UNLEASHING SNNs IN OBJECT DETECTION WITH TIME-EVOLVING NEURON AND DUAL-STREAM SPIKING ATTENTION

Anonymous authorsPaper under double-blind review

ABSTRACT

Brain-inspired Spiking Neural Networks (SNNs) offer remarkable energy efficiency but still lag behind Artificial Neural Networks (ANNs) in fundamental tasks like object detection, primarily due to the precision bottleneck and limited spatial modeling. To narrow this gap, we propose *SpikeDet*, a fully spiking object detector that redefines both the microscopic neuron model and macroscopic attention mechanism. At its core, the bio-inspired *TE-LIF* neuron, with time-evolving membrane dynamics, enhances representational precision and achieves finer input pattern recognition, while maintaining computational efficiency. Building upon this, the proposed *Dual-Stream Spiking Attention* employs a QV-only design that integrates GlobalMixer and LocalAmplifier modules, facilitating effective spatial semantic modeling with linear complexity. Together, these innovations empower SpikeDet to achieve the state-of-the-art performance across multiple object detection benchmarks with minimal energy consumption. On the widely used COCO dataset, SpikeDet achieves 68.3% mAP@50 and 51.9% mAP@50:95, setting a new milestone in SNN-based detection and even surpassing several popular ANN models. Extensive ablation studies and evaluations across additional vision tasks further validate the effectiveness and generality of our approach.

1 Introduction

Spiking Neural Networks (SNNs), regarded as the third generation of neural networks (Maass, 1997), utilize biologically plausible spiking neurons to process information encoded in spatially and temporally distributed spikes. In contrast to artificial neurons, spiking neurons remain mostly inactive and perform computations only when triggered by sparse spikes. This event-driven paradigm significantly enhances energy efficiency (Caviglia et al., 2014; Zhang et al., 2023b), rendering SNNs particularly promising for deployment in real-world applications.

Object detection is a central task in computer vision with applications in autonomous driving, robotics, surveillance, and medical imaging. Unlike image classification, object detection must identify multiple object instances within an image and accurately localize them through bounding boxes. This dual requirement imposes greater demands on representational capacity, numerical precision, and global spatial reasoning.

Despite their efficiency, SNNs still underperform Artificial Neural Networks (ANNs) in object detection, limiting their practical utility. The gap stems from two key factors: (1) *Precision bottleneck*. Unlike ANNs that exploit continuous activations, SNNs convey information via discrete spike sequences. Most existing SNN models operate on Leaky Integrate-and-Fire (LIF) neurons (Maass, 1997), repeating the identical behavior across timesteps and relying on spike counts to approximate continuous activations (Kim et al., 2020a; Yao et al., 2025a). Such a coarse coding scheme is especially detrimental in object detection which demands fine-grained regression. (2) *Limited spatial modeling*. Current SNN detectors, such as SpikeYOLO (Luo et al., 2024) and MSD (Li et al., 2025), rely on convolutional backbones for efficiency, which limits the receptive fields and hinders their ability to understand complex scenes. While the widely adopted self-attention (Vaswani et al., 2017) could help, existing spiking attention modules compatible with SNNs either incur prohibitive overhead or offer insufficient semantic reasoning capabilities (Yao et al., 2025a; Zhou et al., 2024a).

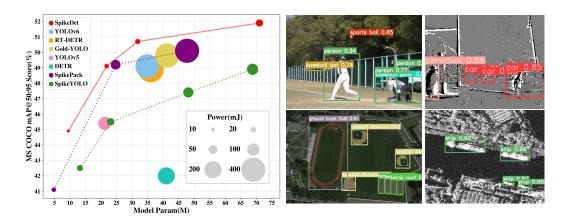


Figure 1: SpikeDet vs. typical object detection models on COCO (left) and its prediction results on COCO, Gen1, NWPU and SSDD (right). SpikeDet achieves SOTA performance among SNNs, surpasses ANNs with superior energy efficiency, and enables strong cross-domain generalization.

To overcome the aforementioned challenges and promote the practical application of SNNs in object detection, we propose a fully spiking object detector—*SpikeDet*, which introduces innovations at both the microscopic level of spiking neurons and the macroscopic level of attention modules.

At the core of our framework is the *Time-Evolving LIF (TE-LIF)* neuron, which extends standard LIF dynamics with time-dependent membrane behavior, inspired by temporal synaptic integration observed in hippocampal neurons (Harris et al., 2002). Unlike vanilla LIF neurons that treat spikes uniformly, TE-LIF assigns different influence to spikes depending on their timing, yielding a finer and more biologically grounded coding scheme. This expands the representational range of spike sequences and supports the precision needed for regression tasks such as bounding box localization. Moreover, the temporal weights are chosen as powers of two, allowing efficient bit-shift implementations that preserve the low-power nature of SNNs while enhancing their expressivity.

To complement this temporal precision with stronger spatial reasoning, we introduce the *Dual-Stream Spiking Attention (DSSA)*. DSSA removes costly matrix multiplications with a query-value (QV)-only design, and uses two coordinated streams—*GlobalMixer* and *LocalAmplifier*—to capture global structure and enhance local details. This design supports long-range feature fusion with linear complexity and maintains stable optimization when combined with TE-LIF.

The proposed *SpikeDet* model achieves the state-of-the-art performance on multiple object detection benchmarks including COCO, Gen1, NWPU, and SSDD. As illustrated in Figure 1, it yields favorable parameter–accuracy trade-offs over leading SNNs, surpasses representative ANNs, reduces energy consumption, and demonstrates robust generalization. Extensive experiments on classification and segmentation further indicate its broad applicability. Our main contributions are as follows:

- 1) We propose the *TE-LIF* neuron with biologically inspired time-evolving dynamics and power-of-two temporal weights, which enables better representational capacities justified both by our theoretical analysis and empirical experiments while retaining computational efficiency.
- 2) We introduce *Dual-Stream Spiking Attention*, a QV-only attention mechanism that replaces costly matrix multiplications and couples *GlobalMixer* with *LocalAmplifier* for efficient global–local spatial modeling with linear complexity.
- 3) We integrate these designs into *SpikeDet*, a spiking detector that achieves SOTA performance across diverse detection domains. SpikeDet attains **68.3% mAP@50** and **51.9% mAP@50:95** on COCO, outperforming the previous best directly trained SNN by **+2.1%** and **+3.0%**, respectively, while consuming only **32.4 mJ**—less than **9%** of YOLOv6 and RT-DETR's energy usage.

2 Related Work

Spiking Neural Networks (SNNs) employ biologically plausible spiking neurons, enabling event-driven computation with high energy efficiency (Li et al., 2024). However, representing information

through binary spike sequences rather than continuous activations leads to significant information loss, limiting the representational power of SNNs. Current efforts to build high-performance SNNs follow two main directions: (1) ANN-to-SNN conversion (Deng & Gu, 2021; Hu et al., 2023), which approximates ANN activations by spike rates but suffers from high latency and limited adaptability, and (2) direct training with surrogate gradients and spatio-temporal backpropagation (Wu et al., 2018; Neftci et al., 2019), which supports low-latency, end-to-end optimization. To reduce precision loss from discretizing membrane potentials, recent studies adopt integer-valued activations during training and map them to spike counts at inference (Luo et al., 2024; Qiu et al., 2025; Lei et al., 2025). However, these approaches mostly rely on vanilla LIF neurons, which applies identical dynamics across all timesteps and underutilizes the expressive potential of spike sequences. This raises a natural question: why not endow neurons with time-evolving dynamics?

Object Detection demands precise spatial reasoning and continuous-valued regression, which remain challenging for SNNs. While artificial neural network (ANN) detectors have evolved from two-stage frameworks (Girshick et al., 2014; Girshick, 2015) to real-time, one-stage models such as YOLO (Redmon et al., 2016; Bochkovskiy et al., 2020) and more recent transformer-based architectures like DETR (Carion et al., 2020; Zhu et al., 2020), SNN detectors have historically lagged. Early SNN detectors (Kim et al., 2020a;b; Su et al., 2023) performed poorly, while recent models such as SpikeYOLO (Luo et al., 2024) improved accuracy via integer-valued training, and SpikePack (Shen et al., 2025) achieved competitive results through ANN-to-SNN conversion but at prohibitive energy cost. However, SNN detectors typically adopt convolutional backbones with limited receptive fields, thus struggling to model long-range semantic dependencies. Meanwhile, their neuronal dynamics remain coarse—representations based on monotonous behavior and simple summation constrain expressiveness, posing challenges for dense regression tasks like object detection.

Attention mechanisms have proven effective in ANN-based vision models, facilitating global context modeling (Dosovitskiy et al., 2020; Liu et al., 2021b). However, despite some efforts to incorporate self-attention into object detection (Zhao et al., 2024a; Tian et al., 2025), most architectures still depend on CNNs due to the quadratic computational cost of self-attention (Glenn, 2023; Wang et al., 2023a; Li et al., 2023). Recently, attention has also been explored in SNNs. Methods, like SDSA-3 (Yao et al., 2024), mimic vanilla self-attention by relying on matrix multiplication, while other approaches (e.g., SSA, SDSA) simplify it through element-wise operations or summation (Zhou et al., 2022; Yao et al., 2024; 2023a; Zhou et al., 2024a; Deng et al., 2024). However, these modules suffer from either high computational complexity or limited feature mixing. Thus, designing an effective attention mechanism tailored for SNN detection remains an open challenge.

3 PRELIMINARY

LIF. SNNs exhibit spatio-temporal dynamic properties via biologically inspired spiking neurons, among which the Leaky Integrate-and-Fire (LIF) neuron (Maass, 1997) is the most frequently adopted. At each timestep t, LIF neuron repeats the identical dynamics, formally defined as:

$$V_t = \beta H_{t-1} + I_t \; ; \; S_t = \Theta(V_t - V_{th}) \; ; \; H_t = V_t - V_{th} \cdot S_t$$
 (1)

The membrane potential V_t integrates spatial input I_t and temporal input βH_{t-1} , where H_{t-1} is the previous membrane potential and β is the decay factor. The Heaviside step function $\Theta(x)$ outputs 1 when x>0 and 0 otherwise. The neuron emits a spike $S_t=1$ and the residual membrane potential H_t is reduced by V_{th} if V_t exceeds the firing threshold V_{th} , else H_t remains equal to V_t .

Self-Attention Mechanism. For the input $X \in \mathbb{R}^{N \times D}$, where N is the token count and D is the embedding dimension, vanilla self-attention (VSA) (Vaswani et al., 2017) is formulated as follows:

$$Q = W_Q X$$
, $K = W_K X$, $V = W_V X$; $VSA(Q, K, V) = softmax(\frac{QK^T}{\sqrt{D}})V$ (2)

However, the reliance on floating-point matrix multiplications and the exponential operations in the softmax function undermines the spike-driven characteristics of SNNs (Yao et al., 2024; Zhou et al., 2024a). Moreover, the $O(N^2D)$ quadratic complexity of VSA proves impractical for resource-constrained object detection and contradicts the goal of energy efficiency in SNNs.

4 METHOD

Our proposed SpikeDet model addresses the performance degradation of SNNs in object detection through co-designs at both the neuron and network module levels. We first introduce the highly expressive TE-LIF spiking neuron as the core component of our framework. Next, we introduce the Dual-Stream Spiking Attention module, which enhances both global and local semantic modeling while maintaining compatibility with TE-LIF.

4.1 TIME-EVOLVING SPIKING NEURON

Limitations of Vanilla LIF. Traditional LIF neurons apply identical dynamics across the entire time window and assign equal importance to spikes at each timestep. As a result, synaptic strength is encoded simply by counting spikes over T steps, i.e., $\sum_{t=1}^{T} S_t$, yielding at most T+1 discrete levels. Such a coarse representation introduces a precision bottleneck, rendering it inadequate for dense regression tasks like object detection.

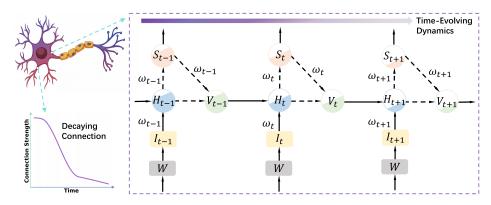


Figure 2: Time-Evolving LIF neuron. To capture the temporal shift of synaptic strength between hippocampal neurons, we extend the traditional LIF neuron model by integrating time-evolving dynamics, modulated by a time-decaying weight ω_t .

Biological Motivation. In biological systems, temporal-weighted synaptic integration is common, for example in hippocampal neurons (Harris et al., 2002). The impact of a presynaptic spike varies with timing and context, leading to postsynaptic responses of non-uniform magnitude. Additionally, Harris et al. (2002); Deperrois & Graupner (2020) observe that dendritic connection strength decays with spike timing over the short term. Inspired by these phenomena, we propose the *Time-Evolving LIF (TE-LIF)* neuron. Compared to standard LIF, TE-LIF incorporates dynamic integration magnitude, firing threshold, and decay level, yielding more biologically faithful temporal behavior.

Mathematical Formulation. Mathematically, we incorporate a time-decaying weight $\omega_t = 2^{T-t}$ (t = 1, ..., T) in the TE-LIF neuron during both the charging and discharging phases, as illustrated in Figure 2. This formulation underscores that earlier spikes trigger stronger response and adaptation:

$$V_t = \beta H_{t-1} + I_t \cdot \omega_t \; ; \; S_t = \Theta(V_t - V_{th} \cdot \omega_t) \; ; \; H_t = V_t - V_{th} \cdot S_t \cdot \omega_t \tag{3}$$

This neuronal model enables a finer-grained connection strength $\sum_{t=1}^T \omega_t S_t$, which expands the representational range to 2^T values and substantially improves precision. Since ω_t is a power of two, multiplication can be implemented as a bit-shift, providing efficient deployment on digital hardware (Kim et al., 2018; Zhang et al., 2021; 2020). TE-LIF therefore bridges biologically inspired coding with the precision and efficiency required by regression tasks.

Theoretical Insight. We analyze the expressivity of TE-LIF using the framework of input space partitioning, which measures how many distinct polyhedral regions a network can form (Pascanu et al., 2013; Montúfar et al., 2014; Nguyen et al., 2025). Each neuron contributes to the partitioning by inducing hyperplanes within the input domain, and a larger number of partitions indicates a stronger capacity for function approximation. We present a theorem showing that TE-LIF achieves a higher complexity of partitions in the input space compared to LIF as the time window T increases.

Theorem 4.1. Consider a shallow discrete-time SNN with T timesteps in the input space $\mathbb{R}^{n_{in}}$. The number of regions partitioned by LIF-SNN and TE-LIF-SNN are respectively bounded by:

$$N_{LIF}(T) = N_{LIF}(0) + \sum_{t=1}^{T} \Delta N_{LIF}(t) \le 1 + \sum_{t=1}^{T} t = 1 + \frac{T(T+1)}{2} \in O(T^2),$$

$$N_{TE}(T) = N_{TE}(0) + \sum_{t=1}^{T} \Delta N_{TE}(t) \le 1 + \sum_{t=1}^{T} C \cdot t^2 = 1 + C \cdot \frac{T(T+1)(2T+1)}{6} \in O(T^3),$$

where the constant $C=1+\left\lceil\frac{\hat{\beta}-1}{\hat{\beta}+1}+\frac{(\hat{\beta}-1)\left|H_0\right|}{(\hat{\beta}+1)V_{th}}\right\rceil$, H_0 is the initial membrane potential, V_{th} denotes the firing threshold, and the decay ratio $\hat{\beta}=\frac{\omega_{t-1}}{\omega_t}=2$ in our setting.

Remark. Theorem 4.1 (with a detailed proof in Appendix A) indicates that LIF neurons yield $O(T^2)$ partitions, while TE-LIF achieves $O(T^3)$ due to its time-evolving dynamics creating more non-parallel hyperplanes. This cubic growth enables finer input discrimination, which is especially valuable for regression tasks such as bounding box localization.

Training Stage. In order to lower temporal redundancy and accelerate the training phase, we utilize the multi-bit training method commonly used in prior SNN studies (Luo et al., 2024; Yao et al., 2025a; Qiu et al., 2025; Lei et al., 2025), which merges several timesteps into one step and allows integer-valued spike while training. To ensure the differentiability of the network, straight-through estimator (Bengio et al., 2013) are applied for the integer-valued activation function. When inference, the integer values are restored into 0/1 spike sequences via extending virtual timesteps.

Inference Stage. During inference, TE-LIF neuron operates as in Equation 3. Each neuron in layer l-1 emits a binary spike $S_t^{l-1} \in \{0,1\}$ at each timestep, and the input to layer l is computed with the synaptic weight matrix W^l between two layers:

$$W^l I_t^l = (W^l S_t^{l-1}) \cdot \omega_t \tag{4}$$

Since S_t^{l-1} is binary, the matrix multiplication $W^l \cdot S_t^{l-1}$ simplifies to sparse masking and accumulation operations, where only a few 1-valued spikes trigger the reading and accumulation of the corresponding weights. Furthermore, since $\omega_t = 2^{T-t}$, the multiplication by ω_t can be replaced with a lightweight bit-shift, i.e., $x \cdot \omega_t = x \ll (T-t)$. This leads to a highly efficient inference process in which expensive multiply-accumulate (MAC) operations are replaced by few masking and accumulate (AC) operations, preserving the low-power characteristic of SNNs. Moreover, we offer an adder-only implementation of TE-LIF neuron in Verilog hardware description language, as detailed in Appendix B. The use of accumulations, bit-shift operations and sparse events makes our approach compatible with typical neuromorphic chips that support event-based computation (Davies et al., 2018; Furber et al., 2014; Kim et al., 2018; Zhang et al., 2020).

4.2 Dual-Stream Spiking Attention

To enhance the spatial modeling capacity of SNN detectors and improves computational efficiency, we design a Dual-Stream Spiking Attention, which enables effective global–local feature fusion and maintains stable optimization when combined with TE-LIF neuron.

Eliminate Matrix Multiplication. Vanilla self-attention relies on successive matrix multiplications. However, with TE-LIF neurons, such intensive operations yields values beyond the encoding range, leading to approximation errors and training instability. To address this while boosting efficiency, we replace matrix multiplications with element-wise operations, following Zhai et al. (2021).

QV-only Design. We propose a QV-only design that removes the Key branch. This is driven by the fact that QK interactions struggle to measure similarity under sparse, spike-coded activations and tend to amplify noise at low time steps (Wang et al., 2025; Xiao et al., 2025). Instead of computing QK relevance, we directly construct the attention map from Q using a global-local fusion scheme.

Global-Local Fusion. Existing spiking attention modules (Zhou et al., 2024a; Yao et al., 2023a; Wang et al., 2025) have primarily relied on element-wise operations that usually fuse features along either the token or the embedding dimension, but rarely both. This limits their ability to capture

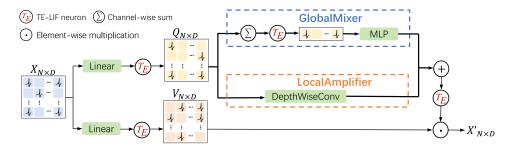


Figure 3: Dual-Stream Spiking Attention. Built on TE-LIF neurons, DSSA removes the Key branch and matrix multiplication, and fuses features through complementary global and local streams.

long-range dependencies under low firing rates or short windows. Inspired by human vision—where saccades provide a global view and fixations allow detailed local analysis (Deubel & Schneider, 1996)—as depicted in Figure 3, we design two complementary components:

$$\mathsf{GlobalMixer}(Q) = \mathsf{MLP}\left(\mathsf{TE}\left(\sum\nolimits_{c} Q\right)\right) \;,\;\; \mathsf{LocalAmplifier}(Q) = \mathsf{DepthWiseConv}(Q) \tag{5}$$

Here, TE denotes the TE-LIF neuron. GlobalMixer aggregates token-level information through channel summation and then applies a lightweight MLP to capture inter-channel interactions. LocalAmplifier focuses on spatial locality via depthwise convolution without cross-channel mixing. Together, they enable balanced global and local feature modeling with linear complexity.

Formal Definition of DSSA. Given the binary input feature $X \in \{0,1\}^{N \times D}$, DSSA operates as follows:

$$Q = TE(BN(XW_Q)), \quad V = TE(BN(XW_V))$$
(6)

$$Attn = GlobalMixer(Q) + LocalAmplifier(Q), \quad X' = TE(Attn \odot V)$$
 (7)

Linear Complexity and Practical Benefits. DSSA achieves linear complexity O(ND) with respect to both token and channel dimensions and avoids floating-point multiplications. It operates on event-driven accumulations and bit-shift computations, ensuring stable training and leveraging TE-LIF's performance benefits. A more detailed formulation and complexity analysis are provided in Appendix C. In subsection 5.4, we conduct a quantitative and qualitative comparison of DSSA with other SNN attention mechanisms, demonstrating that our design achieves superior performance through efficient global and local fusion.

5 EXPERIMENTS

To thoroughly assess our approach, we incorporate the TE-LIF neuron and Dual-Stream Spiking Attention (DSSA) module into the macro architecture of YOLOv12 (Tian et al., 2025), forming the SpikeDet model. We evaluate SpikeDet on various object detection benchmarks, including the frame-based COCO2017 dataset (Lin et al., 2014), the event-based Gen1 dataset (De Tournemire et al., 2020), and two remote-sensing datasets: NWPU (Cheng et al., 2017) and SSDD (Wang et al., 2019). Detailed descriptions of all datasets are provided in Appendix D.

5.1 EXPERIMENTAL SETUP

Our models are primarily trained on 8 NVIDIA RTX 4090 GPUs using the SGD optimizer with a learning rate of 0.01 and a timestep setting T=8. Further training details are in Appendix E.

For object detection evaluation, we report the mAP (mean Average Precision) at IoU=0.5 (mAP@50), the average mAP over IoU thresholds from 0.5 to 0.95 (mAP@50:95).

For energy consumption analysis, we adopt the standard protocol widely used in the SNN literature (Panda et al., 2020; Yao et al., 2023b; Yin et al., 2021; Luo et al., 2024). The energy cost of ANNs is calculated as the number of floating-point operations (FLOPs) multiplied by the energy per Multiply-Accumulate operation ($E_{\rm MAC}=4.6 {\rm pJ}$), while that of SNNs is derived by multiplying the FLOPs by the energy per Accumulate operation ($E_{\rm AC}=0.9 {\rm pJ}$) and then scaling the result by the average firing rate (Horowitz, 2014). Additional computational details are provided in Appendix F.

325 326

327

328

330

331

332

333

5.2 COCO OBJECT DETECTION

We train SpikeDet models of various sizes (S, M, L, X) on the COCO dataset. As detailed in Table 1, SpikeDet achieves the state-of-the-art performance among SNN-based detectors, with an mAP@50 of 68.3% and mAP@50:95 of 51.9%, surpassing the previous best directly trained SNN by +2.1% and +3.0% respectively. Compared to the best ANN2SNN detector—SpikePack, SpikeDet attains higher accuracy while consuming only 32.4 mJ—just 8.1% of SpikePack's energy usage. Notably, SpikeDet-L outperforms YOLOv6 and RT-DETR, two widely used ANN-based detectors, with a comparable number of parameters and less than 4% of their power consumption. This significantly narrows the performance gap between SNNs and ANNs in object detection, highlighting the strong potential of SNNs for practical deployment.

334 335 336

337

338

339

340

341

342

343

344

Table 1: Performance of object detection on COCO val2017

1
1
AN
7 TT A

345 347 348 349 350

351

352

353 354 355 356 357 358

359 360 361 362

363

364

370

371

372

373

374

375

376

377

Model Param(M) Power(mJ) mAP@50(%) mAP@50:95(%) Type ResNet-18 (Yu et al., 2022) 31.2 890.6 54.0 34.0 59.2 PVT (Wang et al., 2021) 32.9 520.3 36.7 DETR (Carion et al., 2020) 41.0 197.8 62.4 42.0 ANN 112.5 45.4 YOLOv5 (Jocher et al., 2020) 21.2 64.1 460.0 48.9 RT-DETR (Zhao et al., 2024b) 36.0 66.8 YOLOv6 (Li et al., 2023) 34.9 394.7 66.1 49.1 Gold-YOLO (Wang et al., 2024a) 41.3 402.5 49.8 67.0 10.2 25.7 Spiking-Yolo (Kim et al., 2020b) 25.9 Bayesian Optim (Kim et al., 2020a) 10.2 Spike Calib (Li et al., 2022) 17.1 45.4 IN2SNN SUHD (Qu et al., 2024) 7.2 54.6 400.7 50.1 SpikePack (Shen et al., 2025) 47.7 67.9 11.3 21.4 28.5 Spiking Retina (Zhang et al., 2023a) EMS-Res-SNN (Su et al., 2023) 26.9 29.0 50.1 30.1 Meta-SpikeFormer (Yao et al., 2024) 75.0 140.8 51.2 Ensemble SNN (Ding et al., 2025) 13.2 54.0 38.4 Directly Spiking YOLOX (Miao et al., 2025) 7.8 56.7 37.1 OSD-Transformer (Oiu et al., 2025) 34.9 117.2 57.0 Trained 38.7 119.5 58.8 E-Spikeformer (Yao et al., 2025a) **SNN** SpikeYOLO (Luo et al., 2024) 68.8 84.2 66.2 48.9 SpikeDet-S (Ours) 9.5 4.8 61.0 44.9 49.1 SpikeDet-M (Ours) 21.8 11.8 65.5 SpikeDet-L (Ours) 31.8 15.6 67.2 50.7 SpikeDet-X (Ours) 71.0 32.4 68.3 (+2.1) 51.9 (+3.0)

5.3 DVS AND REMOTE SENSING DETECTION

As shown in Table 2, SpikeDet achieves the state-of-the-art performance on the Gen1 dataset in terms of mAP@50:95 among SNN-based models, without any specialized adaptation for DVS (Dynamic Vision Sensor) data, demonstrating strong generalization capability across diverse modalities. SpikeDet also surpasses both ANN and SNN baselines on the NWPU and SSDD remote sensing datasets, confirming its suitability for resource-constrained edge-based aerial imagery applications.

5.4 ABLATION STUDY

To assess the effectiveness of our spiking neuron and attention design, we conduct detailed ablation studies on the COCO dataset using our SpikeDet model.

TE-LIF Analysis. To validate the representational capability advantage of TE-LIF neurons over standard LIF neurons, we train a SpikeDet-S model by replacing TE-LIF with LIF at T=4, optimized using STBP (Spatial Temporal BackPropagation). As reported in Table 3, under the same time window T = 4, the model equipped with TE-LIF delivers significantly higher accuracy.

To assess the effect of time window length T in TE-LIF, we evaluate SpikeDet models under various T settings. As shown in Table 3, increasing T generally improves performance, though gains

Table 2: Performance of object detection on Gen1, NWPU and SSDD

Dataset	Type	Model	Param(M)	mAP@50(%)	mAP@50:95(%)
		AEGNN (Schaefer et al., 2022)	20	-	16.3
	ANN	RRC-Events (Chen, 2018)	>100	-	30.7
		RED (Perot et al., 2020)	24.1	-	40.0
		SpikeFPN (Zhang et al., 2024)	22	47.7	22.3
Gen1		Tr-SpikingYolo (Yuan et al., 2024)	7.9	45.3	-
Geni		SFOD (Fan et al., 2024)	11.9	-	32.1
		CREST (Mao et al., 2025)	7.61	-	36.0
	SNN	SpikingViT (Yu et al., 2024)	21.5	61.6	39.4
		MSD (Li et al., 2025)	7.8	66.3	38.9
		SpikeYOLO (Luo et al., 2024)	23.1	67.2	40.4
		EAS-SNN (Wang et al., 2024c)	25.3	69.9	37.5
		SpikeDet (Ours)	21.8	68.4	41.2
		ABNet (Liu et al., 2021a)	27.1	87.3	-
	ANN	YOLOv3 (Redmon & Farhadi, 2018)	58.7	82.6	52.1
	AININ	YOLOv5-Swin (Liu et al., 2021b)	13.4	89.8	53.9
NWPU		CS^n Net (Chen et al., 2023)	12.2	90.4	55.4
		EMS-YOLO (Su et al., 2023)	14.4	87.9	-
	SNN	SNN-ViT-YOLO (Wang et al., 2025)	53.7	89.4	-
		SpikeDet (Ours)	21.8	90.5	59.3
		FasterR-CNN (Fu et al., 2020)	25.6	85.3	-
		YOLOv3 (Redmon & Farhadi, 2018)	58.7	88.6	44.3
	ANN	YOLOv5-Swin (Liu et al., 2021b)	13.4	94	57.9
SSDD		Improved PRDet (Yu et al., 2021)	35.5	96.5	64.3
		CS^n Net (Chen et al., 2023)	12.2	97.1	64.9
		EMS-YOLO (Su et al., 2023)	14.4	95.1	-
	SNN	SNN-ViT-YOLO (Wang et al., 2025)	53.7	97.0	-
		SpikeDet (Ours)	21.8	98.5	75.5

saturate beyond T=8. Moreover, SpikeDet achieves strong performance with short time windows (T=3 or 4). This robustness reflects the high expressivity of TE-LIF neurons and the proposed attention mechanism, underscoring the practicality of our approach for real-world deployment.

Table 3: The blue, red and yellow regions respectively show the impact of neuron types, the effect of time steps, and SpikeDet's performance under short time windows.

Table 4: The blue region demonstrates the impact of architectural modifications, while the red region compares the performance of other typical SNN attention modules.

Model	T	mAP@50 (%)	mAP@50:95 (%)
SpikeDet-S (LIF)	4	45.7	31.0
SpikeDet-S	4	59.9	44.2
SpikeDet-S	8	61.0	44.9
SpikeDet-S	10	61.0	44.9
SpikeDet-M	4	65.4	48.9
SpikeDet-L	3	66.1	49.5
SpikeDet-L	4	67.2	50.5
SpikeDet-X	4	67.6	51.0

Attention	mAP@50(%)	mAP@50:95(%)
DSSA (Ours)	61.0	44.9
Remove GM	60.5	44.4
Remove LA	60.5	44.4
$\operatorname{Add} K \operatorname{Branch}$	60.8	44.7
SDSA-1	57.0	41.5
SDSA-3	60.2	44.2
QKTA	59.8	44.1
QKCA	60.0	43.9

Attention Analysis. To evaluate the effectiveness of DSSA, we conduct a series of controlled structural modifications based on SpikeDet-S. Specifically, we remove the GlobalMixer (GM) and LocalAmplifier (LA) components individually from DSSA. We also introduce a K branch to restore QK interactions via element-wise multiplication. As reported in Table 4, removing either GM or LA degrades accuracy, suggesting that both local and global cues contribute to performance, though neither dominates alone. Meanwhile, introducing QK interaction provides no meaningful gain, which implies that explicit pairwise token interactions are unnecessary under our spike-driven formulation.

We further replace DSSA with several representative alternatives including SDSA-1 (Yao et al., 2023a), SDSA-3 (Yao et al., 2025b), QKTA, and QKCA (Zhou et al., 2024a). We also test with SSSA(Wang et al., 2025), but its axis-wise summation followed by matrix multiplication produces excessively large values, causing gradient vanishing and training failure. Table 4 shows that our method outperforms all baselines with linear complexity. In terms of practical efficiency, a single inference of DSSA consumes only 36% of the power required by SDSA-3, a prevalent SNN attention mechanism. Moreover, EigenCAM visualizations in Figure 4 qualitatively demonstrate that DSSA captures more complete and spatially coherent semantic regions.

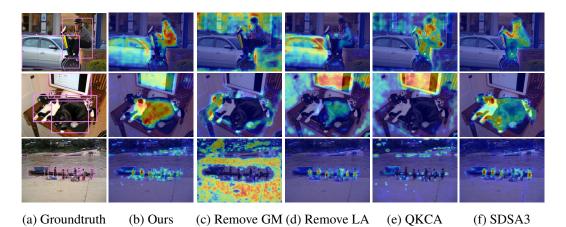


Figure 4: The pink boxes in the input images enclose the objects, while the heatmaps indicate the regions where the attention module focuses, derived from intermediate-layer features.

5.5 APPLICATIONS BEYOND OBJECT DETECTION

ImageNet Classification. To assess the generalizability of our methods across diverse vision tasks and model architectures, we integrate TE-LIF and DSSA into E-SpikeFormer (Yao et al., 2025a) and evaluate the resulting model on the ImageNet classification benchmark (Deng et al., 2009). As reported in Table 6 of Appendix G, our approach attains a competitive Top-1 accuracy of **79.7%**, surpassing numerous existing models of comparable or even larger scale.

ADE20K Segmentation. Semantic segmentation is a challenging computer vision task that requires dense, pixel-wise classification, demanding both fine-grained spatial modeling and comprehensive contextual reasoning across the entire image. We employ our ImageNet-pretrained model as the backbone, add a segmentation head, and fine-tune the network on the ADE20K dataset. As shown in Table 7 of Appendix G, our segmentation model, with only **9.3M** parameters, attains an mIoU of **42.6%**, outperforming larger ANN and SNN baselines. These results further confirm the scalability of our design to dense prediction tasks.

6 Conclusion

We present *SpikeDet*, a fully spiking detector designed to achieve both precise regression and effective spatial semantic modeling in object detection with SNNs. As the foundation of our framework, the *TE-LIF* neuron bridges biologically inspired time-evolving membrane dynamics with the high-precision requirements of regression tasks, offering enhanced expressivity while remaining hardware-friendly. Complementing this design, the *Dual-Stream Spiking Attention* incorporates a QV-only architecture with parallel GlobalMixer and LocalAmplifier modules to effectively capture global context and local detail with linear complexity. Together, these components enable SpikeDet to set new state-of-the-art results in SNN-based detection, achieving **68.3% mAP@50** and **51.9% mAP@50:95** on COCO with an energy cost of only **32.4 mJ**, while also generalizing well to classification and segmentation tasks. These findings highlight SpikeDet as a promising foundation for deploying SNNs in more complex and challenging real-world applications.

7 REPRODUCIBILITY STATEMENT

Full experimental details are in subsection 5.1, Appendix B, Appendix C, and Appendix E. Complete source code will be released in the final version.

REFERENCES

- Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through stochastic neurons for conditional computation. *arXiv* preprint arXiv:1308.3432, 2013.
- Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Optimal speed and accuracy of object detection. *arXiv preprint arXiv:2004.10934*, 2020.
- Velibor Bojković, Xiaofeng Wu, and Bin Gu. Temporal misalignment in ann-snn conversion and its mitigation via probabilistic spiking neurons. *arXiv preprint arXiv:2502.14487*, 2025.
- Tong Bu, Wei Fang, Jianhao Ding, PENGLIN DAI, Zhaofei Yu, and Tiejun Huang. Optimal annsnn conversion for high-accuracy and ultra-low-latency spiking neural networks. In *International Conference on Learning Representations*, 2021.
- Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-end object detection with transformers. In *European conference on computer vision*, pp. 213–229. Springer, 2020.
- Stefano Caviglia, Maurizio Valle, and Chiara Bartolozzi. Asynchronous, event-driven readout of posfet devices for tactile sensing. In 2014 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2648–2651. IEEE, 2014.
- Chengcheng Chen, Weiming Zeng, Xiliang Zhang, and Yuhao Zhou. Cs n net: a remote sensing detection network breaking the second-order limitation of transformers with recursive convolutions. *IEEE Transactions on Geoscience and Remote Sensing*, 2023.
- Nicholas FY Chen. Pseudo-labels for supervised learning on dynamic vision sensor data, applied to object detection under ego-motion. In *Proceedings of the IEEE conference on computer vision and pattern recognition workshops*, pp. 644–653, 2018.
- Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification: Benchmark and state of the art. *Proceedings of the IEEE*, 105(10):1865–1883, 2017.
- Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic manycore processor with on-chip learning. *IEEE Micro*, 38(1):82–99, 2018.
- Pierre De Tournemire, Davide Nitti, Etienne Perot, Davide Migliore, and Amos Sironi. A large scale event-based detection dataset for automotive. *arXiv preprint arXiv:2001.08499*, 2020.
- Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In *2009 IEEE Conference on Computer Vision and Pattern Recognition*, pp. 248–255. IEEE, 2009.
- Shikuang Deng and Shi Gu. Optimal conversion of conventional artificial neural networks to spiking neural networks. *arXiv preprint arXiv:2103.00476*, 2021.
- Shikuang Deng, Yuhang Li, Shanghang Zhang, and Shi Gu. Temporal efficient training of spiking neural network via gradient re-weighting. In *International Conference on Learning Representations*, 2022.
- Shikuang Deng, Yuhang Wu, Kangrui Du, and Shi Gu. Spiking token mixer: An event-driven friendly former structure for spiking neural networks. *Advances in Neural Information Processing Systems*, 37:128825–128846, 2024.
- Nicolas Deperrois and Michael Graupner. Short-term depression and long-term plasticity together tune sensitive range of synaptic plasticity. *PLoS computational biology*, 16(9):e1008265, 2020.
- Heiner Deubel and Werner X Schneider. Saccade target selection and object recognition: Evidence for a common attentional mechanism. *Vision research*, 36(12):1827–1837, 1996.
- Yongqi Ding, Lin Zuo, Mengmeng Jing, Pei He, and Hanpu Deng. Rethinking spiking neural networks from an ensemble learning perspective. *arXiv preprint arXiv:2502.14218*, 2025.

- Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint arXiv:2010.11929*, 2020.
 - Yimeng Fan, Wei Zhang, Changsong Liu, Mingyang Li, and Wenrui Lu. Sfod: Spiking fusion object detector. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 17191–17200, 2024.
 - Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier, and Yonghong Tian. Deep residual learning in spiking neural networks. *Advances in Neural Information Processing Systems*, 34:21056–21069, 2021.
 - Jiamei Fu, Xian Sun, Zhirui Wang, and Kun Fu. An anchor-free method based on feature balancing and refinement network for multiscale ship detection in sar images. *IEEE Transactions on Geoscience and Remote Sensing*, 59(2):1331–1344, 2020.
 - Steve B Furber, Francesco Galluppi, Steve Temple, and Luis A Plana. The spinnaker project. *Proceedings of the IEEE*, 102(5):652–665, 2014.
 - Ross Girshick. Fast r-cnn. In *Proceedings of the IEEE international conference on computer vision*, pp. 1440–1448, 2015.
 - Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 580–587, 2014.
 - Jocher Glenn. Yolov8. https://github.com/ultralytics/ultralytics/tree/main, 2023.
 - Yufei Guo, Yuhan Zhang, Zhou Jie, Xiaode Liu, Xin Tong, Yuanpei Chen, Weihang Peng, and Zhe Ma. Reverb-snn: Reversing bit of the weight and activation for spiking neural networks. *arXiv* preprint arXiv:2506.07720, 2025.
 - Kenneth D Harris, Darrell A Henze, Hajime Hirase, Xavier Leinekugel, George Dragoi, Andras Czurkó, and György Buzsáki. Spike train dynamics predicts theta-related phase precession in hippocampal pyramidal cells. *Nature*, 417(6890):738–741, 2002.
 - Mark Horowitz. 1.1 computing's energy problem (and what we can do about it). In 2014 IEEE international solid-state circuits conference digest of technical papers (ISSCC), pp. 10–14. IEEE, 2014.
 - Yangfan Hu, Qian Zheng, Xudong Jiang, and Gang Pan. Fast-snn: Fast spiking neural network by converting quantized ann. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45 (12):14546–14562, 2023.
 - Yifan Hu, Lei Deng, Yujie Wu, Man Yao, and Guoqi Li. Advancing spiking neural networks toward deep residual learning. *IEEE Transactions on Neural Networks and Learning Systems*, pp. 1–15, 2024.
 - Zihan Huang, Xinyu Shi, Zecheng Hao, Tong Bu, Jianhao Ding, Zhaofei Yu, and Tiejun Huang. Towards high-performance spiking transformers from ann to snn conversion. In *Proceedings of the 32nd ACM International Conference on Multimedia*, pp. 10688–10697, 2024.
 - Glenn Jocher, Alex Stoken, Jirka Borovec, Liu Changyu, Adam Hogan, Laurentiu Diaconu, Jake Poznanski, Lijun Yu, Prashant Rai, Russ Ferriday, et al. ultralytics/yolov5: v3. 0. Zenodo, 2020.
 - Jaehyun Kim, Heesu Kim, Subin Huh, Jinho Lee, and Kiyoung Choi. Deep neural networks with weighted spikes. *Neurocomputing*, 311:373–386, 2018.
 - Seijoon Kim, Seongsik Park, Byunggook Na, Jongwan Kim, and Sungroh Yoon. Towards fast and accurate object detection in bio-inspired spiking neural networks through bayesian optimization. *IEEE Access*, 9:2633–2643, 2020a.

- Seijoon Kim, Seongsik Park, Byunggook Na, and Sungroh Yoon. Spiking-yolo: spiking neural network for energy-efficient object detection. In *Proceedings of the AAAI conference on artificial intelligence*, volume 34, pp. 11270–11277, 2020b.
- Donghyun Lee, Yuhang Li, Youngeun Kim, Shiting Xiao, and Priyadarshini Panda. Spiking transformer with spatial-temporal attention. *arXiv preprint arXiv:2409.19764*, 2024.
- Zhenxin Lei, Man Yao, Jiakui Hu, Xinhao Luo, Yanye Lu, Bo Xu, and Guoqi Li. Spike2former: Efficient spiking transformer for high-performance image segmentation. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 1364–1372, 2025.
- Chuyi Li, Lulu Li, Yifei Geng, Hongliang Jiang, Meng Cheng, Bo Zhang, Zaidan Ke, Xiaoming Xu, and Xiangxiang Chu. Yolov6 v3. 0: A full-scale reloading. *arXiv preprint arXiv:2301.05586*, 2023.
- Guoqi Li, Lei Deng, Huajin Tang, Gang Pan, Yonghong Tian, Kaushik Roy, and Wolfgang Maass. Brain-inspired computing: A systematic survey and future trends. *Proceedings of the IEEE*, 2024.
- Siyuan Li, Zicheng Liu, Zedong Wang, Di Wu, Zihan Liu, and Stan Z Li. Boosting discriminative visual representation learning with scenario-agnostic mixup. *arXiv preprint arXiv:2111.15454*, 2021.
- Yang Li, Xiang He, Yiting Dong, Qingqun Kong, and Yi Zeng. Spike calibration: Fast and accurate conversion of spiking neural network for object detection and segmentation. *arXiv* preprint arXiv:2207.02702, 2022.
- Ziqi Li, Tao Gao, Yisheng An, Ting Chen, Jing Zhang, Yuanbo Wen, Mengkun Liu, and Qianxi Zhang. Brain-inspired spiking neural networks for energy-efficient object detection. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 3552–3562, 2025.
- Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *European Conference on Computer Vision*, pp. 740–755. Springer, 2014.
- Yanfeng Liu, Qiang Li, Yuan Yuan, Qian Du, and Qi Wang. Abnet: Adaptive balanced network for multiscale object detection in remote sensing imagery. *IEEE transactions on geoscience and remote sensing*, 60:1–14, 2021a.
- Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 10012–10022, 2021b.
- Xinhao Luo, Man Yao, Yuhong Chou, Bo Xu, and Guoqi Li. Integer-valued training and spike-driven inference spiking neural network for high-performance and energy-efficient object detection. In *European Conference on Computer Vision*, pp. 253–272. Springer, 2024.
- Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models. *Neural networks*, 10(9):1659–1671, 1997.
- Ruixin Mao, Aoyu Shen, Lin Tang, and Jun Zhou. Crest: An efficient conjointly-trained spike-driven framework for event-based object detection exploiting spatiotemporal dynamics. In *Proceedings* of the AAAI Conference on Artificial Intelligence, volume 39, pp. 6072–6080, 2025.
- Wei Miao, Jiangrong Shen, Qi Xu, Timo Hamalainen, Yi Xu, and Fengyu Cong. Spikingyolox: Improved yolox object detection with fast fourier convolution and spiking neural networks. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 1465–1473, 2025.
- Guido Montúfar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of linear regions of deep neural networks. *Advances in neural information processing systems*, 27, 2014.
- Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking neural networks: Bringing the power of gradient-based optimization to spiking neural networks. *IEEE Signal Processing Magazine*, 36(6):51–63, 2019.

- Duc Anh Nguyen, Ernesto Araya, Adalbert Fono, and Gitta Kutyniok. Time to spike? understanding the representational power of spiking neural networks in discrete time. *arXiv* preprint arXiv:2505.18023, 2025.
 - Priyadarshini Panda, Sai Aparna Aketi, and Kaushik Roy. Toward scalable, efficient, and accurate deep spiking neural networks with backward residual connections, stochastic softmax, and hybridization. *Frontiers in Neuroscience*, 14:653, 2020.
 - Razvan Pascanu, Guido Montufar, and Yoshua Bengio. On the number of response regions of deep feed forward networks with piece-wise linear activations. *arXiv preprint arXiv:1312.6098*, 2013.
- Etienne Perot, Pierre De Tournemire, Davide Nitti, Jonathan Masci, and Amos Sironi. Learning to detect objects with a 1 megapixel event camera. *Advances in Neural Information Processing Systems*, 33:16639–16652, 2020.
- Xuerui Qiu, Malu Zhang, Jieyuan Zhang, Wenjie Wei, Honglin Cao, Junsheng Guo, Rui-Jie Zhu, Yimeng Shan, Yang Yang, and Haizhou Li. Quantized spike-driven transformer. *arXiv preprint arXiv:2501.13492*, 2025.
- Jinye Qu, Zeyu Gao, Tielin Zhang, Yanfeng Lu, Huajin Tang, and Hong Qiao. Spiking neural network for ultralow-latency and high-accurate object detection. *IEEE Transactions on Neural Networks and Learning Systems*, 2024.
- Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767, 2018.
- Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified, real-time object detection. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 779–788, 2016.
- Simon Schaefer, Daniel Gehrig, and Davide Scaramuzza. Aegnn: Asynchronous event-based graph neural networks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 12371–12381, 2022.
- Guobin Shen, Jindong Li, Tenglong Li, Dongcheng Zhao, and Yi Zeng. *spikepack*: Enhanced information flow in spiking neural networks with high hardware compatibility. *arXiv preprint arXiv:2501.14484*, 2025.
- Xinyu Shi, Zecheng Hao, and Zhaofei Yu. Spikingresformer: bridging resnet and vision transformer in spiking neural networks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 5610–5619, 2024.
- Qiaoyi Su, Yuhong Chou, Yifan Hu, Jianing Li, Shijie Mei, Ziyang Zhang, and Guoqi Li. Deep directly-trained spiking neural networks for object detection. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 6555–6565, 2023.
- Yunjie Tian, Qixiang Ye, and David Doermann. Yolov12: Attention-centric real-time object detectors. *arXiv preprint arXiv:2502.12524*, 2025.
- Pavan Kumar Anasosalu Vasu, James Gabriel, Jeff Zhu, Oncel Tuzel, and Anurag Ranjan. Fastvit: A fast hybrid vision transformer using structural reparameterization. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 5785–5795, 2023.
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing systems*, 30, 2017.
- Chengcheng Wang, Wei He, Ying Nie, Jianyuan Guo, Chuanjian Liu, Yunhe Wang, and Kai Han. Gold-yolo: Efficient object detector via gather-and-distribute mechanism. *Advances in Neural Information Processing Systems*, 36, 2024a.
- Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. Yolov7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 7464–7475, 2023a.

- Hongzhi Wang, Xiubo Liang, Tao Zhang, Yue Gu, and Weidong Geng. Pssd-transformer: Powerful sparse spike-driven transformer for image semantic segmentation. In *Proceedings of the 32nd ACM International Conference on Multimedia*, pp. 758–767, 2024b.
- Shuai Wang, Malu Zhang, Dehao Zhang, Ammar Belatreche, Yichen Xiao, Yu Liang, Yimeng Shan, Qian Sun, Enqi Zhang, and Yang Yang. Spiking vision transformer with saccadic attention. *arXiv* preprint arXiv:2502.12677, 2025.
- Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction without convolutions. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 568–578, 2021.
- Yuanyuan Wang, Chao Wang, Hong Zhang, Yingbo Dong, and Sisi Wei. A sar dataset of ship detection for deep learning under complex backgrounds. *remote sensing*, 11(7):765, 2019.
- Ziming Wang, Yuhao Zhang, Shuang Lian, Xiaoxin Cui, Rui Yan, and Huajin Tang. Toward high-accuracy and low-latency spiking neural networks with two-stage optimization. *IEEE Transactions on Neural Networks and Learning Systems*, pp. 1–15, 2023b.
- Ziming Wang, Ziling Wang, Huaning Li, Lang Qin, Runhao Jiang, De Ma, and Huajin Tang. Eassnn: End-to-end adaptive sampling and representation for event-based detection with recurrent spiking neural networks. In *European Conference on Computer Vision*, pp. 310–328. Springer, 2024c.
- Ziqing Wang, Yuetong Fang, Jiahang Cao, Qiang Zhang, Zhongrui Wang, and Renjing Xu. Masked spiking transformer. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 1761–1771, 2023c.
- Wenjie Wei, Malu Zhang, Zijian Zhou, Ammar Belatreche, Yimeng Shan, Yu Liang, Honglin Cao, Jieyuan Zhang, and Yang Yang. Qp-snn: Quantized and pruned spiking neural networks. *arXiv* preprint arXiv:2502.05905, 2025.
- Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for training high-performance spiking neural networks. *Frontiers in neuroscience*, 12:331, 2018.
- Yichen Xiao, Shuai Wang, Dehao Zhang, Wenjie Wei, Yimeng Shan, Xiaoli Liu, Yulin Jiang, and Malu Zhang. Rethinking spiking self-attention mechanism: Implementing a-xnor similarity calculation in spiking transformers. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 5444–5454, 2025.
- Xuwei Xu, Sen Wang, Yudong Chen, Yanping Zheng, Zhewei Wei, and Jiajun Liu. Gtp-vit: efficient vision transformers via graph-based token propagation. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision*, pp. 86–95, 2024.
- Man Yao, Jiakui Hu, Zhaokun Zhou, Li Yuan, Yonghong Tian, Bo Xu, and Guoqi Li. Spike-driven transformer. *Advances in neural information processing systems*, 36:64043–64058, 2023a.
- Man Yao, Guangshe Zhao, Hengyu Zhang, Yifan Hu, Lei Deng, Yonghong Tian, Bo Xu, and Guoqi Li. Attention spiking neural networks. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(8):9393–9410, 2023b.
- Man Yao, JiaKui Hu, Tianxiang Hu, Yifan Xu, Zhaokun Zhou, Yonghong Tian, Bo XU, and Guoqi Li. Spike-driven transformer v2: Meta spiking neural network architecture inspiring the design of next-generation neuromorphic chips. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=1SIBN5Xyw7.
- Man Yao, Xuerui Qiu, Tianxiang Hu, Jiakui Hu, Yuhong Chou, Keyu Tian, Jianxing Liao, Luziwei Leng, Bo Xu, and Guoqi Li. Scaling spike-driven transformer with efficient spike firing approximation training. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2025a.
- Man Yao, Xuerui Qiu, Tianxiang Hu, Jiakui Hu, Yuhong Chou, Keyu Tian, Jianxing Liao, Luziwei Leng, Bo Xu, and Guoqi Li. Scaling spike-driven transformer with efficient spike firing approximation training. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2025b.

- Bojian Yin, Federico Corradi, and Sander M Bohté. Accurate and efficient time-domain classification with adaptive spiking recurrent neural networks. *Nature Machine Intelligence*, 3(10): 905–913, 2021.
 - Guanghua Yu, Qinyao Chang, Wenyu Lv, Chang Xu, Cheng Cui, Wei Ji, Qingqing Dang, Kaipeng Deng, Guanzhong Wang, Yuning Du, et al. Pp-picodet: A better real-time object detector on mobile devices. *arXiv preprint arXiv:2111.00902*, 2021.
 - Lixing Yu, Hanqi Chen, Ziming Wang, Shaojie Zhan, Jiankun Shao, Qingjie Liu, and Shu Xu. Spikingvit: a multi-scale spiking vision transformer model for event-based object detection. *IEEE Transactions on Cognitive and Developmental Systems*, 2024.
 - Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou, Xinchao Wang, Jiashi Feng, and Shuicheng Yan. Metaformer is actually what you need for vision. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 10819–10829, 2022.
 - Mengwen Yuan, Chengjun Zhang, Ziming Wang, Huixiang Liu, Gang Pan, and Huajin Tang. Trainable spiking-yolo for low-latency and high-performance object detection. *Neural Networks*, 172: 106092, 2024.
 - Shuangfei Zhai, Walter Talbott, Nitish Srivastava, Chen Huang, Hanlin Goh, Ruixiang Zhang, and Josh Susskind. An attention free transformer. *arXiv preprint arXiv:2105.14103*, 2021.
 - Hong Zhang, Yang Li, Bin He, Xiongfei Fan, Yue Wang, and Yu Zhang. Direct training high-performance spiking neural networks for object recognition and detection. Frontiers in Neuroscience, 17, 2023a.
 - Hu Zhang, Yanchen Li, Luziwei Leng, Kaiwei Che, Qian Liu, Qinghai Guo, Jianxing Liao, and Ran Cheng. Automotive object detection via learning sparse events by spiking neurons. *IEEE Transactions on Cognitive and Developmental Systems*, 2024.
 - Jian Zhang, Ran Wang, Xudong Pei, Dan Luo, Sajjad Hussain, and Guohe Zhang. A fast spiking neural network accelerator based on bp-stdp algorithm and weighted neuron model. *IEEE Transactions on Circuits and Systems II: Express Briefs*, 69(4):2271–2275, 2021.
 - Jilin Zhang, Dexuan Huo, Jian Zhang, Chunqi Qian, Qi Liu, Liyang Pan, Zhihua Wang, Ning Qiao, Kea-Tiong Tang, and Hong Chen. 22.6 anp-i: A 28nm 1.5 pj/sop asynchronous spiking neural network processor enabling sub-o. 1 μj/sample on-chip learning for edge-ai applications. In 2023 IEEE International Solid-State Circuits Conference (ISSCC), pp. 21–23. IEEE, 2023b.
 - Ming Zhang, Zonghua Gu, Nenggan Zheng, De Ma, and Gang Pan. Efficient spiking neural networks with logarithmic temporal coding. *IEEE access*, 8:98156–98167, 2020.
 - Yian Zhao, Wenyu Lv, Shangliang Xu, Jinman Wei, Guanzhong Wang, Qingqing Dang, Yi Liu, and Jie Chen. Detrs beat yolos on real-time object detection. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 16965–16974, 2024a.
 - Yian Zhao, Wenyu Lv, Shangliang Xu, Jinman Wei, Guanzhong Wang, Qingqing Dang, Yi Liu, and Jie Chen. Detrs beat yolos on real-time object detection. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 16965–16974, 2024b.
 - Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene parsing through ade20k dataset. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 633–641, 2017.
 - Chenlin Zhou, Han Zhang, Zhaokun Zhou, Liutao Yu, Liwei Huang, Xiaopeng Fan, Li Yuan, Zhengyu Ma, Huihui Zhou, and Yonghong Tian. Qkformer: Hierarchical spiking transformer using qk attention. *Advances in Neural Information Processing Systems*, 37:13074–13098, 2024a.
 - Zhaokun Zhou, Yuesheng Zhu, Chao He, Yaowei Wang, Shuicheng Yan, Yonghong Tian, and Li Yuan. Spikformer: When spiking neural network meets transformer. *arXiv* preprint *arXiv*:2209.15425, 2022.

Zhaokun Zhou, Kaiwei Che, Wei Fang, Keyu Tian, Yuesheng Zhu, Shuicheng Yan, Yonghong Tian, and Li Yuan. Spikformer v2: Join the high accuracy club on imagenet with an snn ticket. *arXiv* preprint arXiv:2401.02020, 2024b.

Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr: Deformable transformers for end-to-end object detection. *arXiv preprint arXiv:2010.04159*, 2020.

APPENDIX

A Proof of Theorem 4.1

Proof.

1. Introducing Notations.

From the definition of TE-LIF neuron:

$$H_t = H_{t-1} + (\boldsymbol{W}\boldsymbol{x} + \boldsymbol{b})\omega_t - V_{th}\omega_t S_t$$

Rearranging yields

$$\frac{H_t}{\omega_t} - \frac{\omega_{t-1}}{\omega_t} \frac{H_{t-1}}{\omega_{t-1}} = (\boldsymbol{W}\boldsymbol{x} + \boldsymbol{b}) - V_{th}S_t.$$

Defining $\hat{H}_t = H_t/\omega_t$, we obtain

$$\hat{H}_t - \frac{\omega_{t-1}}{\omega_t} \hat{H}_{t-1} = (\boldsymbol{W}\boldsymbol{x} + \boldsymbol{b}) - V_{th} S_t.$$

Let $\hat{\beta} = \omega_{t-1}/\omega_t$. The dynamics with the introduced simplified notations imply:

$$\hat{\beta}^{i} \hat{H}_{t-1-i} = \hat{\beta}^{i+1} \hat{H}_{t-2-i} + \hat{\beta}^{i} (\boldsymbol{W} \boldsymbol{x} + \boldsymbol{b}) - V_{th} \hat{\beta}^{i} S_{t-1-i}.$$

Taking the sum for i = 0, ..., t - 2, we obtain

$$\hat{H}_{t-1} = \sum_{i=0}^{t-2} \hat{\beta}^i (\boldsymbol{W} \boldsymbol{x} + \boldsymbol{b}) - V_{th} \sum_{i=0}^{t-2} \hat{\beta}^i S_{t-1-i}.$$

Therefore, the spike activation S_t is determined by

$$S_t = \Theta\left(\hat{\beta}\hat{H}_{t-1} + \boldsymbol{W}\boldsymbol{x} + \boldsymbol{b} - V_{th}\boldsymbol{1}\right)$$
$$= \Theta\left(\sum_{i=0}^{t-1} \hat{\beta}^i(\boldsymbol{W}\boldsymbol{x} + \boldsymbol{b}) - V_{th}\left(\boldsymbol{1} + \sum_{i=1}^{t-1} \hat{\beta}^i S_{t-i}\right)\right).$$

For an arbitrary neuron $k \in [n_1]$ in the first hidden layer, this becomes

$$S_{k,t} = \Theta\left(\sum_{i=0}^{t-1} \hat{\beta}^{i}(\langle \boldsymbol{w}_{k}, \boldsymbol{x} \rangle + b_{k}) + \hat{\beta}^{t} \hat{H}_{k,0} - V_{th} \left(1 + \sum_{i=1}^{t-1} \hat{\beta}^{i} S_{k,t-i}\right)\right)$$

$$= \Theta\left(\langle \boldsymbol{w}_{k}, \boldsymbol{x} \rangle + b_{k} + \frac{\hat{\beta}^{t} \hat{H}_{k,0} - V_{th} \left(1 + \sum_{i=1}^{t-1} \hat{\beta}^{i} S_{k,t-i}\right)}{\sum_{i=0}^{t-1} \hat{\beta}^{i}}\right), \tag{8}$$

where $w_i \in \mathbb{R}^{n_{\text{in}}}$ denotes the *i*-th row vector of W. This means that at time step $t \in [T]$, the value of $S_{k,t} \in \{0,1\}$ gives information about the half-space the input vector $x \in \mathbb{R}^{n_{\text{in}}}$ lies in with respect to the hyperplane

$$h_{t-1}(S_{k,1},\ldots,S_{k,t-1}) := \left\{ \boldsymbol{x} \in \mathbb{R}^{n_{\text{in}}} : \left\langle \boldsymbol{w}_k, \boldsymbol{x} \right\rangle + b_k - g_{t-1}(S_{k,1},\ldots,S_{k,t-1}) = 0 \right\} \subset \mathbb{R}^{n_{\text{in}}}$$

where the function g_{t-1} is defined by

$$g_{t-1}: \{0,1\}^{t-1} \mapsto \mathbb{R}, \quad g_{t-1}(a_1,\dots,a_{t-1}) = \frac{-\hat{\beta}^t \hat{H}_{k,0} + V_{th} \left(1 + \sum_{i=1}^{t-1} \hat{\beta}^i a_{t-i}\right)}{\sum_{i=0}^{t-1} \hat{\beta}^i}. \tag{9}$$

Furthermore, for each binary code $(a_i)_{i \in [t-1]} \in \{0,1\}^{t-1}$, we define the corresponding region

$$R_{t-1}(a_1,\ldots,a_{t-1}) := \{ \boldsymbol{x} \in \mathbb{R}^{n_{\text{in}}} : S_{k,i} = a_i \ \forall i \in [t-1] \} = \bigcap_{i=1}^{t-1} \{ \boldsymbol{x} \in \mathbb{R}^{n_{\text{in}}} : S_{k,i} = a_i \}.$$

Note that such a region can be empty (see below) and we denote by N(t) the number of non-empty such regions (which is also the total number of regions created at time step t). Our starting point is

the step t=1, i.e., t-1=0, where the whole space $\mathbb{R}^{n_{\rm in}}$, which corresponds to the empty code $(a_i)_{i=1}^0$, is divided by exactly $2^0=1$ hyperplane, namely (according to (9)) the one given by the shift $g_0=-\hat{\beta}\hat{H}_{k,0}+V_{th}$, into 2 different regions (depending on whether $a_1=0$ or $a_1=1$).

2. Not Every Binary Code Corresponds to a Non-Empty Region.

In principle, after time step t-1, or equivalently, before time step t, there can be 2^{t-1} possible binary codes $(a_i)_{i \in [t-1]} \in \{0,1\}^{t-1}$ and accordingly the same number of hyperplanes $h_{t-1}(a_1,\ldots,a_{t-1})$. Each of these hyperplanes may separate (at most) one region into two sub-regions, thus increasing the total number of regions by one. This means that the number of regions might be doubled in each time step, i.e., N(t) - N(t-1) might reach 2^{t-1} , which possibly leads to $1 + \sum_{t=1}^{T} 2^{t-1} = 2^T$ regions in total at time step T.

However, in reality, a hyperplane can divide a region into two sub-regions only if it intersects (in our case, as the hyperplanes are parallel, if it lies inside) that region, because otherwise the region remains one whole region. More specifically in our case, a region $R_{t-1}(a_1,\ldots,a_{t-1})$ corresponding to the code (a_1,\ldots,a_{t-1}) defined before time t is separated into two sub-regions at time t if and only if it contains the hyperplane $h_{t-1}(a_1,\ldots,a_{t-1})$ (created at time step t), i.e.,

$$h_{t-1}(a_1, \dots, a_{t-1}) \subset R_{t-1}(a_1, \dots, a_{t-1}).$$
 (10)

According to our previous notion of (non-)empty regions, this means that if $h_{t-1}(a_1,\ldots,a_{t-1})$ falls outside of $R_{t-1}(a_1,\ldots,a_{t-1})$, i.e., the condition (10) is violated, then the whole region $R_{t-1}(a_1,\ldots,a_{t-1})$ must lie on one side of the hyperplane $h_{t-1}(a_1,\ldots,a_{t-1})$ and therefore either $R_t(a_1,\ldots,a_{t-1},0)$ or $R_t(a_1,\ldots,a_{t-1},1)$ is empty, while the other set is the same as $R_{t-1}(a_1,\ldots,a_{t-1})$.

The requirement (10) significantly reduces the number of separated regions, or equivalently, reduces the increase N(t) - N(t-1) in the number of regions from time step t-1 to t.

3. Deriving the Bound on N(T).

(1) For $\hat{\beta} < 1$:

We fix a time step $t \in [T]$ and consider the transition from t-1 to t. Moreover, let $m \in \{0, \dots, t-1\}$ be arbitrary and consider the set

$$A_m := \{(a_i)_{i \in [t-1]} \in \{0,1\}^{t-1} : \sum_{i=1}^{t-1} a_{t-i} = m \text{ and } R_{t-1}(a_1, \dots, a_{t-1}) \neq \emptyset\}$$

of all binary codes of length t-1 that have m ones in their representation and correspond to a non-empty region created before time t. Observe that if we arrange the codes (a_1,\ldots,a_{t-1}) in A_m in increasing lexicographic order, then the corresponding values $\sum_{i=1}^{t-1} a_{t-i} \hat{\beta}^i$ are in decreasing order (since $\hat{\beta}^i$ decreases with increasing i). This means that while the regions $R_{t-1}(a_1,\ldots,a_{t-1})$ are arranged in increasing lexicographic order of $(a_1,\ldots,a_{t-1})^{-1}$, the position of their corresponding hyperplanes $h_{t-1}(a_1,\ldots,a_{t-1})$ are arranged in the reversed order, i.e., in lexicographic order of (a_{t-1},\ldots,a_1) . Since the regions are all disjoint, it follows that there is at most one hyperplane belonging to the 'correct' region, i.e., the region that corresponds to the same binary code. Since $m \in \{0,\ldots,t-1\}$ was arbitrary, we deduce that there are at most t hyperplanes belonging to the 'correct' regions at time step t. Hence, at the transition from time step t-1 to t, we obtain

$$N(t) < N(t-1) + t.$$

Taking the sum over $t \in [T]$, we get

$$N(T) \le 1 + \sum_{t=1}^{T} t = 1 + \frac{T(T+1)}{2} \in O(T^2).$$

¹Intuitively, the new sub-region at any time step i lies on the left of the hyperplane $h_{i-1}(a_1, \ldots, a_{i-1})$ if $a_i = 0$ and on the right if $a_i = 1$, and this process is performed from i = 1 on. The process actually reflects the ordering of binary codes in lexicographic order.

(2) For $\hat{\beta} > 1$:

When $\hat{\beta} > 1$, since the order of regions and the order of hyperplanes are no longer opposite, it seems that the upper bound could return to $O(2^T)$. However, because the distances between hyperplanes increase exponentially while the lengths of the feasible regions shrink over time, the number of new cuts is still limited. To formalize this, we refine the sets A_m by defining

$$A_{m,n} := \left\{ (a_i)_{i \in [t-1]} \in A_m : a_n = 1 \text{ and } a_j = 0, \ j = n+1, \dots, T \right\},$$

that is, $A_{m,n}$ collects all histories in which the last spike occurs exactly at time n. Fix a neuron in the first layer with weight vector w, and let $z = \langle w, x \rangle$ be the scalar projection of the input. Given a history code $a_{1:k} \in \{0,1\}^k$, the candidate threshold at step k+1 is

$$T_k(a_{1:k}) := \frac{V_{th}\left(1 + \sum_{i=1}^k \hat{\beta}^{k+1-i} a_i\right)}{\sum_{i=0}^k \hat{\beta}^i} - b.$$
 (11)

At time t-1, the feasible interval is

$$I_{t-1}(a_{1:t-1}) = \left[\underbrace{\max_{k \le t-1:a_k=1} T_{k-1}(a_{1:k-1})}_{=:L(a)}, \underbrace{\min_{k \le t-1:a_k=0} T_{k-1}(a_{1:k-1})}_{=:U(a)} \right].$$
(12)

For any $a, a' \in A_{m,n}$, the distance between their candidate hyperplane intercepts at step t satisfies

$$\left|T_k(a) - T_k(a')\right| = \frac{V_{\text{th}}}{\sum_{i=0}^{t-1} \hat{\beta}^i} \left|\sum_{r=0}^{n-2} \hat{\beta}^r \varepsilon_r\right|, \qquad \varepsilon_r \in \{-1, 0, 1\}.$$

Definite $\Delta_{\min}^{(n)}(t) = \min_{a,a'} |\hat{H}_t(a) - \hat{H}_t(a')|$, when $\hat{\beta} = 2$,

$$\Delta_{\min}^{(n)}(t) \geq \frac{2^{t-n+1}}{2^t-1} V_{\text{th}} \geq 2^{-(n-1)} V_{\text{th}}.$$

If $a \in A_{m,n}$ then $a_i = 1, a_{i+1} = \cdots = a_{t-1} = 0$. Since

$$L(a) = \max_{k:a_k=1} T_{k-1}(a_{1:k-1}) \ge T_{j-1}(a_{1:j-1}), \quad U(a) = \min_{k:a_k=0} T_{k-1}(a_{1:k-1}) \le T_j(a_{1:j}),$$

we always have

$$\operatorname{width}(I_{t-1}(a)) = U(a) - L(a) \le T_i(a_{1:i}) - T_{i-1}(a_{1:i-1}). \tag{3}$$

Now define

$$S_j := \sum_{i=1}^{j-1} \hat{\beta}^{j-i} a_i, \quad D_{j-1} := \sum_{i=0}^{j-1} \hat{\beta}^i = \frac{\hat{\beta}^j - 1}{\hat{\beta} - 1}, \quad D_j := \sum_{i=0}^j \hat{\beta}^i = \frac{\hat{\beta}^{j+1} - 1}{\hat{\beta} - 1}.$$

A direct algebraic simplification yields

$$T_{j}(a_{1:j}) - T_{j-1}(a_{1:j-1}) = \frac{-V_{th}S_{j} + V_{th} \frac{\hat{\beta}(\hat{\beta}^{j-1} - 1)}{\hat{\beta} - 1}}{D_{j-1}D_{j}}.$$
 (4)

Consequently, by setting $S_j \ge 0$ we obtain the explicit bound

width
$$(I_{t-1}(a)) \le \frac{\hat{\beta}^{j} |\hat{H}_{0}| + V_{th} \frac{\hat{\beta}(\hat{\beta}^{j-1} - 1)}{\hat{\beta} - 1}}{D_{j-1} D_{j}}.$$
 (5)

After simplification,

$$\operatorname{width}(I_{t-1}(a)) \leq \frac{(\hat{\beta}-1)V_{th}}{\hat{\beta}^{j+1}-1} + \frac{(\hat{\beta}-1)^2 \hat{\beta}^j |\hat{H}_0|}{(\hat{\beta}^j-1)(\hat{\beta}^{j+1}-1)}.$$
 (6)

In particular, for $\hat{\beta} = \omega_{t-1}/\omega_t = 2^{T-t+1}/2^{T-t} = 2$ in our experimental setting,

width
$$(I_{t-1}(a)) \le \frac{V_{th}}{2^{j+1}-1} + \frac{|\hat{H}_0|}{(2^j-1)(2^{j+1}-1)} \cdot 2^j.$$
 (7)

Combining the spacing lower bound and the width upper bound, a packing argument gives

$$M_{i,j}(t) \le \left\lceil \frac{\operatorname{width}(I_{t-1}(a))}{\Delta_{\min}^{(j)}(t)} \right\rceil + 1.$$

For $\hat{\beta} = 2$, using (2) and (7) one finds

$$M_{i,j}(t) \le 1 + \left[\frac{1}{3} + \frac{|\hat{H}_0|}{4V_{th}}\right].$$
 (8)

For general $\hat{\beta} > 1$, using (1) and (6),

$$M_{i,j}(t) \le 1 + \left[\frac{\hat{\beta} - 1}{\hat{\beta} + 1} + \frac{(\hat{\beta} - 1)|\hat{H}_0|}{V_{th}(\hat{\beta} + 1)} \right].$$
 (9)

Summing over $j = 0, \dots, t - 1$ yields

$$\Delta N(t) = \sum_{j=0}^{t-1} \sum_{i=0}^{t-1} M_{i,j}(t) \le C(\hat{\beta}, V_{th}, \hat{H}_0) \cdot t^2,$$

and consequently

$$N(T) \; \leq \; N(0) + \sum_{t=1}^{T} \Delta N(t) \; = \; O(T^3),$$

with an explicit constant C. For example, at $\hat{\beta} = 2$,

$$C(2, V_{th}, \hat{H}_0) = 1 + \left[\frac{1}{3} + \frac{|\hat{H}_0|}{4V_{th}}\right].$$

B VERILOG IMPLEMENTATION OF TE-LIF NEURON

Given that the complete Verilog code is excessively lengthy, we present a pseudocode version of the TE-LIF neuron's Verilog implementation for brevity and readability.

TE-LIF Neuron, Verilog Pseudocode.

1134

1135 1136

1137

```
1140
        Neuron TE-LIF {
1141
            // Constants
1142
            T = 8 // Time steps
1143
            FRAC_BITS = 8 // Fixed-point fractional bits
1144
            WEIGHTS = [32768, 16384, 8192, 4096, 2048, 1024, 512, 256]
            // Fixed-point weights: [128, 64, 32, 16, 8, 4, 2, 1]
1145
            INIT_V = 128 // Initial voltage: 0.5 in fixed-point
1146
1147
            // State machine states
1148
            IDLE = 0, LOAD_INPUT = 1, ACCUMULATE = 2,
1149
            GENERATE_SPIKES = 3, UPDATE_VOLTAGE = 4, OUTPUT = 5
1150
            // Internal registers
1151
            state = IDLE
1152
            v = 0 // Membrane potential (16-bit signed)
1153
           x_seq[8] = \{0\} // Input sequence buffer
1154
            y_seq[8] = {0} // Output spike sequence
            t_{counter} = 0 // Time step counter (0-7)
1155
            current_weight = 0 // Current weight to subtract
1156
1157
            // Main state machine (triggered by clock rising edge)
1158
            on clock_posedge:
1159
               if reset:
1160
                  reset_all_registers()
               else:
1161
                  switch state:
1162
                     case IDLE:
1163
                        if x_valid:
1164
                           x_{eq}[0] = x_{data} // Load first input immediately
                            v = INIT_V // Initialize membrane potential
1165
                            t_counter = 1
1166
                            state = LOAD_INPUT
1167
1168
                     case LOAD_INPUT:
1169
                        if x_valid and t_counter < 8:</pre>
                            x_seq[t_counter] = x_data
1170
                            t_{counter} = t_{counter} + 1
1171
                        elif t_counter >= 8:
1172
                            t_counter = 0
1173
                            state = ACCUMULATE
1174
                     case ACCUMULATE:
1175
                         if t counter < 8:
1176
                            // Weighted accumulation using bit shifts
1177
                            switch t_counter:
1178
                               case 0: v = v + (x_{seq}[0] << 7) // x * 128
1179
                               case 1: v = v + (x_{seq}[1] << 6) // x * 64
                               case 2: v = v + (x_seq[2] << 5) // x * 32
1180
                               case 3: v = v + (x_seq[3] << 4) // x * 16
1181
                               case 4: v = v + (x_{eq}[4] << 3) // x * 8
1182
                               case 5: v = v + (x_{seq}[5] << 2) // x * 4
1183
                               case 6: v = v + (x_seq[6] << 1) // x * 2
1184
                               case 7: v = v + x_{seq}[7] // x * 1
1185
                            t\_counter = t\_counter + 1
                        else:
1186
                            t_counter = 0
1187
```

```
1188
                            state = GENERATE_SPIKES
1189
1190
                     case GENERATE_SPIKES:
                         if t_counter < 8:</pre>
1191
                            // Generate spike and record weight
1192
                            if v >= WEIGHTS[t_counter]:
1193
                               y_seq[t_counter] = 1
1194
                               current_weight = WEIGHTS[t_counter]
1195
1196
                               y_seq[t_counter] = 0
                               current_weight = 0
1197
                            state = UPDATE_VOLTAGE
1198
                         else:
1199
                            t\_counter = 0
1200
                            state = OUTPUT
1201
                     case UPDATE_VOLTAGE:
1202
                        v = v - current\_weight // Update membrane potential
1203
                         t\_counter = t\_counter + 1
1204
                         if t_counter >= 8:
                            t_counter = 0
1205
                            state = OUTPUT
1206
                         else:
1207
                            state = GENERATE_SPIKES
1208
1209
                     case OUTPUT:
1210
                         if t_counter < 8:</pre>
                            y_data = y_seq[t_counter] // Output current spike
1211
                            y_valid = 1 // Assert output valid
1212
                            t\_counter = t\_counter + 1
1213
                         else:
1214
                            y_valid = 0 // Deassert output valid
1215
                            state = IDLE // Return to idle state
1216
1217
1218
```

C FURTHER DISCUSSION ON DUAL-STREAM SPIKING ATTENTION

We present a comprehensive analysis of the proposed DSSA module, including its structural decomposition, computational complexity, and empirical efficiency.

Given the input spike map $X \in \{0,1\}^{N \times D}$, the spike-based Query and Value are computed as:

$$Q = \text{TE}(BN(XW_Q)), \quad V = \text{TE}(BN(XW_V)), \tag{13}$$

where $TE(\cdot)$ denotes the TE-LIF spiking neuron. Based on these representations, we construct a global-local attention mechanism formulated as:

$$Attn = \underbrace{\mathsf{MLP}\left(\mathsf{TE}\left(\sum_{c}Q\right)\right)}_{Global Mixer} + \underbrace{\mathsf{DepthWiseConv}(Q)}_{Local Amplifier}, \quad X' = \mathsf{TE}(Attn \odot V), \tag{14}$$

where \odot denotes element-wise multiplication.

In the *GlobalMixer* module, a column-wise summation is first applied to Q, resulting in a compact binary representation $H \in \mathbb{R}^{1 \times D}$, with a computational cost of O(ND). The resulting vector H is subsequently passed through a two-layer bottleneck MLP:

$$Attn_{GM} = \operatorname{Linear}_{D//r \to D} \left(\operatorname{TE} \left(\operatorname{BN} \left(\operatorname{Linear}_{D \to D//r}(H) \right) \right) \right), \tag{15}$$

where r is the hidden dimension reduction ratio. Here, $\operatorname{Linear}_{A \to B}$ denotes a linear transformation from dimension A to B. The overall complexity of this MLP is $O(D^2//r)$, which can be approximated as O(ND) under the assumption that D//r is much less than N in practical scenarios. The output $Attn_{\text{GM}}$ is then broadcast to match the spatial dimension, resulting in a tensor of shape $\mathbb{R}^{N \times D}$.

The LocalAmplifier component performs depthwise convolution across channels, extracting local spatial features in a channel-wise manner. This operation also incurs a computational complexity of O(ND), and produces an output $Attn_{LA} \in \mathbb{R}^{N \times D}$.

Finally, the broadcasted global attention $Attn_{\rm GM}$ is combined with the local attention $Attn_{\rm LA}$ via element-wise addition to yield the final attention map Attn, leading to a complexity of O(ND). This map is then applied to modulate the binary tensor V through element-wise multiplication, which can be regarded as mask operations without energy cost.

In summary, the proposed attention mechanism achieves a total computational complexity of O(ND), attributed to its lightweight architectural design and the elimination of costly matrix multiplications. Additionally, by removing the Key (K) branch, the model reduces both computational and parameter overhead, thereby improving efficiency in terms of both computation and memory usage. From a practical standpoint, on the COCO dataset, a single inference of DSSA consumes only 36% of the power required by SDSA-3 (Yao et al., 2024), a prevalent attention mechanism in the SNN field with a higher complexity of $O(ND^2)$.

D DATASETS DETAILS

D.1 OBJECT DETECTION

We evaluated the proposed SpikeDet model on four object detection datasets, covering conventional, neuromorphic, and remote sensing domains:

COCO (Lin et al., 2014): The *Common Objects in Context* (COCO) dataset is a predominant benchmark for object detection, comprising 80 object categories with 118,000 training images and 5,000 validation images. It provides complex scenes with multiple objects, occlusions, and varied scales, serving as a standard for model comparison.

Gen1 (De Tournemire et al., 2020): The *Gen1* dataset is a large-scale neuromorphic benchmark tailored for object detection. It includes 39 hours of real-world driving data captured by an ATIS event-based camera, offering asynchronous event streams. The dataset provides over 255,000 manually annotated bounding boxes for pedestrians and vehicles, enabling evaluation in event-driven vision settings.

NWPU VHR-10 (Cheng et al., 2017): This dataset contains very high-resolution (VHR) optical remote sensing images across 10 object categories: airplanes, ships, storage tanks, baseball diamonds, tennis courts, basketball courts, ground track fields, harbors, bridges, and vehicles. The challenging imagery includes variations in scale, orientation, and background complexity. In our experiments, we randomly split the dataset into training and validation sets following a 70%:30% ratio.

SSDD (Wang et al., 2019): The *SAR Ship Detection Dataset* (SSDD) focuses on ship detection using Synthetic Aperture Radar (SAR) images. It provides annotated ship instances under various sea states and imaging conditions, making it ideal for assessing detection performance in radar-based scenarios.

D.2 IMAGE CLASSIFICATION

ImageNet-1K (Deng et al., 2009): The *ImageNet Large Scale Visual Recognition Challenge* (ILSVRC) 2012 dataset, commonly referred to as ImageNet-1K, contains over 1.2 million training images and 50,000 validation images spanning 1,000 object categories. It is one of the most widely used benchmarks for evaluating large-scale image classification models due to its diversity and scale.

D.3 SEMANTIC SEGMENTATION

ADE20K (Zhou et al., 2017): The *ADE20K* dataset is a comprehensive benchmark for semantic segmentation, consisting of over 25,000 images covering a wide range of indoor and outdoor scenes. Each image is densely annotated with pixel-level labels across 150 semantic categories. Its complexity and diversity make it a standard dataset for evaluating scene understanding capabilities.

E EXPERIMENTAL DETAILS

E.1 OBJECT DETECTION

Our object detection experiments are conducted on the macro architecture of YOLOv12 (Tian et al., 2025), chosen for its efficiency and built-in attention mechanisms, which provide a strong basis for accurate real-time detection.

To enable spike-driven computation, we make principled modifications aligned with our framework. Specifically, we replace the original activation functions with TE-LIF neurons (subsection 4.1), allowing the network to perform bio-plausible temporal dynamics. Based on this, we convert key components, such as convolutions and MLPs, into their spiking counterparts to fully support spike-driven computation. Additionally, since the vanilla attention in YOLOv12 depends on floating-point matrix operations and softmax, we substitute it with our lightweight Dual-Stream Spiking Attention module (subsection 4.2), which eliminates QK-based interactions, reduces complexity, and enables efficient global-local feature fusion.

The complete training configurations for object detection across the COCO, NWPU, and SSDD datasets are summarized in Table 5. All experiments are conducted on NVIDIA RTX 4090 GPUs. For the COCO dataset, we evaluate four model scales—S (Small), M (Medium), L (Large), and X (Extra Large)—to analyze performance under varying model capacities. For the NWPU and SSDD datasets, we adopt the M (Medium) model to evaluate performance. Data augmentation strategies include horizontal flipping with a probability of 0.5, while vertical flipping is disabled. Mosaic augmentation is applied with full probability, combining four images into one to enrich contextual understanding. Copy-Paste augmentation is employed in conjunction with horizontal flipping to enhance object diversity. Additionally, RandAugment is used as an automated data augmentation method. To increase robustness to occlusion, we apply random erasing with a probability of 0.4.

Table 5: Training configurations for object detection on the COCO, NWPU, and SSDD datasets.

Setting	COCO(Lin et al., 2014)		2014)	NWPU(Cheng et al., 2017)	SSDD(Wang et al., 2019)	
	S	M	L	X	M	M
Param (M)	9.5	21.8	31.8	71.2	21.8	21.8
Batch size	128	128	128	64	32	128
Resolution		640	× 640		1024×1024	640×640
Training epochs		6	00		300	300
Learning rate		0.	.01		0.0007	0.02
Optimizer		SC	GD		AdamW	AdamW
Number of GPUs			8		4	4

For the Gen1 dataset, we train the medium-scale (21.8M) SpikeDet model on 2 NVIDIA A100 (80GB) GPUs, mainly adopting the configuration in SpikeYOLO (Luo et al., 2024). Each training sample consists of a 2.5-second event stream preceding the annotation, divided into 4 slices as input. The model is trained for 50 epochs with a batch size of 160 and a resolution of 320×320, using SGD with an initial learning rate of 0.02 decaying to 0.004. A 10-epoch warmup is applied, with a momentum of 0.8 and a bias learning rate of 0.1. All data augmentation strategies are disabled.

E.2 IMAGE CLASSIFICATION

For image classification, we adopt the macro-architecture of E-SpikeFormer(Yao et al., 2025a).

We replace the original Spike Firing Approximation strategy in E-SpikeFormer with our proposed TE-LIF neuron, and substitute the Efficient Spike-Driven Self-Attention (E-SDSA) module with our newly designed lightweight Dual-Stream Spiking Attention. The resulting model contains only 7.8M parameters.

The model is trained on the ImageNet-1K (Deng et al., 2009) dataset using 8 NVIDIA RTX 4090 GPUs for 300 epochs with a batch size of 256. We adopt the AdamW optimizer with an initial learning rate of 3e-4 and a linear warm-up over the first 5 epochs. Data augmentation techniques include label smoothing, RandAugment, and random erasing. Weight decay and a cosine learning rate decay schedule are also applied during training.

E.3 SEMANTIC SEGMENTATION

Semantic segmentation experiments are conducted on the ADE20K(Zhou et al., 2017) dataset using an encoder-decoder architecture. The encoder is based on E-SpikeFormer enhanced with our TE-LIF neuron and DSSA, while the decoder adopts a Query-based Feature Pyramid Network (QFPN). The model is initialized with ImageNet-pretrained weights and has 9.3M parameters.

Training is performed for 240k iterations on 8 NVIDIA RTX 4090 GPUs using automatic mixed precision (AMP). Optimization is carried out with the AdamW optimizer, an initial learning rate of 0.001, and a weight decay of 0.005. We apply a linear warm-up for the first 1,500 iterations followed by a polynomial learning rate decay. The input resolution is set to 512×512 , and the batch size is 16. The data augmentation pipeline includes random resizing, random cropping, horizontal flipping, and photometric distortion. The segmentation loss is based on cross-entropy.

F ENERGY CONSUMPTION CALCULATION

 To estimate energy consumption, we adopt a widely recognized evaluation protocol in the SNN community (Horowitz, 2014; Yao et al., 2023a; 2024; 2025b; Luo et al., 2024). This protocol ignores specific hardware implementation details and estimates the theoretical energy consumption of a given model, thus facilitating the quantitative energy evaluation across different SNN and ANN algorithms.

Under this protocol, the energy consumption of ANN is calculated as:

$$E_{ANN} = FL \cdot E_{\text{MAC}} \tag{16}$$

where FL denotes the total floating-point operations (FLOPs) required by the network and $E_{\rm MAC} = 4.6 \rm pJ$ represents the energy cost of a single Multiply-and-Accumulate (MAC) operation in 45 nm technology (Horowitz, 2014).

In contrast, the energy consumption of the n-th layer in SNN is given by:

$$E_n = FL_n \cdot E_{AC} \cdot fr_n \cdot T \tag{17}$$

where FL_n is the number of FLOPs in the n-th layer, fr_n is the average firing rate of that layer, $E_{\rm AC}=0.9\,{\rm pJ}$ denotes the energy cost of an Accumulate (AC) operation in 45 nm technology (Horowitz, 2014), and T is the timestep count. The overall energy consumption of the SNN is obtained by summing the energy consumption across all layers.

To support Equation 16 and Equation 17, the FLOPs for used layers are defined as follows. For a convolutional layer, the FLOPs are calculated as:

$$FL_{\text{Conv}} = k^2 \cdot h_{\text{out}} \cdot w_{\text{out}} \cdot c_{\text{in}} \cdot c_{\text{out}} / g, \tag{18}$$

where k is the kernel size, $(h_{\rm out}, w_{\rm out})$ denotes the height and width of the output feature map, $c_{\rm in}$ and $c_{\rm out}$ represent the number of input and output channels respectively, and g represents the number of groups in grouped convolution.

Similarly, the FLOPs for a linear layer are computed as:

$$FL_{\text{Linear}} = d_{\text{in}} \cdot d_{\text{out}},$$
 (19)

where $d_{\rm in}$ and $d_{\rm out}$ are the input and output dimensions of the linear layer, respectively.

G RESULTS ON EXTENDED TASKS

G.1 IMAGENET CLASSIFICATION

Table 6: Performance of classification on ImageNet.

Туре	Model	Param(M)	Acc(%)
	FastViT (Vasu et al., 2023)	6.8	79.1
ANN	ResNet-50 (Li et al., 2021)	25.6	79.4
	GTP-DeiT (Xu et al., 2024)	86.0	79.5
	FAST-SNN (Hu et al., 2023)	138.4	73.0
	Optimal (Bu et al., 2021)	138.4	74.3
ANN2SNN	Two-stage (Wang et al., 2023b)	138.4	74.9
AININZSININ	TPP SNN (Bojković et al., 2025)	22.0	77.8
	MST (Wang et al., 2023c)	28.5	78.5
	ECMT (Huang et al., 2024)	86	79.4
	QP-SNNs (Wei et al., 2025)	13.3	61.4
	TET-ResNet (Deng et al., 2022)	21.8	68.0
	SEW-ResNet (Fang et al., 2021)	60.2	69.2
	ReverB-SNN (Guo et al., 2025)	21.8	70.9
	Spikformer (Zhou et al., 2022)	66.3	74.8
	MS-ResNet (Hu et al., 2024)	77.3	75.3
	SNN-ViT (Wang et al., 2025)	30.4	76.9
Directly Trained SNN	Att-MS-ResNet (Yao et al., 2023b)	78.4	77.1
	α -SSA-Swin (Xiao et al., 2025)	31.8	77.9
	STAtten(SDT) (Lee et al., 2024)	66.34	78.1
	E-Spikeformer (Yao et al., 2025a)	10.0	78.5
	SpikingResformer (Shi et al., 2024)	60.4	78.7
	SpikformerV2 (Zhou et al., 2024b)	29.11	78.8
	QKFormer (Zhou et al., 2024a)	16.47	78.8
	Ours	7.8	79.7

G.2 ADE20K SEMANTIC SEGMENTATION

Table 7: Performance of semantic segmentation on ADE20K.

Type	Model	Param(M)	mIoU(%)
ANN	ResNet-18 (Yu et al., 2022) PVT-Tiny (Wang et al., 2021) PVT-Small (Wang et al., 2021)	15.5 17.0 28.2	32.9 35.7 39.8
SNN	PSSD (Wang et al., 2024b) Meta-SpikeFormer (Yao et al., 2024) QSD-Transformer (Qiu et al., 2025) E-Spikeformer (Yao et al., 2025a) Ours	59.8 9.6 11.0 9.3	29.1 35.3 40.5 41.4 42.6

H LIMITATION

Due to limited resources, we leave the application of our method to language models and other domains for future work. While current deployments are limited to GPUs, we anticipate that its advantages will be more pronounced when implemented on neuromorphic hardware.

I LARGE LANGUAGE MODEL USAGE STATEMENT

In accordance with the ICLR 2026 Author Guidelines on the use of large language models, we acknowledge that LLMs were utilized to refine phrasing and expression during the manuscript preparation. However, all scientific ideas, algorithmic designs, and experimental results are solely the work of the authors.