
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DOMAIN-SPECIALIZED TREE OF THOUGHT THROUGH
PLUG-AND-PLAY PREDICTORS

Anonymous authors
Paper under double-blind review

ABSTRACT

While Large Language Models (LLMs) have advanced complex reasoning, promi-
nent methods like the Tree of Thoughts (ToT) framework face a critical trade-off
between exploration depth and computational efficiency. Existing ToT imple-
mentations often rely on heavyweight LLM-based self-evaluation or rigid heuris-
tics for branch pruning, making them prohibitively expensive and inflexible for
broad application. To address this, we introduce DST, an adaptable, plug-and-
play predictor that serves as a lightweight, supervised heuristic to guide the ToT
search process. Our predictor enables dynamic, context-aware pruning, allow-
ing the search to proceed with near-greedy efficiency on simpler reasoning steps
while adaptively expanding the search beam only when encountering uncertainty
or task complexity. We evaluate our approach on a diverse suite of benchmarks
spanning mathematical reasoning, general reasoning, and complex logical reason-
ing. Experimental results demonstrate that our method achieves accuracy com-
petitive with or superior to strong baselines, including standard ToT, while re-
ducing computational overhead by 26-75%. Our work effectively resolves the
accuracy-efficiency trade-off in tree-based reasoning, transforming ToT from a
resource-intensive technique into a scalable and practical paradigm for complex
problem-solving in LLMs.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable reasoning capabilities across di-
verse domains, ranging from mathematics and programming to planning and scientific discovery.
By using chain-of-thought prompting (Wei et al., 2023), tool use (Schick et al., 2023; Gao et al.,
2025), and multi-agent collaboration (Wu et al., 2023), recent advances have pushed LLMs beyond
simple pattern matching toward complex problem solving. Despite this progress, reasoning with
LLMs remains imperfect. Models often produce incorrect intermediate steps, pursue unproductive
solution paths, or become trapped in lengthy reasoning chains (Zhang et al., 2023).

Several approaches have been proposed to improve LLM reasoning capability. For post-training
methods such as reinforcement learning with human feedback (Schulman et al., 2017; Rafailov
et al., 2024; Shao et al., 2024), models are optimized to better follow human preferences. While
effective, such approaches are computationally costly, requiring expensive fine-tuning runs. On
the other hand, test-time methods enhance reasoning without modifying model parameters. For
instance, the Tree of Thoughts (ToT) (Yao et al., 2023) framework extends stepwise reasoning into
a tree search, where each partial reasoning step is assigned a score reflecting its promise toward
solving the task. The scores are used to determine which nodes to expand and which branches to
prune, allowing the model to concentrate its computation on the most promising reasoning paths.

A number of recent works have extended the Tree-of-Thoughts (ToT) paradigm Yao et al. (2023) by
incorporating different reasoning guidance. ProbTree Cao et al. (2023) employs probabilistic scor-
ing, while DPTS Ding et al. (2025) leverages confidence estimates and AGoT Pandey et al. (2025)
adapts task-specific heuristics. Other variants introduce interactive designs, such as iToT Boyle et al.
(2024) with tool-cost awareness and MA-ToT Haji et al. (2024) using validator agents. Preference-
based methods have also emerged, including BPP-Search Wang et al. (2025) and CPO Zhang et al.
(2024b), as well as retrieval-augmented approaches like RATT Zhang et al. (2024a).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Overview of DST.

However, evaluating whether a partial chain is promising at test time is challenging. First, it must be
lightweight, since relying on repeated LLM self-evaluation is prohibitively expensive and introduces
significant computational overhead (Madaan et al., 2023). Second, it should be easily adaptable
to new domains; methods that depend on manually crafted rules or rigid, task-specific verifiers
lack such flexibility and require extensive engineering efforts (Gao et al., 2023). Finally, it must
effectively forecast the potential utility of partial reasoning chains. Prior work such as DPTS (Ding
et al., 2025) relies on local confidence scores to guide parallel expansion. However, confidence
alone does not necessarily predict the future utility of a reasoning path, since confident steps may
still lead to hallucinations or unproductive exploration.

To address the above challenges, we propose DST, which extends ToT framework by introducing a
novel adaptable plug-and-play predictor that enables efficient control over the ToT search process.
As illustrated in Figure 1, the predictor serves as a heuristic, supervised scorer, making immedi-
ate, context-aware judgments for branch selection at each step in the search. Specifically, at each
search step, our predictor evaluates the initial generated thought and assigns it a confidence score. If
this score exceeds a predefined threshold, the system commits to this “good-enough” path greedily,
effectively behaving like a single-chain reasoner and avoiding the cost of generating further alterna-
tives. Conversely, if the score falls below the threshold, indicating uncertainty or a complex decision
point, the system dynamically expands the search to a full beam, preserving the robust exploration
and error-correction capabilities of traditional ToT.

We validate our approach on several reasoning challenges—including mathematical reasoning
(MATH500 (Lightman et al., 2023), GSM8K (Cobbe et al., 2021), Minerva-Math (Lewkowycz et al.,
2022), SVAMP (Patel et al., 2021)), general reasoning (GPQA (Rein et al., 2023)), and complex log-
ical reasoning (BBEH (Kazemi et al., 2025)) using state-of-the-art LLMs. Results confirm that our
method achieves accuracy competitive with or superior to standard ToT baselines while reducing
token consumption by 26-75%. In summary, our work transforms ToT reasoning from an efficiency
bottleneck into a fast, widely deployable paradigm, making structured search feasible anywhere
LLM inference is used.

Key highlights of our approach:

• Efficiency. The predictor prunes unpromising branches during search, reducing token costs
by 26-75% while maintaining or even increasing accuracy on popular benchmarks.

• Plug-and-Play & Domain-General. The predictor is decoupled from the backbone LLM,
requiring only lightweight domain-specific training on a small dataset, making it easily
transferable across various domains such as math, general QA, and program synthesis.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• Adaptive search. DST dynamically adjusts its search breadth based on the predictor’s real-
time confidence.

• Test-Time Scalability. Our method drastically reduces the computational overhead of
tree-based reasoning at test-time. By replacing expensive LLM-based evaluators with a
lightweight predictor, we lower the token consumption per inference run by 26-75%.

2 BACKGROUND

LLMs have progressed significantly in their problem-solving capabilities through evolving prompt-
ing techniques. Input-output (IO) prompting serves as the simplest approach, directly mapping
inputs to outputs using few-shot or zero-shot examples. To enhance reasoning performance, CoT
prompting (Wei et al., 2023) introduces intermediate reasoning steps, enabling the model to decom-
pose complex problems. Building on this, Self-Consistency (CoT-SC) (Wang et al., 2023) samples
multiple CoT reasoning paths and selects the most frequent answer, improving reliability through
ensemble effects. Going beyond linear reasoning, ToT framework generalizes CoT by modeling
problem solving as a tree search over discrete thoughts, enabling deliberate planning, exploration
of alternative solutions, and backtracking. This structured reasoning approach significantly boosts
performance on tasks requiring strategy, foresight, and creativity.

Formally, the ToT framework models problem solving as a search over a tree T . Given an input
problem x, ToT framework initializes a root node s0 = (x, ∅) with an empty thought sequence.
During execution, the language model pθ dynamically expands the tree through iterative branching:
at each node s = (x,Z), the thought generator G(pθ, s, k) operates on the current state s′ = (x,Z)
to produce k candidate next thoughts {z(1), . . . , z(k)}, where each thought z(i) extends the existing
sequence Z to form a new state s(i) = (x, [Z; z(i)]. The state evaluator V (pθ, s

(i)) then scores these
new states, after which a search algorithm selects the most promising node for expansion based on
heuristic scores. This process continues until termination criteria are met, ultimately yielding an
optimal solution path Z∗ = ⟨z∗1 , . . . , z∗T ⟩ as a chain of thoughts from root to leaf.

The critical bottleneck in this workflow lies with the state evaluator. In the original ToT work, the
evaluator relies on expensive LLM self-reflection, which involves prompting the model to critique its
own outputs. This introduces substantial computational overhead, making the process impractical
for many applications. This motivates us to replace this costly evaluator with a lightweight, pre-
trained predictor that enables an adaptive search strategy.

Example. We illustrate our method with the following problem: “Janet has 5 apples. She buys 2
more boxes of apples, with 6 apples in each box. How many apples does she have in total?”

First, the thought generator produces candidate steps. Candidate (1): “First, calculate the total
apples in the boxes. 2 boxes * 6 apples/box = 12 apples.” Instead of asking the LLM to reflect, our
predictor instantly analyzes key characteristics of this thought and assigns it a score of 0.91. Since
0.91 exceeds our predefined threshold (τ = 0.7), the system triggers a shortcut. It immediately
accepts this step and proceeds to the next depth, skipping the generation and evaluation of any
alternative candidates for this step. The process at this node becomes as efficient as a single greedy
generation. Now, consider a more ambiguous step where the predictor is less certain. The system
generates the first candidate: “Calculate 2 times 6...” with predicated score 0.65, which is below
the threshold τ = 0.7, so the system cannot take the shortcut, it must continue exploring. Then it
generates the next candidate ”The total is 5 + 2 * 6...” → with predicted score 0.62. It continues
this process. If none of the candidates met the shortcut criterion, DST reverts to a full-beam search
mode. It collects all generated candidates and expand them in parallel in the next step.

This adaptive mechanism stands in stark contrast to baselines relying on LLM self-reflection, which
require generating verbose critiques for every candidate. Our predictor enables immediate, data-
driven decisions, maximizing efficiency by exiting early when confident, while retaining the ro-
bustness of a full tree search when uncertain. As demonstrated in section 4, this dynamic strategy
reduces computational overhead by 26-75% while maintaining or even improving solution accuracy.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 METHOD

DST enhances LLM reasoning through guided search over a ToT framework. Our key innovation
is a lightweight runtime predictor that serves as an adaptive state evaluator V (pθ, s

(i)). The sys-
tem operates in two phases: (1) an efficient offline training phase where the predictor is trained on
a relatively small set of generated reasoning paths to assess thought quality, and (2) an online in-
ference phase where the predictor dynamically guides the LLM by pruning low-potential branches
and expanding promising thought sequences in real-time. This approach enables more efficient and
targeted problem-solving compared to conventional reasoning methods.

3.1 STATE DEFINITION

We formally define the state by extending a reasoning node in the ToT as a 3-tuple s = (xs,Zs, ϕs),
where ϕs = (vs, cs) is the feature vector encoding the node’s properties. The semantic representa-
tion v ∈ Rd is derived from the language model’s hidden states via

vs = h(pθ([xs;Zs]))

where pθ([x;Z]) denotes the forward pass of the LLM on the concatenated input and reasoning path,
and h(·) extracts the hidden state (e.g., via pooling or [CLS] token embedding). The consistency
score c measures the node’s alignment with its reasoning history by computing the average similarity
between v(s) and the embeddings of its ancestor states As = {s1, . . . , sk} along the path from the
root:

cs =
1

|As|
∑

si∈As

sim(vs,vsi)

where sim(·, ·) is defined using cosine similarity. This feature operationalizes cognitive coherence,
helping the predictor identify and penalize logically disjointed reasoning paths. Together, these
features provide the predictor with a comprehensive real-time signal about the semantic content and
logical integrity of a reasoning step. Noted that computational cost is not treated as an input feature.
Instead, we incentivize efficiency directly within the predictor’s training objective. As detailed in
subsection 3.2, the ground-truth scores assigned to nodes are recursively discounted by a factor γ.
This implicitly teaches the predictor to favor shorter, more direct paths to a correct solution, as
deeper nodes are inherently assigned lower maximum scores. This design embeds a preference for
efficiency into the learned value function itself, rather than relying on it as an explicit input feature.

This feature design allows the predictor to evaluate the intrinsic quality of a reasoning state. The
semantic vectors vs target semantic fidelity, capturing nuanced contextual meaning, while the con-
sistency score cs enforces logical integrity by penalizing breaks in the reasoning flow.

3.2 TRAINING DOMAIN-SPECIALIZED PREDICTOR

Data collection. A key advantage of our approach is the lightweight nature of the predictor’s train-
ing. A central challenge in enhancing reasoning is the difficulty of defining a reward signal for each
intermediate thought. Our primary contribution in this area is a process that automatically labels
the reward for each node in the thought tree, transforming raw reasoning paths into quantifiable
supervision signals. This process, formalized in 1, is designed to efficiently generate a high-quality
training set from a relatively small number of initial problems (the specific data splits are detailed
in Appendix B). The generation of this training data follows a structured three-phase approach: (1)
breadth-first tree construction to explore the solution space, (2) leaf node verification to establish
ground-truth outcomes, and (3) recursive score propagation to assign credit to intermediate steps.

First, the breadth-first tree construction phase initiates with the input question as the root node,
progressively expanding the reasoning space through systematic exploration. At each non-terminal
node, the language model generates k potential next steps. Each step is simply formed by gener-
ating text until a specific stop criterion is encountered (such as text “#step”). During generation,
the algorithm captures the contextual hidden states from the transformer, which form the basis for
the feature vector ϕs. As defined previously, this vector includes a semantic representation vs de-
rived from these hidden states and a consistency score cs measuring alignment with the reasoning
path. This provides a rich, quantitative signal for the predictor to learn from. The queue-based im-
plementation maintains balanced depth exploration, preventing the path bias inherent in depth-first
approaches while ensuring comprehensive coverage of potential solution trajectories.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Training Data Collection for Predictor
Require: LLM pθ , Input x, max depth dmax, branching factor k, discount factor γ
Ensure: Training set D
1: Initialize root node with state s0 ← (x, ∅, null)
2: Initialize empty tree T ← {s0}
3: Initialize queue Q← [s0]
4: Initialize training set D ← ∅
5: while Q is not empty do ▷ Tree Construction
6: s← Q.dequeue()
7: if depth(s) ≥ dmax then
8: Continue
9: end if

10: Generate k thoughts {z(1), . . . , z(k)} ∼ pθ(·|s)
11: for each candidate z(i) do
12: Construct new node with state s′ ← (x,Zs ∪ {z(i)}, ϕs′)
13: Compute representation ϕs′ ← [vs; cs]
14: T .add(s′)
15: Q.enqueue(s′)
16: end for
17: end while
18: L ← {s ∈ T | is leaf(s)}
19: for each sl ∈ L do ▷ Chain-of-Thought Evaluation
20: yl ← I(is correct(sl))
21: end for
22: for each sn ∈ postorder(T) do ▷ Score Propagation
23: yn ← γ · 1

|Sc|
∑

s∈Sc
ys ▷ Apply discounted average of children scores

24: D ← D ∪ {(ϕsn , yn)}
25: end for
26: return D

Second, the leaf nodes verification phase subjects all terminal nodes to rigorous, domain-
appropriate validation. For closed-domain problems with unambiguous solutions, we employ pattern
matching against canonical answer formats. Subjective or open-ended tasks utilize natural language
inference models to assess answer validity based on semantic entailment. Mathematical reasoning
branches leverage symbolic execution engines for programmatic verification. Each terminal node sl
receives a definitive quality assessment yl ∈ 0, 1, establishing unambiguous ground truth labels that
anchor the subsequent scoring framework. This binary labeling provides the foundational signal for
the recursive score propagation process.

Finally, the score propagation phase assigns a quality score to each non-terminal node in a bottom-
up manner. This process begins by calculating the depth of each node, after which nodes are pro-
cessed in descending order of depth. For any internal node si, its score yi is formulated as the
average of its children’s scores, scaled by a discount factor γ (e.g., 0.99). This is formalized by the
equation:

yi = γ · 1

|Sc|
∑
s∈Sc

ys (1)

where Sc denotes the set of all direct children of node si and ys denotes their scores. This formu-
lation serves two primary functions. First, by averaging the scores of its children, it synthesizes the
expected quality of all paths originating from the node, preventing the overestimation of a node’s
potential due to a few outlier high-quality paths. Second, the discount factor γ imposes a penalty
on longer reasoning chains, thereby incentivizing the discovery of more concise and efficient so-
lutions. Through this recursive score assignment, each internal node’s value comes to accurately
reflect its aggregate potential for guiding the model toward a valid conclusion, providing a robust
and information-rich supervision signal for training the predictor.

The resulting training set D = {ϕ,y} comprises feature-label pairs spanning all tree nodes, captur-
ing the complete spectrum of reasoning quality from fundamental errors to optimal solution paths.
This supervision signal enables the predictor to learn nuanced quality estimation that assesses the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 2 ToT with DST for prunning
Require: Trained predictor Predict, input x, beam width b, max depth dmax, threshold τ
Ensure: Chain of Thought π∗ or ∅
1: Initialize beam B ← [root(x)]
2: Initialize CoT π∗ ← ∅
3: for t = 1 to dmax do
4: Initialize next beam B′ ← ∅
5: for each node s ∈ B do
6: Generate the first thought z(1) ∼ pθ(·|s)
7: s′ ← create node(s, z(1))
8: ϕs′ ← [vs′ ; cs′]
9: ps′ ← Predict(ϕs′) ▷ Predict correctness of the first thought

10: if ps′ ≥ τ then ▷ Early-exit: first thought is good enough
11: B′ ← B′ ∪ {s′}
12: continue ▷ Prune all other siblings and move to the next node in B
13: end if
14: Generate k − 1 more thoughts {z(2), . . . , z(k)} ∼ pθ(·|s) ▷ Fallback: first thought was not good
15: Z← {z(1), . . . , z(k)}
16: for each thought z(i) ∈ Z do
17: snew ← create node(s, z(i))
18: ϕsnew ← [vsnew ; csnew]
19: psnew ← Predict(ϕsnew)
20: if psnew ≥ τ then
21: B′ ← B′ ∪ {snew}
22: end if
23: end for
24: end for
25: B ← top b(B′) ▷ Select top b nodes by score p
26: if B = ∅ then
27: return ∅ ▷ No valid paths remain
28: end if
29: end for
30: Let s⋆ be the node in B with the highest score ps
31: π⋆ ← path of(s⋆) ▷ Select the best leaf node using stored scores
32: return π⋆

relative utility of partial solutions while naturally handling class imbalance through score propaga-
tion.

3.3 PREDICTOR AS RUNTIME EVALUATOR

During the inference phase, we leverage the trained predictor to dynamically control the search
strategy, as formalized in Algorithm 2. The process is centered on a predict-first-thought mechanism
that balances greedy efficiency with robust beam-search exploration. During each node expansion,
the system first generates a single candidate thought z(1). The predictor immediately evaluates this
thought, yielding a quality score p. This score is then compared against a predefined confidence
threshold τ , which acts as a dynamic switch for the search strategy. If the score is high, the system
accepts this thought, prunes all potential siblings, and proceeds with single-chain efficiency. If the
score is low, indicating uncertainty, the system generates the remaining b− 1 candidate thoughts to
complete a full beam of size b. All candidates, including those with scores below τ , are added to a
pool for ranking.
After expanding all nodes at the current depth, the system selects the top-b candidates from the
collective pool to form the next beam. Finally, upon reaching the maximum depth dmax, the path π⋆

terminating in the leaf node with the highest predictor score is chosen as the final output, ensuring
methodological consistency between search and selection.

Complexity analysis of pruning. The efficiency gain can be formally analyzed by considering the
search space complexity. In a standard ToT framework with a branching factor of k and a maximum
depth of d, the total number of nodes in the search tree grows exponentially, with a complexity of

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

O(kd). Our adaptive method operates at each depth level d with an effective beam width beff . The
value of beff is determined by the predictor’s confidence relative to the threshold τ . If the score of
the first generated thought s′ is higher than τ , the system prunes all other potential siblings. The
effective beam width at this step becomes beff = 1. This occurs with probability P(p ≥ τ). If the
score is low, the system falls back to generating the full beam of b candidates to ensure no promising
path is missed. The effective beam width at this step is beff = b. This occurs with probability
1− P(p ≥ τ). The expected effective beam width, E[beff], at any given step can be modeled as:

E[beff] = 1 · P(p ≥ τ) + b · (1− P(p ≥ τ)) (2)

The overall search complexity is then determined by this expected effective branching factor at each
depth level. Assuming P(p ≥ τ) is roughly constant, the complexity of our pruned search tree
becomes O(E[beff]

d), which is significantly lower than the standard beam search complexity of
O(kd). This analysis shows that the efficiency gain is directly controlled by P(p ≥ τ). When the
predictor is confident (high P(p ≥ τ)), E[beff] approaches 1, and the search approximates CoT.
When the predictor is uncertain (low P(p ≥ τ)), E[beff] approaches b, and the inference retains the
robustness of full ToT search.

4 EXPERIMENT

4.1 MAIN RESULT

0 2 4 6 8 10 12 14

Accuracy Gain (Percentage Points)

400

300

200

100

0

E
ffi

ci
en

cy
 G

ai
n

(%
 C

os
t R

ed
uc

tio
n)

Method
Ours
ToT
DPTS

Model
Qwen3­8B
Llama3.1
Gemma3

Model
Qwen3­8B
Llama3.1
Gemma3

Figure 2: Accuracy vs. Efficiency Trade-off. Each
point represents the performance of a method on a
specific task and model, plotted as accuracy gain
(percentage points) versus efficiency gain (per-
centage cost reduction) relative to CoT.

Experimental Setup. We evaluate our
approach using Qwen3-8B (Yang et al.,
2025), Llama3.1-8B-Instruct (Grattafiori et al.,
2024) and Gemma3-12B-it (Team et al.,
2025) as the backbone model across diverse
benchmarks spanning mathematical reasoning
(GSM8K (Cobbe et al., 2021), SVAMP (Patel
et al., 2021), Minerva-math (Lewkowycz
et al., 2022), MATH-500 (Lightman et al.,
2023)), general reasoning (GPQA (Rein et al.,
2023)), and complex logical reasoning tasks
(BIG-Bench Extra Hard (Kazemi et al., 2025)
subtasks: BoardgameQA (Kazemi et al., 2023),
Boolean Expressions, Causal Understand-
ing (Nie et al., 2023; Kıcıman et al., 2024),
and Geometric Shapes (Suzgun et al., 2022)).
These benchmarks were specifically selected
because they are reasonably complex, often
requiring multi-step planning and exploration
that challenge simpler single-path reasoning
methods, making them ideal for assessing the
efficacy of non-trivial ToT frameworks. We
compare against three key baseline approaches: (1) Chain-of-Thought prompting (Original CoT),
(2) standard Tree-of-Thoughts with LLM-based evaluation (ToT), and (3) Dynamic Parallel Tree
Search (DPTS), a recent adaptive ToT variant.

Performance is measured across two primary dimensions: solution accuracy (percentage of correctly
solved problems) and computational efficiency (average token consumption per problem). All ex-
periments use identical hardware configurations and temperature settings to ensure fair comparison
across methods. Detailed experiment settings can be found in Appendix B.

Efficiency-Accuracy Trade-off Achievement. The trade-off between accuracy and efficiency is
visualized in Figure 2, with detailed results provided in Table 1. The figure plots the accuracy gain
over CoT against the corresponding change in computational cost. Our method consistently popu-
lates the upper region of the plot, demonstrating a superior efficiency-accuracy frontier compared
to standard ToT and DPTS. This illustrates our method’s ability to achieve substantial accuracy im-
provements without the excessive computational overhead typical of other tree-search methods. A
detailed breakdown across task categories reveals the robustness of this behavior.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Comparison of Tree-of-Thought reasoning methods. Best performance for each metric
(highest accuracy, lowest cost) is shown in bold. Results are relative improvements over CoT.

(a) Part I: Mathematical Reasoning (GSM8K, SVAMP, Minerva, MATH-500).

Model Method GSM8K SVAMP Minerva MATH-500

Acc↑ Cost↓ Acc↑ Cost↓ Acc↑ Cost↓ Acc↑ Cost↓

Qwen3-8B

CoT 89.09 799.7 75.76 2125 26.80 3320 92.05 2680
ToT +3.69 +3175 +1.35 +3903 +3.08 +5808 +2.15 +3488
DPTS +1.53 +2670 +0.92 +2855 +2.17 +4540 +2.50 +2699

DST +3.35 +192.3 +1.48 +2365 +4.38 +1776 +2.12 +762

Llama3.1

CoT 87.52 817 76.21 2257 25.95 3416 93.55 2783
ToT +3.36 +3033 +1.69 +4294 +2.68 +6530 +2.16 +3869
DPTS +1.72 +2506 +0.98 +3049 +1.88 +4839 +1.87 +2924

DST +2.65 +241 +1.90 +902 +4.60 +1394 +1.73 +774

Gemma3

CoT 93.21 850 79.53 2504 31.40 3801 95.52 3107
ToT +2.94 +3650 +1.64 +4702 +3.13 +7222 +2.03 +4358
DPTS +1.33 +3050 +0.91 +3597 +1.86 +5370 +1.45 +3359

DST +2.63 +400 +1.80 +1111 +4.26 +1700 +1.58 +1045

(b) Part II: General and Logical Reasoning (GPQA, BBEH).

Model Method GPQA BoardgameQA Boolean Causal Geo

Acc↑ Cost↓ Acc↑ Cost↓ Acc↑ Cost↓ Acc↑ Cost↓ Acc↑ Cost↓

Qwen3

CoT 44.80 4089 34.00 4425 24.00 4977 42.50 4406 45.00 3468
ToT +3.76 +8875 +8.00 +14220 +4.00 +11751 +4.00 +11212 +6.00 +8984
DPTS +3.27 +7001 +8.00 +9953 +3.00 +9955 +2.50 +8627 +3.00 +6299

DST +4.90 +4141 +12.00 +4560 +3.00 +5953 +3.50 +5044 +4.00 +4994

Llama3.1

CoT 44.06 4156 31.50 4501 18.00 5055 37.00 4458 25.50 3556
ToT +3.75 +8678 +10.00 +15004 +6.00 +12450 +5.00 +10749 +10.00 +8648
DPTS +3.14 +6892 +9.50 +9604 +5.00 +9452 +4.00 +8343 +7.50 +6050

DST +4.48 +3994 +14.00 +4307 +4.50 +5752 +6.50 +4786 +8.50 +4601

Gemma3

CoT 48.13 4926 33.00 5311 25.50 6010 49.00 5257 32.50 4115
ToT +4.10 +10602 +6.00 +16924 +4.50 +13817 +1.50 +13319 +6.00 +10762
DPTS +3.44 +8336 +3.50 +11701 +2.00 +11501 +0.50 +10258 +3.50 +7437

DST +5.37 +4940 +5.00 +5218 +3.50 +6874 +3.00 +5825 +5.50 +5809

On mathematical reasoning tasks, DST provides a highly cost-effective path to performance gains.
For instance, on the challenging GSM8K benchmark, DST consistently matches or closely ap-
proaches the accuracy of ToT while requiring only about a quarter of the additional token overhead.
This efficiency is critical for deploying advanced mathematical reasoning at scale. In the domain
of general and logical reasoning, DST’s advantages become even more pronounced. On complex
benchmarks like GPQA and BoardgameQA, our method frequently outperforms ToT not only in
efficiency but also in absolute accuracy. For example, using the Llama3.1 model on BoardgameQA,
DST achieves a remarkable +14.00% accuracy improvement over CoT, significantly surpassing
ToT’s +10.00% gain, yet it does so while consuming less than one-third of the tokens. This high-
lights DST’s capability to navigate complex search spaces more effectively than its expensive coun-
terparts.

A key observation is the consistency of our method’s benefits across all three backbone models:
Qwen3, Llama3.1, and Gemma3. The core advantage, substantial efficiency gains for a minimal
or even positive impact on accuracy, is universal. Whether on Qwen3, Llama3.1, or the more ca-
pable Gemma3, our approach consistently delivers token savings in the 26-75% range compared to
standard ToT, validating the robustness of our predictor-guided pruning strategy. The universal and

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Impact of State Feature Components on GSM8K and GPQA. Best performance for each
metric (highest accuracy, lowest token cost) is shown in bold.

Method GSM8K GPQA

Accuracy (%) Avg. Tokens Accuracy (%) Avg. Tokens

DST 92.4 992 49.7 8230
DST w/o cs (semantics only) 90.1 1150 47.0 8500
DST w/o vs (consistency only) 85.7 1300 42.3 9800

dramatic reduction in computational cost makes our method a more practical and scalable choice
across all tested models and tasks.

4.2 ABLATION STUDY

4.2.1 IMPACT OF STATE FEATURE COMPONENTS

Experimental Setup. The experiment begins with our full model, DST-Full, as the baseline. We
then systematically disable each feature component to create two variants:

• w/o cs: The model operates without the consistency score, relying only on semantic repre-
sentation (vs).

• w/o vs: The model operates without the semantic representation (vs), using only consis-
tency (cs).

The results in Table 2 confirm that both feature components are vital. Removing the consistency
score (w/o cs) leads to a 2%-3% point accuracy drop and increased token usage, suggesting the
model explores less coherent paths. Removing the semantic vector (w/o vs) is even more detrimen-
tal, causing a significant 5%-7% point accuracy loss, as the predictor loses its core understanding
of the reasoning content. The full model synergistically combines both signals for the best perfor-
mance.

4.2.2 SENSITIVITY TO HYPERPARAMETERS

We analyzed the model’s sensitivity to three key hyperparameters: beam width b, pruning threshold
τ , and discount factor γ. Full details of this analysis, including figures, are provided in Appendix C.

Our experiments reveal that a modest beam width (b = 3) substantially improves accuracy over a
greedy search (b = 1), but further increases yield diminishing returns at a high computational cost,
which motivates our adaptive search strategy. The pruning threshold τ is shown to effectively control
the accuracy-efficiency trade-off, with performance gains saturating at higher τ values. Finally, we
determined that a slight penalty against verbosity is optimal, with a discount factor of γ = 0.99
outperforming both unconstrained generation γ = 1.00 and overly aggressive penalties. These
findings validate our default hyperparameter settings.

5 CONCLUSION

In this work, we introduced the Domain-Specialized Tree of Thought (DST) framework to resolve
the critical efficiency bottleneck in tree-based reasoning. Our core innovation is a lightweight, plug-
and-play predictor that is domain-specialized through focused training on a small set of task-specific
examples. This predictor replaces the prohibitively expensive, recursive LLM-based evaluators used
in standard ToT, enabling an adaptive search that prunes unpromising paths with minimal compu-
tational cost. This approach directly translates into significant resource savings, yielding a 26-75%
reduction in token consumption while maintaining or even improving accuracy over baseline meth-
ods. By decoupling the search heuristic from the main LLM, DST transforms structured reasoning
from a resource-intensive technique into a scalable and practical paradigm, making sophisticated
problem-solving economically viable for real-world applications where computational efficiency is
a primary constraint.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

All authors of this paper adhere to the ICLR Code of Ethics. Our work is primarily algorithmic,
focusing on enhancing the computational efficiency of reasoning systems in Large Language Models
(LLMs). The research relies on publicly available datasets and open-source pre-trained models.

We recognize that technologies improving LLM reasoning could be applied for malicious purposes,
a risk inherent to progress in this field. Our primary objective is to advance the scientific understand-
ing of efficient, structured reasoning and make powerful AI techniques more accessible and scalable.
A significant positive ethical implication of our work is the substantial reduction in computational
resources required for complex reasoning tasks. Our method lowers the financial and environmental
costs associated with running large models, thereby promoting more equitable access to advanced
AI capabilities.

The foundational models (e.g., Qwen3, Llama3.1, Gemma3) and datasets (e.g., GSM8K, GPQA)
used in our experiments may contain existing societal biases. Our proposed method, DST, does
not explicitly mitigate these biases but rather focuses on the structural efficiency of the reasoning
process. The potential for the predictor to inadvertently learn or amplify these biases is a limitation
and an important direction for future research. We believe the benefits of enabling more efficient
and scalable reasoning outweigh the immediate risks, which are common to most research in this
domain.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our findings, we have provided a detailed account of our method-
ology, experimental setup, and results. The core algorithms for training the DST predictor and
performing guided tree search are formally described in Section 3, with specific pseudocode in Al-
gorithm 1 and Algorithm 2. All datasets used in our experiments—including GSM8K, SVAMP,
MATH-500, GPQA, and subsets of BBEH—are standard public benchmarks; further details are
available in Appendix A.

Our experimental setup, including the specific backbone models (Qwen3-8B, Llama3.1-8B-Instruct,
Gemma3-12B-it), baselines, and evaluation metrics, is described in Section 4.1. Comprehensive
details regarding hyperparameters and hardware configurations are provided in Appendix B. We in-
clude extensive ablation studies in Section 4.2 to analyze the impact of individual model components
and key hyperparameters such as beam width, pruning threshold, and the discount factor, with results
visualized in Figures 2, 3, and 4. To facilitate direct replication and further research, we make our
source code, including scripts for predictor training, data generation, and evaluation, publicly avail-
able upon acceptance at https://anonymous.4open.science/r/CoTPruning-2308.

REFERENCES

Alan Boyle, Isha Gupta, Sebastian Hönig, Lukas Mautner, Kenza Amara, Furui Cheng, and Men-
natallah El-Assady. iToT: An Interactive System for Customized Tree-of-Thought Generation,
August 2024.

Shulin Cao, Jiajie Zhang, Jiaxin Shi, Xin Lv, Zijun Yao, Qi Tian, Juanzi Li, and Lei Hou. Probabilis-
tic Tree-of-thought Reasoning for Answering Knowledge-intensive Complex Questions, Novem-
ber 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training Verifiers to Solve Math Word Problems, November 2021.

Yifu Ding, Wentao Jiang, Shunyu Liu, Yongcheng Jing, Jinyang Guo, Yingjie Wang, Jing Zhang,
Zengmao Wang, Ziwei Liu, Bo Du, Xianglong Liu, and Dacheng Tao. Dynamic Parallel Tree
Search for Efficient LLM Reasoning, February 2025.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. PAL: Program-aided Language Models, January 2023.

10

https://anonymous.4open.science/r/CoTPruning-2308

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Xuanqi Gao, Siyi Xie, Juan Zhai, Shqing Ma, and Chao Shen. MCP-RADAR: A Multi-Dimensional
Benchmark for Evaluating Tool Use Capabilities in Large Language Models, May 2025.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
soo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala,
Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren
Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng
Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vı́tor Albiero, Vladan Petrovic, Weiwei
Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,
Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein,
Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Mon-
talvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia
Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide
Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smoth-
ers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,
Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-
son Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,
Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa,
Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan
Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,
Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
driguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin
Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,
Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal,
Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj
Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Kumar,
Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li,
Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaojian Wu,
Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi,
Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen
Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen,
Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The Llama 3 Herd of Models, November 2024. URL
http://arxiv.org/abs/2407.21783. arXiv:2407.21783 [cs].

Fatemeh Haji, Mazal Bethany, Maryam Tabar, Jason Chiang, Anthony Rios, and Peyman Najafirad.
Improving LLM Reasoning with Multi-Agent Tree-of-Thought Validator Agent, November 2024.

Mehran Kazemi, Quan Yuan, Deepti Bhatia, Najoung Kim, Xin Xu, Vaiva Imbrasaite, and Deepak
Ramachandran. BoardgameQA: A Dataset for Natural Language Reasoning with Contradictory
Information, June 2023.

Mehran Kazemi, Bahare Fatemi, Hritik Bansal, John Palowitch, Chrysovalantis Anastasiou, San-
ket Vaibhav Mehta, Lalit K. Jain, Virginia Aglietti, Disha Jindal, Peter Chen, Nishanth Dikkala,
Gladys Tyen, Xin Liu, Uri Shalit, Silvia Chiappa, Kate Olszewska, Yi Tay, Vinh Q. Tran, Quoc V.
Le, and Orhan Firat. BIG-Bench Extra Hard, May 2025.

Emre Kıcıman, Robert Ness, Amit Sharma, and Chenhao Tan. Causal Reasoning and Large Lan-
guage Models: Opening a New Frontier for Causality, August 2024.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay
Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam
Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving Quantitative Reasoning Problems with
Language Models, July 2022.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s Verify Step by Step, May 2023.

12

http://arxiv.org/abs/2407.21783

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-Refine:
Iterative Refinement with Self-Feedback, May 2023.

Allen Nie, Yuhui Zhang, Atharva Amdekar, Chris Piech, Tatsunori Hashimoto, and Tobias Gersten-
berg. MoCa: Measuring Human-Language Model Alignment on Causal and Moral Judgment
Tasks, October 2023.

Tushar Pandey, Ara Ghukasyan, Oktay Goktas, and Santosh Kumar Radha. Adaptive Graph of
Thoughts: Test-Time Adaptive Reasoning Unifying Chain, Tree, and Graph Structures, February
2025.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are NLP Models really able to Solve Simple
Math Word Problems?, April 2021.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
Chelsea Finn. Direct Preference Optimization: Your Language Model is Secretly a Reward
Model, July 2024.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. GPQA: A Graduate-Level Google-Proof Q&A
Benchmark, November 2023.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language Models Can Teach Themselves
to Use Tools, February 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy
Optimization Algorithms, August 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. DeepSeekMath: Pushing the Limits of
Mathematical Reasoning in Open Language Models, April 2024.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi, Denny Zhou, and Jason Wei. Challenging BIG-
Bench Tasks and Whether Chain-of-Thought Can Solve Them, October 2022.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, Thomas
Mesnard, Geoffrey Cideron, Jean-bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Cas-
bon, Etienne Pot, Ivo Penchev, Gaël Liu, Francesco Visin, Kathleen Kenealy, Lucas Beyer, Xiao-
hai Zhai, Anton Tsitsulin, Robert Busa-Fekete, Alex Feng, Noveen Sachdeva, Benjamin Coleman,
Yi Gao, Basil Mustafa, Iain Barr, Emilio Parisotto, David Tian, Matan Eyal, Colin Cherry, Jan-
Thorsten Peter, Danila Sinopalnikov, Surya Bhupatiraju, Rishabh Agarwal, Mehran Kazemi, Dan
Malkin, Ravin Kumar, David Vilar, Idan Brusilovsky, Jiaming Luo, Andreas Steiner, Abe Friesen,
Abhanshu Sharma, Abheesht Sharma, Adi Mayrav Gilady, Adrian Goedeckemeyer, Alaa Saade,
Alex Feng, Alexander Kolesnikov, Alexei Bendebury, Alvin Abdagic, Amit Vadi, András György,
André Susano Pinto, Anil Das, Ankur Bapna, Antoine Miech, Antoine Yang, Antonia Paterson,
Ashish Shenoy, Ayan Chakrabarti, Bilal Piot, Bo Wu, Bobak Shahriari, Bryce Petrini, Charlie
Chen, Charline Le Lan, Christopher A. Choquette-Choo, C. J. Carey, Cormac Brick, Daniel
Deutsch, Danielle Eisenbud, Dee Cattle, Derek Cheng, Dimitris Paparas, Divyashree Shivaku-
mar Sreepathihalli, Doug Reid, Dustin Tran, Dustin Zelle, Eric Noland, Erwin Huizenga, Eu-
gene Kharitonov, Frederick Liu, Gagik Amirkhanyan, Glenn Cameron, Hadi Hashemi, Hanna
Klimczak-Plucińska, Harman Singh, Harsh Mehta, Harshal Tushar Lehri, Hussein Hazimeh, Ian
Ballantyne, Idan Szpektor, Ivan Nardini, Jean Pouget-Abadie, Jetha Chan, Joe Stanton, John Wi-
eting, Jonathan Lai, Jordi Orbay, Joseph Fernandez, Josh Newlan, Ju-yeong Ji, Jyotinder Singh,
Kat Black, Kathy Yu, Kevin Hui, Kiran Vodrahalli, Klaus Greff, Linhai Qiu, Marcella Valentine,
Marina Coelho, Marvin Ritter, Matt Hoffman, Matthew Watson, Mayank Chaturvedi, Michael

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Moynihan, Min Ma, Nabila Babar, Natasha Noy, Nathan Byrd, Nick Roy, Nikola Momchev, Ni-
lay Chauhan, Noveen Sachdeva, Oskar Bunyan, Pankil Botarda, Paul Caron, Paul Kishan Ruben-
stein, Phil Culliton, Philipp Schmid, Pier Giuseppe Sessa, Pingmei Xu, Piotr Stanczyk, Pouya
Tafti, Rakesh Shivanna, Renjie Wu, Renke Pan, Reza Rokni, Rob Willoughby, Rohith Vallu,
Ryan Mullins, Sammy Jerome, Sara Smoot, Sertan Girgin, Shariq Iqbal, Shashir Reddy, Shruti
Sheth, Siim Põder, Sijal Bhatnagar, Sindhu Raghuram Panyam, Sivan Eiger, Susan Zhang, Tianqi
Liu, Trevor Yacovone, Tyler Liechty, Uday Kalra, Utku Evci, Vedant Misra, Vincent Roseberry,
Vlad Feinberg, Vlad Kolesnikov, Woohyun Han, Woosuk Kwon, Xi Chen, Yinlam Chow, Yuvein
Zhu, Zichuan Wei, Zoltan Egyed, Victor Cotruta, Minh Giang, Phoebe Kirk, Anand Rao, Kat
Black, Nabila Babar, Jessica Lo, Erica Moreira, Luiz Gustavo Martins, Omar Sanseviero, Lucas
Gonzalez, Zach Gleicher, Tris Warkentin, Vahab Mirrokni, Evan Senter, Eli Collins, Joelle Bar-
ral, Zoubin Ghahramani, Raia Hadsell, Yossi Matias, D. Sculley, Slav Petrov, Noah Fiedel, Noam
Shazeer, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena
Buchatskaya, Jean-Baptiste Alayrac, Rohan Anil, Dmitry, Lepikhin, Sebastian Borgeaud, Olivier
Bachem, Armand Joulin, Alek Andreev, Cassidy Hardin, Robert Dadashi, and Léonard Hussenot.
Gemma 3 Technical Report, March 2025. URL http://arxiv.org/abs/2503.19786.
arXiv:2503.19786 [cs].

Teng Wang, Wing-Yin Yu, Zhenqi He, Zehua Liu, Hailei Gong, Han Wu, Xiongwei Han, Wei Shi,
Ruifeng She, Fangzhou Zhu, and Tao Zhong. BPP-Search: Enhancing Tree of Thought Reasoning
for Mathematical Modeling Problem Solving, May 2025.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. Self-Consistency Improves Chain of Thought Reasoning in Language
Models, March 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models,
January 2023.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W. White, Doug Burger,
and Chi Wang. AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation,
October 2023.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 Technical Report, May 2025. URL http://arxiv.org/abs/2505.09388.
arXiv:2505.09388 [cs].

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of Thoughts: Deliberate Problem Solving with Large Language Models. May
2023.

Jinghan Zhang, Xiting Wang, Weijieying Ren, Lu Jiang, Dongjie Wang, and Kunpeng Liu. RATT:
A Thought Structure for Coherent and Correct LLM Reasoning, December 2024a.

Muru Zhang, Ofir Press, William Merrill, Alisa Liu, and Noah A. Smith. How Language Model
Hallucinations Can Snowball, May 2023.

Xuan Zhang, Chao Du, Tianyu Pang, Qian Liu, Wei Gao, and Min Lin. Chain of Preference Opti-
mization: Improving Chain-of-Thought Reasoning in LLMs, October 2024b.

14

http://arxiv.org/abs/2503.19786
http://arxiv.org/abs/2505.09388

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A DATASETS AND BASELINES

We utilized a diverse set of standard public benchmarks to rigorously evaluate the performance of
our method across different reasoning domains. The detailed information is as follows.

• GSM8K is a famous dataset containing 1319 primary school level math problems. It is
widely recognized as a standard for gauging fundamental quantitative reasoning and the
ability to translate natural language descriptions into mathematical operations. It serves as
a baseline for core numerical and logical abilities.

• MATH-500 is a curated and high-quality subset of 500 challenging problems extracted
from the comprehensive MATH test set . Sourced from American high school mathemat-
ics competitions, this dataset covers seven distinct subjects, including algebra, geometry,
number theory, and precalculus, thereby demanding more sophisticated problem-solving
heuristics than simple arithmetic .

• Minerva-Math is a specialized collection designed for training and evaluating AI mod-
els on challenging mathematical reasoning tasks. It includes 272 problems ranging from
algebra and calculus to advanced proofs, testing the model’s ability to engage with more
abstract and rigorous mathematical thought processes.

• SVAMP is a dataset containing 1,000 math word problems designed to test a model’s ro-
bustness to linguistic variations. By systematically modifying existing problems from other
datasets, SVAMP assesses whether a model’s reasoning abilities are brittle and overly sen-
sitive to minor changes in sentence structure and question phrasing for one and two-step
arithmetic problems.

• GPQA is a challenging dataset of 448 graduate-level, multiple-choice questions in biology,
physics, and chemistry, authored by domain experts. The questions are designed to be
“Google-proof”, meaning they are difficult for non-experts to answer even with access to a
search engine, thus rigorously testing the expert-level knowledge and reasoning capabilities
of advanced AI systems.

• Big-bench Extra Hard is a challenging subset of the BIG-Bench suite, consisting of 23
tasks that were identified as being particularly difficult for contemporary language models
at the time of its release. These tasks are diverse and complex, including causal judgment,
formal fallacies, logical deduction, tracking shuffled objects, and navigating a grid. High
performance on this benchmark requires robust multi-step reasoning capabilities and the
ability to follow intricate instructions.

Our method was compared against three key baseline approaches to demonstrate its superior accu-
racy and efficiency.

• Chain-of-Thought (CoT) is a standard prompting technique that elicits reasoning by in-
structing the model to generate a series of intermediate steps that lead to a final answer. It
is often implemented using few-shot examples and serves as the foundational baseline for
reasoning performance.

• Tree-of-Thoughts (ToT) is a framework that models problem-solving as a tree search,
allowing the model to explore multiple reasoning paths concurrently. The standard imple-
mentation uses an expensive, LLM-based self-evaluation mechanism to score and prune
branches, representing a powerful but computationally intensive upper baseline.

• Dynamic Parallel Tree Search (DPTS) is a recent adaptive variant of ToT that uses local
confidence scores derived from the model’s own logits to guide a parallel, breadth-first
expansion. It aims to improve efficiency over the standard ToT by avoiding explicit LLM-
based evaluators but can be limited by the reliability of confidence scores as a predictor of
future success.

B EXPERIMENT DETAILS

This section outlines the specific configurations and hyperparameters used in our experiments to
ensure reproducibility.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Backbone Models. All experiments were conducted using the following publicly available back-
bone language models.

• Qwen3-8B is an 8-billion parameter model from the Qwen3 series developed by Alibaba
Cloud.

• Llama3.1-8B-Instruct is an 8-billion parameter, instruction-tuned model from the Llama
3.1 family developed by Meta.

• Gemma3-12B-it is a 12-billion parameter, instruction-tuned model from the Gemma 3
family developed by Google.

Hardware Configuration. To ensure a fair comparison across all methods and models, experi-
ments were performed on an identical hardware setup. We conduct our experiments on a server with
64 cores Intel Xeon 2.90GHz CPU, 256 GB RAM, and 4 NVIDIA 3090 GPUs running the Ubuntu
20.04 operating system.

Hyperparameter Settings. Consistent hyperparameters were used for all main experiments un-
less otherwise specified in the ablation studies.

DST Predictor Training. The DST predictor was implemented using a LightGBM classifier, a
highly efficient gradient boosting framework. This model was trained on features extracted from
successful and unsuccessful reasoning traces to learn how to distinguish between promising and
unpromising solution paths. Key hyperparameters for training included a learning rate of 0.05, 500
boosting estimators, and a maximum of 31 leaves per tree to control model complexity and prevent
overfitting on the training data.

Runtime Inference and Generation.

• Beam Width b. The default maximum beam width was set to 3, as this value was found to
offer a strong balance between performance and computational cost (see Figure 3).

• Pruning Threshold τ : The default pruning threshold was set to 0.7 for Math and GPQA and
0.8 for BBEH subtasks, based on the saturation point observed in our sensitivity analysis
(see Figure 4).

• Discount Factor γ: The default score propagation discount factor was set to 0.99, which
empirically yielded the highest accuracy by balancing solution brevity and completeness
(see Figure 5).

• Temperature: A temperature setting of 0.7 was used for LLM generation across all exper-
iments. This non-zero value encourages the generation of diverse candidate thoughts at
each step of the tree search, which is essential for effective exploration.

C SENSITIVITY TO HYPERPARAMETERS

This section analyzes the model’s sensitivity to three critical hyperparameters: the beam width b, the
pruning threshold τ , and the score propagation discount factor γ.

Beam width b. To analyze the effect of exploration on solution quality, we vary the maximum
beam width b on the BBEH-BoardgameQA dataset. The results, shown in Figure 3, illustrate the
fundamental trade-off between the breadth of the search and the computational resources required.

The figure yields several key insights. First, the most significant performance gain occurs when
moving from a narrow beam to a moderate one. Increasing the beam width from b = 1 (34.0%
accuracy) to b = 3 (46.0% accuracy) provides a substantial 12-point absolute improvement. This
sharp increase underscores the critical importance of exploring multiple reasoning paths. A purely
greedy approach (b = 1) is highly susceptible to early-stage errors, and even a modest increase in
exploration breadth allows the model to circumvent these pitfalls and find more robust solutions.
Second, Beyond b = 3, the accuracy curve flattens significantly, demonstrating a clear pattern of
diminishing returns. The accuracy gain from b = 3 to b = 5 is only 0.8 points, and the gain from

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

h

2 4 6 8 10 12
Beam Width (b)

34

36

38

40

42

44

46
Ac

cu
ra

cy
 (%

)

4000

6000

8000

10000

12000

14000

16000

18000

Av
g.

 To
ke

nsAccuracy (%)
Default (b=3)
Avg. Tokens

Figure 3: Accuracy vs. Average Tokens as a function of Beam Width (b) on BBEH-BoardgameQA.
The red dot marks our default setting of b = 3, which offers a strong balance between performance
and cost.

b = 5 to b = 12 is less than 0.5 points combined. In stark contrast, the average token consumption
(green dashed line) continues to increase in a near-linear fashion. This indicates that while some
exploration is crucial, an excessively wide beam provides minimal additional benefit and incurs
a prohibitive computational cost, likely due to the inherent reasoning limitations of the backbone
LLM.

This analysis confirms that a fixed, wide beam is computationally inefficient. It motivates our core
contribution: an adaptive search mechanism that can dynamically prune the search space, aiming to
achieve the accuracy of a wide-beam search with the efficiency of a much narrower one.

Pruning threshold τ . The plots for both GSM8K and BBEH-BoardgameQA (top row of Fig-
ure 4) demonstrate the fundamental trade-off governed by τ . As τ increases from 0.5 to 0.95, we
consistently observe that accuracy improves while the average token consumption also rises. This
is because a higher threshold τ imposes a stricter confidence requirement for taking a greedy short-
cut, forcing the system to default more frequently to the safer, full-beam exploration mode. This
increased exploration allows the model to recover from potential early-stage errors and discover
higher-quality reasoning paths, thus boosting accuracy at the expense of computational resources.
Crucially, both datasets exhibit a plateau effect, where accuracy gains diminish significantly at
higher τ values. For GSM8K, accuracy saturates around τ = 0.7, while for BBEH-BoardgameQA,
the curve flattens after τ = 0.8. This indicates that beyond a certain point, the marginal benefit
of increased exploration is outweighed by the linear increase in token cost, converging towards the
performance of a non-adaptive, full beam search.

The “Shortcut Rate Comparison” plot (bottom row of Figure 4) offers direct insight into the adaptive
behavior of our predictor. As theoretically predicted, the Shortcut Rate decreases monotonically as
τ increases for both tasks. On GSM8K, where reasoning paths are more uniform, the predictor
confidently identifies promising steps and triggers frequent shortcuts. On BBEH-BoardgameQA,
the inherent ambiguity of the task leads to lower predictor confidence, resulting in fewer shortcuts
and more cautious exploration. The experiments demonstrate that our adaptive pruning strategy,
controlled by a single parameter τ , allows practitioners to navigate the accuracy-efficiency Pareto
frontier and tailor the reasoning process to specific deployment constraints and task difficulties.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0.5 0.6 0.7 0.8 0.9
90.0

90.5

91.0

91.5

92.0

92.5
Ac

cu
ra

cy
 (%

)

GSM8K - Accuracy vs Tokens
Accuracy (%)
Avg. Tokens

1000

1500

2000

2500

3000

3500

4000

Av
g.

 To
ke

ns

0.5 0.6 0.7 0.8 0.9

42

43

44

45

46

Ac
cu

ra
cy

 (%
)

BBEH - Accuracy vs Tokens
Accuracy (%)
Avg. Tokens

8000

10000

12000

14000

16000

18000

Av
g.

 To
ke

ns

0.5 0.6 0.7 0.8 0.9
0

20

40

60

80

Sh
or

tc
ut

 R
at

e
(%

)

Shortcut Rate Comparison
GSM8K
BBEH-BoardgameQA

Figure 4: Top: Accuracy vs. Average Tokens as a function of Pruning Threshold (τ) on GSM8K
(left) and BBEH-BoardgameQA (right). Bottom: The corresponding Shortcut Rate for each dataset.

0.90 0.92 0.94 0.96 0.98 1.00

91.6

91.8

92.0

92.2

92.4

Ac
cu

ra
cy

 (%
)

GSM8K
Accuracy (%)
Avg. Tokens

0.90 0.92 0.94 0.96 0.98 1.0043

44

45

46

47

48

49

50

51

Ac
cu

ra
cy

 (%
)

GPQA
Accuracy (%)
Avg. Tokens

860

880

900

920

940

960

980

Av
g.

 To
ke

ns

7400

7600

7800

8000

8200

Av
g.

 To
ke

ns

Figure 5: Accuracy vs. Average Tokens as a function of Discount Factor (γ) on GSM8K (left) and
GPQA (right). The red marker indicates the optimal performance point, achieved at γ = 0.99.

Discount factor γ. To investigate how an inductive bias towards solution conciseness affects rea-
soning quality, we analyze the performance impact of the discount factor γ. This hyperparameter,
used during the score propagation phase of predictor training, discounts the value of longer reason-
ing chains. We systematically evaluate γ in the range [0.90, 1.00] on both the structured GSM8K
dataset and the more complex GPQA dataset.

The results, visualized in Figure 5, reveal a distinct and non-linear relationship, supporting our
hypothesis that an optimal balance exists between encouraging brevity and allowing for sufficient
reasoning depth. For both GSM8K and GPQA, the maximum accuracy is achieved precisely at
γ = 0.99, which we select as our default setting (indicated by the red marker). The performance
drop from γ = 0.99 to γ = 1.00 suggests that having no penalty against verbosity is suboptimal.
Allowing unconstrained path lengths may lead the model down convoluted or error-prone reasoning

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

trajectories. The significant accuracy loss at lower γ values (e.g., 0.90) confirms that an overly
aggressive penalty is also detrimental, as it discourages the model from taking necessary, multi-step
reasoning actions, particularly on complex problems like GPQA.

Our empirical results validate that a carefully calibrated penalty against verbosity is superior to both
extreme brevity and unconstrained exploration, providing a principled foundation for our training
methodology.

D THE USE OF LARGE LANGUAGE MODELS

In the preparation of this manuscript, we utilized the Large Language Model (LLM) Gemini 2.5 Pro.
The role of the LLM was strictly limited to that of a general-purpose writing assistant. Specifically, it
was used for polishing the manuscript to improve grammar, refine phrasing, and enhance the overall
clarity and readability of the text. All core scientific contributions, including the research ideation,
methodological design, experimental setup, data analysis, and the initial drafting of all content,
were performed exclusively by the authors. The authors have carefully reviewed all suggested edits
and take full responsibility for the final content of this paper, including its scientific accuracy and
integrity.

19

	Introduction
	Background
	Method
	State Definition
	Training Domain-Specialized Predictor
	Predictor as Runtime Evaluator

	Experiment
	Main Result
	Ablation Study
	Impact of State Feature Components
	Sensitivity to Hyperparameters

	Conclusion
	Datasets and Baselines
	Experiment details
	Sensitivity to Hyperparameters
	The Use of Large Language Models

