian Fang,
Shishir G. Patil, Ion Stoica, and Joseph E. Gonzalez.
Memgpt: Towards llms as operating systems, 2023. 8

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Florian Gribonval, Rafal Jozefowicz, et al. Pytorch.
https://pytorch.org/,2019. 6,3

Santhosh Kumar Ramakrishnan, Aaron Gokaslan, Erik Wi-
jmans, Oleksandr Maksymets, Alexander Clegg, John M
Turner, Eric Undersander, Wojciech Galuba, Andrew West-
bury, Angel X Chang, Manolis Savva, Yili Zhao, and Dhruv
Batra. Habitat-matterport 3d dataset (HM3d): 1000 large-
scale 3d environments for embodied AI. 2021. 3, 8

Bokui Shen, Fei Xia, Chengshu Li, Roberto Martin-Martin,
Linxi Fan, Guanzhi Wang, Claudia Pérez-D’ Arpino, Shya-
mal Buch, Sanjana Srivastava, Lyne P. Tchapmi, Micael E.
Tchapmi, Kent Vainio, Josiah Wong, Li Fei-Fei, and Silvio
Savarese. igibson 1.0: a simulation environment for interac-
tive tasks in large realistic scenes. In 2021 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS),
page accepted. IEEE, 2021. 8

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik
Narasimhan, and Shunyu Yao. Reflexion: language agents
with verbal reinforcement learning. In Advances in Neu-
ral Information Processing Systems 36: Annual Conference
on Neural Information Processing Systems 2023, NeurlPS
2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023.
8


https://pytorch.org/

[34]

(35]

(36]

(37]

(38]

[39]

[40]

[41]

(42]

[43]

Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan
Bisk, Winson Han, Roozbeh Mottaghi, Luke Zettlemoyer,
and Dieter Fox. ALFRED: A benchmark for interpreting
grounded instructions for everyday tasks. In 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pages
10737-10746. IEEE, 2020. 8

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Coté,
Yonatan Bisk, Adam Trischler, and Matthew J. Hausknecht.
Alfworld: Aligning text and embodied environments for in-
teractive learning. In 9th International Conference on Learn-
ing Representations, ICLR 2021, Virtual Event, Austria, May
3-7, 2021. OpenReview.net, 2021. 3, 8

Andrew Szot, Alexander Clegg, Eric Undersander, Erik Wi-
jmans, Yili Zhao, John Turner, Noah Maestre, Mustafa
Mukadam, Devendra Singh Chaplot, Oleksandr Maksymets,
Aaron Gokaslan, Vladimir Vondrus, Sameer Dharur,
Franziska Meier, Wojciech Galuba, Angel X. Chang, Zsolt
Kira, Vladlen Koltun, Jitendra Malik, Manolis Savva, and
Dhruv Batra. Habitat 2.0: Training home assistants to re-
arrange their habitat. In Advances in Neural Information
Processing Systems 34: Annual Conference on Neural Infor-
mation Processing Systems 2021, NeurlPS 2021, December
6-14, 2021, virtual, pages 251-266, 2021. 3, 8

Andrew Szot, Max Schwarzer, Harsh Agrawal, Bogdan Ma-
zoure, Rin Metcalf, Walter Talbott, Natalie Mackraz, R. De-
von Hjelm, and Alexander T. Toshev. Large language mod-
els as generalizable policies for embodied tasks. In The
Twelfth International Conference on Learning Representa-
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024. Open-
Review.net, 2024. 3, 8

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui
Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a
family of highly capable multimodal models. ArXiv preprint,
abs/2312.11805, 2023. 3

XLA team. Xla: Optimizing compiler for machine learn-
ing. https://www.tensorflow.org/xla, 2017-
2025. 6,3

Hengyi Wang and Lourdes Agapito. 3d reconstruction with
spatial memory. ArXiv preprint, abs/2408.16061, 2024. 8
Hao Wang, Weining Wang, and Jing Liu. Temporal memory
attention for video semantic segmentation. In 2021 IEEE
International Conference on Image Processing (ICIP), pages
2254-2258. IEEE, 2021. 8

Zixuan Wang, Bo Yu, Junzhe Zhao, Wenhao Sun, Sai Hou,
Shuai Liang, Xing Hu, Yinhe Han, and Yiming Gan. Karma:
Augmenting embodied ai agents with long-and-short term
memory systems, 2024. 2

Erik Wijmans, Samyak Datta, Oleksandr Maksymets, Ab-
hishek Das, Georgia Gkioxari, Stefan Lee, Irfan Essa, Devi
Parikh, and Dhruv Batra. Embodied question answering in
photorealistic environments with point cloud perception. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019,
pages 6659-6668. Computer Vision Foundation / IEEE,
2019. 8

[44]

[45]

[40]

(47]

(48]

[49]

(50]

(51]

(52]

(53]

[54]

[55]

Quanting Xie, So Yeon Min, Pengliang Ji, Yue Yang,
Tianyi Zhang, Aarav Bajaj, Ruslan Salakhutdinov, Matthew
Johnson-Roberson, and Yonatan Bisk. Embodied-rag: Gen-
eral non-parametric embodied memory for retrieval and gen-
eration, 2024. 2

Runsen Xu, Xiaolong Wang, Tai Wang, Yilun Chen, Jiang-
miao Pang, and Dahua Lin. Pointllm: Empowering large lan-
guage models to understand point clouds. In Computer Vi-
sion— ECCV 2024, pages 131-147. Springer Nature Switzer-
land, 2025. 2, 8

Wujiang Xu, Zujie Liang, Kai Mei, Hang Gao, Juntao Tan,
and Yongfeng Zhang. A-mem: Agentic memory for llm
agents. ArXiv preprint, abs/2502.12110, 2025. 8

Jihan Yang, Shusheng Yang, Anjali W. Gupta, Rilyn Han, Li
Fei-Fei, and Saining Xie. Thinking in Space: How Multi-
modal Large Language Models See, Remember and Recall
Spaces. ArXiv preprint, abs/2412.14171, 2024. 8

Rui Yang, Hanyang Chen, Junyu Zhang, Mark Zhao, Cheng
Qian, Kangrui Wang, Qineng Wang, Teja Venkat Koripella,
Marziyeh Movahedi, Manling Li, Heng Ji, Huan Zhang, and
Tong Zhang. Embodiedbench: Comprehensive benchmark-
ing multi-modal large language models for vision-driven em-
bodied agents, 2025. 3, 8

Yuncong Yang, Han Yang, Jiachen Zhou, Peihao Chen,
Hongxin Zhang, Yilun Du, and Chuang Gan. 3d-mem: 3d
scene memory for embodied exploration and reasoning. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2025. 2,6, 8, 5
Licheng Yu, Xinlei Chen, Georgia Gkioxari, Mohit Bansal,
Tamara L. Berg, and Dhruv Batra. Multi-target embodied
question answering. In IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2019, Long Beach, CA,
USA, June 16-20, 2019, pages 6309-6318. Computer Vision
Foundation / IEEE, 2019. 8

Danyang Zhang, Lu Chen, Situo Zhang, Hongshen Xu, Zi-
han Zhao, and Kai Yu. Large language model is semi-
parametric reinforcement learning agent. ArXiv preprint,
abs/2306.07929, 2023. 8

Zeyu Zhang, Xiaohe Bo, Chen Ma, Rui Li, Xu Chen, Quanyu
Dai, Jieming Zhu, Zhenhua Dong, and Ji-Rong Wen. A
survey on the memory mechanism of large language model
based agents, 2024. 8

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin,
Yong-Jin Liu, and Gao Huang. Expel: LLM agents are ex-
periential learners. In Thirty-Eighth AAAI Conference on Ar-
tificial Intelligence, AAAI 2024, Thirty-Sixth Conference on
Innovative Applications of Artificial Intelligence, IAAI 2024,
Fourteenth Symposium on Educational Advances in Artificial
Intelligence, EAAI 2014, February 20-27, 2024, Vancouver,
Canada, pages 19632-19642. AAAI Press, 2024. 8
Qingqing Zhao, Yao Lu, Moo Jin Kim, Zipeng Fu, Zhuoyang
Zhang, Yecheng Wu, Zhaoshuo Li, Qianli Ma, Song Han,
Chelsea Finn, Ankur Handa, Ming-Yu Liu, Donglai Xi-
ang, Gordon Wetzstein, and Tsung-Yi Lin. Cot-vla: Visual
chain-of-thought reasoning for vision-language-action mod-
els, 2025. 2

Haoyu Zhen, Xiaowen Qiu, Peihao Chen, Jincheng Yang,
Xin Yan, Yilun Du, Yining Hong, and Chuang Gan. 3d-vla:


https://www.tensorflow.org/xla

[56]

[57]

(58]

[59]

3d vision-language-action generative world model. ArXiv
preprint, abs/2403.09631, 2024. 2

Junsheng Zhou, Jinsheng Wang, Baorui Ma, Yu-Shen Liu,
Tiejun Huang, and Xinlong Wang. Uni3d: Exploring unified
3d representation at scale. In The Twelfth International Con-
ference on Learning Representations, ICLR 2024, Vienna,
Austria, May 7-11, 2024. OpenReview.net, 2024. 8
Chenming Zhu, Tai Wang, Wenwei Zhang, Jiangmiao Pang,
and Xihui Liu. Llava-3d: A simple yet effective pathway
to empowering lmms with 3d-awareness. ArXiv preprint,
abs/2409.18125,2024. 2,5,6, 3

Guillermo Zlotnik and Aaron Vansintjan. Memory: An ex-
tended definition. Frontiers in Psychology, 10:2523, 2019.
3

Xueyan Zou, Yuchen Song, Ri-Zhao Qiu, Xuanbin Peng,
Jianglong Ye, Sifei Liu, and Xiaolong Wang. M3: 3d-spatial
multimodal memory. In ICLR, 2025. 8



3DLLM-MEM: Long-Term Spatial-Temporal Memory for Embodied 3D Large
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Supplementary Material

A. Ablation Study

We conduct ablation study as illustrated in 3. Our approach
initializes the fused memory using working memory fea-
tures, aiming to fuse the most relevant memories for the
current task. We ablate several design choices for initializ-
ing the fusion query, as shown in Table 3 (Appendix A).
When using either the most recent episodic memory or
learnable zero parameters, performance degrades compared
to our proposed method. Interestingly, using the most re-
cent memory outperforms zero initialization in the simple
setting but underperforms in the hard setting. One possible
explanation is that recent memory initialization encourages
fusion with nearby observations, which may be sufficient
for simple tasks and leads to faster convergence. In contrast,
zero initialization is guided solely by training supervision
to learn which memories are most useful. In summary, the
ablation results demonstrate that initializing fusion queries
with working memory tokens provides the most effective
and robust design choice for long-term memory fusion.

B. Environment Construction

To support navigation-centric interaction, the agent requires
precise knowledge of two things: the traversable layout
of each scene and the exact locations of all movable ob-
jects. Following 3D-CLR [16], we build this spatial sub-
strate from HM3D’s richly annotated indoor scans. We rely
on the semantic surface mesh that accompanies each scene
to calculate the room and objects’ locations. The mesh scan
has a unique (24-bit) hexadecimal color for every surface
triangle that provides a semantic table that links each color
to a surface label (e.g., floor or ceiling) and a room identi-
fier.

We first derive an axis-aligned bounding box for every
room in each HM3D scene. We query the semantic table to
retrieve, for every room identifier, the hex colors assigned
to its floor and ceiling surfaces. Before processing individ-
ual rooms we aggregate the minimum heights of all floor
surfaces in the entire scan, producing a global set of candi-
date floor elevations. For each room we then load the point
clouds of its floor and ceiling. When both are available,
the vertical bounds are given by the floor’s lowest point and
the ceiling’s highest point. If the floor is missing, the lower
bound is set to the highest global floor elevation that still
lies below the room’s ceiling; if the ceiling is missing, the
upper bound defaults to the highest point in the available
cloud (i.e., the surface immediately above the floor). Rooms

for which both surfaces are absent are discarded because
no reliable vertical evidence is present. Horizontal limits
are simply the minimum and maximum coordinates of the
room’s floor and ceiling points, and together these six coor-
dinates constitute the room’s axis-aligned bounding box.
Based on the bounding boxes for each room, we calcu-
late the bounding boxes of objects in that room by gather-
ing the corresponding vertices and computing the bounding
boxes of the object by taking the minimum and maximum
coordinates along the three axes. We merge room-level and
object-level bounding boxes by their shared room index.
After the aforementioned processing, the dataset comprises
182 distinct 3-D scenes covering a total of 2,602 rooms.

C. Embodied Task Data Examples

In this section, we provide complete embodied task trajec-
tories.

Here is an example of in-the-wild task:
Task: Rearrange desk items by size. The items to be rear-
ranged are: vase, box, and printer.
Trajectory:
“I’'m in room 10. I will start exploring the room for the
items I need.”, ”’I see a printer(0) on the desk(0). I also see
a box(0) on the cabinet(0).”, ”’I need to remember their lo-
cations and sizes for comparison later.”,
”1GO TO NEW ROOM;.”,
"Now I'm in room 11. I'm exploring this room for the
items.”, ”I don’t see a vase in the room, but I see a printer(0)
on a rack(1).”, ”’I will remember these objects and their lo-
cations.”,
”1GO TO NEW ROOM;”,
”Now I'm in room 6. I’'m exploring this room.”, "I do not
see any of the items I am looking for.”,
”1GO TO NEW ROOM;,”,
”I’'m in room 8. I am exploring this room.”, ”I see flower
vase(0) on the floor. I will remember the object and its lo-
cation.”,
”1GO TO NEW ROOM;,”,
”I’'m in room 7. T am exploring this room.”, ”’I do not see
any of the items I am looking for.”,
”1GO TO NEW ROOM;”,
“I’'m in room 9. I am exploring this room.”, ”’I do not see
any of the items I am looking for.”,
”1GO TO NEW ROOM;,”,
”Now I am in room 5. I am exploring this room.”, I do not
see any of the items I am looking for.”,
”1GO TO NEW ROOM;”,
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Table 3. Ablation study of query initialization designs in our memory fusion module.

”Now I am in room 2. T am exploring this room.”, I see
a box(0) on the armchair(1). I will remember these objects
and their locations.”,

”1GO TO NEW ROOM,”,

”I’'m in room 1. I do not see any items that are part of the
rearrangement.”,

”1GO TO NEW ROOM;”,

”Now I’m in room 12. T will start exploring this room.”, ’I
think I’ve seen the vase, printer, and box in other rooms, so
I’1l head back to room 8 to pick up the vase first.”,

”1GO TO ROOM(8);,”,

I need to pick up flower vase(0) in this room first. I pick
up flower vase(0).”,

”PICK UP flower vase(0) from room(8) in room(8);,”,
”I’m carrying flower vase(0) to room 10 where I saw printer
and box.”,

”1GO TO ROOM(10);,”,

”Now I am in room 10. T will put flower vase(0) on the
desk(0) for now so I can pick up box(0).”,

”iPUT DOWN flower vase(0) from room(8) on desk(0) in
room(10);”,

”Now I will pick up box(0) from cabinet(0).”,

”PICK UP box(0) from room(10) in room(10);”,

”Now I will put box(0) on the desk(0) so I can pick up
printer(0).”,

”iPUT DOWN box(0) from room(10) on desk(0) in
room(10);”,

”Now I will pick up printer(0) from beside the desk(0).”,
”PICK UP printer(0) from room(10) in room(10);”,

“I need to compare the sizes of the vase, box and printer now
to determine the rearranging order.”, I recall that printer(0)
in this room had the largest bounding box dimensions based
on my earlier observation. I need to put down printer(0).”,
”iPUT DOWN printer(0) from room(10) on desk(0) in
room(10);”,

”Now I will pick up box(0).”,

”PICK UP box(0) from room(10) in room(10);”,

”I remember that box(0) from cabinet(0) had medium
bounding box dimensions, so I will put it on the desk.”,
”iPUT DOWN box(0) from room(10) on desk(0) in
room(10);”,

”Now I will pick up flower vase(0).”,

”PICK UP flower vase(0) from room(8) in room(10);”,

I remember that flower vase(0) had the smallest bounding

box dimensions, so I will put it on the desk.”,

”;PUT DOWN flower vase(0) from room(8) on desk(0) in
room(10);”,

I will now arrange the objects from small to large: flower
vase(0), box(0) and printer(0) on the desk(0).”, "Now I pick
up the medium object, box(0).”,

”;PICK UP box(0) from room(10) in room(10);”,

I will put the medium object on the left of the largest ob-
ject, printer(0).”,

”iPUT DOWN box(0) from room(10) on desk(0) in
room(10);”,

”Now I pick up the smallest object, flower vase(0).”,
”;PICK UP flower vase(0) from room(8) in room(10);,”,

I will put the smallest object on the left of the medium ob-
ject, box(0).”,

”iPUT DOWN flower vase(0) from room(8) on desk(0) in
room(10);”,

”The objects are now arranged from small to large: flower
vase(0), box(0) and printer(0) on the desk(0). Task Com-
plete.”

Here is an example of in-domain task:

Task: Preparing for Cooking Stir-fried Tomato and
Scrambled Eggs. You need to prepare the ingredients, sea-
sonings and cooking tools.

Trajectory: ”I’m at room 4. It seems to be living room,
I need to prepare ingredients and seasonings and cooking
tools and setup them in the kitchen”, There is seasonings
on the table.”,

”;PICK UP seasonings(0) from room(4) in room(4);”,

”No other things found for my task”,

”1GO TO NEW ROOM,”,

”I’m at room 5. It seems to be dining room. I saw an apron
on dining table.”, ’I need the apron but I have seasonings(0)
on my hand. Lets find kitchen to put the seasonings first and
go back for apron”,

”1GO TO NEW ROOM;”,

”I’m at room 8. It seems to be kitchen with two cabinets. |
found tomatoes and eggs on the cabinet(1) that is far away
from me and cooking pan in the sink.”, “There are two coun-
tertops in this room. countertop(1) is closer to stove(0). I
should setup on countertop(1).”,

”;PUT DOWN seasonings(0) from room(4) on counter-
top(1) in room(8);”,

”PICK UP tomatoes(0) from room(8) in room(8);,”,



”iPUT DOWN tomatoes(0) from room(8) on countertop(1)
in room(8);”,

”PICK UP eggs(0) from room(8) in room(8);,”,

”iPUT DOWN eggs(0) from room(8) on countertop(1l) in
room(8);”,

”PICK UP cooking pan(0) from room(8) in room(8);”,
”1PUT DOWN cooking pan(0) from room(8) on stove(0) in
room(8);”,

”I remember I saw apron in room 5. I need to find it back.”,
”1GO TO ROOM(5);,”,

”PICK UP apron(0) from room(5) in room(5);”,

”1GO TO ROOM(8);,”,

”iPUT DOWN apron(0) from room(5) on countertop(1) in
room(8);”,

”The setup in kitchen has been prepared. Task Complete.”

D. Implementation Details

We implement our model based on LLaVA-3D [57], mod-
ifying it to be compatible with Google TPUs with Py-
Torch/XLA frameworks [30, 39] . We first expand the
model’s context window to 8192 tokens to accommodate
long-term memory inputs. We then fine-tune our pro-
posed memory module along with the LLM decoder using
our training split, initializing from LLaVA-3D’s pretrained
weights. Training is conducted on 8§ Google Cloud TPU
v5p cores with a batch size of 256 for 1000 steps, which
takes about 1 day to complete. We use Adam optimizer
with learning rate of 2e-5 with no weight decay. Addition-
ally, we apply a linear warmup of the learning rate during
the initial 3% steps, increasing from 10~ to 10>, followed
by a cosine decay scheduler.

E. Prompts for Gemini

As mentioned in § 2.2, we prompt Gemini to generate the
long-term trajectories as illustrated in Table 4, generate the
question-answering tasks as shown in Table 5, and gener-
ate caption tasks as shown in Table 6. For open-ended QA
evaluation, we followed standard LLM-as-judge protocol
by prompting Gemini as illustrated in Table 7.

F. Data Validation
F.1. Trajectory Validation

We implement a trajectory simulation pipeline driven by the
commands listed in Table 4. For each command, the sim-
ulator records the agent’s current room and the full set of
objects it is holding, then updates the set of objects in each
room to reflect pick-up and put-down actions. A pick-up
removes the specified object (along with any nested items)
from the room the agent occupies and adds it to the agent’s
hand; a put-down removes the object from the agent’s hand
and places it into the designated room. The pipeline vali-

dates each command based on these criteria: (1) the agent’s
location; (2) the referenced object and (3) the correctness
of pick-up and put-down actions. For location validation, a
command is marked as invalid if the agent attempts to pick
up an object from a room that does not match its current
room, or tries to drop an object into a room other than the
one it currently occupies. Additionally, if the agent tries
to visit a room that does not exist in the scene, or attempts
to enter a new room when all rooms have already been ex-
plored, the trajectory is also considered invalid. For ob-
ject validation, a pick-up command is invalid if the target
object does not exist in the current room, and a put-down
command is invalid if the agent is not currently holding the
specified object. For pick-up and put-down validation, the
agent is allowed to hold only one object at a time. A com-
mand is considered invalid if the agent attempts to pick up
an object while already holding one, or tries to put down an
object when its hand is empty. Finally, after all commands
have been executed, if the trajectory ends with the agent
still holding an object that was never put down, the entire
trajectory is marked as invalid.

F.2. Human Validation

As mentioned in §2.3 After automatic trajectory validation,
we further conduct human validation, in which four student
experts in the field manually inspect each benchmark exam-
ple. We render multi-view images of the entire scene using
the simulator and verify whether the benchmark annotations
accurately correspond to the simulated environment as illus-
trated in Figure 5.

G. Evaluation Setup Details

3D-LLM Similar to the 3D-LLM work [17], we use their
direct reconstruction method to extract the 3D features from
each scene in our training data. To process our long-term
memory data, which requires multi-scene input across each
task, we feed each room in the task through the 3D-LLm Q-
Former head independently to get separate 32-token dense
representation of each room with per-room 3d positional
embeddings injected into the features. Then we concatenate
the representations before feeding the input into the frozen
t5-flanxl [7] backbone like the original work.

The 3D-LLM model also included learned location to-
kens used to describe certain locations within each room in
the scene. To fit 3D-LLM to our task data, we substitute
the location tokens with our specific interaction tokens (eg.
iGO TO ROOM;, used by all models in our experiments)
and train the model to learn the new tokens to stay consis-
tent with our higher level interaction used across our train-
ing data. Analysis of the 3D-LLM model evaluation output,
indicated the primary struggle for the model was retaining
long term memory of semantic observations in the scene, so
we prioritized aligning 3D-LLM with the high level long-



System message

You are an Al assistant and task generator for a 3D embodied agent operating in a multi-room environment. The en-
vironment provides detailed object instance information, including bounding boxes and IDs. Your goal is to generate
a complex task that requires the agent to explore multiple rooms, navigate, and crucially use long-term memory to
recall details observed earlier.

Prompt

1. Environment and Object Information

Object Representation: Each object is given with a bounding box in the format: “jobject_-name;(num)”: [x_min,
y-min, z_min], [x_-max, y_-max, z_max] Here, (num) indicates the ID, with (0) being the closest to the origin [0,0,0].
IDs reset for each room (e.g., sofa(0) in room 2 and sofa(0) in room 4 if each room has one sofa).

Actions Available: GO TO ROOM(id);: Navigate to a room that has already been visited. GO TO NEW ROOM;:
Navigate to a new, unexplored room (and unlock its objects). Do not use this for rooms that have been visited before.
iPICK UP object_name(id) from room(id) in room(id);: Pick up an object that originally belongs to a specific room
while in that same room. jPUT DOWN object_-name(id) from room(id) on object_-name(id) in room(id);: Place an
object (that originally belongs to a room) onto another object (such as a table or floor) in a room.

New Objects: You can add extra objects to diversify the task. Important: Use only object names from the provided
new_objects_name_list. If a room already has an object with the same name, the new object should have a new ID
(e.g., if lamp(0) exists, the added one should be lamp(1)). These extra objects are only for task design; the agent’s
trajectory should not mention adding them.

2. Task Design Requirements

Multi-Room Exploration: Design a task that spans several rooms. The room order (given in a Room Order list)
should be chosen so that necessary items are distributed across rooms. The agent should explore every room in the
specified order.

Long-Term Memory and Implicit Cues: Do not simply list all items as a checklist at the start. Instead: Provide a
vague overall goal (e.g., “prepare a meal”). Later in the trajectory, have the agent recall these earlier observations
when the need arises. Ensure the agent must remember something seen long ago rather than simply following an
explicit list.

Update Memory and make new decision based on your current observations: The agent originall planned to use one
object for completing its task, but couldn’t find it after exploration of rooms. It has to change to a another similar
object to complete its task.

Inventory and Action Constraints: The agent can only hold one item at a time. Never perform consecutive PICK UP
or PUT DOWN actions. If the agent holds an item, it must put it down before picking up another. When temporarily
storing an object (e.g., on a table), include a “thought” explaining why the object is being set down and later recalled.

3.Reasoning and Object Comparisons: If your task requires choosing a specific object instance (e.g., selecting table(1)
because it is bigger than table(0)), compare their bounding boxes and explain your choice in the trajectory.

For clarity, consider these examples: {In-context examples }

Here is the scene information: {Input scene information }

Table 4. Prompt template for generating task trajectories. {In-context examples} are in-context examples. {Input scene informa-
tion} are scene, room and object semantics along with their bounding boxes.

term memory representation in our data over low level spa-
tial understanding of the scene.

Our longer task data input also required truncation to
fit within the 512 token context length of 3D-LLM’s t5-
flanxl backbone. We retain the task description and move
the question to the beginning of the prompt for the QA data
to ensure the model still receives the information necessary
to understand its tasks. The longer trajectory of past events

is then the only information that gets truncated before fed
into the t5 encoder.

For finetuning on our data, we use the hyperparameters
provided by 3D-LLM and finetune until model loss stops
decreasing. Due to compute limitations, we trained on cap-
tioning task for 15 epochs, question-answering task for 20
epochs, and allocated most of the compute time on the em-
bodied task, which we trained on for 75 epochs.



Prompt

You are an Al assistant / task generator in the room. All object instances in this 3D scene are given, along with
their bounding boxes and ids.” Each object’s bounding boxes are represented by a 3D coordinate *jobj_name; (num)’:
[x min, y min, z min],[x max, y max, z max]” with units of meters, and each represents left-bottom corner and the
right-top corner coordinate.

You will also receive a trajectory composed of the following tokens and reasoning chains.

iGO TO ROOM(id);: which navigates back to a specific room (id). This can only be done if the agent already
go to this room. jPICK UP object_name(id) from room(id) in room(id);: Pick up an object that originally belongs
to a specific room while in that same room. {PUT DOWN object_name(id) from room(id) on object_-name(id) in
room(id);: Place an object (that originally belongs to a room) onto another object (such as a table or floor) in a room.
iGO TO NEW ROOM;y;: which navigates to a new room you haven’t explored and unlocks objects there.

This trajectory is what the agent have executed over the past. You need to propose several questions and answers that
focused on the reasoning abilities of the long-term memory of the agent. These reasoning questions should focus
on what have changed temporally or spatially in this agent’s memory. It’s important that this change challenged
the agent’s memory. For example the questions should contain object counting, spatial relation, comparison between
objects across rooms, long-term multi-room room layout, long-term multi-room object navigation. Remember spatial
memory is important, you should design questions that asked about the 3D object spatial relation and layout in the
room that need the agent to perform a hard reasoning for the final answer.

For clarity, consider these examples: {In-context examples }

Here is the scene information: {Input scene information}
Here is the agent’s trajectory: {Input agent’s trajectory }

Table 5. Prompt template for generate QA data. {In-context examples} are in-context examples. {Input scene information} are
scene, room and object semantics along with their bounding boxes. {Input agent’s trajectory } is the 3D agent’s explored trajectories

and action chains.

3D-Mem We benchmark 3D-Mem [49] on the question-
answering and captioning splits of 3DMEM-BENCH. 3D-
Mem is a snapshot-based 3D memory architecture origi-
nally developed for embodied exploration and reasoning;
it keeps two complementary stores—memory snapshots, a
compact set of multi-view RGB-D frames with per-object
bounding boxes summarizing the areas the agent has in-
spected, and frontier snapshots, boundary views that sug-
gest where useful new information may be found next. In
its native setting the agent navigates an unfamiliar scene
by selecting the frontier view most likely to advance its
task and then answers visual questions using the most rele-
vant memory snapshots. Because our evaluation focuses on
post-exploration reasoning rather than active exploration,
we disable the frontier component and retain only the mem-
ory snapshots. For these two tasks, the system will capture
memory snapshots in each room from the room center, and
finish the QA and captioning base on the memory snapshots
of all the explored rooms.

H. Qualitative Examples

We provide qualitative examples as shown in Figure 6. It
demonstrates that 3DLLM-MEM can maintain a long-term
memory and perform complex tasks in the embodied envi-
ronments. More examples can be found in the supplemen-
tary materials.



Prompt

You are provided with a scene description containing multiple rooms. Each room includes a list of objects along with
their positions in the room, represented by bounding boxes. Each object’s bounding box is defined by a 3D coordinate
in the format: jobject_name;(num): [X min, y min, z min],[X max, y max, z max] with units in meters (defining the
left-bottom and right-top corners). Your task is to generate an object caption for each room in the form of a coherent,
descriptive paragraph that conveys the 3D spatial arrangement and relative positions of all objects within that room.
Then, you will receive the object descriptions and caption for the current 3D room you are in. You will also be
provided with the previous rooms’ captions as well. Your task is to generate new captions covering the summarization
of the common features across all rooms based on your current room and important difference based on your current
room. The reasons of generating the new caption is to help the agent to remind of what are in previous rooms
memories can help the agent in this current room. The past objects and observations should be related to current
room by examining the summarization of common things and differences.

For clarity, consider these examples: {In-context examples }

Here is the scene information: {Input scene information }
Here is current room you are in and previous rooms you went: {Input agent’s location }

Table 6. Prompt template for generate QA data. {In-context examples} are in-context examples. {Input scene information} are
scene, room and object semantics along with their bounding boxes. {Input agent’s location} is the location for current room in the
scene and the past explored rooms.

System message

Please act as an impartial judge and evaluate the quality of the response provided by an Al assistant to the user
question. Your evaluation should consider correctness and helpfulness. You will be given a reference answer and
the assistant’s answer. You evaluation should focus on the assistant’s answer to the second question. Begin your
evaluation by comparing the assistant’s answer with the reference answer. Identify and correct any mistakes. Be as
objective as possible. After providing your explanation, you must rate the response on a scale of 1 to 10 by strictly
following this format: ”[[rating]]”, for example: “Rating: [[5]]”.

Prompt

i—The Start of Reference Answer—;,
### User:

question_1

### Reference answer:

ref_answer_1

### User:

question_2

#i## Reference answer:

ref_answer_2

i—The End of Reference Answer—;,
i—The Start of Assistant A’s Conversation with User—,
### User:

question_1

### Assistant A:

answer_1

### User:

question_2

### Assistant A:

answer_2

i—The End of Assistant A’s Conversation with User—;,

Table 7. Prompt template for open-ended QA evaluation following standard LL.M-as-judge protocol.



Object Captioning

Room 8 contains distinct sleeping, working, and lounging zones. Bed(0) extends along one side, with
pillow(0) near its head and cabinet(1) beside it, which supports decoration(0) and is flanked by book(0)
and book(1). Near the foot of bed(0), yoga mat(0), bag(0), and box(0) form a small activity area. At the far
end, wardrobe(0) stands near wall(4), next to beanbag chair(0) and exercise ball(0), with clothes(0)
draped nearby, creating a relaxed corner. The office area, positioned across from bed(0), includes desk(0),
office chair(0), and cabinet(0), with trashcan(0) nearby and ceiling lamp(0) overhead. Window(0) on the
parapet(0) brings in natural light. The arrangement ensures functional use of space while maintaining clear
separation between different activities.

Question Answering
Object Counting
o Q: How many chairs are there in Room 8?
® A: There are 2 chairs in total: one office chair(0) and one beanbag chair(0).
Spatial Relation
o Q: If you are sitting on the office chair(0) working at the desk(0) in Room 8, where is the window(0)
relative to you?
e A: The window(0) is behind you to the left.
Comparative QA
®  Q: Which room has more books, Room 8 or Room 9?
o A: Room 8 has more books. It contains two books, book(0) and book(1), both placed on top of the
cabinet(0) near the desk(0).
Object Navigation
o Q: Ifyou are sitting on the beanbag chair(0) in Room 8, how do you get to the books?
® A: You need to stand up, turn left, and walk across the room toward the cabinet(0) near the desk(0),
where the books are placed.
Room Layout
e Q: In Room 8, what is the relative layout of the bed(0), desk(0), and office chair(0)? Which one is
closest to the window(0)?
o A: The bed(0) is placed along the side wall near the window(0), the desk(0) is located in the far
corner of the room along wall(5), and the office chair(0) is positioned directly in front of the desk(0).
Among these, the bed(0) is closest to the window(0), which is embedded in the wall beside it.

Figure 5. Example of human annotators manually check the data quality on QA and captioning tasks through multiple rendered multi-view
images from each room.
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Figure 6. Qualitative example of 3DLLM-MEM. The task instruction is: Prepare a cozy reading nook in the living room with two books
and a teacup. In images (1) and (2), the agent explores the environment randomly, forming an initial memory of the scene. After receiving
the task instruction, it recalls its memory and navigates to the bedroom to pick up a book from the cabinet, as shown in images (3) and (4).
The agent then returns to the living room and places the book on the table in front of the sofa (image 5). Unable to recall any additional
books, the agent resumes exploration and finds a second book on the bed, which it picks up (image 6) and stacks on top of the first book
(image 7). Finally, the agent recalls seeing a teacup in the kitchen, navigates to retrieve it (image 8), and places it on the table in the living
room (image 9). The task is successfully completed.
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