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ABSTRACT

Brain-inspired Spiking Neural Networks (SNNs) offer remarkable energy effi-
ciency but still lag behind Artificial Neural Networks (ANNs) in fundamental
tasks like object detection, primarily due to the precision bottleneck and limited
spatial modeling. To narrow this gap, we propose SpikeDet, a fully spiking object
detector that redefines both the microscopic neuron model and macroscopic atten-
tion mechanism. At its core, the bio-inspired TE-LIF neuron, with time-evolving
membrane dynamics, enhances representational precision and achieves finer input
pattern recognition, while maintaining computational efficiency. Building upon
this, the proposed Dual-Stream Spiking Attention employs a QV-only design that
integrates GlobalMixer and Local Amplifier modules, facilitating effective spatial
semantic modeling with linear complexity. Together, these innovations empower
SpikeDet to achieve the state-of-the-art performance across multiple object detec-
tion benchmarks with minimal energy consumption. On the widely used COCO
dataset, SpikeDet achieves 68.3% mAP@50 and 51.9% mAP@50:95, setting a
new milestone in SNN-based detection and even surpassing several popular ANN
models. Extensive ablation studies and evaluations across additional vision tasks
further validate the effectiveness and generality of our approach.

1 INTRODUCTION

Spiking Neural Networks (SNNs), regarded as the third generation of neural networks (Maass)
1997), utilize biologically plausible spiking neurons to process information encoded in spatially and
temporally distributed spikes. In contrast to artificial neurons, spiking neurons remain mostly inac-
tive and perform computations only when triggered by sparse spikes. This event-driven paradigm
significantly enhances energy efficiency (Caviglia et al.,|2014; Zhang et al.,2023b), rendering SNNs
particularly promising for deployment in real-world applications.

Object detection is a central task in computer vision with applications in autonomous driving,
robotics, surveillance, and medical imaging. Unlike image classification, object detection must
identify multiple object instances within an image and accurately localize them through bounding
boxes. This dual requirement imposes greater demands on representational capacity, numerical pre-
cision, and global spatial reasoning.

Despite their efficiency, SNNs still underperform Artificial Neural Networks (ANNSs) in object de-
tection, limiting their practical utility. The gap stems from two key factors: (1) Precision bottleneck.
Unlike ANNs that exploit continuous activations, SNNs convey information via discrete spike se-
quences. Most existing SNN models operate on Leaky Integrate-and-Fire (LIF) neurons (Maass,
1997), repeating the identical behavior across timesteps and relying on spike counts to approxi-
mate continuous activations (Kim et al.,|2020a}; |Yao et al., 2025a). Such a coarse coding scheme is
especially detrimental in object detection which demands fine-grained regression. (2) Limited spa-
tial modeling. Current SNN detectors, such as SpikeYOLO (Luo et al.,|2024) and MSD (Li et al.,
2025)), rely on convolutional backbones for efficiency, which limits the receptive fields and hinders
their ability to understand complex scenes. While the widely adopted self-attention (Vaswani et al.,
2017) could help, existing spiking attention modules compatible with SNNs either incur prohibitive
overhead or offer insufficient semantic reasoning capabilities (Yao et al.,[2025aj Zhou et al.| 2024a).
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Figure 1: SpikeDet vs. typical object detection models on COCO (left) and its prediction results
on COCO, Genl, NWPU and SSDD (right). SpikeDet achieves SOTA performance among SNNss,
surpasses ANNs with superior energy efficiency, and enables strong cross-domain generalization.

To overcome the aforementioned challenges and promote the practical application of SNNs in object
detection, we propose a fully spiking object detector—SpikeDet, which introduces innovations at
both the microscopic level of spiking neurons and the macroscopic level of attention modules.

At the core of our framework is the Time-Evolving LIF (TE-LIF) neuron, which extends standard
LIF dynamics with time-dependent membrane behavior, inspired by temporal synaptic integration
observed in hippocampal neurons (Harris et al.,[2002). Unlike vanilla LIF neurons that treat spikes
uniformly, TE-LIF assigns different influence to spikes depending on their timing, yielding a finer
and more biologically grounded coding scheme. This expands the representational range of spike
sequences and supports the precision needed for regression tasks such as bounding box localization.
Moreover, the temporal weights are chosen as powers of two, allowing efficient bit-shift implemen-
tations that preserve the low-power nature of SNNs while enhancing their expressivity.

To complement this temporal precision with stronger spatial reasoning, we introduce the Dual-
Stream Spiking Attention (DSSA). DSSA removes costly matrix multiplications with a query—value
(QV)-only design, and uses two coordinated streams—GlobalMixer and LocalAmplifier—to capture
global structure and enhance local details. This design supports long-range feature fusion with linear
complexity and maintains stable optimization when combined with TE-LIF.

The proposed SpikeDet model achieves the state-of-the-art performance on multiple object detection
benchmarks including COCO, Genl, NWPU, and SSDD. As illustrated in [Figure 1] it yields favor-
able parameter—accuracy trade-offs over leading SNNs, surpasses representative ANNs, reduces en-
ergy consumption, and demonstrates robust generalization. Extensive experiments on classification
and segmentation further indicate its broad applicability. Our main contributions are as follows:

1) We propose the TE-LIF neuron with biologically inspired time-evolving dynamics and power-
of-two temporal weights, which enables better representational capacities justified both by our
theoretical analysis and empirical experiments while retaining computational efficiency.

2) We introduce Dual-Stream Spiking Attention, a QV-only attention mechanism that replaces costly
matrix multiplications and couples GlobalMixer with LocalAmplifier for efficient global-local
spatial modeling with linear complexity.

3) We integrate these designs into SpikeDet, a spiking detector that achieves SOTA performance
across diverse detection domains. SpikeDet attains 68.3% mAP@50 and 51.9% mAP@50:95
on COCO, outperforming the previous best directly trained SNN by +2.1% and +3.0%, respec-
tively, while consuming only 32.4 mJ—Iess than 9% of YOLOv6 and RT-DETR’s energy usage.

2 RELATED WORK

Spiking Neural Networks (SNNs) employ biologically plausible spiking neurons, enabling event-
driven computation with high energy efficiency (Li et al.,2024). However, representing information
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through binary spike sequences rather than continuous activations leads to significant information
loss, limiting the representational power of SNNs. Current efforts to build high-performance SNNs
follow two main directions: (1) ANN-to-SNN conversion (Deng & Gul2021;|Hu et al.,[2023)), which
approximates ANN activations by spike rates but suffers from high latency and limited adaptability,
and (2) direct training with surrogate gradients and spatio-temporal backpropagation (Wu et al.,
2018 |Neftci et al.,[2019), which supports low-latency, end-to-end optimization. To reduce precision
loss from discretizing membrane potentials, recent studies adopt integer-valued activations during
training and map them to spike counts at inference (Luo et al., [2024} |Q1u et al., [2025} [Le1 et al.
2025). However, these approaches mostly rely on vanilla LIF neurons, which applies identical
dynamics across all timesteps and underutilizes the expressive potential of spike sequences. This
raises a natural question: why not endow neurons with time-evolving dynamics?

Object Detection demands precise spatial reasoning and continuous-valued regression, which re-
main challenging for SNNs. While artificial neural network (ANN) detectors have evolved from
two-stage frameworks (Girshick et al.,2014; Girshick, [2015) to real-time, one-stage models such as
YOLO (Redmon et al., 20165 [Bochkovskiy et al.l [2020) and more recent transformer-based archi-
tectures like DETR (Carion et al., 2020; [Zhu et al.l 2020), SNN detectors have historically lagged.
Early SNN detectors (Kim et al.| [2020aib; [Su et al.; 2023) performed poorly, while recent models
such as Spike YOLO (Luo et al.|[2024) improved accuracy via integer-valued training, and SpikePack
(Shen et al., [2025)) achieved competitive results through ANN-to-SNN conversion but at prohibitive
energy cost. However, SNN detectors typically adopt convolutional backbones with limited recep-
tive fields, thus struggling to model long-range semantic dependencies. Meanwhile, their neuronal
dynamics remain coarse—representations based on monotonous behavior and simple summation
constrain expressiveness, posing challenges for dense regression tasks like object detection.

Attention mechanisms have proven effective in ANN-based vision models, facilitating global con-
text modeling (Dosovitskiy et al.,[2020; Liu et al.;2021b)). However, despite some efforts to incorpo-
rate self-attention into object detection (Zhao et al.||20244a; (Tian et al., 2025)), most architectures still
depend on CNNs due to the quadratic computational cost of self-attention (Glenn,2023; Wang et al.,
2023a;|Li et al., 2023). Recently, attention has also been explored in SNNs. Methods, like SDSA-3
(Yao et al., 2024), mimic vanilla self-attention by relying on matrix multiplication, while other ap-
proaches (e.g., SSA, SDSA) simplify it through element-wise operations or summation (Zhou et al.|
20225 Yao et al.| [202452023a; Zhou et al., 2024 a; Deng et al., 2024). However, these modules suffer
from either high computational complexity or limited feature mixing. Thus, designing an effective
attention mechanism tailored for SNN detection remains an open challenge.

3 PRELIMINARY

LIF. SNNs exhibit spatio-temporal dynamic properties via biologically inspired spiking neurons,
among which the Leaky Integrate-and-Fire (LIF) neuron (Maass, [1997) is the most frequently
adopted. At each timestep ¢, LIF neuron repeats the identical dynamics, formally defined as:

Vi=BHi 1+ 15 S =0V, —Vip); Hi =V, =V - St (D

The membrane potential V; integrates spatial input [; and temporal input 5H;_1, where H;_ is the
previous membrane potential and 3 is the decay factor. The Heaviside step function ©(z) outputs 1
when z > 0 and 0 otherwise. The neuron emits a spike S; = 1 and the residual membrane potential
H, is reduced by V3, if V; exceeds the firing threshold V;;, else H; remains equal to V.

Self-Attention Mechanism. For the input X € RY*P where N is the token count and D is the
embedding dimension, vanilla self-attention (VSA) (Vaswani et al., 2017) is formulated as follows:

KT
Q=WoX, K=WgX, V=WyX; VSA(Q,K,V) = softmax(?/ﬁ

However, the reliance on floating-point matrix multiplications and the exponential operations in the
softmax function undermines the spike-driven characteristics of SNNs (Yao et al., |2024;|[Zhou et al.,
2024a). Moreover, the O(N?D) quadratic complexity of VSA proves impractical for resource-
constrained object detection and contradicts the goal of energy efficiency in SNNs.

WV 2
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4 METHOD

Our proposed SpikeDet model addresses the performance degradation of SNNs in object detection
through co-designs at both the neuron and network module levels. We first introduce the highly
expressive TE-LIF spiking neuron as the core component of our framework. Next, we introduce the
Dual-Stream Spiking Attention module, which enhances both global and local semantic modeling
while maintaining compatibility with TE-LIF.

4.1 TIME-EVOLVING SPIKING NEURON

Limitations of Vanilla LIF. Traditional LIF neurons apply identical dynamics across the entire
time window and assign equal importance to spikes at each timestep. As a result, synaptic strength
is encoded simply by counting spikes over T steps, i.e., Zthl St, yielding at most 7" + 1 discrete
levels. Such a coarse representation introduces a precision bottleneck, rendering it inadequate for
dense regression tasks like object detection.

Time-Evolving
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Figure 2: Time-Evolving LIF neuron. To capture the temporal shift of synaptic strength between
hippocampal neurons, we extend the traditional LIF neuron model by integrating time-evolving
dynamics, modulated by a time-decaying weight w;.

Biological Motivation. In biological systems, temporal-weighted synaptic integration is common,
for example in hippocampal neurons (Harris et al., 2002). The impact of a presynaptic spike varies
with timing and context, leading to postsynaptic responses of non-uniform magnitude. Additionally,
Harris et al.| (2002); |Deperrois & Graupner|(2020) observe that dendritic connection strength decays
with spike timing over the short term. Inspired by these phenomena, we propose the Time-Evolving
LIF (TE-LIF) neuron. Compared to standard LIF, TE-LIF incorporates dynamic integration magni-
tude, firing threshold, and decay level, yielding more biologically faithful temporal behavior.

Mathematical Formulation. Mathematically, we incorporate a time-decaying weight w; = 27
(t = 1,...,T) in the TE-LIF neuron during both the charging and discharging phases, as illus-
trated in This formulation underscores that earlier spikes trigger stronger response and

adaptation:
Vi=BHi 1+ 1w Ss =0V = Vip-wy) s Ho =V, = Vi - S - wy 3)

This neuronal model enables a finer-grained connection strength Zthl wy Sy, which expands the
representational range to 27 values and substantially improves precision. Since wy is a power of two,
multiplication can be implemented as a bit-shift, providing efficient deployment on digital hardware
(Kim et al., |2018; Zhang et al.| 2021} [2020). TE-LIF therefore bridges biologically inspired coding
with the precision and efficiency required by regression tasks.

Theoretical Insight. We analyze the expressivity of TE-LIF using the framework of input space
partitioning, which measures how many distinct polyhedral regions a network can form (Pascanu
et al., 2013 Montufar et al.,|2014}; [Nguyen et al., 2025). Each neuron contributes to the partitioning
by inducing hyperplanes within the input domain, and a larger number of partitions indicates a
stronger capacity for function approximation. We present a theorem showing that TE-LIF achieves
a higher complexity of partitions in the input space compared to LIF as the time window T increases.
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Theorem 4.1. Consider a shallow discrete-time SNN with T timesteps in the input space R™". The
number of regions partitioned by LIF-SNN and TE-LIF-SNN are respectively bounded by:

T

T
T(T+1
Nur(T) = Nur(0) + ZANLIF(t) <1+ Zt =1+ (T) € O(T?),
=1 =1

(T+DET+1)

T T
T
Nrg(T) = Npe(0) + > ANpe(t) <14 ) C-#2=1+C- o(T?),
t=1 t=1

_ =1 | (B=1)|Hq| : . :
where the constant C = 1 + [GH + (B—tl)Vm 1 Hy is the initial membrane potential, Vi, denotes

the firing threshold, and the decay ratio § = w;—:l = 2 in our setting.

Remark. (with a detailed proof in indicates that LIF neurons yield

O(T?) partitions, while TE-LIF achieves O(T?) due to its time-evolving dynamics creating more
non-parallel hyperplanes. This cubic growth enables finer input discrimination, which is especially
valuable for regression tasks such as bounding box localization.

Training Stage. In order to lower temporal redundancy and accelerate the training phase, we utilize
the multi-bit training method commonly used in prior SNN studies (Luo et al.| [2024; [Yao et al.,
20254a; |Q1u et al., [2025; [Lei et al.l [2025), which merges several timesteps into one step and allows
integer-valued spike while training. To ensure the differentiability of the network, straight-through
estimator (Bengio et al., 2013)) are appiled for the integer-valued activation function. When infer-
ence, the integer values are restored into 0/1 spike sequences via extending virtual timesteps.

Inference Stage. During inference, TE-LIF neuron operates as in[Equation 3| Each neuron in layer
I — 1 emits a binary spike Si_l € {0, 1} at each timestep, and the input to layer [ is computed with
the synaptic weight matrix 7/ between two layers:

W' = (WS - wy )

Since Sffl is binary, the matrix multiplication W' - Séil simplifies to sparse masking and accu-
mulation operations, where only a few 1-valued spikes trigger the reading and accumulation of the
corresponding weights. Furthermore, since w; = 27—, the multiplication by w; can be replaced
with a lightweight bit-shift, i.e., z - w; = x < (T — t). This leads to a highly efficient inference
process in which expensive multiply-accumulate (MAC) operations are replaced by few masking
and accumulate (AC) operations, preserving the low-power characteristic of SNNs. Moreover, we
offer an adder-only implementation of TE-LIF neuron in Verilog hardware description language, as
detailed in[Appendix B} The use of accumulations, bit-shift operations and sparse events makes our
approach compatible with typical neuromorphic chips that support event-based computation (Davies
et al.| 2018; [Furber et al.| 2014} [Kim et al.} 2018} [Zhang et al., 2020).

4.2 DUAL-STREAM SPIKING ATTENTION

To enhance the spatial modeling capactity of SNN detectors and improves computational efficiency,
we design a Dual-Stream Spiking Attention, which enables effective global-local feature fusion and
maintains stable optimization when combined with TE-LIF neuron.

Eliminate Matrix Multiplication. Vanilla self-attention relies on successive matrix multiplications.
However, with TE-LIF neurons, such intensive operations yields values beyond the encoding range,
leading to approximation errors and training instability. To address this while boosting efficiency,
we replace matrix multiplications with element-wise operations, following|Zhai et al.[(2021).

QV-only Design. We propose a QV-only design that removes the Key branch. This is driven by the
fact that QK interactions struggle to measure similarity under sparse, spike-coded activations and
tend to amplify noise at low time steps (Wang et al.| 2025} [Xiao et al.l 2025)). Instead of computing
QK relevance, we directly construct the attention map from Q using a global-local fusion scheme.

Global-Local Fusion. Existing spiking attention modules (Zhou et al., [2024a}; |Yao et al., 2023a;
Wang et al.| [2025)) have primarily relied on element-wise operations that usually fuse features along
either the token or the embedding dimension, but rarely both. This limits their ability to capture
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Figure 3: Dual-Stream Spiking Attention. Built on TE-LIF neurons, DSSA removes the Key branch
and matrix multiplication, and fuses features through complementary global and local streams.

long-range dependencies under low firing rates or short windows. Inspired by human vision—where
saccades provide a global view and fixations allow detailed local analysis (Deubel & Schneider,
1996)—as depicted in [Figure 3] we design two complementary components:

GlobalMixer(Q)) = MLP (TE (Z Q)) . LocalAmplifier(Q) = DepthWiseConv(Q)  (5)

Here, TE denotes the TE-LIF neuron. GlobalMixer aggregates token-level information through
channel summation and then applies a lightweight MLP to capture inter-channel interactions. Lo-
calAmplifier focuses on spatial locality via depthwise convolution without cross-channel mixing.
Together, they enable balanced global and local feature modeling with linear complexity.

Formal Definition of DSSA. Given the binary input feature X € {0,1}*P DSSA operates as
follows:

Q = TE(BN(XWg)), V = TE(BN(XWy)) ©)

Attn = GlobalMixer(Q) + LocalAmplifier(Q) , X' = TE(Attn © V) (7

Linear Complexity and Practical Benefits. DSSA achieves linear complexity O(N D) with re-
spect to both token and channel dimensions and avoids floating-point multiplications. It operates
on event-driven accumulations and bit-shift computations, ensuring stable training and leveraging
TE-LIF’s performance benefits. A more detailed formulation and complexity analysis are provided
in|Appendix C] In[subsection 5.4] we conduct a quantitative and qualitative comparison of DSSA
with other SNN attention mechanisms, demonstrating that our design achieves superior performance
through efficient global and local fusion.

5 EXPERIMENTS

To thoroughly assess our approach, we incorporate the TE-LIF neuron and Dual-Stream Spiking
Attention (DSSA) module into the macro architecture of YOLOv12 (Tian et al., [2025), forming
the SpikeDet model. We evaluate SpikeDet on various object detection benchmarks, including the
frame-based COCQO2017 dataset (Lin et al., |2014)), the event-based Genl dataset (De Tournemire
et al.|[2020), and two remote-sensing datasets: NWPU (Cheng et al.,2017) and SSDD (Wang et al.,
2019). Detailed descriptions of all datasets are provided in Appendix [D}

5.1 EXPERIMENTAL SETUP

Our models are primarily trained on 8 NVIDIA RTX 4090 GPUs using the SGD optimizer with a
learning rate of 0.01 and a timestep setting I" = 8. Further training details are in

For object detection evaluation, we report the mAP (mean Average Precision) at IoU=0.5
(mAP@50), the average mAP over IoU thresholds from 0.5 to 0.95 (mAP@50:95).

For energy consumption analysis, we adopt the standard protocol widely used in the SNN literature
(Panda et al.,|2020; Yao et al.|[2023b} Yin et al., 2021} Luo et al., |2024). The energy cost of ANNs is
calculated as the number of floating-point operations (FLOPs) multiplied by the energy per Multiply-
Accumulate operation (Eyac = 4.6pJ), while that of SNNs is derived by multiplying the FLOPs
by the energy per Accumulate operation (Eac = 0.9pJ) and then scaling the result by the average
firing rate (Horowitz, 2014). Additional computational details are provided in[Appendix F|
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5.2 COCO OBJECT DETECTION

We train SpikeDet models of various sizes (S, M, L, X) on the COCO dataset. As detailed in[Table 1]
SpikeDet achieves the state-of-the-art performance among SNN-based detectors, with an mAP@50
of 68.3% and mAP@50:95 of 51.9%, surpassing the previous best directly trained SNN by +2.1%
and +3.0% respectively. Compared to the best ANN2SNN detector—SpikePack, SpikeDet attains
higher accuracy while consuming only 32.4 mJ—just 8.1% of SpikePack’s energy usage. Notably,
SpikeDet-L outperforms YOLOv6 and RT-DETR, two widely used ANN-based detectors, with a
comparable number of parameters and less than 4% of their power consumption. This significantly
narrows the performance gap between SNNs and ANNSs in object detection, highlighting the strong
potential of SNNs for practical deployment.

Table 1: Performance of object detection on COCO val2017

Type Model Param(M) Power(mJ) mAP@50(%) mAP@50:95(%)
ResNet-18 (Yu et al.,2022) 31.2 890.6 54.0 34.0
PVT (Wang et al.,[2021) 32.9 520.3 59.2 36.7
DETR (Carion et al.,[2020) 41.0 197.8 62.4 42.0
ANN YOLOVS (Jocher et al.,|2020) 21.2 112.5 64.1 454
RT-DETR (Zhao et al.,|2024b)) 36.0 460.0 66.8 489
YOLOVO6 (L1 et al.}[2023)) 34.9 394.7 66.1 49.1
Gold-YOLO (Wang et al.[[2024a) 41.3 402.5 67.0 49.8
Spiking-Yolo (Kim et al., [2020b) 10.2 - - 25.7
Bayesian Optim (Kim et al.,|2020a) 10.2 - - 259
Spike Calib (L1 et al.| 2022) 17.1 - 454 -
ANN2SNN SUHD (Qu et al 2024) 72 - 54.6 -
SpikePack (Shen et al.||2025) 47.7 400.7 67.9 50.1
Spiking Retina (Zhang et al.,|2023a) 11.3 21.4 28.5 -
EMS-Res-SNN (Su et al.;[2023) 26.9 29.0 50.1 30.1
Meta-SpikeFormer (Yao et al.,[2024) 75.0 140.8 51.2 -

. Ensemble SNN (Ding et al.,[2025) 13.2 - 54.0 38.4
Directly  gpikingYOLOX (Miao et al., 2025) 7.8 - 56.7 37.1
Trained  QSD-Transformer (Qiu et al., [2025) 34.9 117.2 57.0 -

SNN E-Spikeformer (Yao et al.||2025a) 38.7 119.5 58.8 -

SpikeYOLO (Luo et al.;[2024) 68.8 84.2 66.2 489
SpikeDet-S (Ours) 9.5 4.8 61.0 449
SpikeDet-M (Ours) 21.8 11.8 65.5 49.1
SpikeDet-L (Ours) 31.8 15.6 67.2 50.7
SpikeDet-X (Ours) 71.0 324 68.3 (+2.1) 51.9 (+3.0)

5.3 DVS AND REMOTE SENSING DETECTION

As shown in Table |2| SpikeDet achieves the state-of-the-art performance on the Genl dataset in
terms of mAP@50:95 among SNN-based models, without any specialized adaptation for DVS (Dy-
namic Vision Sensor) data, demonstrating strong generalization capability across diverse modalities.
SpikeDet also surpasses both ANN and SNN baselines on the NWPU and SSDD remote sensing
datasets, confirming its suitability for resource-constrained edge-based aerial imagery applications.

5.4 ABLATION STUDY

To assess the effectiveness of our spiking neuron and attention design, we conduct detailed ablation
studies on the COCO dataset using our SpikeDet model.

TE-LIF Analysis. To validate the representational capability advantage of TE-LIF neurons over
standard LIF neurons, we train a SpikeDet-S model by replacing TE-LIF with LIF at ' = 4, op-
timized using STBP (Spatial Temporal BackPropagation). As reported in under the same
time window 1" = 4, the model equipped with TE-LIF delivers significantly higher accuracy.

To assess the effect of time window length 7" in TE-LIF, we evaluate SpikeDet models under vari-
ous T settings. As shown in increasing T' generally improves performance, though gains
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Table 2: Performance of object detection on Genl, NWPU and SSDD

Dataset Type Model Param(M) mAP@50(%) mAP@50:95(%)
AEGNN (Schaefer et al., [2022) 20 - 16.3
ANN RRC-Events (Chen,|[2018) >100 - 30.7
RED (Perot et al., [2020) 24.1 - 40.0
SpikeFPN (Zhang et al.|[2024) 22 47.7 22.3
Genl Tr-SpikingYolo (Yuan et al.l|2024) 7.9 45.3 -
SFOD (Fan et al.,[2024) 11.9 - 32.1
CREST (Mao et al.,[2025) 7.61 - 36.0
SNN SpikingViT (Yu et al., [2024) 21.5 61.6 394
MSD (Li et al.}[2025) 7.8 66.3 38.9
SpikeYOLO (Luo et al.| 2024) 23.1 67.2 40.4
EAS-SNN (Wang et al., 2024c) 25.3 69.9 37.5
SpikeDet (Ours) 21.8 68.4 41.2
ABNet (Liu et al.,2021a) 27.1 87.3 -
ANN YOLOV3 (Redmon & Farhadil, 2018)) 58.7 82.6 52.1
YOLOv5-Swin (Liu et al.,|2021b) 134 89.8 53.9
NWPU C'S™Net (Chen et al., [2023) 12.2 90.4 55.4
EMS-YOLO (Su et al., 2023) 14.4 87.9 -
SNN  SNN-VIiT-YOLO (Wang et al.[|2025) 53.7 89.4 -
SpikeDet (Ours) 21.8 90.5 59.3
FasterR-CNN (Fu et al.} [2020) 25.6 85.3 -
YOLOv3 (Redmon & Farhadi, [2018)) 58.7 88.6 44.3
ANN YOLOv5-Swin (Liu et al.| [2021b) 134 94 57.9
SSDD Improved PRDet (Yu et al.||2021) 355 96.5 64.3
(C'S"Net (Chen et al.,[2023) 12.2 97.1 64.9
EMS-YOLO (Su et al., 2023) 14.4 95.1 -
SNN  SNN-VIiT-YOLO (Wang et al.[|2025) 53.7 97.0 -
SpikeDet (Ours) 21.8 98.5 75.5

saturate beyond T' = 8. Moreover, SpikeDet achieves strong performance with short time windows
(T' = 3 or 4). This robustness reflects the high expressivity of TE-LIF neurons and the proposed
attention mechanism, underscoring the practicality of our approach for real-world deployment.

Table 3: The blue, red and yellow regions re-  Table 4: The blue region demonstrates the im-
spectively show the impact of neuron types,  pactof architectural modifications, while the red
the effect of time steps, and SpikeDet’s perfor-  region compares the performance of other typi-

mance under short time windows. cal SNN attention modules.
Model T mAP@50 (%) mAP@50:95 (%) Attention mAP@50(%) mAP@50:95(%)

SpikeDet-S (LIF) 4 45.7 31.0 DSSA (Ours) 61.0 44.9
SpikeDet-S 4 59.9 44.2 Remove GM 60.5 44.4
SpikeDet-S 8 61.0 44.9 Remove LA 60.5 44.4
SpikeDet-S 10 61.0 449 Add K Branch 60.8 447
SpikeDet-M 4 65.4 48.9 SDSA-1 57.0 41.5
SpikeDet-L. 3 66.1 49.5 SDSA-3 60.2 44.2
SpikeDet-L 4 67.2 50.5 QKTA 59.8 44.1
SpikeDet-X 4 67.6 51.0 QKCA 60.0 439

Attention Analysis. To evaluate the effectiveness of DSSA, we conduct a series of controlled struc-
tural modifications based on SpikeDet-S. Specifically, we remove the GlobalMixer (GM) and Lo-
calAmplifier (LA) components individually from DSSA. We also introduce a K branch to restore
QK interactions via element-wise multiplication. As reported in[Table 4] removing either GM or LA
degrades accuracy, suggesting that both local and global cues contribute to performance, though nei-
ther dominates alone. Meanwhile, introducing QK interaction provides no meaningful gain, which
implies that explicit pairwise token interactions are unnecessary under our spike-driven formulation.
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We further replace DSSA with several representative alternatives including SDSA-1
[20234d), SDSA-3 [2025b), QKTA, and QKCA (Zhou et al [2024d). We also test with
SSSA(Wang et all, 2025)), but its axis-wise summation followed by matrix multiplication produces
excessively large values, causing gradient vanishing and training failure. shows that our
method outperforms all baselines with linear complexity. In terms of practical efficiency, a single
inference of DSSA consumes only 36% of the power required by SDSA-3, a prevalent SNN at-
tention mechanism. Moreover, EigenCAM visualizations in [Figure 4] qualitatively demonstrate that
DSSA captures more complete and spatially coherent semantic regions.

(a) Groundtruth (b) Ours (c) Remove GM (d) Remove LA (e) QKCA (f) SDSA3

Figure 4: The pink boxes in the input images enclose the objects, while the heatmaps indicate the
regions where the attention module focuses, derived from intermediate-layer features.

5.5 APPLICATIONS BEYOND OBJECT DETECTION

ImageNet Classification. To assess the generalizability of our methods across diverse vision tasks
and model architectures, we integrate TE-LIF and DSSA into E-SpikeFormer (Yao et al., [20254)
and evaluate the resulting model on the ImageNet classification benchmark (Deng et al.,[2009). As
reported in [Table 6 of [Appendix G| our approach attains a competitive Top-1 accuracy of 79.7 %,
surpassing numerous existing models of comparable or even larger scale.

ADE20K Segmentation. Semantic segmentation is a challenging computer vision task that requires
dense, pixel-wise classification, demanding both fine-grained spatial modeling and comprehensive
contextual reasoning across the entire image. We employ our ImageNet-pretrained model as the
backbone, add a segmentation head, and fine-tune the network on the ADE20K dataset. As shown
in[Table 7| of [Appendix G| our segmentation model, with only 9.3M parameters, attains an mloU of
42.6 %, outperforming larger ANN and SNN baselines. These results further confirm the scalability
of our design to dense prediction tasks.

6 CONCLUSION

We present SpikeDet, a fully spiking detector designed to achieve both precise regression and ef-
fective spatial semantic modeling in object detection with SNNs. As the foundation of our frame-
work, the TE-LIF neuron bridges biologically inspired time-evolving membrane dynamics with the
high-precision requirements of regression tasks, offering enhanced expressivity while remaining
hardware-friendly. Complementing this design, the Dual-Stream Spiking Attention incorporates a
QV-only architecture with parallel GlobalMixer and LocalAmplifier modules to effectively capture
global context and local detail with linear complexity. Together, these components enable SpikeDet
to set new state-of-the-art results in SNN-based detection, achieving 68.3% mAP@50 and 51.9%
mAP@50:95 on COCO with an energy cost of only 32.4 mJ, while also generalizing well to clas-
sification and segmentation tasks. These findings highlight SpikeDet as a promising foundation for
deploying SNNs in more complex and challenging real-world applications.
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7 REPRODUCIBILITY STATEMENT

Full experimental details are in [subsection 5.1} [Appendix Bl |Appendix C| and [Appendix El Com-
plete source code will be released in the final version.
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APPENDIX

A PROOF OF[THEOREM 4.1
Proof.

1. Introducing Notations.
From the definition of TE-LIF neuron:
Hy=Hi 1+ (Wx+b)w, — Vipw Sy
Rearranging yields
%" - “’;—:1% = (Wa +b) — Vi, 5.
Defining H, = H, Jws, we obtain

~ wt—l A

Ht — Ht—l = (W.’B + b) — ‘/thSt~

Wt

Let B = wy—1/w;. The dynamics with the introduced simplified notations imply:

Biﬁt—l—i = Bi+1f{t—2—i + Bz(Wm +b) — VthBiSt—l—i-

Taking the sum forz = 0,...,t — 2, we obtain
R =2 =2
Hey =) F(Wa+b)— Vi) 'S
i=0 i=0

Therefore, the spike activation .S; is determined by

S, = @(Bﬁft_l Y Wa b Vthl)

t— t—1
:@< Bi(Ww+b)—%h(1+ZBiSti>>.
=0 =1

7=

—

For an arbitrary neuron k € [n;] in the first hidden layer, this becomes

t—1 t—1
Skt = @<Zﬁi(<wk7$> +by) + Bt Hyo — Vth(1 + Bislc,t—i)>
i1

=0

B Hyo — Vin (1 + Zﬁ;i BiSk,tﬂ') ) )

=1 2,
2izo P!
where w; € R™» denotes the i-th row vector of W. This means that at time step ¢ € [T], the value

of S+ € {0, 1} gives information about the half-space the input vector & € R™" lies in with respect
to the hyperplane

ht—l(Sk,l, RN Sk,t—l) = {ac € R™n . <wk, 33> + by — gt_1(Sk71, ey Sk,t—l) = 0} C R™n

where the function g, is defined by

= @((wk,az> + by +

—B'Hyo + Vin (1 + Zf;i Biatﬂ‘)
Yise B '

Furthermore, for each binary code (a;);e[¢—1] € {0,1}'~", we define the corresponding region

g1 {0, 1Y S R, g (ar,. a0 ) = ©)

Rt,l(al, Ce 7(1,5,1) = {:l? € R™» . Skﬂ; =a; Vi € [t — 1]} = ﬁ’;i {CB € R™» . Sk,i = ai} .

Note that such a region can be empty (see below) and we denote by N (¢) the number of non-empty
such regions (which is also the total number of regions created at time step £). Our starting point is
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the stept = 1, i.e., t — 1 = 0, where the whole space R™", which corresponds to the empty code
(a;)?_,, is divided by exactly 2 = 1 hyperplane, namely (according to (9)) the one given by the
shift go = —SH},0 + Vin, into 2 different regions (depending on whether a; = 0 or a; = 1).

2. Not Every Binary Code Corresponds to a Non-Empty Region.

In principle, after time step t—1, or equivalently, before time step ¢, there can be 2/~! possible binary
codes (a;)ict—1] € {0, 1}*~" and accordingly the same number of hyperplanes h¢_1 (a1, . . ., a;_1).
Each of these hyperplanes may separate (at most) one region into two sub-regions, thus increasing
the total number of regions by one. This means that the number of regions might be doubled in each
time step, i.e., N(t) — N(t — 1) might reach 2!~ which possibly leads to 1 + 3, 201 = 27
regions in total at time step 7.

However, in reality, a hyperplane can divide a region into two sub-regions only if it intersects (in our
case, as the hyperplanes are parallel, if it lies inside) that region, because otherwise the region re-
mains one whole region. More specifically in our case, a region R;_1 (a1, ...,as—1) corresponding
to the code (aq,...,a;—1) defined before time ¢ is separated into two sub-regions at time ¢ if and
only if it contains the hyperplane h;_1 (a1, ..., a;—1) (created at time step ¢), i.e.,

heo1(ar, ... ai-1) C Reoy(ar, ... ap_1). (10)

According to our previous notion of (non-)empty regions, this means that if h;_1(ay,...,a;—1)
falls outside of R;_1(ai,...,a;—1), i.e., the condition (10) is violated, then the whole region
Ri_1(ay,...,a;—1) must lie on one side of the hyperplane h;_i(ay,...,a;—1) and therefore
either R;(ay,...,a;—1,0) or Re(ay,...,as—1,1) is empty, while the other set is the same as
Rtfl(ala cee aatfl)-

The requirement significantly reduces the number of separated regions, or equivalently, reduces
the increase N (t) — N (¢ — 1) in the number of regions from time step ¢ — 1 to ¢.

3. Deriving the Bound on N (T').
(1) For 3 < 1:

We fix a time step ¢ € [T and consider the transition from ¢ — 1 to ¢. Moreover, let m €
{0,...,t — 1} be arbitrary and consider the set

t—1
Am = {(ai)ie[t,l] € {0, 1}t_1 : Zat,i =m and Rt,l(al, e 7at,1) 7& (Z)}

i=1

of all binary codes of length ¢t — 1 that have m ones in their representation and correspond to a non-
empty region created before time ¢. Observe that if we arrange the codes (ai,...,a;—1) in A, in

. . . . . t—1 ; . .
increasing lexicographic order, then the corresponding values » ._; a;_; 3" are in decreasing order
i=1 Yt—1i

(since B"' decreases with increasing 7). This means that while the regions R;—_1(a1,...,at—1) are
arranged in increasing lexicographic order of (ay,...,a;—1) [1_1 the position of their corresponding
hyperplanes h;_1(a1,...,a;—1) are arranged in the reversed order, i.e., in lexicographic order of
(at—1,...,a1). Since the regions are all disjoint, it follows that there is at most one hyperplane
belonging to the ‘correct’ region, i.e., the region that corresponds to the same binary code. Since
m € {0,...,t — 1} was arbitrary, we deduce that there are at most ¢ hyperplanes belonging to the
‘correct’ regions at time step ¢. Hence, at the transition from time step ¢ — 1 to ¢, we obtain

N@#) < N({t—-1)+t.

Taking the sum over ¢ € [T], we get

T(T +1)
N(T) <1 t=1+——-—€0(T?.
(T) <14+ t=1+— (T?)
t=1
'Intuitively, the new sub-region at any time step 4 lies on the left of the hyperplane hi—i (a1, ..., ai—1) if

a; = 0 and on the right if a; = 1, and this process is performed from ¢ = 1 on. The process actually reflects
the ordering of binary codes in lexicographic order.
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(2) For 8 > 1:

When B > 1, since the order of regions and the order of hyperplanes are no longer opposite, it seems
that the upper bound could return to O(27). However, because the distances between hyperplanes
increase exponentially while the lengths of the feasible regions shrink over time, the number of new
cuts is still limited. To formalize this, we refine the sets A,,, by defining

A = {(ai)ie[t_l] €Ap:ap=1landa; =0, j=n+1,... ,T},

that is, A,, ,, collects all histories in which the last spike occurs exactly at time n. Fix a neuron in
the first layer with weight vector w, and let z = (w, x) be the scalar projection of the input. Given a
history code ay.;, € {0, 1}*, the candidate threshold at step k + 1 is

Vi (1 n Zle Blc-i—l—iai)

Ti(ark) == — —b. (11)
i h
At time t — 1, the feasible interval is
Iiq(a14—1) = kgtrfnlei{k:1Tk71(alzk71)’ kgt]inli%k:oTk*l(alzk*l))' (12)
=:L(a) =:U(a)

For any a,a’ € A, ,, the distance between their candidate hyperplane intercepts at step ¢ satisfies

Bre,
féﬂlz

g (a) — ﬁt(a’)’, when 3 = 2,

|Tk(a) — Ti(a")| = . e e{-1,0,1}.

Definite A" (t) = ming o

min

(n) 2t7n+1
Ann(t) > T Vi > 27Dy
Ifa€ Ay nthena; =1,a541 =+ = a,—1 = 0. Since

L(a) kaaxlqu(akal) > Tj_1(ar:j-1), Ula) kaiHOqu(aqu) < Tj(ar.),
A= A=

we always have

Wldth(lf_l(a)) = U(CL) — L(a) S Tj(al:j) — Tj_l(alzj_l). (3)
Now define
-1 i1 3 j 2i+1
a o B =1 Lo pItl -1
= ﬂj ,La% D'—l = /81: ~ 3 Dj:= /81: ~ .
A direct algebraic simplification yields
831 1
= VinSj + Vin v 51 )
Tj(a15) — Tj—1(arj—1) = D, D, : 4
Consequently, by setting S; > 0 we obtain the explicit bound
PO 3(Bi-1 _1
B7|Ho| + Vin 6(68 )
idth (7;— < — 5
width(I;—y(a)) < DD, 5)
After simplification,
3 - 1)V, 3 —1)% 57| H,

pItt—1 (B -1~ 1)
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In particular, for 3 = w;_1 Jwy = 27~t+1 /2T~ — 2 in our experimental setting,

. Vin |Ho| j
width(l;—1(a)) < s+ VG .27, (7)

Combining the spacing lower bound and the width upper bound, a packing argument gives

width([tl(a))—‘ L

M) = { AU (1)

For 3 = 2, using (2) and (7) one finds
Mis(t) < 1+ |3+ L) (8)

For general /3’ > 1, using (1) and (6),

3-1  (B-1)|H,
M; (1) < 1+ f-1 BVl 9)
B4+1 Vi(B+1)
Summing over j = 0,...,t — 1 yields
t—1t—1
AN(t) = M; ;(t) < C(B, Van, Ho) - 2,
j=0i=0
and consequently
T
N(T) < N(0)+ > AN(t) = O(T?),
t=1
with an explicit constant C'. For example, at B =2,
C(2,Vin, Ho) =1+ [ + el .
O
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B VERILOG IMPLEMENTATION OF TE-LIF NEURON

Given that the complete Verilog code is excessively lengthy, we present a pseudocode version of the
TE-LIF neuron’s Verilog implementation for brevity and readability.

TE-LIF Neuron, Verilog Pseudocode.

Neuron TE-LIF {
// Constants
T =8 // Time steps
FRAC_BITS = 8 // Fixed-point fractional bits
WEIGHTS = [32768, 16384, 8192, 4096, 2048, 1024, 512, 256]
// Fixed-point weights: [128, 64, 32, 16, 8, 4, 2, 1]
INIT_V = 128 // Initial voltage: 0.5 in fixed-point

// State machine states
IDLE = 0, LOAD_INPUT = 1, ACCUMULATE = 2,
GENERATE_SPIKES = 3, UPDATE_VOLTAGE = 4, OUTPUT = 5

// Internal registers
state = IDLE
v = 0 // Membrane potential (l6-bit signed)

x_seq[8] = {0} // Input sequence buffer
y_seql[8] = {0} // Output spike sequence
t_counter = 0 // Time step counter (0-7)
current_weight = 0 // Current weight to subtract

// Main state machine (triggered by clock rising edge)
on clock_posedge:
if reset:
reset_all_registers|()
else:
switch state:
case IDLE:
if x_valid:
x_seq[0] = x_data // Load first input immediately
v = INIT_V // Initialize membrane potential
t_counter = 1
state = LOAD_INPUT

case LOAD_INPUT:
if x valid and t_counter < 8:

x_seq[t_counter] = x_data
t_counter = t_counter + 1

elif t_counter >= 8:
t_counter = 0

state = ACCUMULATE

case ACCUMULATE:
if t_counter < 8:
// Weighted accumulation using bit shifts
switch t_counter:

case 0: v = v + (x_seql[0] << 7) // x % 128
case 1: v = v + (x_seq[l] << 6) // x » 64
case 2: v = v + (x_seq[2] << 5) // x » 32
case 3: v = v + (x_seq[3] << 4) // x » 16
case 4: v = v + (x_seq[4] << 3) // x = 8
case 5: v = v + (x_seq[5] << 2) // x x 4
case 6: v = v + (x_seq[6] << 1) // x = 2
case 7: v = v + x_seql[7] // x 1

t_counter = t_counter + 1
else:
t_counter = 0
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state = GENERATE_SPIKES

case GENERATE_SPIKES:
if t_counter < 8:
// Generate spike and record weight
if v >= WEIGHTS[t_counter]:

y_seq[t_counter] =1
current_weight = WEIGHTS[t_counter]
else:
y_seq[t_counter] = 0
current_weight = 0
state = UPDATE_VOLTAGE
else:
t_counter = 0

state = OUTPUT

case UPDATE_VOLTAGE:
v = v - current_weight // Update membrane potential
t_counter = t_counter + 1
if t_counter >= 8:
t_counter = 0
state = OUTPUT
else:
state = GENERATE_SPIKES

case OUTPUT:

if t_counter < 8:
y_data = y_seq[t_counter] // Output current spike
y_valid = 1 // Assert output valid
t_counter = t_counter + 1

else:
y_valid = 0 // Deassert output valid
state = IDLE // Return to idle state
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C FURTHER DISCUSSION ON DUAL-STREAM SPIKING ATTENTION

We present a comprehensive analysis of the proposed DSSA module, including its structural decom-
position, computational complexity, and empirical efficiency.
Given the input spike map X € {0, 1}/V*P, the spike-based Query and Value are computed as:

Q = TE(BN(XWg)), V = TE(BN(XWy)), (13)

where TE(+) denotes the TE-LIF spiking neuron. Based on these representations, we construct a
global-local attention mechanism formulated as:

Attn = MLP (TE (Z Q)) + DepthWiseConv(Q), X' =TE(Attn® V),  (14)

GlobalMixer LocalAmplifier

where ® denotes element-wise multiplication.

In the GlobalMixer module, a column-wise summation is first applied to (), resulting in a compact
binary representation H € R**P, with a computational cost of O(N D). The resulting vector H is
subsequently passed through a two-layer bottleneck MLP:

Attngm = Linearp /., p (TE (BN (Linearp ;- (H)))) (15)

where r is the hidden dimension reduction ratio. Here, Linear 4_, g denotes a linear transformation
from dimension A to B. The overall complexity of this MLP is O(D?//r), which can be approx-
imated as O(N D) under the assumption that D//r is much less than N in practical scenarios.

The output Attngy is then broadcast to match the spatial dimension, resulting in a tensor of shape
RN xD .

The LocalAmplifier component performs depthwise convolution across channels, extracting local
spatial features in a channel-wise manner. This operation also incurs a computational complexity of
O(N D), and produces an output Attn , € RV*P,

Finally, the broadcasted global attention Attngy is combined with the local attention Attngs via
element-wise addition to yield the final attention map Attn, leading to a complexity of O(N D).
This map is then applied to modulate the binary tensor V' through element-wise multiplication,
which can be regarded as mask operations without energy cost.

In summary, the proposed attention mechanism achieves a total computational complexity of
O(N D), attributed to its lightweight architectural design and the elimination of costly matrix mul-
tiplications. Additionally, by removing the Key (/) branch, the model reduces both computational
and parameter overhead, thereby improving efficiency in terms of both computation and memory
usage. From a practical standpoint, on the COCO dataset, a single inference of DSSA consumes
only 36 % of the power required by SDSA-3 (Yao et al.,[2024)), a prevalent attention mechanism in
the SNN field with a higher complexity of O(N D?).
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D DATASETS DETAILS

D.1 OBJECT DETECTION

We evaluated the proposed SpikeDet model on four object detection datasets, covering conventional,
neuromorphic, and remote sensing domains:

COCO (Lin et al.L|2014): The Common Objects in Context (COCO) dataset is a predominant bench-
mark for object detection, comprising 80 object categories with 118,000 training images and 5,000
validation images. It provides complex scenes with multiple objects, occlusions, and varied scales,
serving as a standard for model comparison.

Genl (De Tournemire et al., |2020): The Genl dataset is a large-scale neuromorphic benchmark
tailored for object detection. It includes 39 hours of real-world driving data captured by an ATIS
event-based camera, offering asynchronous event streams. The dataset provides over 255,000 man-
ually annotated bounding boxes for pedestrians and vehicles, enabling evaluation in event-driven
vision settings.

NWPU VHR-10 (Cheng et al.,2017): This dataset contains very high-resolution (VHR) optical re-
mote sensing images across 10 object categories: airplanes, ships, storage tanks, baseball diamonds,
tennis courts, basketball courts, ground track fields, harbors, bridges, and vehicles. The challenging
imagery includes variations in scale, orientation, and background complexity. In our experiments,
we randomly split the dataset into training and validation sets following a 70%:30% ratio.

SSDD (Wang et al., [2019): The SAR Ship Detection Dataset (SSDD) focuses on ship detection
using Synthetic Aperture Radar (SAR) images. It provides annotated ship instances under various
sea states and imaging conditions, making it ideal for assessing detection performance in radar-based
scenarios.

D.2 IMAGE CLASSIFICATION

ImageNet-1K (Deng et al., 2009): The ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) 2012 dataset, commonly referred to as ImageNet-1K, contains over 1.2 million train-
ing images and 50,000 validation images spanning 1,000 object categories. It is one of the most
widely used benchmarks for evaluating large-scale image classification models due to its diversity
and scale.

D.3 SEMANTIC SEGMENTATION

ADE20K (Zhou et al., 2017): The ADE20K dataset is a comprehensive benchmark for seman-
tic segmentation, consisting of over 25,000 images covering a wide range of indoor and outdoor
scenes. Each image is densely annotated with pixel-level labels across 150 semantic categories. Its
complexity and diversity make it a standard dataset for evaluating scene understanding capabilities.
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E EXPERIMENTAL DETAILS

E.1 OBIJECT DETECTION

Our object detection experiments are conducted on the macro architecture of YOLOv12 (Tian et al.,
2025)), chosen for its efficiency and built-in attention mechanisms, which provide a strong basis for
accurate real-time detection.

To enable spike-driven computation, we make principled modifications aligned with our framework.
Specifically, we replace the original activation functions with TE-LIF neurons (subsection 4.1)), al-
lowing the network to perform bio-plausible temporal dynamics. Based on this, we convert key
components, such as convolutions and MLPs, into their spiking counterparts to fully support spike-
driven computation. Additionally, since the vanilla attention in YOLOv12 depends on floating-point
matrix operations and softmax, we substitute it with our lightweight Dual-Stream Spiking Attention
module (subsection 4.2)), which eliminates QK-based interactions, reduces complexity, and enables
efficient global-local feature fusion.

The complete training configurations for object detection across the COCO, NWPU, and SSDD
datasets are summarized in All experiments are conducted on NVIDIA RTX 4090 GPUs.
For the COCO dataset, we evaluate four model scales—S (Small), M (Medium), L (Large), and X
(Extra Large)—to analyze performance under varying model capacities. For the NWPU and SSDD
datasets, we adopt the M (Medium) model to evaluate performance. Data augmentation strategies
include horizontal flipping with a probability of 0.5, while vertical flipping is disabled. Mosaic
augmentation is applied with full probability, combining four images into one to enrich contextual
understanding. Copy-Paste augmentation is employed in conjunction with horizontal flipping to
enhance object diversity. Additionally, RandAugment is used as an automated data augmentation
method. To increase robustness to occlusion, we apply random erasing with a probability of 0.4.

Table 5: Training configurations for object detection on the COCO, NWPU, and SSDD datasets.

Setting COCO(Lin et al}[2014)  NWPU(Cheng et al}[2017) SSDD(Wang et al.;[2019)
S M L X M - M - o
Param (M) 95 21.8 318 712 21.8 21.8
Batch size 128 128 128 64 32 128
Resolution 640 x 640 1024 x 1024 640 x 640
Training epochs 600 300 300
Learning rate 0.01 0.0007 0.02
Optimizer SGD AdamW AdamW
Number of GPUs 8 4 4

For the Genl dataset, we train the medium-scale (21.8M) SpikeDet model on 2 NVIDIA A100
(80GB) GPUs, mainly adopting the configuration in SpikeYOLO (Luo et al., [2024). Each training
sample consists of a 2.5-second event stream preceding the annotation, divided into 4 slices as input.
The model is trained for 50 epochs with a batch size of 160 and a resolution of 320x320, using SGD
with an initial learning rate of 0.02 decaying to 0.004. A 10-epoch warmup is applied, with a
momentum of 0.8 and a bias learning rate of 0.1. All data augmentation strategies are disabled.

E.2 IMAGE CLASSIFICATION

For image classification, we adopt the macro-architecture of E-SpikeFormer(Yao et al., 2025a).

We replace the original Spike Firing Approximation strategy in E-SpikeFormer with our proposed
TE-LIF neuron, and substitute the Efficient Spike-Driven Self-Attention (E-SDSA) module with
our newly designed lightweight Dual-Stream Spiking Attention. The resulting model contains only
7.8M parameters.

The model is trained on the ImageNet-1K (Deng et al., 2009) dataset using 8 NVIDIA RTX 4090
GPUs for 300 epochs with a batch size of 256. We adopt the AdamW optimizer with an initial
learning rate of 3e-4 and a linear warm-up over the first 5 epochs. Data augmentation techniques
include label smoothing, RandAugment, and random erasing. Weight decay and a cosine learning
rate decay schedule are also applied during training.
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E.3 SEMANTIC SEGMENTATION

Semantic segmentation experiments are conducted on the ADE20K(Zhou et al., 2017) dataset using
an encoder-decoder architecture. The encoder is based on E-SpikeFormer enhanced with our TE-
LIF neuron and DSSA, while the decoder adopts a Query-based Feature Pyramid Network (QFPN).
The model is initialized with ImageNet-pretrained weights and has 9.3M parameters.

Training is performed for 240k iterations on 8 NVIDIA RTX 4090 GPUs using automatic mixed
precision (AMP). Optimization is carried out with the AdamW optimizer, an initial learning rate of
0.001, and a weight decay of 0.005. We apply a linear warm-up for the first 1,500 iterations followed
by a polynomial learning rate decay. The input resolution is set to 512 x 512, and the batch size is
16. The data augmentation pipeline includes random resizing, random cropping, horizontal flipping,
and photometric distortion. The segmentation loss is based on cross-entropy.
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F ENERGY CONSUMPTION CALCULATION

To estimate energy consumption, we adopt a widely recognized evaluation protocol in the SNN
community (Horowitz, 2014} |Yao et al., |2023a}; 2024} 2025b; [Luo et al., 2024)). This protocol ignores
specific hardware implementation details and estimates the theoretical energy consumption of a
given model, thus facilitating the quantitative energy evaluation across different SNN and ANN
algorithms.

Under this protocol, the energy consumption of ANN is calculated as:

Eany = FL - Eyac (16)

where F'L denotes the total floating-point operations (FLOPs) required by the network and Fyiac =
4.6pJ represents the energy cost of a single Multiply-and-Accumulate (MAC) operation in 45 nm
technology (Horowitzl, 2014).

In contrast, the energy consumption of the n-th layer in SNN is given by:
where F'L,, is the number of FLOPs in the n-th layer, fr, is the average firing rate of that
layer, Eac = 0.9pJ denotes the energy cost of an Accumulate (AC) operation in 45 nm tech-

nology (Horowitz, 2014), and T is the timestep count. The overall energy consumption of the SNN
is obtained by summing the energy consumption across all layers.

To support [Equation 16| and [Equation 17] the FLOPs for used layers are defined as follows. For a
convolutional layer, the FLOPs are calculated as:

FLConv = k2 : hout * Wout * Cin * Cout /ga (18)

where k is the kernel size, (hout, Wout) denotes the height and width of the output feature map, ¢,
and ¢, represent the number of input and output channels respectively, and g represents the number
of groups in grouped convolution.

Similarly, the FLOPs for a linear layer are computed as:
FLiinear = din . dout; (19)

where d;, and d, are the input and output dimensions of the linear layer, respectively.
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G RESULTS ON EXTENDED TASKS
G.1 IMAGENET CLASSIFICATION

Table 6: Performance of classification on ImageNet.

Type Model Param(M) Acc(%)
FastViT (Vasu et al.|[2023 6.8 79.1
ANN ResNet-50 (Li et al.||2021 25.6 79.4
GTP-DeiT (Xu et al.,[2024) 86.0 79.5
138.4 73.0
138.4 74.3
138.4 74.9
ANN2SNN 220 778
28.5 78.5
! 86 79.4
QP-SNNs (Wei et al.l [2025) 13.3 61.4
TET-ResNet (Deng et al.[[2022 21.8 68.0
SEW-ResNet (Fang et al.| [2021 60.2 69.2
ReverB-SNN (Guo et al} 2025 21.8 70.9
Spikformer (Zhou et al.| 66.3 74.8
MS-ResNet (Hu et al.|| 71.3 75.3
SNN-ViT (Wang et al. 304 76.9
Directly Trained SNN  Att-MS-Res | 78.4 77.1
a-SSA-Swin _Xlao et a| 31.8 779
STAtten(SDT) (Lee et al.,[2024 66.34 78.1
E-Spikeformer (Yao et al., [2025al 10.0 78.5
SpikingResformer (Shi et al.}[2024 60.4 78.7
SpikformerV2 (Zhou et al.[[2024b 29.11 78.8
QKFormer (Zhou et al.| 2 16.47 78.8
7.8 79.7

G.2 ADE20K SEMANTIC SEGMENTATION

Table 7: Performance of semantic segmentation on ADE20K.

Type Model Param(M) mloU(%)
ResNet-18 (Yu et al.|[2022) 15.5 329
ANN PVT-Tiny (Wang et al.,[2021) 17.0 35.7
PVT-Small (Wang et al. |,|2021|) 28.2 39.8
PSSD (Wang et al, [2024b) - 29.1
Meta-SpikeFormer 59.8 35.3
SNN  QSD-Transformer <m, 2025 9.6 40.5
E-Spikeformer | 11.0 41.4
Ours 9.3 42.6
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H LIMITATION

Due to limited resources, we leave the application of our method to language models and other
domains for future work. While current deployments are limited to GPUs, we anticipate that its
advantages will be more pronounced when implemented on neuromorphic hardware.

I LARGE LANGUAGE MODEL USAGE STATEMENT

In accordance with the ICLR 2026 Author Guidelines on the use of large language models, we ac-
knowledge that LLMs were utilized to refine phrasing and expression during the manuscript prepa-
ration. However, all scientific ideas, algorithmic designs, and experimental results are solely the
work of the authors.
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