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Abstract: Free Probability Theory (FPT) provides rich knowledge for handling math-
ematical difficulties caused by random matrices appearing in research related to deep
neural networks (DNNs), such as the dynamical isometry, Fisher informationmatrix, and
training dynamics. FPT suits these researches because the DNN’s parameter-Jacobian
and input-Jacobian are polynomials of layerwise Jacobians. However, the critical as-
sumption of asymptotic freeness of the layerwise Jacobian has not been proven math-
ematically so far. The asymptotic freeness assumption plays a fundamental role when
propagating spectral distributions through the layers. Haar distributed orthogonal matri-
ces are essential for achieving dynamical isometry. In this work, we prove asymptotic
freeness of layerwise Jacobians of multilayer perceptron (MLP) in this case. A key to
the proof is an invariance of the MLP. Considering the orthogonal matrices that fix the
hidden units in each layer, we replace each layer’s parametermatrixwith itselfmultiplied
by the orthogonal matrix, and then theMLP does not change. Furthermore, if the original
weights are Haar orthogonal, the Jacobian is also unchanged by this replacement. Lastly,
we can replace each weight with a Haar orthogonal random matrix independent of the
Jacobian of the activation function using this key fact.
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1. Introduction

Free Probability Theory (FPT) provides essential insight when handling mathematical
difficulties caused by randommatrices that appear in deep neural networks (DNNs) [6,7,
18]. The DNNs have been successfully used to achieve empirically high performance in
variousmachine learning tasks [5,12]. However, their understanding at a theoretical level
is limited, and their success relies heavily on heuristic search settings such as architecture
and hyperparameters. To understand and improve the training of DNNs, researchers have
developed several theories to investigate, for example, the vanishing/exploding gradient
problem [22], the shape of the loss landscape [10,19], and the global convergence of
training and generalization [8]. The nonlinearity of activation functions, the depth of
DNN, and the lack of commutation of randommatrices result in significantmathematical
challenges. In this respect, FPT, invented by Voiculescu [25–27], is well suited for this
kind of analysis.

FPT essentially appears in the analysis of the dynamical isometry [17,18]. It is well
known that reducing the training error in very deep models is difficult without carefully
preventing the gradient’s vanishing/exploding. Naive settings (i.e., activation function
and initialization) cause vanishing/exploding gradients, as long as the network is rela-
tively deep. The dynamical isometry [18,21] was proposed to solve this problem. The
dynamical isometry can facilitate training by setting the input-output Jacobian’s sin-
gular values to be one, where the input-output Jacobian is the Jacobian matrix of the
DNN at a given input. Experiments have shown that with initial values and models
satisfying dynamical isometry, very deep models can be trained without gradient van-
ishing/exploding; [18,23,29] have found that DNNs achieve approximately dynamical
isometry over random orthogonal weights, but they do not do so over random Gaussian
weights. For the sake of the prospect of the theory, let J be the Jacobian of the multilayer
perceptron (MLP), which is the fundamental model of DNNs. The Jacobian J is given
by the product of layerwise Jacobians:

J = DLWL . . . D1W1,

where each W� is �-th weight matrix, each D� is Jacobian of �-th activation function,
and L is the number of layers. Under an assumption of asymptotic freeness, the limit
spectral distribution is given by [18].
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To examine the training dynamics of MLP achieving the dynamical isometry, [7]
introduced a spectral analysis of the Fisher information matrix per sample of MLP. The
Fisher information matrix (FIM) has been a fundamental quantity for such theoretical
understandings. The FIM describes the local metric of the loss surface concerning the
KL-divergence function [1]. The neural tangent kernel [8], which has the same eigen-
value spectrum except for trivial zero as FIM, also describes the learning dynamics of
DNNs when the dimension of the last layer is relatively smaller than the hidden layer.
In particular, the FIM’s eigenvalue spectrum describes the efficiency of optimization
methods. For instance, the maximum eigenvalue determines an appropriate size of the
learning rate of the first-order gradient method for convergence [10,13,28]. Despite its
importance in neural networks, the FIM spectrum has been the object of only very little
study from a theoretical perspective. The reason is that it was limited to random matrix
theory for shallow networks [19] or mean-field theory for eigenvalue bounds, which
may be loose in general [9]. Thus, [7] focused on the FIM per sample and found an
alternative approach applicable to DNNs. The FIM per sample is equal to J�

θ Jθ , where
Jθ is the parameter Jacobian. Also, the eigenvalues of the FIM per sample are equal
to the eigenvalues of the HL defined recursively as follows, except for the trivial zero
eigenvalues and normalization:

H�+1 = q̂� I +W�+1D�H�D�W
�
�+1, � = 1, . . . , L − 1,

where I is the identity matrix, and q̂� is the empirical variance of �-th hidden unit. Under
an asymptotic freeness assumption, [7] gave some limit spectral distributions of HL .

The asymptotic freeness assumptions have a critical role in these researches [7,18] to
obtain the propagation of spectral distributions through the layers. However, the proof of
the asymptotic freeness was not completed. In the present work, we prove the asymptotic
freeness of layerwise Jacobian of multilayer perceptrons with Haar orthogonal weights.

1.1. Main results. Our results are as follows. Firstly, the following L+1 tuple of families
are asymptotically free almost surely (see Theorem 4.1):

((W1,W
∗
1 ), . . . , (WL ,W ∗

L), (D1, . . . , DL)).

Secondly, for each � = 1, . . . , L − 1, the following pair is almost surely asymptotically
free (see Proposition 4.2):

W�+1 J� J
∗
� W�+1, D

2
� .

The asymptotic freeness is at the heart of the spectral analysis of the Jacobian. Lastly,
for each � = 1, . . . , L − 1, the following pair is almost surely asymptotically free (see
Proposition 4.3):

H�, D
2
� .

The asymptotic freeness of the pair is the key to the analysis of the conditional Fisher
information matrix.

The fact that each parameter matrixW� contains elements correlated with the activa-
tion’s Jacobian matrix D� is a hurdle towards showing asymptotic freeness. Therefore,
among the components of W�, we move the elements that appear in D� to the N -th row
or column. This is achieved by changing the basis of W�. The orthogonal matrix (3.2)
that defines the change of basis can be realized so that each hidden layer is fixed, and



88 B. Collins, T. Hayase

as a result, the MLP does not change. Then, the dependency between W� and D� is
only in the N -th row or column, so it can be ignored by taking the limit of N → ∞.
From this result, we can say that (W�,W�

� ) and D� are asymptotically free for each �.
However, this is still not enough to prove the asymptotical freeness between families
(W�,W�

� )�=1,...,L and (D�)�=1,...,L . Therefore, we complete the proof of the asymp-
totic freeness by additionally considering another change of basis (3.3) that rotates the
N −1×N −1 submatrix of eachW� by independent Haar orthogonal matrices. A key of
the desired asymptotic freeness is the invariance of MLP described in Lemma 3.1. The
invariance follows from a structural property of MLP and an invariance property of Haar
orthogonal random matrices. The invariance of MLP helps us apply the asymptotical
freeness of Haar orthogonal random matrices [2] to our situation.

1.2. Related works. The asymptotic freeness is weaker than the assumption of the
forward-backward independence that research of dynamical isometry assumed [10,17,
18]. Although studies of mean-field theory [4,12,21] succeeded in explaining many
experimental deep learning results, they use an artificial assumption (gradient inde-
pendence [30]), which is not rigorously true. Asymptotic freeness is weaker than this
artificial assumption. Our work clarifies that asymptotic free independence is just the
right property that is useful and strictly valid for analysis.

Several works prove or treat the asymptotic freeness with Gaussian initialization
[6,16,30,31]. However, asymptotic freeness was not proven for the orthogonal initializa-
tion. As dynamical isometry can be achieved under orthogonal initialization but cannot
be done under Gaussian initialization [18], proof of the asymptotic freeness in orthogo-
nal initialization is essential. Since our proof makes crucial use of the properties of Haar
distributed random matrices, the proof is clear because we only need to aim to replace
the weights with Haar orthogonal, which is independent of the other Jacobians. While
[6] restricting the activation function to ReLU, our proof covers a comprehensive class
of activation functions, including smooth functions.

1.3. Organization of the paper. Section 2 is devoted to preliminaries. It contains settings
of MLP and notations about random matrices, spectral distribution, and free probability
theory. Section 3 consists of two keys to prove main results. A key is the invariance of
MLP, and the other is to cut off a dimension. Section 4 is devoted to proving the main
results on the asymptotic freeness. In Sect. 5, we show applications of the asymptotic
freeness to spectral analysis of randommatrices, which appear in the theory of dynamical
isometry and training dynamics of DNNs. Section 6 is devoted to the discussion and
future works.

2. Preliminaries

2.1. Setting of MLP. We consider multilayer perceptron settings, as usual in the studies
of FIM [10,19] and dynamical isometry [7,18,21]. Fix L , N ∈ N. We consider an L-
layer multilayer perceptron as a parametrized map f = ( fθ | θ = (W1, . . . ,WL))

with weight matricesW1,W2, . . . ,WL ∈ MN (R) as follows. Firstly, consider functions
ϕ1, . . . ϕL−1 on R. Besides, we assume that ϕ� is continuous and differentiable except
for finite points. Secondly, for a single input x ∈ R

N we set x0 = x . In addition, for
� = 1, . . . , L , set inductively

h� = W�x
�−1 + b�, x� = ϕ�(h�),
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Fig. 1. A graphical model of random matrices and random vectors drawn by the following rules (i–iii). (i)
A node’s boundary is drawn as a square or a rectangle if it contains a square random matrix; otherwise,
it is drawn as a circle. (ii) For each node, its parent node is a source node of a directed arrow. A node is
measurable concerning the σ -algebra generated by all parent nodes. (iii) The nodes which have no parent node
are independent

where ϕ� acts on R
N as the entrywise operation. Here, we set b� = 0 to simplify the

analysis, according to the setting of [18,19].
Write fθ (x) = x L . Denote by D� the Jacobian of the activation ϕ� given by

D� = ∂x�

∂h�
= diag((ϕ�)′(h�

1), . . . , (ϕ
�)′(h�

N )).

Lastly, we assume that eachW� (� = 1, . . . , L) be independent Haar orthogonal random
matrices and further consider the following condition (d1), …, (d4) on distributions. In
Fig. 1, we visualize the dependency of the random variables.

(d1) For each N ∈ N, the input vector x0 isRN -valued random variable such that there
is r > 0 with

lim
N→∞ ||x0||2/

√
N = r

almost surely.
(d2) Each weight matrix W� (� = 1, . . . , L) satisfies

W� = σw,�O�,

where O� (� = 1, . . . , L) are independent orthogonal matrices distributed with
the Haar probability measure and σw,� > 0.

(d3) For fixed N , the family

(x0,W1, . . . ,WL)

is independent.

Let us define r� > 0 and q� > 0 by the following recurrence relations:

r0 = r,

(r�)
2 = Eh∼N (0,q�)

[
ϕ� (h)2

]
(l = 1, . . . , L),

q� = (σw,�)
2(r�−1)

2 (l = 1, . . . , L).
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The inequality r� < ∞ holds by the assumption (a2) of activation functions.
We further assume that each activation function satisfies the following conditions

(a1), …, (a5).

(a1) It is a continuous function on R and is not the identically zero function.
(a2) For any q > 0,

∫

R

ϕ�(x)2 exp(−x2/q)dx < ∞.

(a3) It is differentiable almost everywhere concerning Lebesgue measure. We denote
by (ϕ�)′ the derivative defined almost everywhere.

(a4) The derivative (ϕ�)′ is continuous almost everywhere concerning the Lebesgue
measure.

(a5) The derivative (ϕ�)′ is bounded.

Example 2.1. (Activation Functions) The following activation functions are used [7,17,
18] to satisfy the above conditions.

1. (Rectified linear unit)

ReLU(x) =
{
x; x ≥ 0,
0; x < 0.

2. (Shifted ReLU)

shifted-ReLUα(x) =
{
x; x ≥ α,

α; x < α.

3. (Hard hyperbolic tangent)

htanh(x) =

⎧
⎪⎨
⎪⎩

−1; x ≤ −1,
x; −1 < x < 1,
1; 1 ≤ x .

4. (Hyperbolic tangent)

tanh(x) = ex − e−x

ex + e−x
.

5. (Sigmoid function)

σ(x) = 1

e−x + 1
.

6. (Smoothed ReLU)

SiLU(x) = xσ(x).

7. (Error function)

erf(x) = 2√
π

∫ x

0
e−t2dt.
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2.2. Basic notations. Linear Algebra We denote by MN (K) the algebra of N × N
matrices with entries in a field K. Write unnormalized and normalized traces of A ∈
MN (K) as follows:

Tr(A) =
N∑
i=1

Aii ,

tr(A) = 1

N
Tr(A).

In this work, a random matrix is a MN (R) valued Borel measurable map from a fixed
probability space for an N ∈ N. We denote by ON the group of N × N orthogonal
matrices. It is well-known that ON is equipped with a unique left and right translation
invariant probability measure, called the Haar probability measure.

Spectral Distribution Recall that the spectral distribution μ of a linear operator A is a
probability distribution μ on R such that tr(Am) = ∫

tmμ(dt) for any m ∈ N, where
tr is the normalized trace. If A is an N × N symmetric matrix with N ∈ N, its spectral
distribution is given by N−1∑N

n=1 δλn , where λn(n = 1, . . . , N ) are eigenvalues of A,
and δλ is the discrete probability distribution whose support is {λ} ⊂ R.

Joint Distribution of All Entries For random matrices X1, . . . , XL ,Y1, . . . ,YL and
random vectors x1, . . . , xL , y1, . . . , yL , we write

(X1, . . . , XL , x1, . . . , xL) ∼entries (Y1, . . . , YL , y1, . . . , yL)

if the joint distributions of all entries of correspondingmatrices and vectors in the families
match.

2.3. Asymptotic freeness. In this section, we summarize required topics of random ma-
trices and free probability theory. We start with the following definition. We omit the
definition of a C∗-algebra, and for complete details, we refer to [14].

Definition 2.2. A noncommutative C∗-probability space (NCPS, for short) is a pair
(A, τ ) of a unital C∗-algebra A and a faithful tracial state τ on A, which are defined
as follows. A linear map τ on A is said to be a tracial state on A if the following four
conditions are satisfied.

1. τ(1) = 1.
2. τ(a∗) = τ(a) (a ∈ A).
3. τ(a∗a) ≥ 0 (a ∈ A).
4. τ(ab) = τ(ba) (a, b ∈ A).

In addition, we say that τ is faithful if τ(a∗a) = 0 implies a = 0.

For N ∈ N, the pair of the algebra MN (C) of N ×N matrices of complex entries and
the normalized trace tr is an NCPS. Consider the algebra of MN (R) of N × N matrices
of real entries and the normalized trace tr. The pair itself is not an NCPS in the sense
of Definition 2.2 since it is not C-linear space. However, MN (C) contains MN (R) and
preserves ∗ by setting, for A ∈ MN (R):

A∗ = A�.

Also, the inclusion MN (R) ⊂ MN (C) preserves the trace. Therefore, we consider the
joint distributions of matrices in MN (R) as that of elements in the NCPS (MN (C), tr).
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Definition 2.3 (Joint Distribution in NCPS). Let a1, . . . , ak ∈ A and letC〈X1, . . . , Xk〉
be the free algebra of non-commutative polynomials onC generated by k indeterminates
X1, . . . , Xk . Then the joint distirubtion of the k-tuple (a1, . . . , ak) is the linear form
μa1,...,ak : C〈X1, . . . , Xk〉 → C defined by

μa1,...,ak (P) = τ(P(a1, . . . , ak)),

where P ∈ C〈X1, . . . , Xk〉.
Definition 2.4. Let a1, . . . , ak ∈ A. Let A1(N ), . . . , Ak(N ) (N ∈ N) be sequences of
N × N matrices. Then we say that they converge in distribution to (a1, . . . , ak) if

lim
N→∞ tr (P (A1(N ), . . . , Ak(N ))) = τ (P (a1, . . . , ak))

for any P ∈ C〈X1, . . . , Xk〉.
Definition 2.5 (Freeness). Let (A, τ ) be a NCPS. LetA1, . . . ,Ak be subalgebras having
the same unit as A. They are said to be free if the following holds: for any n ∈ N, any
sequence j1, . . . , jn ∈ [k], and any ai ∈ A ji (i = 1, . . . , k) with

τ (ai ) = 0 (i = 1, . . . , n),

j1 �= j2, j2 �= j3, . . . , jn−1 �= jn,

the following holds true:

τ
(
a j1a j2 . . . a jn

) = 0.

Besides, elements in A are said to be free iff the unital subalgebras that they generate
are free.

The example below is basically a reformulation of freeness, and follows from [27].

Example 2.6. Letw1, w2, . . . , wL ∈ A and d1, . . . , dL ∈ A. Then the families (w1, w
∗
1),

(w2, w
∗
2), . . . , (wL , w∗

L), (d1, . . . , dL) are free if and only if the following L + 1 unital
subalgebras of A are free:

{P(w1, w
∗
1) | P ∈ C〈X,Y 〉}, . . . , {P(wL , w∗

L) | P ∈ C〈X,Y 〉},
{Q(d1, . . . , dL) | Q ∈ C〈X1, . . . , XL 〉}.

Let us now introduce asymptotic freeness of random matrices with compact support
limit spectral distributions. Since we consider a family of a finite number of random
matrices, we restrict it to a finite index set. Note that the finite index is not required for
a general definition of freeness.

Definition 2.7 (Asymptotic Freeness of RandomMatrices). Consider a nonempty finite
index set I , a family Ai (N ) of N × N random matrices where N ∈ N. Given a partition
{I1, . . . , Ik} of I , consider a sequence of k-tuples

(Ai (N ) | i ∈ I1) , . . . , (Ai (N ) | i ∈ Ik) .

It is then said to be almost surely asymptotically free as N → ∞ if the following two
conditions are satisfied.
1. There exist a family (ai )i∈I of elements in A such that the following k tuple is free:

(ai | i ∈ I1), . . . , (ai | i ∈ Ik).

2. For every P ∈ C〈X1, . . . , X |I |〉,
lim

N→∞ tr
(
P
(
A1(N ), . . . , A|I |(N )

)) = τ
(
P
(
a1, . . . , a|I |

))
,

almost surely, where |I | is the number of elements of I .
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2.4. Haar distributed orthogonal random matrices. We introduce asymptotic freeness
of Haar distributed orthogonal random matrices.

Proposition 2.8. Let L , L ′ ∈ N. For any N ∈ N, let V1(N ), . . . , VL(N ) be independent
ON Haar random matrices, and A1(N ), . . . , AL ′(N ) be symmetric random matrices,
which have the almost-sure-limit joint distribution. Assume that all entries of (V�(N ))L�=1
are independent of that of (A1(N ), . . . , AL ′(N )), for each N. Then the families

(V1(N ), V1(N )�), . . . , (VL(N ), VL(N )�), (A1(N ), . . . , AL ′(N )).

are asymptotically free as N → ∞.

Proof. This is a particular case of [2, Theorem 5.2]. ��
The following proposition is a direct consequence of Proposition 2.8.

Proposition 2.9. For N ∈ N, let A(N ) and B(N ) be N×N symmetric randommatrices,
and let V (N ) be a N × N Haar-distributed orthogonal random matrix. Assume that

1. The random matrix V (N ) is independent of A(N ), B(N ) for every N ∈ N.
2. The spectral distribution of A(N ) (resp. B(N )) converges in distribution to a com-

pactly supported probability measure μ (resp.ν), almost surely.

Then the following pair is asymptotically free as N → ∞,

A(N ), V (N )B(N )V (N )�,

almost surely.

Proof. Instead of proving that A(N ), V (N )B(N )V (N )� are asymptotically free, we
will prove thatU (N )A(N )U (N )�,U (N )V (N )B(N )V (N )�U (N )� for any orthogonal
matrix U (N ), and in particular, for an independent Haar distributed orthogonal matrix.
This is equivalent because a global conjugation byU (N ) does not affect the joint distribu-
tion. In turn, sinceU (N ),U (N )V (N ) has the same distribution asU (N ), V (N ) thanks
to the Haar property, it is enough to prove that U (N )A(N )U (N )�, V (N )B(N )V (N )�
is asymptotically free as as N → ∞. Let us replace A(N ) by Ã(N ) where Ã(N ) is
diagonal, and has the same eigenvalues as A(N ), arranged in non-increasing order, and
likewise, we construct B̃(N ) from B(N ). It is clear that

U (N )A(N )U (N )�, V (N )B(N )V (N )�

and

U (N ) Ã(N )U (N )�, V (N )B̃(N )V (N )�

have the same distribution. In addition, B̃(N ), Ã(N ) have a joint distribution by con-
struction, therefore we can apply Proposition 2.8. ��

Note that we do not require independence between A(N ) and B(N ) in Proposition
2.9. Here we recall the following result, which is a direct consequence of the translation
invariance of Haar random matrices.
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Lemma 2.10. Fix N ∈ N. Let V1, . . . , VL be independent ON Haar random matrices.
Let T1, . . . , TL be ON valued random matrices. Let S1, . . . , SL be ON valued random
matrices. Let A1, . . . , AL be N ×N randommatrices. Assume that all entries of (V�)

L
�=1

are independent of

(T1, . . . , TL , S1, . . . , SL , A1, . . . , AL).

Then,

(T1V1S1, . . . , TLVL SL , A1, . . . , AL) ∼entries (V1, . . . , VL , A1, . . . , AL).

Proof. For the readers’ convenience, we include a proof. The characteristic function of
(T1V1S1, . . . , TLVL SL , A1, . . . , AL) is given by

E

[
exp

[
−i Tr

(
L∑

�=1

X�
� T�V�S� + Y�

� A�

)]]
, (2.1)

where X1, . . . , XL ∈ MN (R) and Y1, . . . ,YL ∈ MN (R). By using conditional expecta-
tion, (2.1) is equal to

E

⎡
⎣E
⎡
⎣exp

⎡
⎣−i Tr

⎛
⎝

L∑
�=1

X�
� T�V�S�

⎞
⎠ | T�, S�, A� (� = 1, . . . , L)

⎤
⎦ exp

[
−i Tr

(
Y�
� A�

)]
⎤
⎦
⎤
⎦ .

(2.2)

By the property of the Haar measure and the independence, the conditional expectation
contained in (2.2) is equal to

E

[
exp

[
−i Tr

(
L∑

�=1

X�
� V�

)]
| T�, S�, A� (� = 1, . . . , L)

]
.

Thus the assertion holds. ��

2.5. Forward propagation through MLP.

2.5.1. Action ofHaar orthogonalmatrices Firstlywe consider action ofHaar orthogonal
to a random vector with finite second moment. For N -dimensional random vector x =
(x1, . . . , xN ), we denote its empirical distribution by

νx := 1

N

N∑
n=1

δxn ,

where δx is the delta probability measure at the point x ∈ R.
Let u(N ) be a random vector uniformly distributed on the N − 1 dimensional unit

sphere. It is known that for any fixed k ∈ N, the joint distribution of
√
Nu(N )1, . . . ,√

Nu(N )k converges to the standard normal distribution on Rk as N → ∞ [24]. In the
course of Lemma’s proof below, we prove the convergence of the empirical distribution
ν√

Nu(N ) since it is easier than proving the convergence in joint distribution. We prove
it with the moments of the empirical distribution. Here, for any probability distribution
μ and k ∈ N, we write μ’s k-th moment by mk(μ).
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Lemma 2.11. Let (
,F ,P) be a probability space and x(N ) be a R
N valued random

variable for each N ∈ N. Assume that there exists r > 0 such that
√√√√ 1

N

N∑
n=1

(x(N )n)
2 → r

as N → ∞ almost surely. Let O(N ) be a Haar distributed N-dimensional orthogonal
matrix. Set

h(N ) = O(N )x(N ).

Furthermore we assume that x(N ) and O(N ) are independent. Then

νh(N ) �⇒ N (0, r2)

as N → ∞ almost surely.

Proof. Let e1 = (1, 0, . . . , 0) ∈ R
N . Then there is an orthogonal random matrix U

such that x(N ) = ||x(N )||2Ue1, where || · ||2 is the Euclid norm. Write r(N ) :=
||x(N )||2/

√
N and u(N ) be unit vector uniformly distributed on the unit sphere, indepen-

dent of r(N ). Since O(N ) is a Haar orthogonal and since O(N ) andU are independent,
it holds that O(N )U ∼dist. O(N ). Then

h(N ) = O(N )x(N ) = (||x(N )||2/
√
N )(

√
NO(N )Ue1) ∼dist. r(N )(

√
Nu(N )).

Firstly, by the assumption,

r(N ) =
√√√√ 1

N

N∑
n=1

x(N )2n → r asN → ∞, almost surely.

Secondly, let (Zi )
∞
i=1 be i.i.d. standard Gaussian random variables. Then

u(N ) ∼dist.

⎛
⎝ Zn√∑N

n=1 Z
2
n

⎞
⎠

N

n=1

.

For k ∈ N,

mk(ν√
Nu(N )) = 1

N

N∑
n=1

Nk/2u(N )kn = N−1∑N
n=1 Z

k
n

[N−1
∑N

n=1 Z
2
n]k/2

→ mk(N (0, 1))

m2(N (0, 1))k/2
= mk(N (0, 1))asN → ∞, a.s.

Now convergence in moments to Gaussian distribution implies convergence in law.
Therefore,

ν√
Nu(N ) �⇒ N (0, 1),

almost surely. This completes the proof. ��
Note that we do not assume that entries of x(N ) are independent.
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Lemma 2.12. Let g be a measurable function and set

Ng = {x ∈ R | g is discontinuous at x}.
Let Z ∼ N (0, 1). Assume that P(Z ∈ Ng) = 0. Then under the setting of Lemma 2.11,
it holds that

νg(h(N )) �⇒ g(Z)

as N → ∞ almost surely.

Proof. Let F = {ω ∈ 
 | νg(h(N )(ω)) �⇒ g(Z) as N → ∞}. By Lemma 2.11,
P(F) = 0. Fix ω ∈ 
 \ F . For N ∈ N, let XN be a real random variable on the
probability space with

XN ∼ νh(N )(ω).

By the assumption, we have P(Z ∈ Ng) = 0. Then the continuous mapping theorem
(see [3, Theorem 3.2.4]) implies that

g(XN ) ⇒ g(Z).

Thus for any bounded continuous function ψ ,

∫
ψ(t)νg◦h(N )(ω)(dt) = 1

N

N∑
i=n

ψ ◦ g (h(n) (ω)) = E[ψ ◦ g(XN )] → E[ψ ◦ g(Z)].

Hence νg(h(N )(ω)) �⇒ g(Z). Since we took arbitrary ω ∈ 
 \ F and P(
 \ F) = 1,
the assertion follows. ��

2.5.2. Convergence of empirical distribution Furthermore, for any measurable function
g on R and probability measure μ, we denote by g∗(μ) the push-forward of μ. That is,
if a real random variable X is distributed with μ, then g∗(μ) is the distribution of g(X).

Proposition 2.13. For all � = 1, . . . , L, it holds that

1. νh� ⇒ N (0, q�),

2. νϕ�(h�) ⇒ ϕ�∗(N (0, q�)),

3. ν(ϕ�)′(h�) ⇒ (ϕ�)′∗(N (0, q�)),

as N → ∞ almost surely.

Proof. on �. Let � = 1. Then q1 = σ 2
w,1r

2 +σ 2
b,1. By Lemma 2.11, (1) follows. Since ϕ1

is continuous (2) follows by Lemma 2.12. Since (ϕ1)′ is continuous almost everywhere
by the assumption (a4), (3) follows by Lemma 2.11. Now we have ||x1||2/

√
N =√

m2(νϕ1(h1)) ⇒ √
m2(ϕ1∗(N (0, q1))) = r1. The same conclusion can be drawn for the

rest of induction. ��
Corollary 2.14. For each � = 1, . . . , L, D� has the compactly supported limit spectral
distribution (ϕ�)′∗(N (0, q�)) as N → ∞.

Proof. The assertion follows directly from (3) and (a5). ��
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3. Key to Asymptotic Freeness

Here we introduce key lemmas to prove the asymptotic freeness. A key lemma is about
an invariance of MLP, and the other one is about a property of cutting off matrices.

3.1. Notations. We prepare notations related to the change of basis to cut off entries in
W�, which are correlated with D�.

For N ∈ N, fix a standard complete orthonormal basis (e1, . . . , eN ) of RN . Firstly,
set n̂ = min{n = 1, . . . , N | 〈x�, en〉 �= 0}. Since x� is non-zero almost surely, n̂ is
defined almost surely. Then the following family is a basis of RN :

(e1, . . . , en̂−1, en̂+1, . . . , eN , x�/||x�||2), (3.1)

where || · ||2 is the Euclidian norm. Secondly, we apply the Gram-Schmidt orthogo-
nalization to the basis (3.1) in reverse order, starting with x�/||x�||2, to construct an
orthonormal basis ( f1, . . . , fN ) with fN = x�/||x�||2. Thirdly, let Y� be the orthogonal
matrix determined by the following change of orthonormal basis:

Y� fn = en (n = 1, . . . , N ). (3.2)

Then Y� satisfies the following conditions.

1. Y� is x�-measurable.
2. Y�x� = ||x�||2eN .
Lastly, let V0, . . . , VL−1 be independent Haar distributed N −1×N −1 orthogonal ran-
dom matrices such that all entries of them are independent of that of (x0,W1, . . . ,WL).
Set

U� = Y�
�

(
V� 0
0 1

)
Y�. (3.3)

Then

U�x
� = Y�

� ||x�||2eN = x�.

Each V� is the N − 1 × N − 1 random matrix which determines the action of U�

on the orthogonal complement of Rx�. Further, for any � = 0, . . . , L − 1, all en-
tries of (U0, . . . ,U�−1) are independent from that of (W�, . . . ,WL) since each U� is
G(x�, V �)-measurable, where G(x�, V �) is the σ -algebra generated by x� and V �. We
have completed the construction of the U�. Figure 2 visualizes a dependency of the
random variables that appeared in the above discussion.

In addition, let P(N ) be the N × N diagonal matrix given by

P(N ) = diag(1, 1, . . . , 1, 0). (3.4)

If there is no confusion, we omit the index N and simply write it P . The matrix P(N )

is an orthogonal projection onto an N − 1 dimenstional subspace.
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x0

W 1, . . . ,W −1

x −1

W , . . . ,W LU −1 V −1

Fig. 2. A graphical model of random variables in a specific case using V� for U�. See Fig. 1 for the graph’s
drawing rule. The node of W�, . . . ,WL is an isolated node in the graph

3.2. Invariance of MLP. Since Haar random matrices’ invariance leads to asymptotic
freeness (Proposition 2.8), it is essential to investigate the network’s invariance. The
following invariance is the key to the main theorem. Note that the Haar property of V�

is not necessary to construct U� in Lemma 3.1, but the property is used in the proof of
Theorem 4.1.

Lemma 3.1. Under the setting of Sect. 2.1, let U� be arbitraryON valued randommatrix
satisfying

U�x
� = x�. (3.5)

for each � = 0, 1, . . . , L − 1. Further assume that all entries of (U0, . . . ,U�−1) are
independent from that of (W�, . . . ,WL) for each � = 0, 1, . . . , L−1. Then the following
holds:

(W1U0, . . . ,WLUL−1, h
1, . . . , hL) ∼entries (W1, . . . ,WL , h1, . . . , hL). (3.6)

Proof of Lemma 3.1. Let U0, . . . ,UL−1 be arbitrary random matrices satisfing condi-
tions in Lemma 3.1. We prove the corresponding characteristic functions of the joint
distributions in (3.6) match.

Fix T1, . . . , TL ∈ MN (R) and ξ1, . . . , ξL ∈ R
N . For each � = 1, . . . , L , define a

map ψ� by

ψ�(x,W ) = exp
[
−i Tr(T�

� W ) − i〈ξ�,Wx〉
]
,

where W ∈ MN (R) and x ∈ R
N . Write

α� = ψ�(x�−1,W�), (3.7)

β� = ψ�(x�−1,W�U�−1). (3.8)

By (3.5) and by W�x�−1 = h�, the values of characteristic functions of the joint distri-
butions at the point (T1, . . . , TL , ξ1, . . . ξL) is given by E[β1 . . . βL ] and E[α1 . . . αL ],
respectively. Now we only need to show

E[β1 . . . βL ] = E[α1 . . . αL ]. (3.9)
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Firstly, we claim that the following holds: for each � = 1, . . . , L ,

E[β�α�+1 . . . αL |x�−1] = E[α�α�+1 . . . αL |x�−1]. (3.10)

To show (3.10), fix � and write for a random variable x ,

J (x) = E[α�+1 . . . αL |x].
By the tower property of conditional expectations, we have

E[β�α�+1 . . . αL |x�−1] = E[β�J (x�)|x�−1] = E[E[β�J (x�)|x�−1,U�−1]|x�−1].
(3.11)

Let μ be the Haar measure. Then by the invariance of the Haar measure, we have

E[β�J (x�)|x�−1,U�−1] =
∫

ψ�(x
�−1,WU�−1)J (φ�(WU�−1x

�−1))μ(dW )

=
∫

ψ�(x
�−1,W )J (φ�(Wx�−1))μ(dW )

=
∫

α�J (x�)μ(dW )

= E[α�E[α�+1 . . . αL |x�]|x�−1]
= E[α�α�+1 . . . αL |x�−1].

In particular, E[β�J (x�)|x�−1,U�−1] is x�−1-measurable. By (3.11), we have (3.10).
Secondly, we claim that for each � = 2, . . . , L ,

E[β1 . . . β�−1β�α�+1 . . . αL ] = E[β1 . . . β�−1α�α�+1 . . . αL ]. (3.12)

Denote by G the σ -algebra generated by (x0,W1, . . . ,W�−1,U0, . . . ,U�−2). By defini-
tion, β1, . . . , β�−1 are G-measurable. Therefore,

E[β1 . . . β�−1β�α�+1 . . . αL ] = E[β1 . . . β�−1E[β�α�+1 . . . αL |G]].
Now we have

E[β�α�+1 . . . αL |G] = E[β�α�+1 . . . αL |x�−1],
E[α�α�+1 . . . αL |G] = E[α�α�+1 . . . αL |x�−1],

since the generators of G needed to determine β�, α�, α�+1, . . . αL are coupled into x�−1.
Therefore, by (3.10), we have

E[β1 . . . β�−1E[β�α�+1 . . . αL |G]] = E[β1 . . . β�−1E[α�α�+1 . . . αL |G]]
= E[β1 . . . β�−1α�α�+1 . . . αL ].

Therefore, we have proven (3.12).
Lastly, by applying (3.12) iteratively, we have

E[β1β2 . . . βL ] = E[β1α2 . . . αL ].
By (3.10),

E[β1α2 . . . αL ] = E[E[β1α2 . . . αL |x0]] = E[E[α1α2 . . . αL |x0]] = E[α1α2 . . . αL ].
We have completed the proof of (3.9).

Here we visualize the dependency of the random variables in Fig. 3 in the case of the
specific (U�)

L−1
�=0 in (3.3) constructed with (V�)

L−1
�=0 . Note that we do not use the specific

construction in the proof of Lemma 3.1.
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x0

W 1, . . . ,W −1

x −1

αβ

WU −1 V −1

Fig. 3. A graphical model of random variables for computing characteristic functions in a specific case using
V� for constructing U�. See (3.7) and (3.8) for the definition of α� and β�. See Fig. 1 for the graph’s drawing
rule

3.3. Matrix size cutoff. The invariance described in Lemma 2.10 fixes the vector x�−1,
and there are no restrictions on the remaining N − 1 dimensional space P(N )RN . We
call P(N )AP(N ) the cutoff of any N × N matrix A. This section quantifies that cutting
off the fixed space causes no significant effect when taking the large-dimensional limit.

For p ≥ 1, we denote by ||X ||p the L p-norm of X ∈ MN (R) defined by

||X ||p = (tr |X |p)1/p =
[
tr
[(√

X�X
)p]]1/p

.

Recall that the following non-commutative Hölder’s inequality holds:

||XY ||r ≤ ||X ||p||Y ||q , (3.13)

for any r, p, q ≥ 1 with 1/r = 1/p + 1/q.

Lemma 3.2. Fix n ∈ N. Let X1(N ), . . . , Xn(N ) be N × N random matrices for each
N ∈ N. Assume that there is a constant C > 0 satisfying almost surely

sup
N∈N

sup
j=1,...,n

||X j (N )||n ≤ C.

Let P(N ) be the orthogonal projection defined in (3.4). Then we have almost surely

| tr[P(N )X1(N )P(N ) . . . P(N )Xn(N )P(N )] − tr[X1(N ) . . . Xn(N )]| ≤ nCn

Nn
.

(3.14)

In particular, the left-hand side of (3.14) goes to 0 as N → ∞ almost surely.

Proof. We omit the index N if there is no confusion. Set

T =
n−1∑
j=0

PX1 · · · PXk− j−1(P − 1)Xn− j Xn− j+1 · · · Xn .

Then the left-hand side of (3.14) is equal to | tr T |. By the Hölder’s inequality (3.13),

| tr T | ≤ ||T ||1 ≤
n−1∑
j=0

||P||n− j−1
n ||X1||n · · · ||Xn||n||P − 1||n .
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Now

||P − 1||n = (
1n

N
)1/n = 1

N 1/n .

Then by the assumption, we have | tr T | ≤ nCn/N 1/n almost surely. ��
By Lemma 3.2, the cutoff P(N )X P(N ) approximate X in the sence of polynomials.

Next, we check that an orthogonal matrix approximates the cutoff of any orthogonal
matrix.

Lemma 3.3. Let N ∈ N and N ≥ 2. For any ON valued random matrix W, there is
W-measurable ON−1 valued random matrix Ẁ satisfying

||PW P −
(
Ẁ 0
0 0

)
||p ≤ 1

(N − 1)1/p
,

for any p ∈ N almost surely

Proof. Consider the singular value decomposition (U1, D,U2) of PW P in the N − 1
dimensional subspace PRN , where U1,U2 belong to ON−1, D = diag(λ1, . . . , λN−1),
and λ1 ≥ · · · ≥ λN−1 are singular values of PW P except for the trivial singular value
zero. Now

PW P =
(
U1DU2 0

0 0

)
.

Set

Ẁ = U1U2.

Now Ẁ is W -measurable sinceU1 andU2 are determined by the singular value decom-
position. We claim that Ẁ is the desired random matrix.

We only need to show that Tr[(1 − D)p] ≤ 1, where Tr is the unnormalized trace.
Write

R = P − (PW P)�PW P = PW�(1 − P)WP.

Then rank R ≤ 1 and Tr R ≤ ||WPW�||Tr(1 − P) ≤ 1. Therefore, R’s nontrivial
singular value belongs to [0, 1]. We write it λ. Then (PW P)�PW = P − R has
nontrivial eigenvalue 1 − λ and eigenvalue 1 of multiplicity N − 2. Therefore,

D2 = diag(1, . . . , 1, 1 − λ).

Thus Tr[(1 − D)p] = (1 − √
1 − λ)p ≤ 1. We have completed the proof. ��



102 B. Collins, T. Hayase

4. Asymptotic Freeness of Layerwise Jacobians

This section contains some of ourmain results. The first one is themost general form, but
it relies on the existence of the limit joint moments of (D�)�. The second one is required
for the analysis of the dynamical isometry. The last one is needed for the analysis of the
Fisher information matrix. The second and the third ones do not assume the existence
of the limit joint moments of (D�)�.

We use the notations in Sect. 3.1. In the sequel, for each �, N ∈ N, each Y� is the
x�-measurable and ON valued randommatrix described in (3.2). It is x�-measurable and
satisfies Y�x� = ||x�||2eN , where eN is the N -th vector of the standard basis of RN .
Recall that V0, . . . , VL−1 are independent ON−1 valued Haar randommatrices such that
all entries of them are independent of that of (x0,W1, . . . ,WL). In addition,

U� = Y�
�

(
V� 0
0 1

)
Y�

and U�x� = x�. Further, for any � = 0, . . . , � − 1, all entries of (U0, . . . ,U�−1) are
independent from that of (W�, . . . ,WL). Thus by Lemma 3.1,

(W1U0, . . . ,WLUL−1, D1, . . . , DL) ∼entries (W1, . . . ,WL , D1, . . . , DL).

In addition, for any n ∈ N and almost surely we have

max
�=1,...,L

sup
n∈N

||D�||n < ∞, (4.1)

since each D� has the limit spectral distribution by Corollary 2.14.
We are now prepared to prove our main theorem.

Theorem 4.1. Assume that (D1, . . . , DL) has the limit joint distribution almost surely.
Then the families (W1,W�

1 ), . . . (WL ,W�
L ), and (D1, . . . , DL) are asymptotically free

as N → ∞ almost surely.

Proof. Without loss of generality, we may assume that σw,1, . . . , σw,L = 1. Set

Q� = PW�PY
�
�−1P

(
V�−1 0
0 1

)
PY�−1P.

for each � = 1, . . . , L , where P = P(N ) is defined in (3.4). By Lemma 3.2 and (4.1),
we only need to show the asymptotic freeness of the families

(Q�, Q
�
� )L�=1, (PD1P, . . . , PDL P),

Now

P

(
V�−1 0
0 1

)
P =

(
V�−1 0
0 0

)
.

In addition, let D̀� be the N − 1 × N − 1 matrix determined by

PD�P =
(
D̀� 0
0 0

)
. (4.2)
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By Lemma 3.3, there are ON−1 valued random matrices Ẁ� and Ỳ�−1 satisfying

||PW�P −
(
Ẁ� 0
0 0

)
||n ≤ 1

(N − 1)1/n
,

||PY�P −
(
Ỳ� 0
0 0

)
||n ≤ 1

(N − 1)1/n
, (4.3)

for any n ∈ N. Therefore, we only need to show asymptotic freeness of the following
L + 1 families:

(
Ẁ�Ỳ

�
�−1V�−1Ỳ�−1,

(
Ẁ�Ỳ

�
�−1V�−1Ỳ�−1

)�)L

�=1
,
(
D̀1, . . . , D̀L

)
. (4.4)

Nowall entries ofHaar randommatrices (V�)� are independent of thoseof (Ẁ�, Ỳ�−1, D̀�)�.
Thus by Lemma 2.10 and Proposition 2.8, the asymptotic freeness of (4.4) holds as
N → ∞ almost surely. We have completed the proof. ��

The following result is useful in the study of dynamical isometry and spectral analysis
of Jacobian of DNNs. It follows directly from Theorem 4.1 if we assume the existence
of the limit joint moments of (D�)

L
�=1. Note that the following result does not assume

the existence of the limit joint moments.

Proposition 4.2. For each � = 1, . . . , L −1, let J� be the Jacobian of �-th layer, that is,

J� = D�W� . . . D1W1.

Then J� J�
� has the limit spectral distribution and the pair

W�+1 J� J
�
� W�

�+1, D
2
�+1

is asymptotically free as N → ∞ almost surely.

Proof. Without loss of generality, we may assume σw,1, . . . , σw,L = 1. We proceed by
induction over �.

Let � = 1. Then J1 J�
1 = D2

1 has the limit spectral distribution by Proposition 2.13.
By Lemma 3.2 and (4.1), we only need to show that the asymptotically freeness of the
pair

PW2PY
�
1 P

(
V1 0
0 1

)
PD2

1P

(
V�
1 0
0 1

)
PY1PW

�
2 P, PD2

2P,

By Lemma 3.3, there are Ẁ2 ∈ ON−1 and Ỳ1 ∈ ON−1 which approximate PW2P and
PY1P in the sence of (4.3). Let D̀2 be the N − 1× N − 1 random matrix given by (4.2).
Then, we only need to show the asymptotical freeness of the following pair:

Ẁ2Ỳ
�
1 V1 D̀

2
1V

�
1 Y1Ẁ

�
2 , D̀2

2 .

By the independence and Lemma 2.10, the asymptotic freeness holds almost surely.
Next, fix � ∈ [1, L − 1] and assume that the limit spectral distribution of J� J�

� exists
and the asymptotic freeness holds for the �. Now

J�+1 J
�
�+1 = D�+1W�+1(J� J

�
� )W�

�+1D�+1.
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By the asymptotic freeness for the case �, J�+1 J�
�+1 has the limit spctral distribution.

There exists J̀� ∈ MN−1(R) so that

P J�P =
(
J̀� 0
0 0

)
.

Then for the case of � + 1, by the same argument as above, we only need to show the
asymptotic freeness of

Ẁ�+2Ỳ
�
�+1V�+1 J̀�+1 J̀

�
�+1V

�
�+1Y�+1Ẁ

�
�+2, D̀

2
�+2.

Now, all enties of V�+1 are independent from those of ( J̀�+1, Ẁ�+1, Ỳ�+1, D̀�+2). By the
independence and Lemma 2.10, we only need to show the asymptotic freeness of

V�+1 J̀�+1 J̀
�
�+1V

�
�+1, D̀

2
�+2.

The asymptotic freeness of the pair follows from Proposition 2.9. The assertion follows
by induction. ��

Next, we treat a conditional Fisher information matrix HL of the MLP. (See Sect.
5.2.)

Proposition 4.3. Define H� inductively by H1 = IN and

H�+1 = q̂� I +W�+1D�H�D�W
�
�+1, (4.5)

where q̂� = ∑N
j=1(x

�
j )
2/N and � = 1, . . . , L − 1. Then for each � = 1, 2, . . . , L, H�

has a limit spectral distribution and the pair

H�, D�

is asymptotically free as N → ∞, almost surely.

Proof. We proceed by induction over �. The case � = 1 is trivial. Assume that the
assertion holds for an � ≥ 1 and consider the case �+1. Then by (4.5) and the assumption
of induction, H�+1 has the limit spectral distribution. Let H̀�+1 be the N − 1 × N − 1
matrix determined by

PH�P =
(
H̀� 0
0 0

)
.

By the same arguments as above, we only need to prove the asymptotic freeness of the
following pair:

Ẁ�+1Ỳ�V�Ỳ
�
� D̀� H̀� D̀�(W�+1Ỳ�V�Ỳ

�
� )�, D̀�+1.

By Lemma 2.10, considering the joint distributions of all entries, we only need to show
the asymptotic freeness of the following pair:

V� D̀� H̀� D̀�V
�
� , D̀�+1.

By the assumption, D̀� H̀� D̀� has the limit spectral distribution. Then by Proposition 2.9,
the assertion holds for � + 1. The assertion follows by induction. ��
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5. Applications

Let ν� be the limit spectral distribution of D2
� for each � given by Corollary 2.14. We

introduce applications of the main results.

5.1. Jacobiananddynamical isometry. Let J be the Jacobian of the networkwith respect
to the input vector. In [17,18,21], a DNN is said to achieve dynamical isometry if J
acts as a near isometry, up to some overall global O(1) scaling, on a subspace of as
high a dimension as possible. Calling H̃ such a subspace, the ||(J� J )|H̃ − I dH̃ ||2 =
o(
√
dimH̃). Note that in [17,18,21], a rigorous definition is not given, and that many

variants of this definition are likely to be acceptable for the theory. In their theory, they
take firstly the wide limit N → ∞. To examine the dynamical isometry as the wide limit
N → ∞ and the deep limit L → ∞, [7,17,18] consider S-transform of the spectral
distribution. (See [20,26] for the definition of S-transform).

Now

J = JL = DLWL . . . D1W1.

Recall that the existence of the limit spectral distribution of each J� (� = 1, . . . , L) is
supported by Proposition 4.2. In addition, recall that ν� is the limit spectral distribution
of D2

� as d → ∞ for each �.

Corollary 5.1. Let ξ� be the limit spectral distribution as N → ∞ of J� J�
� . Then for

each � = 1, . . . , L, it holds that

Sξ�
(z) = 1

σ 2
w,1 . . . σ 2

w,�

Sν1(z) · · · Sν�
(z). (5.1)

Proof. Consider the case � = 1. Then J1 J�
1 = D1W1W�

1 D1 = σ 2
w,1D

2
1. Then Sξ�

(z) =
σ−2

w,1Sν1(z).
Assume that (5.1) holds for an � ≥ 1. Consider the case � + 1. By Proposition 4.2,

W�
�+1W�+1 = σ 2

w,�+1 I and the tracial condition,

Sξ�+1(z) = 1

σ 2
w,�+1

Sξ�
(z)Sν�+1(z).

The assertion holds by induction. ��
Corollary 5.1 is a resolution of an unproven result in [18], and it enables us to compute

the deep limit SξL (z) as L → ∞.

5.2. Fisher information matrix and training dynamics. We focus on the the Fisher in-
formation matrix (FIM) for supervised learning with a mean squared error (MSE) loss
[9,15,19]. Let us summarize its definition and basic properties. Given x ∈ R

N and
parameters θ = (W1, . . . ,W�), we consider a Gaussian probability model

pθ (y|x) = 1√
2π

exp (−L ( fθ (x) − y)) (y ∈ R
N ).
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Now, the normalized MSE loss L is given by L(u) = ||u||22/2N , for u ∈ R
N , and || · ||2

is the Euclidean norm. In addition, consider a probability density function p(x) and a
joint density pθ (x, y) = pθ (y|x)p(x). Then, the FIM is defined by

I(θ) =
∫

[∇θ log pθ (x, y)
�∇θ log pθ (x, y)]pθ (x, y)dxdy,

which is an LN 2 × LN 2 matrix. As it is known in information geometry [1], the FIM
works as a degenerate metric on the parameter space: the Kullback–Leibler divergence
between the statistical model and itself perturbed by an infinitesimal shift dθ is given
by DKL(pθ ||pθ+dθ ) = dθ�I(θ)dθ. More intuitive understanding is that we can write
the Hessian of the loss as

(
∂

∂θ

)2
Ex,y[L( fθ (x) − y)] = I(θ) + Ex,y[( fθ (x) − y)�

(
∂

∂θ

)2
fθ (x)].

Hence the FIM also characterizes the local geometry of the loss surface around a global
minimum with a zero training error. In addition, we regard p(x) as an empirical distri-
bution of input samples and then the FIM is usually referred to as the empirical FIM
[9,11,19].

The conditional FIM is used [7] for the analysis of training dynamics of DNNs
achieving dynamical isometry. Now, we denote by I(θ |x) the conditional FIM (or FIM
per sample) given a single input x defined by

I(θ |x) =
∫

[∇θ log pθ (y|x)�∇θ log pθ (y|x)]pθ (y|x)dy.

Clearly,
∫ I(θ |x)p(x)dx = I(θ). Since pθ (y|x) is Gaussian, we have

I(θ |x) = 1

N
J�
θ Jθ .

Now, in order to ignore I(θ |x)’s trivial eigenvalue zero, consider a dual of I(θ |x) given
by

J (x, θ) = 1

N
Jθ J

�
θ ,

which is an N ×N matrix. Except for trivial zero eigenvalues, I(θ |x) andJ (x, θ) share
the same eigenvalues as follows:

μI (θ |x) = LN 2 − N

LN 2 δ0 +
1

L
μJ (x,θ),

where μA is the spectral distribution for a matrix A. Now, for simplicity, consider the
case bias parameters are zero. Then it holds that

J (x, θ) = DLHLDL ,

where

HL =
L∑

�=1

q̂�−1δL→�δ
�
L→�,
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q̂� = ||x�||22/N ,

δL→� = ∂hL

∂h�
.

Since δL→� = WLDL−1δL−1→� (� < L), it holds that

H�+1 = q̂� I +W�+1D�H�D�W
�
�+1,

where I is the identity matrix. Recall that ν� is the limit spectral distribution of D2
� as

d → ∞ for each �.

Corollary 5.2. Letμ� be the limit spectral distribution as N → ∞ of H� (� = 1, . . . , L).
Set q� = limN→∞ q̂�. Then for each � = 1, . . . , L it holds that

μ�+1 = (q� + σ 2
�+1·)∗(μ� � ν�), (5.2)

where f∗μ is the pushforward of a measure μ by a measurable map f .

Proof. The assertion directly follows from Proposition 4.3 and by induction. ��
[7] uses the recursive equation (5.2) to compute the maximum value of the limit

spectrum of HL .

6. Discussion

We have proved the asymptotic freeness of MLPs with Haar orthogonal initialization by
focusing on the invariance of the MLP. [6] shows the asymptotic freeness of MLP with
Gaussian initialization andReLUactivation. The proof relies on the observation that each
ReLU’s derivative can be replaced with independent Bernoulli from weight matrices.
On the contrary, our proof builds on the observation that weight matrices are replaced
with independent randommatrices from activations’ Jacobians based onHaar orthogonal
randommatrices’ invariance. In addition, [30,31] proves the asymptotic freeness ofMLP
with Gaussian initialization, which relies on Gaussianity. Since our proof relies on the
orthogonal invariance of weight matrices, our proof covers and generalizes the GOE
case.

It is straightforward to extend our results including Theorem 4.1 to MLPs with Haar
unitary weights since the proof basely relies on the invariance of weight matrices (see
Lemma 3.1) and the cut off (see Lemma 3.3).We expect that our theorem can be extended
to Haar permutation weights since Haar distributed random permutation matrices and
independent randommatrices are asymptotic free [2]. Moreover, we expect that it is pos-
sible to extend the principal results and coverMLPswith orthogonal/unitary/permutation
invariant random weights since each proof is based on the invariance of MLP.

The neural tangent kernel theory [8] describes the learning dynamics of DNNs when
the dimension of the last layer is relatively smaller than the hidden layers. In our analysis,
we do not consider such a case and instead consider the case where the last layer has the
same order dimension as the hidden layers.
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