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ABSTRACT

Image-based deep reinforcement learning has made a great improvement re-
cently by combining state-of-the-art reinforcement learning algorithms with self-
supervised representation learning algorithms. However, these self-supervised
representation learning algorithms are designed to preserve global visual infor-
mation, which may miss changes in visual information that are important for per-
forming the task, like in Figure 1. To resolve this problem, self-supervised repre-
sentation learning specifically designed for better preserving task relevant infor-
mation is necessary. Following this idea, we introduce Temporal Change Sensitive
Representation (TCSR), which is designed for reinforcement learning algorithms
that have a latent dynamic model. TCSR enforces the latent state representation
of the reinforcement agent to put more emphasis on the part of observation that
could potentially change in the future. Our method achieves SoTA performance
in Atari100K benchmark.

Figure 1: The ground truth observation compared with image reconstructed from latent state rep-
resentation predicted by TCSR and EfficientZero. TCSR can not only predict the movement of
enemies in the short term (Marked in the yellow box) but also predict exactly when and where the
UFO will release a new enemy till the end of the planning horizon (Marked in the red box). How-
ever, EfficientZero fails to predict both of these changes. This shows that TCSR is more sensitive
to the changes in the latent state representation. These change includes but not limited to position,
appearance and disappearance of task related objects as shown in this figure.

1 INTRODUCTION

Deep reinforcement learning has achieved much success in solving image based tasks over the last
several years. A critical step to solving image based tasks is learning a good representation of the
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image input. One of the biggest challenges for learning a good representation for reinforcement
learning is that the reward is sparse (Shelhamer et al., 2016), which cannot generate enough training
signal to train the representation network. To resolve this problem, self-supervised representation
learning loss is often added to facilitate training.

There are many different approaches to image based reinforcement learning. Most of them try to
combine state-of-the-art model based or model free backbones like SAC (Haarnoja et al., 2018),
Rainbow (Hessel et al., 2018) and MuZero (Schrittwieser et al., 2020) with self-supervised repre-
sentation learning algorithms to boost the training of representation. Among these methods, SPR
(Schwarzer et al., 2020) and EfficientZero (Ye et al., 2021) are state-of-the-art model-free and model
based methods in the Atari 100K benchmark. They achieved the best score in 21 out of 26 Atari
100K games combined. They train a dynamic model to predict the future latent states from an initial
latent state calculated by the image encoder. Both the image encoder and the dynamic model are
trained using the SimSiam(Chen & He, 2020) loss between the predicted latent state and the latent
state calculated directly from the future observations.

However, most representation learning algorithms used in reinforcement learning do not emphasize
the change of visual information, while creatures, including humans, are innately sensitive to the
change of visual information. A very important part of the neural system is the middle temporal
visual area (MT) (Von Bonin & Bailey, 1947). Visual information is integrated and differentiated in
MT to capture the movement of objects contained in visual information (Allman et al., 1985). The
ability to capture the changes in visual information helps creatures catch prey or escape an enemy
Maturana et al. (1960); Suzuki et al. (2019). To help reinforcement learning agents acquire such
ability, we propose Temporal Change Sensitive Representation (TCSR), a self-supervised auxiliary
loss specifically designed for reinforcement learning methods that have a latent dynamic model.
TCSR enforces the difference between two consecutive unrolled latent states to be the same as the
difference between two target latent states generated from two consecutive observations with the
same augmentation.

TCSR uses EfficientZero (Ye et al., 2021) as the backbone and inherit most of the hyper-parameter.
On the Atari 100k benchmark, TCSR surpasses EfficientZero in 19 out of 26 games (as shown in
Figure 2) and achieves a new state-of-the-art performance.

Figure 2: The improvement of human normalized score by adding TCSR as an extra self-supervised
representation learning auxiliary loss on EfficientZero backbone. TCSR surpasses EfficientZero in
19 out of 26 games in the Atari 100k benchmark
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2 RELATED WORK

2.1 REPRESENTATION LEARNING IN REINFORCEMENT LEARNING

Almost every image based reinforcement learning algorithms learn a lower dimensional latent state
representation from images. Self-supervised auxiliary tasks are often used to facilitate the training
of the representation network. Some early works (Lange & Riedmiller, 2010) (Yarats et al., 2019)
use widely accepted image reconstruction losses as the auxiliary loss. There was a trend (Srini-
vas et al., 2020; He et al., 2019a; Banino et al., 2021) of using contrastive losses as auxiliary loss
led by CPC (Oord et al., 2018). Recently, similarity based losses (Grill et al., 2020; Chen & He,
2020) are more popular than contrastive losses since they do not need a large number of negative
pairs. Temporal consistent/predictive loss is another auxiliary loss that is often used to encourage
the representations learned by the agent to contain predictive information (Schwarzer et al., 2020;
Guo et al., 2020; Nguyen et al., 2021). Latent state representations learned with temporal consis-
tent/predictive loss could also be unrolled by the dynamic/transitions network to simulate experience
(Hafner et al., 2019a; 2020) or perform planning (Hafner et al., 2019b). As the backbone of our al-
gorithm, EfficientZero (Ye et al., 2021) uses the unrolled latent state representation for both training
and planning.

2.2 MODEL BASED REINFORCEMENT LEARNING

Model based reinforcement learning algorithms usually have access to or learn a world model. Given
the current state and a action, the model can predict the next state and the next reward. The model
can be used to generate simulated experience and/or perform planning (Sutton & Barto, 2018).
Learning a model to generate simulated experience and perform planning with high dimensional
inputs like images(Schrittwieser et al., 2020; Ye et al., 2021) is usually more challenging than with
low dimensional states (Abbeel et al., 2006; Deisenroth & Rasmussen, 2011). Some reinforcement
learning algorithms learn a world model only for training the representation network (Schwarzer
et al., 2020; Kaiser et al., 2019; Guo et al., 2020). Dreamer (Hafner et al., 2019a; 2020) only use
the learned model to generate simulated experience for training. PlaNet (Hafner et al., 2019b) only
use the learned model for planning. Our work aims to help model based reinforcement learning
algorithms with high dimensional inputs to train a better model and representation network.

2.3 VIDEO PREDICTION

Video prediction has been a classic topic in the field of machine learning (Oprea et al., 2020).
Action conditioned video prediction of Atari games could be dated back to 2015 (Oh et al., 2015;
Chiappa et al., 2017). They are the foundation work of learning a world model of Atari games
for reinforcement learning. Some video prediction algorithms focus on the temporal changes of
the inputs (Michalski et al., 2014; Finn et al., 2016), which is similar to our work. But the temporal
changes they focus on are at the pixel level while we focus on the latent state level, and our algorithm
is designed for reinforcement learning.

3 BACKGROUND

3.1 MCTS OF MUZERO

MuZero (Schrittwieser et al., 2020) is a Monte-Carlo Tree Search (MCTS) based Reinforcement
Learning method. MuZero operates the MCTS with a representation function, a dynamic function
and a prediction function. The representation function h encodes an observation ot into latent state
representation st,0 = h(ot). The dynamic function predicts next latent state representation and
reward st,k+1, rt,k+1 = g(st,k, at+k) given current latent state representation st,k and action at+k.
Given a latent state st,k, the prediction function predicts the policy and value pt,k, vt,k = f(st,k).
The policy pt,k is used to expand and navigate through the tree. The value vt,k is used to estimate
the values of each node of the tree.

When collecting data, MuZero performs MCTS at each unroll step t. The action at will be chosen
through UCB based on the result of MCTS. Then the action is passed to the environment. The
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resulting next observation ot+1 and reward ut+1 are stored in the replay buffer. The replay buffer
also stores the expected return zt at the root estimated with MCTS and the action distribution πt at
the root.

During training, a batch of samples is chosen from the replay buffer. A sample consists of ini-
tial observation ot, action sequence at, ...at+K−1, ground truth reward sequence ut+1, ...ut+K ,
bootstrapped value target sequence zt, ...zt+K and action distribution sequence πt, ...πt+K , where
K is the maximum unroll length. Initial state is generated from the stacked observation st,0 =
h(ot−n, ...ot). Unrolled latent state representation and predicted reward are generated recursively
with the dynamic network st,k+1, rt,k+1 = g(st,k, at+k). Predicted policies and values are gener-
ated with prediction function pt,k, vt,k = f(st,k) for each unrolled latent state representation. At
last, the MuZero loss is calculated as follows:

LMuZero(t) =
∑

k∈{0,...K}

Lreward(ut+k, rt,k) + Lvalue(zt+k, vt,k) + Lpolicy(πt+k, pt,k)

Where Lreward, Lvalue, and Lpolicy are Cross-Entropy loss. It is critical to notice that MuZero does
not assume the predicted latent states correspond to actual states. The predicted latent states gen-
eralize across future states that have similar subsequence values, rewards and action distributions
(Schrittwieser et al., 2020).

3.2 TEMPORAL CONSISTENT LOSS OF EFFICIENTZERO

EfficientZero (Ye et al., 2021) is an efficient sample variant of MuZero that addresses three prob-
lems: no supervision on dynamic and representation function, state aliasing and off-policy issue. To
address these problems, EfficientZero made three modifications to MuZero. The first modification is
adding a self-supervised consistent loss. The second modification is adding an end-to-end prediction
of the value prefix by predicting the value prefix with multiple previous unrolled states instead of
just the current state. The third modification is model-based off-policy correction, which is done by
performing another MCTS tree search at each leaf node to obtain more accurate state value.

Among these three modifications, Self-Supervised Consistent Loss made the most contribution to the
final result. Similar to SPR, MuZero’s self-supervised loss uses SimSiam self-supervised framework
and trains the dynamic function and representation function at the same time. During training, a
sequence of observation ot+1, ...ot+K following initial observation ot are drawn from the replay
buffer in addition to the action distribution, reward and value prepared for MuZero loss. Then
target latent state representation st+1,0, ...st+K,0 will be generated with st+k,0 = h(ot+k) for k ∈
{1, ...K}. At last unrolled state representation st,k will be pulled toward target states representation
st+k,0 by adding consistent loss on top MuZero loss. Then the EfficientZero loss corresponds to
time step t is:

LEfficientZero(t) = LMuZero(t) +
∑

k∈{1,...K}

LSimSiam(st,k, st+k,0)

By enforcing the consistent loss, EfficientZero assumes the unrolled latent state representation st,k
unrolled from initial latent st,0 with ground truth actions at, ...at+k−1 represents the ground truth
state at time t+ k.

We choose EfficientZero over SPR as the backbone of our method because SPR only uses the
training signal of the prediction to stimulate the training of the representation network, while Ef-
ficientZero will be able to take advantage of higher quality unrolled states when performing the
MCTS.

3.3 DATA AUGMENTATION

Augmentation has been an indispensable part of recent Imaged based Reinforcement Learning re-
search. RAD (Laskin et al., 2020) has shown that data augmentation improves the sample efficiency
and generalization of reinforcement learning. However, data augmentation could also harm the
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performance of reinforcement learning. As shown in RAD, the performance of agents with aug-
mentations like cutout are even worse than the baseline. This is because some critical information is
removed from the image when doing augmentation. Due to this reason, the random shifts proposed
by DrQ (Kostrikov et al., 2020; Yarats et al., 2021) have been the most popular data augmentation
method since it makes the least change to the input observation while providing enough variance
to regularize the representation network. Kostrikov et al. (2020) also pointed out that data augmen-
tation can regularize downstream tasks like Q-learning beyond just regularizing the representation
network.

We believe that even with the consistent loss, the augmentation is preserved at a certain level through
the representation and dynamic network, affecting the prediction network. This is another reason
why EfficientZero performs so well. So, when using augmentation, the notation of the latent state
representations becomes:

ŝt+k,0 = h(ôt+k)

s̃t+k,0 = h(õt+k)

ŝt,k+1 = gstate(ŝt,k, at+k)

Whereˆand˜each represent an augmentation of a parameter at a time step t. ŝt,k and s̃t,k should be
similar but not necessarily the same.

3.4 SIMSIAM LOSS

SimSiam(Chen & He, 2020) is a state-of-the-art representation learning method. It maximize the
similarity between two augmentations of one image. Compare to other representation learning meth-
ods like BYOL(Grill et al., 2020), SimCLR(Chen et al., 2020a), SwAV(Caron et al., 2020) and
MoCo(He et al., 2019b; Chen et al., 2020b), SimSiam can perform very well even without negative
sample pairs, large batch size and momentum encoder. SimSiam consist of a projector P1 and a
predictor P2. Given a backbone representation function h and two augmentations x̂ and x̃ of same
image x, the SimSiam loss is calcuated as follow.

ŷ = h(x̂)

ỹ = h(x̃)

D(ŷ, ỹ) = − ŷ

||ŷ||
· ỹ

||ỹ||

LSimSiam(ŷ, ỹ) = D(P2(P1(ŷ)), stopgrad(P1(ỹ))) +D(P2(P1(ỹ)), stopgrad(P1(ŷ)))

Where D is the negative cosine similarity. Since EfficientZero want to maximize the similarity
between predicted latent state representation and ground truth future latent state representation in-
stead of the similarity between two augmentation of one image, it don’t need the symmetry. So the
modified SimSiam loss of EfficientZero is as follow.

LSimSiam(ŝt,k, s̃t+k,0) = D(P2(P1(ŝt,k)), stopgrad(P1(s̃t+k,0)))

4 TEMPORAL CHANGE SENSITIVE REPRESENTATION

Most current representation algorithms focus on the general similarities and/or dissimilarities be-
tween different inputs. However, the difference between two observations is usually limited for
image based reinforcement learning tasks. Especially when training a temporal predictive repre-
sentation, the difference between two consecutive observations is only a small area in the image.
Furthermore, if we consider the changes introduced by the augmentation, a few pixel differences
could be easily ignored. Under this circumstance, enforcing the temporal consistency may not be
enough for the changes to be preserved in the representation. So, we introduce temporal change sen-
sitive representation (TCSR). In addition to enforcing the consistency of the representation, TCSR
enforces the consistency of the change of the representation. The training pipeline is as shown in
Figure 3.
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Figure 3: The training pipeline of Temporal Change Sensitive Representation(TCSR). On the left
is the overall training pieline shared by MuZero, EfficientZero and TCSR. An inital observation ôt
is drawn from the replay buffer and augmentated. Then ŝt,0 is obtained by encoding ôt with the
representation network. Unrolled latent state representations ŝt,k are generated iterately with the
dynamic network. On the right shows the detile of how loss is calcuated for each unrolled latent
state representation ŝt,k in TCSR. ŝt,k−1 is the previous latent state representation that is used to
generate ŝt,k though not marked in the figure for conciseness. Both Lconsistent and L∆ are SimSiam
loss and they don’t share parameters.

4.1 TCSR LOSS

The TCSR Loss works alongside the training of EfficientZero as showen in 3. Consider the training
pipeline of EfficientZero with augmentation. A time step t is chosen, and corresponding information
is retrieved from the replay buffer. Initial latent state representation is generated from augmented
stacked observation with representation network ŝt,0 = h(ôt), where ôt is augmented from the
original observation ot. Then unrolled latent state representations is generated iteratively as ŝt,k =
gstate(ŝt,k−1, at+k−1) for k ∈ {1, ..K}. The target latent state representations are generated from
subsequence observations augmented with another parameter s̃t+k = h(õt+k) for k ∈ {1, · · ·K},
where õt+k is augmented from the original observation ot+k. Note that ôt and õt are different
augmentations of ot and ôt+k for k ∈ {0 · · ·K} share same augmentation parameter (i.e. when the
augmentation is random shift, they share the same shifting distance in x and y axis, etc.) We define
the change of representation operation ∆ as below.

∆unroll(ŝt,k) = ŝt,k − ŝt,k−1

∆target(s̃t+k,0) = s̃t+k,0 − s̃t+k−1,0

At last, the similarity loss between the difference of two consecutive unrolled latent state rep-
resentations ∆unroll(ŝt,k) and the difference of two consecutive target latent state representation
∆target(s̃t+k,0) is added on top of EfficientZero loss with a weight of λTCSR to formulate TCSR
loss.

LTCSR(t) = LEfficientZero(t) + λtcsr

∑
k∈{1,...K}

LSimSiam(∆unroll(ŝt,k),∆target(s̃t+k,0))

Notice that the SimSiam loss here uses another set of projection and prediction net separated from
the one used in EfficientZero loss.

The beauty of the TCSR loss is that the change of representation ∆ is calculated from two repre-
sentations generated by observations augmented with the same parameter. So the minor changes
between two consecutive steps will not be overshadowed by the difference introduced by the aug-
mentation of different parameters. At the same time, the augmentation is still able to regularize and
generalize the training since ∆unroll and ∆target is generated from observation with different augmen-
tation parameter.
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Table 1: Scores of TCSR and other baselines on Atari100K benchmark. TCSR is 13.91% and
9.48% higher than the result of the EfficientZero source code that our method is base on. Note that
the scores reported in the EfficientZero paper cannot be achieved by source code released on GitHub
by the original author. So we choose to re-run the EfficientZero source code and report the result as
our major baseline, which is still the SoTA algorithm on the Atari100K benchmark before our work.

Game Random Human SimPLe CURL DrQ SPR
EfficientZero
(paper
reproted)

EfficientZero
(Source code
re-run)

TCSR

Alien 227.8 7127.7 616.9 558.2 771.2 801.5 808.5 563.3 340.4
Amidar 5.8 1719.5 88 142.1 102.8 176.3 148.6 139.4 145.6
Assault 222.4 742 527.2 600.6 452.4 571 1263.1 1311.0 1946.7
Asterix 210 8503.3 1128.3 734.5 603.5 977.8 25557.8 9305.2 12389.3
BankHeist 14.2 753.1 34.2 131.6 168.9 380.9 351 242.9 264.7
BattleZone 2360 37187.5 5184.4 14870 12954 16651 13871.2 8432.3 13895.8
Boxing 0.1 12.1 9.1 1.2 6 35.8 52.7 21.4 21.8
Breakout 1.7 30.5 16.4 4.9 16.1 17.1 414.1 274.2 300.8
ChopperCmd 811 7387.8 1246.9 1058.5 780.3 974.8 1117.3 2312.5 1707.3
CrazyClimber 10780.5 35829.4 62583.6 12146.5 20516.5 42923.6 83940.2 72941.7 91619.3
DemonAttack 152.1 1971 208.1 817.6 1113.4 545.2 13003.9 5591.4 6043.5
Freeway 0 29.6 20.3 26.7 9.8 24.4 21.8 3.6 3.6
Frostbite 65.2 4334.7 254.7 1181.3 331.1 1821.5 296.3 258.0 253.4
Gopher 257.6 2412.5 771 669.3 636.3 715.2 3260.3 1568.2 1712.1
Hero 1027 30826.4 2656.6 6279.3 3736.3 7019.2 9315.9 8689.8 10817.0
Jamesbond 29 302.8 125.3 471 236 365.4 517 255.2 441.7
Kangaroo 52 3035 323.1 872.5 940.6 3276.4 724.1 1415.6 1541.1
Krull 1598 2665.5 4539.9 4229.6 4018.1 3688.9 5663.3 6505.9 6684.6
KungFuMaster 258.5 22736.3 17257.2 14307.8 9111 13192.7 30944.8 20949.0 22663.9
MsPacman 307.3 6951.6 1480 1465.5 960.5 1313.2 1281.2 1151.6 1033.6
Pong -20.7 14.6 12.8 -16.5 -8.5 -5.9 20.1 12.7 17.7
PrivateEye 24.9 69571.3 58.3 218.4 -13.6 124 96.7 100.0 17.6
Qbert 163.9 13455 1288.8 1042.4 854.4 669.1 13781.9 6006.4 7192.1
RoadRunner 11.5 7845 5640.6 5661 8895.1 14220.5 17751.3 14213.5 15862.5
Seaquest 68.4 42054.7 683.3 384.5 301.2 583.1 1100.2 1017.4 690.4
UpNDown 533.4 11693.2 3350.3 2955.2 3180.8 28138.5 17264.2 5010.5 8081.5
Normed Mean 0 1 0.443 0.381 0.357 0.704 1.943 1.243 1.451
Normed Median 0 1 0.144 0.175 0.268 0.415 1.09 0.448 0.602

5 EXPERIMENT

5.1 ENVIRONMENT AND BASELINE

We evaluate TCSR on Atari100k (Kaiser et al., 2019), a widely used benchmark for sample effi-
cient reinforcement learning. The reinforcement learning agent is allowed to interact and collect
100,000 steps with a frame skipping of 4. So a total of 400,000 frames are generated from the sim-
ulator. Atari100K is mostly used to test the sample efficiency of reinforcement learning algorithms
(Schwarzer et al., 2020; Kostrikov et al., 2020; Ye et al., 2021). We follow the same settings of
EfficientZero (Ye et al., 2021) to perform the evaluation. For each task, we perform 6 runs with
different seeds and each run with 32 evaluation episodes. The mean accumulated rewards of 6 runs
are calculated and recorded as the raw score. Then the human normalized score is calculated for
each task with the following equation.

scorenormed =
scoreraw − scorerandom

scorehuman − scorerandom

At last, the mean and median normed score of 26 atari games are used to evaluate the overall perfor-
mance of this reinforcement learning agent. Our method is built on the latest source code released
by EfficientZero author on GitHub. We could not reproduce the result reported in the EfficientZero
paper using the code released by the author. Though the result from running the author released
code is still better than other baselines such as SPR (Schwarzer et al., 2020). Since our change is
on top of the EfficientZero source code, we believe it is fair to compare the result of our method
with the result from running the EfficientZero source code. We have run the latest source code re-
leased by the EfficientZero author on our machine and report the result in Table 1. The re-run result
achieves SoTA performance on 12 out of 26 games in the Atari100K benchmark and achieves mean
and median human normalized score of 1.243 and 0.448, which is still the SoTA method on the
Atari100K benchmark before our work. We have also included other popular algorithms(Schwarzer
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et al., 2020; Kostrikov et al., 2020; Kaiser et al., 2019; Srinivas et al., 2020) as baseline to compare
with TCSR in Table 1.

5.2 RESULTS

The result of TCSR on the Atari100K benchmark is shown in Table 1. Our method achieves the
highest score in 12 out of 26 games. Human normalized score wise, TCSR achieves a high score
of 1.451 mean and 0.57 median, which are 16.73% and 34.24% higher than the result of the Effi-
cientZero source code that our method is based on. Specificaly, TCSR outperformance EfficientZero
in 19 out of 26 games in Atari100K benchmark as shown in 2.

5.3 VISUALIZATION

To understand how TCSR influences the learned latent state representation, we trained a decoder
network to visualize what information is contained in the latent state. We only train the decoder with
latent state representation generated directly from the representation network and use ground truth
observation as the target. This ensures that the decoder can only reconstruct information contained in
the current latent state representation and cannot predict. Mean square error is used to calculate the
loss at pixel lever. We stop the gradient at the latent state representation so that the training of image
reconstruction will not affect the regular training pipeline. When visualizing, we feed EfficientZero
and TCSR with the same observation and action sequence to see the difference in unrolled latent
states. An example of the Atari game Assault reconstruction result is shown in Figure 1. In Assault,
a UFO will release enemies to attack the fighter controlled by the agent. When no enemy is on the
screen, the UFO will release another enemy immediately. However, when enemies are on the screen,
the UFO will release a new enemy under a certain rule. TCSR can capture such information and
correctly predict when and where the UFO will release the new enemy. This explains why TCSR
outperforms EfficientZero in 17 out of 26 tasks in the Atari100k benchmark.

6 CONCLUSION

This paper presented Temporal Change Sensitive Representation (TCSR), a self-supervised auxil-
iary task designed for reinforcement learning algorithms that train a dynamic model. We enforce the
temporal difference between unrolled latent state representations to be consistent with the temporal
difference between target latent state representations. Calculating the difference between two con-
secutive states is similar to taking derivative, which is a common practice in the field of Mathematics
and Physics when trying to learn the dynamics. The results show that our method can help agents
better capture critical information in the latent state representations and better unroll those latent
state representations. With the help of representation learned by TCSR, the EfficientZero backbone
is able to achieve state-of-the-art performance in the Atari100K benchmark. Possible future ex-
tension of TCSR includes applying it to different losses other than SimSiam and higher order of
temporal differences.
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Daichi G Suzuki, Juan Pérez-Fernández, Tobias Wibble, Andreas A Kardamakis, and Sten Grillner.
The role of the optic tectum for visually evoked orienting and evasive movements. Proceedings
of the National Academy of Sciences, 116(30):15272–15281, 2019.

Gerhardt Von Bonin and Percival Bailey. The neocortex of macaca mulatta.(illinois monogr. med.
sci., 5, no. 4.). 1947.

Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus. Im-
proving sample efficiency in model-free reinforcement learning from images. 2019. doi:
10.48550/ARXIV.1910.01741. URL https://arxiv.org/abs/1910.01741.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous con-
trol: Improved data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645, 2021.

Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari games
with limited data. 2021. doi: 10.48550/ARXIV.2111.00210. URL https://arxiv.org/
abs/2111.00210.

10

https://proceedings.neurips.cc/paper/2014/file/cd89fef7ffdd490db800357f47722b20-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/cd89fef7ffdd490db800357f47722b20-Paper.pdf
https://arxiv.org/abs/1507.08750
https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/2007.05929
https://arxiv.org/abs/1612.07307
https://arxiv.org/abs/1910.01741
https://arxiv.org/abs/2111.00210
https://arxiv.org/abs/2111.00210


Under review as a conference paper at ICLR 2023

Table 2: Hyper-parameters for TCSR
Parameter Setting
Observation down-sampling 96 × 96
Frames stacked 4
Frames skip 4
Reward clipping True
Terminal on loss of life True
Max frames per training episode 12k
Max frames per evaluate episode 108K
Discount factor 0.9974

Minibatch size 256
Optimizer SGD
Optimizer: learning rate 0.2
Optimizer: momentum 0.9
Optimizer: weight decay (c) 0.0001
Max gradient norm 5
Priority exponent (α) 0.6
Priority correction (β) 0.4 −→ 1
Training steps 120K
Evaluation episodes 32
Min replay size for sampling 2000
Self-play network updating inerval 100
Target network updating interval 200
Unroll steps 5
TD steps 5
Policy loss coefficient 1
Value loss coefficient 0.25
Self-supervised consistency loss coefficient 2
Temporal change consistency loss coefficient 0.2
Recurrent gradient scaling factor 1.0
LSTM horizontal length 5
Dirichlet noise ratio 0.3
Number of simulations in MCTS 50
Reanalyzed policy ratio 0.99

A IMPLEMENTATION DETAIL

TCSR is implemented on the EfficientZero source code. We followed EfficientZero’s implementa-
tion on the representation network, dynamic network, reward prediction network, value prediction
network and policy prediction network. TCSR has one addition set of SimSiam predictor and pro-
jector that have the exact same architecture as those in EfficientZero. They are used to maximize
the similarity between the difference of two consecutive unrolled latent state representation and the
difference of two consecutive target latent state representation.

The architecture of predictor in SimSiam network is as follow:

• 1 fully connected layers and 256 output dimensions. (BN + ReLU)
• 1 fully connected layers and 256 output dimensions. (BN + ReLU)
• 1 fully connected layers and 256 output dimensions. (BN)

The architecture of projector of SimSiam network is as follow:

• 1 fully connected layers and 64 output dimensions. (BN + ReLU)
• 1 fully connected layers and 256 output dimensions.

Some update had been made to the Hyper-parameters in the EfficientZero source code since the
publication of EfficientZero paper. TCSR also made minor adjustment to the Hyper-parameters.
The Hyper-parameters are as shown in table 2. The learning rate schedule is as showen below.

learning rate =

{
0.0002 · step, 0 < step ≤ 1000
0.2, 1000 < step ≤ 100K
0.02 100K < step ≤ 120K

B DATA AUGMENTATION

We followed EfficientZero on the implementation of data augmentation. Some details regarding the
implementation of data augmentation isn’t mentioned in EfficientZero paper, but we believe these
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details are extra important for TCSR. So we will discuss them here. The data augmentation of
EfficientZero consist two part, random shift and intensity, which is defined as follow.

Random Shift
Pad the input image of size 96 × 96 to 108 x 108 by repeating boundary pixels for 4 pixels.
Then random crop the image back to 96 x 96.
Intensity
Generate a random scalar s by s = 1+0.05·clamp(r,−2, 2), where r ∼ N (0, 1). Multiply
the value on each pixel of input image by s

In the main part of this paper, we mentioned a concept called the ”parameter” of augmentation. By
”parameter” we mean the crop position and the value of scalar s. We say ôt and ôt+1 share the same
augmentation parameter when they share the same crop position and scalar s. We say ôt and õt have
different augmentation parameter when the crop position and scalar are sampled separately.

The ”parameter” of augmentation is extra important for TCSR. Suppose we have two consecutive
observation ot and ot+1. We augment them with different augmentation to get ôt and õt+1 and
encode them with the representation network h to get ŝt and s̃t+1,0. If we calculate the difference
between ŝt and s̃t+1,0, the result is meaningless since the difference introduced by the augmentation
could be bigger than the temporal change.

C DECODER

A decoder is used to demonstrate the quality of unrolled latent state representation predicted by
TCSR. The architecture of the decoder is as follow:

• 1 transposed residual block with 64 planes. (BN + ReLU)
• Up sample with nn.functional.interpolate, output size 12 x 12, mode: nearest.
• 1 transposed residual block with 64 planes. (BN + ReLU)
• Up sample with nn.functional.interpolate, output size 12 x 12, mode: nearest.
• 1 transposed residual block with 64 planes. (BN + ReLU)
• 1 transposed upsample residual block with stride 2 and 32 output planes (BN + ReLU)
• 1 transposed residual block with 32 planes. (BN + ReLU)
• 1 transposed upsample residual block with stride 2 and 12 output planes (BN + ReLU)
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