Under review as a conference paper at ICLR 2026

DOMAIN-SPECIALIZED TREE OF THOUGHT THROUGH
PLUG-AND-PLAY PREDICTORS

Anonymous authors
Paper under double-blind review

ABSTRACT

While Large Language Models (LLMs) have advanced complex reasoning, promi-
nent methods like the Tree of Thoughts (ToT) framework face a critical trade-off
between exploration depth and computational efficiency. Existing ToT imple-
mentations often rely on heavyweight LLM-based self-evaluation or rigid heuris-
tics for branch pruning, making them prohibitively expensive and inflexible for
broad application. To address this, we introduce DST, an adaptable, plug-and-
play predictor that serves as a lightweight, supervised heuristic to guide the ToT
search process. Our predictor enables dynamic, context-aware pruning, allow-
ing the search to proceed with near-greedy efficiency on simpler reasoning steps
while adaptively expanding the search beam only when encountering uncertainty
or task complexity. We evaluate our approach on a diverse suite of benchmarks
spanning mathematical reasoning, general reasoning, and complex logical reason-
ing. Experimental results demonstrate that our method achieves accuracy com-
petitive with or superior to strong baselines, including standard ToT, while re-
ducing computational overhead by 26-75%. Our work effectively resolves the
accuracy-efficiency trade-off in tree-based reasoning, transforming ToT from a
resource-intensive technique into a scalable and practical paradigm for complex
problem-solving in LLMs.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable reasoning capabilities across di-
verse domains, ranging from mathematics and programming to planning and scientific discovery.
By using chain-of-thought prompting (Wei et al., 2023)), tool use (Schick et al., 2023} |Gao et al.,
2025)), and multi-agent collaboration (Wu et al., [2023)), recent advances have pushed LLMs beyond
simple pattern matching toward complex problem solving. Despite this progress, reasoning with
LLMs remains imperfect. Models often produce incorrect intermediate steps, pursue unproductive
solution paths, or become trapped in lengthy reasoning chains (Zhang et al., 2023).

Several approaches have been proposed to improve LLM reasoning capability. For post-training
methods such as reinforcement learning with human feedback (Schulman et al., 2017} Rafailov
et al.| [2024; |Shao et al., |2024), models are optimized to better follow human preferences. While
effective, such approaches are computationally costly, requiring expensive fine-tuning runs. On
the other hand, test-time methods enhance reasoning without modifying model parameters. For
instance, the Tree of Thoughts (ToT) (Yao et al.| [2023) framework extends stepwise reasoning into
a tree search, where each partial reasoning step is assigned a score reflecting its promise toward
solving the task. The scores are used to determine which nodes to expand and which branches to
prune, allowing the model to concentrate its computation on the most promising reasoning paths.

A number of recent works have extended the Tree-of-Thoughts (ToT) paradigm|Yao et al.[(2023) by
incorporating different reasoning guidance. ProbTree|Cao et al.| (2023 employs probabilistic scor-
ing, while DPTS [Ding et al.|(2025)) leverages confidence estimates and AGoT [Pandey et al.| (2025)
adapts task-specific heuristics. Other variants introduce interactive designs, such as iToT Boyle et al.
(2024) with tool-cost awareness and MA-ToT [Haji et al.|(2024)) using validator agents. Preference-
based methods have also emerged, including BPP-Search [Wang et al.[(2025)) and CPO Zhang et al.
(2024b), as well as retrieval-augmented approaches like RATT Zhang et al.| (2024a).

Under review as a conference paper at ICLR 2026

Stepl: Tree-of-thought generation Step2: Predictor Training Step3: Runtime Prediction

P

kﬁ@ Fbomain—speciFic evaluator]
I v vy

1 1 0 1

O Node utility:
1. score of its leaves O
2. ..

Figure 1: Overview of DST.

. ! OA/ode state: !
Question ! 1. LLM Widden state !
_______ \5 2. consistency score !
Ground-truth \ : 3. .. : -
e e 1 | (% Predictor)
| |
I I J v
| 1 2 0.4
steps ! !
e : [%@; Predictor training] !
b |
| |
! ! P
CoT : | [@; Predictor]
[}
answers
I [} ‘ & [
: : 0.7 07 01
' T A A
| [} coe
| [}
| |

However, evaluating whether a partial chain is promising at test time is challenging. First, it must be
lightweight, since relying on repeated LLM self-evaluation is prohibitively expensive and introduces
significant computational overhead (Madaan et al., [2023)). Second, it should be easily adaptable
to new domains; methods that depend on manually crafted rules or rigid, task-specific verifiers
lack such flexibility and require extensive engineering efforts (Gao et al) [2023)). Finally, it must
effectively forecast the potential utility of partial reasoning chains. Prior work such as DPTS (Ding
et al.l [2025) relies on local confidence scores to guide parallel expansion. However, confidence
alone does not necessarily predict the future utility of a reasoning path, since confident steps may
still lead to hallucinations or unproductive exploration.

To address the above challenges, we propose DST, which extends ToT framework by introducing a
novel adaptable plug-and-play predictor that enables efficient control over the ToT search process.
As illustrated in the predictor serves as a heuristic, supervised scorer, making immedi-
ate, context-aware judgments for branch selection at each step in the search. Specifically, at each
search step, our predictor evaluates the initial generated thought and assigns it a confidence score. If
this score exceeds a predefined threshold, the system commits to this “good-enough” path greedily,
effectively behaving like a single-chain reasoner and avoiding the cost of generating further alterna-
tives. Conversely, if the score falls below the threshold, indicating uncertainty or a complex decision
point, the system dynamically expands the search to a full beam, preserving the robust exploration
and error-correction capabilities of traditional ToT.

We validate our approach on several reasoning challenges—including mathematical reasoning
(MATHS00 (Lightman et al.,[2023), GSM8K (Cobbe et al.,[2021), Minerva-Math (Lewkowycz et al.,
2022), SVAMP (Patel et al., 2021))), general reasoning (GPQA (Rein et al.,[2023))), and complex log-
ical reasoning (BBEH (Kazemi et al.,[2025)) using state-of-the-art LLMs. Results confirm that our
method achieves accuracy competitive with or superior to standard ToT baselines while reducing
token consumption by 26-75%. In summary, our work transforms ToT reasoning from an efficiency
bottleneck into a fast, widely deployable paradigm, making structured search feasible anywhere
LLM inference is used.

Key highlights of our approach:

* Efficiency. The predictor prunes unpromising branches during search, reducing token costs
by 26-75% while maintaining or even increasing accuracy on popular benchmarks.

* Plug-and-Play & Domain-General. The predictor is decoupled from the backbone LLM,
requiring only lightweight domain-specific training on a small dataset, making it easily
transferable across various domains such as math, general QA, and program synthesis.

Under review as a conference paper at ICLR 2026

» Adaptive search. DST dynamically adjusts its search breadth based on the predictor’s real-
time confidence.

» Test-Time Scalability. Our method drastically reduces the computational overhead of
tree-based reasoning at test-time. By replacing expensive LLM-based evaluators with a
lightweight predictor, we lower the token consumption per inference run by 26-75%.

2 BACKGROUND

LLMs have progressed significantly in their problem-solving capabilities through evolving prompt-
ing techniques. Input-output (I0) prompting serves as the simplest approach, directly mapping
inputs to outputs using few-shot or zero-shot examples. To enhance reasoning performance, CoT
prompting (Wei et al., 2023) introduces intermediate reasoning steps, enabling the model to decom-
pose complex problems. Building on this, Self-Consistency (CoT-SC) (Wang et al.| [2023)) samples
multiple CoT reasoning paths and selects the most frequent answer, improving reliability through
ensemble effects. Going beyond linear reasoning, ToT framework generalizes CoT by modeling
problem solving as a tree search over discrete thoughts, enabling deliberate planning, exploration
of alternative solutions, and backtracking. This structured reasoning approach significantly boosts
performance on tasks requiring strategy, foresight, and creativity.

Formally, the ToT framework models problem solving as a search over a tree 7. Given an input
problem x, ToT framework initializes a root node sg = (z,0) with an empty thought sequence.
During execution, the language model py dynamically expands the tree through iterative branching:
at each node s = (z, Z), the thought generator G(py, s, k) operates on the current state s’ = (z, Z)
to produce k candidate next thoughts {z(1), ..., 2(®)}, where each thought z(*) extends the existing
sequence Z to form a new state s} = (x, [Z; 2(¥)]. The state evaluator V (pg, s)) then scores these
new states, after which a search algorithm selects the most promising node for expansion based on
heuristic scores. This process continues until termination criteria are met, ultimately yielding an
optimal solution path Z* = (2§, ..., z}.) as a chain of thoughts from root to leaf.

The critical bottleneck in this workflow lies with the state evaluator. In the original ToT work, the
evaluator relies on expensive LLM self-reflection, which involves prompting the model to critique its
own outputs. This introduces substantial computational overhead, making the process impractical
for many applications. This motivates us to replace this costly evaluator with a lightweight, pre-
trained predictor that enables an adaptive search strategy.

Example. We illustrate our method with the following problem: “Janet has 5 apples. She buys 2
more boxes of apples, with 6 apples in each box. How many apples does she have in total?”

First, the thought generator produces candidate steps. Candidate (1): “First, calculate the total
apples in the boxes. 2 boxes * 6 apples/box = 12 apples.” Instead of asking the LLLM to reflect, our
predictor instantly analyzes key characteristics of this thought and assigns it a score of 0.91. Since
0.91 exceeds our predefined threshold (7 = 0.7), the system triggers a shortcut. It immediately
accepts this step and proceeds to the next depth, skipping the generation and evaluation of any
alternative candidates for this step. The process at this node becomes as efficient as a single greedy
generation. Now, consider a more ambiguous step where the predictor is less certain. The system
generates the first candidate: “Calculate 2 times 6...” with predicated score 0.65, which is below
the threshold 7 = 0.7, so the system cannot take the shortcut, it must continue exploring. Then it
generates the next candidate “The total is 5 + 2 * 6...” — with predicted score 0.62. It continues
this process. If none of the candidates met the shortcut criterion, DST reverts to a full-beam search
mode. It collects all generated candidates and expand them in parallel in the next step.

This adaptive mechanism stands in stark contrast to baselines relying on LLM self-reflection, which
require generating verbose critiques for every candidate. Our predictor enables immediate, data-
driven decisions, maximizing efficiency by exiting early when confident, while retaining the ro-
bustness of a full tree search when uncertain. As demonstrated in this dynamic strategy
reduces computational overhead by 26-75% while maintaining or even improving solution accuracy.

Under review as a conference paper at ICLR 2026

3 METHOD

DST enhances LLM reasoning through guided search over a ToT framework. Our key innovation
is a lightweight runtime predictor that serves as an adaptive state evaluator V(pg, s(”)). The sys-
tem operates in two phases: (1) an efficient offline training phase where the predictor is trained on
a relatively small set of generated reasoning paths to assess thought quality, and (2) an online in-
ference phase where the predictor dynamically guides the LLM by pruning low-potential branches
and expanding promising thought sequences in real-time. This approach enables more efficient and
targeted problem-solving compared to conventional reasoning methods.

3.1 STATE DEFINITION

We formally define the state by extending a reasoning node in the ToT as a 3-tuple s = (x5, Zs, ¢5),
where ¢; = (v, ¢s) is the feature vector encoding the node’s properties. The semantic representa-
tion v € R? is derived from the language model’s hidden states via

Vg = h(pe([xsv Zs]))
where py([z; Z]) denotes the forward pass of the LLM on the concatenated input and reasoning path,
and h(-) extracts the hidden state (e.g., via pooling or [CLS] token embedding). The consistency
score ¢ measures the node’s alignment with its reasoning history by computing the average similarity

between v(s) and the embeddings of its ancestor states A, = {s1, ..., si} along the path from the
root:)
s = —— Z sim(vg, vs,)
‘Aé| s;€A

where sim(-, -) is defined using cosine similarity. This feature operationalizes cognitive coherence,
helping the predictor identify and penalize logically disjointed reasoning paths. Together, these
features provide the predictor with a comprehensive real-time signal about the semantic content and
logical integrity of a reasoning step. Noted that computational cost is not treated as an input feature.
Instead, we incentivize efficiency directly within the predictor’s training objective. As detailed in
the ground-truth scores assigned to nodes are recursively discounted by a factor ~.
This implicitly teaches the predictor to favor shorter, more direct paths to a correct solution, as
deeper nodes are inherently assigned lower maximum scores. This design embeds a preference for
efficiency into the learned value function itself, rather than relying on it as an explicit input feature.

This feature design allows the predictor to evaluate the intrinsic quality of a reasoning state. The
semantic vectors v target semantic fidelity, capturing nuanced contextual meaning, while the con-
sistency score ¢, enforces logical integrity by penalizing breaks in the reasoning flow.

3.2 TRAINING DOMAIN-SPECIALIZED PREDICTOR

Data collection. A key advantage of our approach is the lightweight nature of the predictor’s train-
ing. A central challenge in enhancing reasoning is the difficulty of defining a reward signal for each
intermediate thought. Our primary contribution in this area is a process that automatically labels
the reward for each node in the thought tree, transforming raw reasoning paths into quantifiable
supervision signals. This process, formalized in[I] is designed to efficiently generate a high-quality
training set from a relatively small number of initial problems (the specific data splits are detailed
in[Appendix B)). The generation of this training data follows a structured three-phase approach: (1)
breadth-first tree construction to explore the solution space, (2) leaf node verification to establish
ground-truth outcomes, and (3) recursive score propagation to assign credit to intermediate steps.

First, the breadth-first tree construction phase initiates with the input question as the root node,
progressively expanding the reasoning space through systematic exploration. At each non-terminal
node, the language model generates k potential next steps. Each step is simply formed by gener-
ating text until a specific stop criterion is encountered (such as text “#step”). During generation,
the algorithm captures the contextual hidden states from the transformer, which form the basis for
the feature vector ¢s. As defined previously, this vector includes a semantic representation v de-
rived from these hidden states and a consistency score cs measuring alignment with the reasoning
path. This provides a rich, quantitative signal for the predictor to learn from. The queue-based im-
plementation maintains balanced depth exploration, preventing the path bias inherent in depth-first
approaches while ensuring comprehensive coverage of potential solution trajectories.

Under review as a conference paper at ICLR 2026

Algorithm 1 Training Data Collection for Predictor

Require: LLM py, Input z, max depth dmq., branching factor k, discount factor
Ensure: Training set D
1: Initialize root node with state so < (x, ®, null)
2: Initialize empty tree 7 < {so}
3: Initialize queue @ < [so]
4: Initialize training set D < ()
5: while @ is not empty do > Tree Construction
6: s < @Q.dequeue()
7 if depth(s) > dimas then
8
9

Continue

: end if
10: Generate k thoughts {z(l) 2B~ pe(s)
11: for each candidate 2* do
12: Construct new node with state s’ < (x, Zs U {2V}, ¢por)
13: Compute representation ¢/ <— [Vs; Cs]
14: T .add(s")
15: Q.enqueue(s’)
16: end for

17: end while

18: L« {s € T |isleaf(s)}

19: for each s; € L do > Chain-of-Thought Evaluation
20: yi < I(is_correct(s;))

21: end for

22: for each s, € postorder(7) do > Score Propagation
23: Yn 7 - \S%\ D ose s, Ys > Apply discounted average of children scores
24: D+ DU{(¢s,,yn)}

25: end for

26: return D

Second, the leaf nodes verification phase subjects all terminal nodes to rigorous, domain-
appropriate validation. For closed-domain problems with unambiguous solutions, we employ pattern
matching against canonical answer formats. Subjective or open-ended tasks utilize natural language
inference models to assess answer validity based on semantic entailment. Mathematical reasoning
branches leverage symbolic execution engines for programmatic verification. Each terminal node s;
receives a definitive quality assessment y; € 0, 1, establishing unambiguous ground truth labels that
anchor the subsequent scoring framework. This binary labeling provides the foundational signal for
the recursive score propagation process.

Finally, the score propagation phase assigns a quality score to each non-terminal node in a bottom-
up manner. This process begins by calculating the depth of each node, after which nodes are pro-
cessed in descending order of depth. For any internal node s;, its score y; is formulated as the
average of its children’s scores, scaled by a discount factor vy (e.g., 0.99). This is formalized by the
equation:

yi = |5| > s ()

seS.

where S, denotes the set of all direct children of node s; and ys denotes their scores. This formu-
lation serves two primary functions. First, by averaging the scores of its children, it synthesizes the
expected quality of all paths originating from the node, preventing the overestimation of a node’s
potential due to a few outlier high-quality paths. Second, the discount factor v imposes a penalty
on longer reasoning chains, thereby incentivizing the discovery of more concise and efficient so-
lutions. Through this recursive score assignment, each internal node’s value comes to accurately
reflect its aggregate potential for guiding the model toward a valid conclusion, providing a robust
and information-rich supervision signal for training the predictor.

The resulting training set D = {¢, y} comprises feature-label pairs spanning all tree nodes, captur-
ing the complete spectrum of reasoning quality from fundamental errors to optimal solution paths.
This supervision signal enables the predictor to learn nuanced quality estimation that assesses the

Under review as a conference paper at ICLR 2026

Algorithm 2 ToT with DST for prunning

Require: Trained predictor Predict, input x, beam width b, max depth diq., threshold 7
Ensure: Chain of Thought 7* or)

1: Initialize beam B < [root(z)]

2: Initialize CoT 7* «+ ()

3: fort = 1to dpmaz do

4 Initialize next beam B’ < 0

5 for each node s € B do

6: Generate the first thought 2 ~ pg(-|s)

7.

8

s« create_node(s, z'!)
¢s/ <~ [Vs’§ Cs/]

9: ps' < Predict(¢s) > Predict correctness of the first thought
10: if ps» > 7 then > Early-exit: first thought is good enough
11: B« B U{s'}

12: continue > Prune all other siblings and move to the next node in B
13: end if

14: Generate k — 1 more thoughts {z(®, ... 2"} ~ pg(:|s) > Fallback: first thought was not good
15: Z+ {2, 2

16: for cach thought 2V € Z do

17: Snew ¢— create_node(s, z(i))

18: ¢Snew — [Vsnew; cSnew}

19: Dspew < Predict(ds,.,)

20: if ps,., > 7 then

21: B/ — B/ U {Snew}

22: end if

23: end for

24: end for

25: B« top_b(B') > Select top b nodes by score p
26: if B = () then

27: return () > No valid paths remain
28: end if

29: end for

30: Let s* be the node in B with the highest score ps

31: ©* « path_of(s) > Select the best leaf node using stored scores

32: return 7*

relative utility of partial solutions while naturally handling class imbalance through score propaga-
tion.

3.3 PREDICTOR AS RUNTIME EVALUATOR

During the inference phase, we leverage the trained predictor to dynamically control the search
strategy, as formalized in Algorithm[2] The process is centered on a predict-first-thought mechanism
that balances greedy efficiency with robust beam-search exploration. During each node expansion,
the system first generates a single candidate thought z(1). The predictor immediately evaluates this
thought, yielding a quality score p. This score is then compared against a predefined confidence
threshold 7, which acts as a dynamic switch for the search strategy. If the score is high, the system
accepts this thought, prunes all potential siblings, and proceeds with single-chain efficiency. If the
score is low, indicating uncertainty, the system generates the remaining b — 1 candidate thoughts to
complete a full beam of size b. All candidates, including those with scores below 7, are added to a
pool for ranking.

After expanding all nodes at the current depth, the system selects the top-b candidates from the
collective pool to form the next beam. Finally, upon reaching the maximum depth d,;, ., the path 7*
terminating in the leaf node with the highest predictor score is chosen as the final output, ensuring
methodological consistency between search and selection.

Complexity analysis of pruning. The efficiency gain can be formally analyzed by considering the
search space complexity. In a standard ToT framework with a branching factor of k£ and a maximum
depth of d, the total number of nodes in the search tree grows exponentially, with a complexity of

Under review as a conference paper at ICLR 2026

O(k®). Our adaptive method operates at each depth level d with an effective beam width b, rf- The
value of b. ¢ is determined by the predictor’s confidence relative to the threshold 7. If the score of
the first generated thought s’ is higher than 7, the system prunes all other potential siblings. The
effective beam width at this step becomes b.¢y = 1. This occurs with probability P(p > 7). If the
score is low, the system falls back to generating the full beam of b candidates to ensure no promising
path is missed. The effective beam width at this step is b.yy = b. This occurs with probability
1 —P(p > 7). The expected effective beam width, E[b.], at any given step can be modeled as:

Elbessl=1-P(p>7)+b-(1-P(p > 1)) (2)
The overall search complexity is then determined by this expected effective branching factor at each
depth level. Assuming P(p > 7) is roughly constant, the complexity of our pruned search tree
becomes O(E[besf]?), which is significantly lower than the standard beam search complexity of
O(k%). This analysis shows that the efficiency gain is directly controlled by P(p > 7). When the
predictor is confident (high P(p > 7)), E[beys| approaches 1, and the search approximates CoT.
When the predictor is uncertain (low P(p > 7)), E[b.s] approaches b, and the inference retains the
robustness of full ToT search.

4 EXPERIMENT

4.1 MAIN RESULT

Experimental Setup. We evaluate our
approach using Qwen3-8B (Yang et al,|

2025), Llama3.1-8B-Instruct (Grattafiori et al., 5 ° B o

2024) and Gemma3-12B-it (Team et al, 3 ¥

2025) as the backbone model across diverse @ -10 o Ogg §MU « o B
benchmarks spanning mathematical reasoning % B8 o m ®

(GSMSK (Cobbe et all 2021), SVAMP (Patel S g Gmeffx = * gtod
et al) [2021), Minerva-math (Cewkowycz & gy) “s:s ToT
et all 2022), MATH-500 (Lightman et al| £ B 2 e DPTS
2023)), general reasoning (GPQA (Rein et al., 2 -3 ® B o

2023)), and complex logical reasoning tasks ¢ s R Mgfv’:r:s_as
(BIG-Bench Extra Hard (Kazemi et al}, 2023) £ _,, . # Llamas.l
subtasks: BoardgameQA (Kazemi et al.,[2023), 5] B \Gemma3

Boolean Expressions, Causal Understand- 2 4 6 8 0012

ing (Nie et all, 2023} [Kiciman et al, [2024), Accuracy Gain (Percentage Points)
and Geometric Shapes (Suzgun et al.| 2022)).
These benchmarks were specifically selected
because they are reasonably complex, often
requiring multi-step planning and exploration
that challenge simpler single-path reasoning
methods, making them ideal for assessing the
efficacy of non-trivial ToT frameworks. We
compare against three key baseline approaches: (1) Chain-of-Thought prompting (Original CoT),
(2) standard Tree-of-Thoughts with LLM-based evaluation (ToT), and (3) Dynamic Parallel Tree
Search (DPTS), a recent adaptive ToT variant.

Figure 2: Accuracy vs. Efficiency Trade-off. Each
point represents the performance of a method on a
specific task and model, plotted as accuracy gain
(percentage points) versus efficiency gain (per-
centage cost reduction) relative to CoT.

Performance is measured across two primary dimensions: solution accuracy (percentage of correctly
solved problems) and computational efficiency (average token consumption per problem). All ex-
periments use identical hardware configurations and temperature settings to ensure fair comparison
across methods. Detailed experiment settings can be found in[Appendix B}

Efficiency-Accuracy Trade-off Achievement. The trade-off between accuracy and efficiency is
visualized in [Figure 2] with detailed results provided in[Table 1| The figure plots the accuracy gain
over CoT against the corresponding change in computational cost. Our method consistently popu-
lates the upper region of the plot, demonstrating a superior efficiency-accuracy frontier compared
to standard ToT and DPTS. This illustrates our method’s ability to achieve substantial accuracy im-
provements without the excessive computational overhead typical of other tree-search methods. A
detailed breakdown across task categories reveals the robustness of this behavior.

Under review as a conference paper at ICLR 2026

Table 1: Comparison of Tree-of-Thought reasoning methods. Best performance for each metric
(highest accuracy, lowest cost) is shown in bold. Results are relative improvements over CoT.

(a) Part I: Mathematical Reasoning (GSM8K, SVAMP, Minerva, MATH-500).

GSMSK SVAMP Minerva MATH-500
Acct Cost] Acct Cost] Acct Cost] AcctT Cost

CoT 89.09 799.7 75776 2125 26.80 3320 92.05 2680
ToT +3.69 +3175 +1.35 +3903 +3.08 +5808 +2.15 +3488

Model Method

Qwen3-8B hbrg 1153 42670 +0.92 42855 +2.17 +4540 +2.50 +2699
DST 4335 +192.3 +1.48 +2365 +4.38 +1776 +2.12 +762
CoT 8752 817 7621 2257 2505 3416 9355 2783
Lomazy ToT 4336 +3033 +1.60 +4204 12,68 +6530 +2.16 +3869

DPTS +1.72 +2506 +0.98 +3049 +1.88 +4839 +1.87 +2924
DST +2.65 +241 +1.90 +902 +4.60 +1394 +1.73 +774

CoT 9321 850 79.53 2504 31.40 3801 95.52 3107
G 5 ToT 4294 43650 +1.64 +4702 +3.13 47222 +2.03 +4358
emmas pprs 4133 +3050 +0.91 +3597 +1.86 +5370 +1.45 +3359

DST +2.63 +400 +1.80 +1111 +4.26 +1700 +1.58 +1045

(b) Part II: General and Logical Reasoning (GPQA, BBEH).

GPQA BoardgameQA Boolean Causal Geo
Acct Cost] Acct Cost] Acct Cost] Acct Costl Acct Cost]

CoT 44.80 4089 34.00 4425 24.00 4977 42.50 4406 45.00 3468
ToT +3.76 +8875 +8.00 +14220 +4.00 +11751 +4.00 +11212 +6.00 +8984

Model Method

Qwen3 DpTS 4327 +7001 48.00 49953 +3.00 +9955 +2.50 48627 +3.00 +6299
DST +4.90 +4141 +12.00 +4560 +3.00 +5953 +3.50 +5044 +4.00 +4994
CoT 4406 4156 31.50 4501 18.00 5055 37.00 4458 2550 3556
Lamazg ToT #375 48678 +10.00 +15004 +6.00 +12450 +5.00 +10749 +10.00 +8648

DPTS +3.14 46892 4950 +9604 +5.00 +9452 +4.00 +8343 +7.50 +6050
DST +4.48 +3994 +14.00 +4307 +4.50 +5752 +6.50 +4786 +8.50 +4601

CoT 4813 4926 33.00 5311 2550 6010 49.00 5257 32.50 4115
G 5 ToT +4.10 +10602 +6.00 +16924 +4.50 +13817 +1.50 +13319 +6.00 +10762
eMmas pprs 1344 +8336 +3.50 +11701 +2.00 +11501 +0.50 +10258 +3.50 +7437

DST +5.37 +4940 +5.00 +5218 +3.50 +6874 +3.00 +5825 +550 +5809

On mathematical reasoning tasks, DST provides a highly cost-effective path to performance gains.
For instance, on the challenging GSM8K benchmark, DST consistently matches or closely ap-
proaches the accuracy of ToT while requiring only about a quarter of the additional token overhead.
This efficiency is critical for deploying advanced mathematical reasoning at scale. In the domain
of general and logical reasoning, DST’s advantages become even more pronounced. On complex
benchmarks like GPQA and BoardgameQA, our method frequently outperforms ToT not only in
efficiency but also in absolute accuracy. For example, using the Llama3.1 model on BoardgameQA,
DST achieves a remarkable +14.00% accuracy improvement over CoT, significantly surpassing
ToT’s +10.00% gain, yet it does so while consuming less than one-third of the tokens. This high-
lights DST’s capability to navigate complex search spaces more effectively than its expensive coun-
terparts.

A key observation is the consistency of our method’s benefits across all three backbone models:
Qwen3, Llama3.1, and Gemma3. The core advantage, substantial efficiency gains for a minimal
or even positive impact on accuracy, is universal. Whether on Qwen3, Llama3.1, or the more ca-
pable Gemma3, our approach consistently delivers token savings in the 26-75% range compared to
standard ToT, validating the robustness of our predictor-guided pruning strategy. The universal and

Under review as a conference paper at ICLR 2026

Table 2: Impact of State Feature Components on GSM8K and GPQA. Best performance for each
metric (highest accuracy, lowest token cost) is shown in bold.

Method GSMSK GPQA

Accuracy (%) Avg. Tokens Accuracy (%) Avg. Tokens
DST 92.4 992 49.7 8230
DST w/o ¢, (semantics only) 90.1 1150 47.0 8500
DST w/o v, (consistency only) 85.7 1300 423 9800

dramatic reduction in computational cost makes our method a more practical and scalable choice
across all tested models and tasks.

4.2 ABLATION STUDY

4.2.1 IMPACT OF STATE FEATURE COMPONENTS

Experimental Setup. The experiment begins with our full model, DST-Full, as the baseline. We
then systematically disable each feature component to create two variants:

* w/o c4: The model operates without the consistency score, relying only on semantic repre-
sentation (vy).

* w/o v,: The model operates without the semantic representation (v), using only consis-
tency (cs).

The results in confirm that both feature components are vital. Removing the consistency
score (w/o c,) leads to a 2%-3% point accuracy drop and increased token usage, suggesting the
model explores less coherent paths. Removing the semantic vector (w/o v) is even more detrimen-
tal, causing a significant 5%-7% point accuracy loss, as the predictor loses its core understanding
of the reasoning content. The full model synergistically combines both signals for the best perfor-
mance.

4.2.2 SENSITIVITY TO HYPERPARAMETERS

We analyzed the model’s sensitivity to three key hyperparameters: beam width b, pruning threshold
7, and discount factor . Full details of this analysis, including figures, are provided in

Our experiments reveal that a modest beam width (b = 3) substantially improves accuracy over a
greedy search (b = 1), but further increases yield diminishing returns at a high computational cost,
which motivates our adaptive search strategy. The pruning threshold 7 is shown to effectively control
the accuracy-efficiency trade-off, with performance gains saturating at higher 7 values. Finally, we
determined that a slight penalty against verbosity is optimal, with a discount factor of v = 0.99
outperforming both unconstrained generation v = 1.00 and overly aggressive penalties. These
findings validate our default hyperparameter settings.

5 CONCLUSION

In this work, we introduced the Domain-Specialized Tree of Thought (DST) framework to resolve
the critical efficiency bottleneck in tree-based reasoning. Our core innovation is a lightweight, plug-
and-play predictor that is domain-specialized through focused training on a small set of task-specific
examples. This predictor replaces the prohibitively expensive, recursive LLM-based evaluators used
in standard ToT, enabling an adaptive search that prunes unpromising paths with minimal compu-
tational cost. This approach directly translates into significant resource savings, yielding a 26-75%
reduction in token consumption while maintaining or even improving accuracy over baseline meth-
ods. By decoupling the search heuristic from the main LLM, DST transforms structured reasoning
from a resource-intensive technique into a scalable and practical paradigm, making sophisticated
problem-solving economically viable for real-world applications where computational efficiency is
a primary constraint.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

All authors of this paper adhere to the ICLR Code of Ethics. Our work is primarily algorithmic,
focusing on enhancing the computational efficiency of reasoning systems in Large Language Models
(LLMs). The research relies on publicly available datasets and open-source pre-trained models.

We recognize that technologies improving LLM reasoning could be applied for malicious purposes,
arisk inherent to progress in this field. Our primary objective is to advance the scientific understand-
ing of efficient, structured reasoning and make powerful Al techniques more accessible and scalable.
A significant positive ethical implication of our work is the substantial reduction in computational
resources required for complex reasoning tasks. Our method lowers the financial and environmental
costs associated with running large models, thereby promoting more equitable access to advanced
Al capabilities.

The foundational models (e.g., Qwen3, Llama3.1, Gemma3) and datasets (e.g., GSM8K, GPQA)
used in our experiments may contain existing societal biases. Our proposed method, DST, does
not explicitly mitigate these biases but rather focuses on the structural efficiency of the reasoning
process. The potential for the predictor to inadvertently learn or amplify these biases is a limitation
and an important direction for future research. We believe the benefits of enabling more efficient
and scalable reasoning outweigh the immediate risks, which are common to most research in this
domain.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our findings, we have provided a detailed account of our method-
ology, experimental setup, and results. The core algorithms for training the DST predictor and
performing guided tree search are formally described in Section 3, with specific pseudocode in Al-
gorithm 1 and Algorithm 2. All datasets used in our experiments—including GSM8K, SVAMP,
MATH-500, GPQA, and subsets of BBEH—are standard public benchmarks; further details are
available in Appendix A.

Our experimental setup, including the specific backbone models (Qwen3-8B, Llama3.1-8B-Instruct,
Gemma3-12B-it), baselines, and evaluation metrics, is described in Section 4.1. Comprehensive
details regarding hyperparameters and hardware configurations are provided in Appendix B. We in-
clude extensive ablation studies in Section 4.2 to analyze the impact of individual model components
and key hyperparameters such as beam width, pruning threshold, and the discount factor, with results
visualized in Figures 2, 3, and 4. To facilitate direct replication and further research, we make our
source code, including scripts for predictor training, data generation, and evaluation, publicly avail-
able upon acceptance at https://anonymous.4open.science/r/CoTPruning—2308.

REFERENCES

Alan Boyle, Isha Gupta, Sebastian Honig, Lukas Mautner, Kenza Amara, Furui Cheng, and Men-
natallah El-Assady. iToT: An Interactive System for Customized Tree-of-Thought Generation,
August 2024.

Shulin Cao, Jiajie Zhang, Jiaxin Shi, Xin Lv, Zijun Yao, Qi Tian, Juanzi Li, and Lei Hou. Probabilis-
tic Tree-of-thought Reasoning for Answering Knowledge-intensive Complex Questions, Novem-
ber 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training Verifiers to Solve Math Word Problems, November 2021.

Yifu Ding, Wentao Jiang, Shunyu Liu, Yongcheng Jing, Jinyang Guo, Yingjie Wang, Jing Zhang,
Zengmao Wang, Ziwei Liu, Bo Du, Xianglong Liu, and Dacheng Tao. Dynamic Parallel Tree
Search for Efficient LLM Reasoning, February 2025.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. PAL: Program-aided Language Models, January 2023.

10

https://anonymous.4open.science/r/CoTPruning-2308

Under review as a conference paper at ICLR 2026

Xuangqi Gao, Siyi Xie, Juan Zhai, Shqing Ma, and Chao Shen. MCP-RADAR: A Multi-Dimensional
Benchmark for Evaluating Tool Use Capabilities in Large Language Models, May 2025.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
Guzmén, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
soo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala,
Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren
Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Celebi, Patrick Alrassy, Pengchuan
Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng
Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vitor Albiero, Vladan Petrovic, Weiwei
Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,
Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein,
Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Mon-
talvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia
Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide
Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smoth-
ers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,
Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia

11

Under review as a conference paper at ICLR 2026

Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-
son Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,
Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa,
Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan
Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,
Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
driguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin
Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,
Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
Shishir Patil, Shiva Shankar, Shugiang Zhang, Shugiang Zhang, Sinong Wang, Sneha Agarwal,
Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj
Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Kumar,
Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li,
Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaojian Wu,
Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi,
Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen
Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen,
Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The Llama 3 Herd of Models, November 2024. URL
http://arxiv.org/abs/2407.21783. arXiv:2407.21783 [cs].

Fatemeh Haji, Mazal Bethany, Maryam Tabar, Jason Chiang, Anthony Rios, and Peyman Najafirad.
Improving LLM Reasoning with Multi-Agent Tree-of-Thought Validator Agent, November 2024.

Mehran Kazemi, Quan Yuan, Deepti Bhatia, Najoung Kim, Xin Xu, Vaiva Imbrasaite, and Deepak
Ramachandran. BoardgameQA: A Dataset for Natural Language Reasoning with Contradictory
Information, June 2023.

Mehran Kazemi, Bahare Fatemi, Hritik Bansal, John Palowitch, Chrysovalantis Anastasiou, San-
ket Vaibhav Mehta, Lalit K. Jain, Virginia Aglietti, Disha Jindal, Peter Chen, Nishanth Dikkala,
Gladys Tyen, Xin Liu, Uri Shalit, Silvia Chiappa, Kate Olszewska, Yi Tay, Vinh Q. Tran, Quoc V.
Le, and Orhan Firat. BIG-Bench Extra Hard, May 2025.

Emre Kiciman, Robert Ness, Amit Sharma, and Chenhao Tan. Causal Reasoning and Large Lan-
guage Models: Opening a New Frontier for Causality, August 2024.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay
Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam
Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving Quantitative Reasoning Problems with
Language Models, July 2022.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s Verify Step by Step, May 2023.

12

http://arxiv.org/abs/2407.21783

Under review as a conference paper at ICLR 2026

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-Refine:
Iterative Refinement with Self-Feedback, May 2023.

Allen Nie, Yuhui Zhang, Atharva Amdekar, Chris Piech, Tatsunori Hashimoto, and Tobias Gersten-
berg. MoCa: Measuring Human-Language Model Alignment on Causal and Moral Judgment
Tasks, October 2023.

Tushar Pandey, Ara Ghukasyan, Oktay Goktas, and Santosh Kumar Radha. Adaptive Graph of
Thoughts: Test-Time Adaptive Reasoning Unifying Chain, Tree, and Graph Structures, February
2025.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are NLP Models really able to Solve Simple
Math Word Problems?, April 2021.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
Chelsea Finn. Direct Preference Optimization: Your Language Model is Secretly a Reward
Model, July 2024.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. GPQA: A Graduate-Level Google-Proof Q&A
Benchmark, November 2023.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language Models Can Teach Themselves
to Use Tools, February 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy
Optimization Algorithms, August 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. DeepSeekMath: Pushing the Limits of
Mathematical Reasoning in Open Language Models, April 2024.

Mirac Suzgun, Nathan Scales, Nathanael Schirli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi, Denny Zhou, and Jason Wei. Challenging BIG-
Bench Tasks and Whether Chain-of-Thought Can Solve Them, October 2022.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhe;j,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Riviere, Louis Rouillard, Thomas
Mesnard, Geoffrey Cideron, Jean-bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Cas-
bon, Etienne Pot, Ivo Penchev, Gaél Liu, Francesco Visin, Kathleen Kenealy, Lucas Beyer, Xiao-
hai Zhai, Anton Tsitsulin, Robert Busa-Fekete, Alex Feng, Noveen Sachdeva, Benjamin Coleman,
Yi Gao, Basil Mustafa, Iain Barr, Emilio Parisotto, David Tian, Matan Eyal, Colin Cherry, Jan-
Thorsten Peter, Danila Sinopalnikov, Surya Bhupatiraju, Rishabh Agarwal, Mehran Kazemi, Dan
Malkin, Ravin Kumar, David Vilar, Idan Brusilovsky, Jiaming Luo, Andreas Steiner, Abe Friesen,
Abhanshu Sharma, Abheesht Sharma, Adi Mayrav Gilady, Adrian Goedeckemeyer, Alaa Saade,
Alex Feng, Alexander Kolesnikov, Alexei Bendebury, Alvin Abdagic, Amit Vadi, Andras Gyorgy,
André Susano Pinto, Anil Das, Ankur Bapna, Antoine Miech, Antoine Yang, Antonia Paterson,
Ashish Shenoy, Ayan Chakrabarti, Bilal Piot, Bo Wu, Bobak Shahriari, Bryce Petrini, Charlie
Chen, Charline Le Lan, Christopher A. Choquette-Choo, C. J. Carey, Cormac Brick, Daniel
Deutsch, Danielle Eisenbud, Dee Cattle, Derek Cheng, Dimitris Paparas, Divyashree Shivaku-
mar Sreepathihalli, Doug Reid, Dustin Tran, Dustin Zelle, Eric Noland, Erwin Huizenga, Eu-
gene Kharitonov, Frederick Liu, Gagik Amirkhanyan, Glenn Cameron, Hadi Hashemi, Hanna
Klimczak-Plucifiska, Harman Singh, Harsh Mehta, Harshal Tushar Lehri, Hussein Hazimeh, Ian
Ballantyne, Idan Szpektor, Ivan Nardini, Jean Pouget-Abadie, Jetha Chan, Joe Stanton, John Wi-
eting, Jonathan Lai, Jordi Orbay, Joseph Fernandez, Josh Newlan, Ju-yeong Ji, Jyotinder Singh,
Kat Black, Kathy Yu, Kevin Hui, Kiran Vodrahalli, Klaus Greff, Linhai Qiu, Marcella Valentine,
Marina Coelho, Marvin Ritter, Matt Hoffman, Matthew Watson, Mayank Chaturvedi, Michael

13

Under review as a conference paper at ICLR 2026

Moynihan, Min Ma, Nabila Babar, Natasha Noy, Nathan Byrd, Nick Roy, Nikola Momchev, Ni-
lay Chauhan, Noveen Sachdeva, Oskar Bunyan, Pankil Botarda, Paul Caron, Paul Kishan Ruben-
stein, Phil Culliton, Philipp Schmid, Pier Giuseppe Sessa, Pingmei Xu, Piotr Stanczyk, Pouya
Tafti, Rakesh Shivanna, Renjie Wu, Renke Pan, Reza Rokni, Rob Willoughby, Rohith Vallu,
Ryan Mullins, Sammy Jerome, Sara Smoot, Sertan Girgin, Shariq Igbal, Shashir Reddy, Shruti
Sheth, Siim Pdder, Sijal Bhatnagar, Sindhu Raghuram Panyam, Sivan Eiger, Susan Zhang, Tianqi
Liu, Trevor Yacovone, Tyler Liechty, Uday Kalra, Utku Evci, Vedant Misra, Vincent Roseberry,
Vlad Feinberg, Vlad Kolesnikov, Woohyun Han, Woosuk Kwon, Xi Chen, Yinlam Chow, Yuvein
Zhu, Zichuan Wei, Zoltan Egyed, Victor Cotruta, Minh Giang, Phoebe Kirk, Anand Rao, Kat
Black, Nabila Babar, Jessica Lo, Erica Moreira, Luiz Gustavo Martins, Omar Sanseviero, Lucas
Gonzalez, Zach Gleicher, Tris Warkentin, Vahab Mirrokni, Evan Senter, Eli Collins, Joelle Bar-
ral, Zoubin Ghahramani, Raia Hadsell, Yossi Matias, D. Sculley, Slav Petrov, Noah Fiedel, Noam
Shazeer, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena
Buchatskaya, Jean-Baptiste Alayrac, Rohan Anil, Dmitry, Lepikhin, Sebastian Borgeaud, Olivier
Bachem, Armand Joulin, Alek Andreev, Cassidy Hardin, Robert Dadashi, and Léonard Hussenot.
Gemma 3 Technical Report, March 2025. URL http://arxiv.org/abs/2503.19786.
arXiv:2503.19786 [cs].

Teng Wang, Wing-Yin Yu, Zhenqi He, Zehua Liu, Hailei Gong, Han Wu, Xiongwei Han, Wei Shi,
Ruifeng She, Fangzhou Zhu, and Tao Zhong. BPP-Search: Enhancing Tree of Thought Reasoning
for Mathematical Modeling Problem Solving, May 2025.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. Self-Consistency Improves Chain of Thought Reasoning in Language
Models, March 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models,
January 2023.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W. White, Doug Burger,
and Chi Wang. AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation,
October 2023.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 Technical Report, May 2025. URL http://arxiv.org/abs/2505.09388.
arXiv:2505.09388 [cs].

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of Thoughts: Deliberate Problem Solving with Large Language Models. May
2023.

Jinghan Zhang, Xiting Wang, Weijieying Ren, Lu Jiang, Dongjie Wang, and Kunpeng Liu. RATT:
A Thought Structure for Coherent and Correct LLM Reasoning, December 2024a.

Muru Zhang, Ofir Press, William Merrill, Alisa Liu, and Noah A. Smith. How Language Model
Hallucinations Can Snowball, May 2023.

Xuan Zhang, Chao Du, Tianyu Pang, Qian Liu, Wei Gao, and Min Lin. Chain of Preference Opti-
mization: Improving Chain-of-Thought Reasoning in LLMs, October 2024b.

14

http://arxiv.org/abs/2503.19786
http://arxiv.org/abs/2505.09388

Under review as a conference paper at ICLR 2026

A DATASETS AND BASELINES

We utilized a diverse set of standard public benchmarks to rigorously evaluate the performance of
our method across different reasoning domains. The detailed information is as follows.

* GSMBSK is a famous dataset containing 1319 primary school level math problems. It is
widely recognized as a standard for gauging fundamental quantitative reasoning and the
ability to translate natural language descriptions into mathematical operations. It serves as
a baseline for core numerical and logical abilities.

* MATH-500 is a curated and high-quality subset of 500 challenging problems extracted
from the comprehensive MATH test set . Sourced from American high school mathemat-
ics competitions, this dataset covers seven distinct subjects, including algebra, geometry,
number theory, and precalculus, thereby demanding more sophisticated problem-solving
heuristics than simple arithmetic .

* Minerva-Math is a specialized collection designed for training and evaluating Al mod-
els on challenging mathematical reasoning tasks. It includes 272 problems ranging from
algebra and calculus to advanced proofs, testing the model’s ability to engage with more
abstract and rigorous mathematical thought processes.

* SVAMP is a dataset containing 1,000 math word problems designed to test a model’s ro-
bustness to linguistic variations. By systematically modifying existing problems from other
datasets, SVAMP assesses whether a model’s reasoning abilities are brittle and overly sen-
sitive to minor changes in sentence structure and question phrasing for one and two-step
arithmetic problems.

* GPQA is a challenging dataset of 448 graduate-level, multiple-choice questions in biology,
physics, and chemistry, authored by domain experts. The questions are designed to be
“Google-proof”, meaning they are difficult for non-experts to answer even with access to a
search engine, thus rigorously testing the expert-level knowledge and reasoning capabilities
of advanced Al systems.

* Big-bench Extra Hard is a challenging subset of the BIG-Bench suite, consisting of 23
tasks that were identified as being particularly difficult for contemporary language models
at the time of its release. These tasks are diverse and complex, including causal judgment,
formal fallacies, logical deduction, tracking shuffled objects, and navigating a grid. High
performance on this benchmark requires robust multi-step reasoning capabilities and the
ability to follow intricate instructions.

Our method was compared against three key baseline approaches to demonstrate its superior accu-
racy and efficiency.

* Chain-of-Thought (CoT) is a standard prompting technique that elicits reasoning by in-
structing the model to generate a series of intermediate steps that lead to a final answer. It
is often implemented using few-shot examples and serves as the foundational baseline for
reasoning performance.

* Tree-of-Thoughts (ToT) is a framework that models problem-solving as a tree search,
allowing the model to explore multiple reasoning paths concurrently. The standard imple-
mentation uses an expensive, LLM-based self-evaluation mechanism to score and prune
branches, representing a powerful but computationally intensive upper baseline.

* Dynamic Parallel Tree Search (DPTS) is a recent adaptive variant of ToT that uses local
confidence scores derived from the model’s own logits to guide a parallel, breadth-first
expansion. It aims to improve efficiency over the standard ToT by avoiding explicit LLM-
based evaluators but can be limited by the reliability of confidence scores as a predictor of
future success.

B EXPERIMENT DETAILS

This section outlines the specific configurations and hyperparameters used in our experiments to
ensure reproducibility.

15

Under review as a conference paper at ICLR 2026

Backbone Models. All experiments were conducted using the following publicly available back-
bone language models.

* Qwen3-8B is an 8-billion parameter model from the Qwen3 series developed by Alibaba
Cloud.

* Llama3.1-8B-Instruct is an 8-billion parameter, instruction-tuned model from the Llama
3.1 family developed by Meta.

* Gemma3-12B-it is a 12-billion parameter, instruction-tuned model from the Gemma 3
family developed by Google.

Hardware Configuration. To ensure a fair comparison across all methods and models, experi-
ments were performed on an identical hardware setup. We conduct our experiments on a server with
64 cores Intel Xeon 2.90GHz CPU, 256 GB RAM, and 4 NVIDIA 3090 GPUs running the Ubuntu
20.04 operating system.

Hyperparameter Settings. Consistent hyperparameters were used for all main experiments un-
less otherwise specified in the ablation studies.

DST Predictor Training. The DST predictor was implemented using a LightGBM classifier, a
highly efficient gradient boosting framework. This model was trained on features extracted from
successful and unsuccessful reasoning traces to learn how to distinguish between promising and
unpromising solution paths. Key hyperparameters for training included a learning rate of 0.05, 500
boosting estimators, and a maximum of 31 leaves per tree to control model complexity and prevent
overfitting on the training data.

Runtime Inference and Generation.

¢ Beam Width b. The default maximum beam width was set to 3, as this value was found to
offer a strong balance between performance and computational cost (see [Figure 3)).

* Pruning Threshold 7: The default pruning threshold was set to 0.7 for Math and GPQA and
0.8 for BBEH subtasks, based on the saturation point observed in our sensitivity analysis

(see|Figure 4).

* Discount Factor : The default score propagation discount factor was set to 0.99, which
empirically yielded the highest accuracy by balancing solution brevity and completeness

(see Figure 3).

» Temperature: A temperature setting of 0.7 was used for LLM generation across all exper-
iments. This non-zero value encourages the generation of diverse candidate thoughts at
each step of the tree search, which is essential for effective exploration.

C SENSITIVITY TO HYPERPARAMETERS

This section analyzes the model’s sensitivity to three critical hyperparameters: the beam width b, the
pruning threshold 7, and the score propagation discount factor ~.

Beam width b. To analyze the effect of exploration on solution quality, we vary the maximum
beam width b on the BBEH-BoardgameQA dataset. The results, shown in Figure [3] illustrate the
fundamental trade-off between the breadth of the search and the computational resources required.

The figure yields several key insights. First, the most significant performance gain occurs when
moving from a narrow beam to a moderate one. Increasing the beam width from b = 1 (34.0%
accuracy) to b = 3 (46.0% accuracy) provides a substantial 12-point absolute improvement. This
sharp increase underscores the critical importance of exploring multiple reasoning paths. A purely
greedy approach (b = 1) is highly susceptible to early-stage errors, and even a modest increase in
exploration breadth allows the model to circumvent these pitfalls and find more robust solutions.
Second, Beyond b = 3, the accuracy curve flattens significantly, demonstrating a clear pattern of
diminishing returns. The accuracy gain from b = 3 to b = 5 is only 0.8 points, and the gain from

16

Under review as a conference paper at ICLR 2026

h
118000
46 116000
44 114000
;\3 [V}
;42 —— Accuracy (%) —12000§
§ e Default (b=3) e
540 s+ Avg. Tokens 110000 &
g Z
38 18000
36 16000
34 14000

2 4 6 8 10 12
Beam Width (b)

Figure 3: Accuracy vs. Average Tokens as a function of Beam Width (b) on BBEH-BoardgameQA.
The red dot marks our default setting of b = 3, which offers a strong balance between performance
and cost.

b = 5to b = 12 is less than 0.5 points combined. In stark contrast, the average token consumption
(green dashed line) continues to increase in a near-linear fashion. This indicates that while some
exploration is crucial, an excessively wide beam provides minimal additional benefit and incurs
a prohibitive computational cost, likely due to the inherent reasoning limitations of the backbone
LLM.

This analysis confirms that a fixed, wide beam is computationally inefficient. It motivates our core
contribution: an adaptive search mechanism that can dynamically prune the search space, aiming to
achieve the accuracy of a wide-beam search with the efficiency of a much narrower one.

Pruning threshold 7. The plots for both GSM8K and BBEH-BoardgameQA (top row of Fig-
ure [4) demonstrate the fundamental trade-off governed by 7. As 7 increases from 0.5 to 0.95, we
consistently observe that accuracy improves while the average token consumption also rises. This
is because a higher threshold 7 imposes a stricter confidence requirement for taking a greedy short-
cut, forcing the system to default more frequently to the safer, full-beam exploration mode. This
increased exploration allows the model to recover from potential early-stage errors and discover
higher-quality reasoning paths, thus boosting accuracy at the expense of computational resources.
Crucially, both datasets exhibit a plateau effect, where accuracy gains diminish significantly at
higher 7 values. For GSM8K, accuracy saturates around 7 = 0.7, while for BBEH-BoardgameQA,
the curve flattens after 7 = 0.8. This indicates that beyond a certain point, the marginal benefit
of increased exploration is outweighed by the linear increase in token cost, converging towards the
performance of a non-adaptive, full beam search.

The “Shortcut Rate Comparison” plot (bottom row of Figure @) offers direct insight into the adaptive
behavior of our predictor. As theoretically predicted, the Shortcut Rate decreases monotonically as
T increases for both tasks. On GSMS8K, where reasoning paths are more uniform, the predictor
confidently identifies promising steps and triggers frequent shortcuts. On BBEH-BoardgameQA,
the inherent ambiguity of the task leads to lower predictor confidence, resulting in fewer shortcuts
and more cautious exploration. The experiments demonstrate that our adaptive pruning strategy,
controlled by a single parameter 7, allows practitioners to navigate the accuracy-efficiency Pareto
frontier and tailor the reasoning process to specific deployment constraints and task difficulties.

17

Under review as a conference paper at ICLR 2026

GSMB8K - Accuracy vs Tokens BBEH - Accuracy vs Tokens
—— Accuracy (%) _— T M T~ 4000 —— Accuracy (%) _— M T r
—— 7 e 18000
""" Avg. Tokens / 461 = Avg.Tokens —
92.5 / 7
// / 3500 ;
/ / 16000
92.0 / ; 3000 45 /
s / / 0 3 @
o / { c <& c
e / / g T y 14000 ©
o / 2500% 2 2
goLs / ° gaa . 2
2 / ? / g
g / e 20008 2 / 120002
/ . /) 4
91.0 / 43 y .
/ -~ 1500 /
/ / o 10000
90.5{ 1/ _— / L
/ 421+ o S
/ " 1000 VR
Ja— 8000
90.0
0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9
Shortcut Rate Comparison
T + GSM8K
80 . BBEH-BoardgameQA
+
9 60 +
2
©
o *.
240
€
o -
<
)
20 T
.
0
0.9

0.5 0.6 0.7 0.8

Figure 4: Top: Accuracy vs. Average Tokens as a function of Pruning Threshold (7) on GSM8K
(left) and BBEH-BoardgameQA (right). Bottom: The corresponding Shortcut Rate for each dataset.

GSM8K 51 GPQA
—— Accuracy (%) At —— Accuracy (%) e
92.4] -~ Avg. Tokens —\1,/ 980 501 - Avg. Tokens - 8200
- P e)
960 49 :

92.2 8000
S 9402 R48 2
> M > i
§920 9208 §47 780012
[} o (v} 2
O z O z
< < 46 <

91.8 900 7600

45
880
91.6 44 7400
860 ¥
0.96 0.98 1.00 43 0.90 0.92 0.94 0.96 0.98 1.00

Figure 5: Accuracy vs. Average Tokens as a function of Discount Factor () on GSMS8K (left) and
GPQA (right). The red marker indicates the optimal performance point, achieved at v = 0.99.

Discount factor v. To investigate how an inductive bias towards solution conciseness affects rea-
soning quality, we analyze the performance impact of the discount factor . This hyperparameter,
used during the score propagation phase of predictor training, discounts the value of longer reason-
ing chains. We systematically evaluate +y in the range [0.90, 1.00] on both the structured GSM8K

dataset and the more complex GPQA dataset.

The results, visualized in Figure 5] reveal a distinct and non-linear relationship, supporting our
hypothesis that an optimal balance exists between encouraging brevity and allowing for sufficient
reasoning depth. For both GSM8K and GPQA, the maximum accuracy is achieved precisely at
~v = 0.99, which we select as our default setting (indicated by the red marker). The performance
drop from v = 0.99 to v = 1.00 suggests that having no penalty against verbosity is suboptimal.
Allowing unconstrained path lengths may lead the model down convoluted or error-prone reasoning

18

Under review as a conference paper at ICLR 2026

trajectories. The significant accuracy loss at lower ~ values (e.g., 0.90) confirms that an overly
aggressive penalty is also detrimental, as it discourages the model from taking necessary, multi-step
reasoning actions, particularly on complex problems like GPQA.

Our empirical results validate that a carefully calibrated penalty against verbosity is superior to both
extreme brevity and unconstrained exploration, providing a principled foundation for our training
methodology.

D THE USE OF LARGE LANGUAGE MODELS

In the preparation of this manuscript, we utilized the Large Language Model (LLM) Gemini 2.5 Pro.
The role of the LLM was strictly limited to that of a general-purpose writing assistant. Specifically, it
was used for polishing the manuscript to improve grammar, refine phrasing, and enhance the overall
clarity and readability of the text. All core scientific contributions, including the research ideation,
methodological design, experimental setup, data analysis, and the initial drafting of all content,
were performed exclusively by the authors. The authors have carefully reviewed all suggested edits
and take full responsibility for the final content of this paper, including its scientific accuracy and
Integrity.

19

	Introduction
	Background
	Method
	State Definition
	Training Domain-Specialized Predictor
	Predictor as Runtime Evaluator

	Experiment
	Main Result
	Ablation Study
	Impact of State Feature Components
	Sensitivity to Hyperparameters

	Conclusion
	Datasets and Baselines
	Experiment details
	Sensitivity to Hyperparameters
	The Use of Large Language Models

