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ABSTRACT

This paper investigates the structured pruning of large language models (LLMs).
We find that random pruning, despite its simplicity, is a surprisingly effective base-
line, particularly at lower pruning ratios. We further propose a simple and effi-
cient method that combines randomness with existing pruning heuristics. Specif-
ically, our method combines random neuron clustering with activation magnitude
pruning, exhibiting performance comparable to gradient-based methods while
being significantly more efficient (up to 50x faster). Our code is available at
https://github.com/Tim-Siu/llm-random-prune.

1 INTRODUCTION AND RELATED WORK

Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide range
of tasks (Brown et al., 2020; Kaplan et al., 2020). However, their immense size poses significant
challenges for deployment in resource-constrained environments. Model compression techniques
(Zhu et al., 2024), particularly structured pruning (Cheng et al., 2024), which aims to remove entire
neurons or coupled weights, offer a promising avenue for reducing computational footprint. In this
work, we focus specifically on structured pruning of Multi-Layer Perceptron (MLP) layers. MLP
layers constitute around 70% of model parameters, and have great potential for compression. Addi-
tionally, this narrowed focus facilitates controlled ablation studies of different pruning strategies.

Existing one-shot pruning methods for LLMs typically rely on importance metrics such as weight
magnitude (Han et al., 2016), activation magnitude (Muralidharan et al., 2024), or gradients (Ma
et al., 2023). While effective, gradient-based methods incur significant computational overhead,
requiring around three times the memory compared to methods that require only forward passes.

Prior work has explored randomness in the context of training neural networks from scratch. The
Lottery Ticket Hypothesis (Frankle & Carbin, 2019) demonstrated that randomly-initialized net-
works contain capable subnetworks that can reach full accuracy when trained in isolation. Liu et al.
(2022) showed random pruning is effective in sparse training. However, the effectiveness of ran-
domness in pruning already trained neural networks and LLMs in particular receives less attention.

This paper makes three contributions: (1) We demonstrate that random pruning can be surprisingly
effective at moderate pruning ratios (e.g., 25%), outperforming other methods in task accuracy. We
suggest that this may be due to the preservation of representational diversity. (2) We propose a novel
and efficient method combining random clustering with activation-based pruning. This method
achieves lower perplexity than gradient-based approaches at a 25% pruning ratio, competitive aver-
age accuracy at a 50% pruning ratio, and is significantly faster (up to 50x, see Appendix B.7). (3)
We find that similarity-based clustering consistently underperforms random clustering, suggesting
the importance of randomness for maintaining representational diversity.

2 PRELIMINARIES: MLP LAYERS IN MODERN LLMS

In recent LLMs, such as Llama and Qwen2 (Touvron et al., 2023; Qwen et al., 2025), the MLP layer
typically employs Gated Linear Units (Shazeer, 2020). Given an input vector x ∈ Rd, the MLP
layer is defined as:

MLP(x) = Down
(
Act(Gate(x))⊙ Up(x)

)
,
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where Gate : Rd → Rm, Up : Rd → Rm, and Down : Rm → Rd are linear projections, Act denotes
a nonlinear activation function (e.g., SiLU), and ⊙ represents element-wise multiplication.

In this work, we prune individual neurons within MLP layers. In our context, a neuron corresponds
to a single dimension of the intermediate representation, indexed within the m-dimensional outputs
of the Gate and Up projections. When a neuron is pruned, the corresponding row in the Gate and
Up matrices, and the matching column in the Down matrix are removed.

For pruning methods that rely on activation information, we define three types of activations for a
neuron: Pre-act: (Gate(x)), Post-act: (Act(Gate(x))), and Modulated-act: (Act(Gate(x))⊙Up(x)).
Unless otherwise specified, we use Post-act, as it yielded the best performance in our ablation studies
(see C.4). After processing the calibration data (see A.1), the activation representation for a neuron
is a vector of length n× sl, where n is the number of samples and sl is the sequence length.

3 RANDOM PRUNING: A SURPRISINGLY STRONG BASELINE

3.1 METHODOLOGY

Random pruning removes neurons without considering any importance metric. Given a total of N
neurons and a target pruning ratio r, we select a random subset of N × (1 − r) neurons to retain.
This simple approach assigns an equal probability of retention to each neuron.

3.2 EXPERIMENTAL SETUP

We compare random pruning with several established methods:

Taylor Pruning (Ma et al., 2023): A gradient-based method that estimates neuron importance using
the first-order Taylor expansion of the loss function (See B.1).

Activation Magnitude Pruning (Muralidharan et al., 2024): Prunes neurons with low average
activation magnitudes (See B.2).

Weight Magnitude Pruning (Han et al., 2016): Prunes neurons with small weight norms (See B.3).

We evaluate all methods on the Qwen-2.5-7B-Instruct model (Qwen et al., 2025). We prune 25%
and 50% of neurons in layers 5-26, following (Ma et al., 2023). We report perplexity on WikiText2
(Merity et al., 2017), zero-shot accuracy on MMLU (Hendrycks et al., 2021), and average accuracy
across six tasks: ARC-c, ARC-e, HellaSwag, MMLU, OpenBookQA, and Winogrande (Gao et al.,
2023; Chang et al., 2024). Llama-3.1-8B-Instruct results are in Appendix C.3.

3.3 RESULTS AND DISCUSSION

Table 1 reveals a surprising result for pruning the Qwen model: at 25% pruning, simple random
pruning outperforms other methods on downstream tasks. Random pruning also exhibits lower
perplexity than other non-gradient-based techniques (except the one we proposed later in 4) and re-
mains competitive with Taylor pruning. This suggests that, for moderate parameter removal, random
pruning can be as effective as more sophisticated importance metrics.

However, this trend reverses at 50% pruning. Random pruning suffers significant performance
degradation, with perplexity nearly doubling compared to Taylor pruning. This reveals a shift in
what constitutes effective pruning as model capacity becomes severely constrained.

3.4 HYPOTHESIS: DIVERSITY VS. IMPORTANCE

The effectiveness of random pruning at lower pruning ratios suggests that successful pruning may
be more complex than simply preserving individually ”important” neurons. We hypothesize that
random pruning maintains representational diversity by giving each neuron an equal chance of re-
tention. At low pruning ratios, this diversity might be more beneficial than solely preserving neurons
deemed important by specific metrics. Importance-based methods, conversely, may inadvertently
homogenize features, where only neurons with similar characteristics (e.g., large activation magni-
tudes) are preserved, potentially limiting the model’s representational capacity.
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At higher pruning ratios, we speculate a paradigm shift from preserving diversity to safeguarding
essential functionality. When removing half of the neurons, the model can no longer afford to retain
non-essential components. Random pruning, lacking the ability to distinguish between dispensable
and critical neurons, exhibits significant performance degradation in this regime. Our experimen-
tal results suggest that activation magnitude serves as a reliable indicator of essential neurons, as
evidenced by the relatively strong performance of activation-based methods at 50% pruning.

4 COMBINING RANDOMNESS WITH HEURISTICS

Motivated by the complementary strengths speculated in random and activation-based pruning, we
propose a novel method called Random Clustering + Activation L2 Pruning (RC+A). This ap-
proach is designed to balance two objectives: preserving representational diversity through random
clustering and retaining functionally important neurons via activation magnitude.

4.1 METHODOLOGY

The RC+A algorithm operates in two main stages:

1. Diversity Preservation: All neurons are randomly partitioned into k = N × (1 − r) clusters 1,
where N is the total number of neurons and r is the target pruning ratio. Each cluster will have one
neuron in the final pruned network. This random partitioning is intended to enforce some degree of
randomness and proportional representation across the parameter space.

2. Importance Selection: Within each cluster, we retain only the neuron that exhibits the highest L2
norm of its Post-act vector. This local selection mechanism is intended to reintroduce our heuristics
that neurons with higher activation magnitude are more likely to be essential.

4.2 RESULTS AND DISCUSSION

Table 1: Results on Qwen-2.5-7B-Instruct. RC+A: Random Clustering + Activation L2.
25% Pruning 50% Pruning

Method Perplexity ↓ MMLU Average Perplexity ↓ MMLU Average

Original 9.589 0.718 0.622 9.589 0.718 0.622

Taylor 15.244 0.607 0.504 31.839 0.476 0.394

Random Prune 15.382 0.601 0.529 71.295 0.442 0.382

RC+A (Ours) 14.944 0.618 0.524 34.204 0.455 0.396
Activation Mean 15.995 0.587 0.495 56.585 0.401 0.362
Activation L2 17.159 0.614 0.511 42.404 0.462 0.391
Weight L2 485.878 0.435 0.427 190214.389 0.251 0.287

As shown in Table 1, RC+A surpasses both pure random pruning and standalone activation-based
pruning at both 25% and 50% pruning levels. Notably, at 25% pruning, RC+A achieves lower
perplexity than Taylor pruning, and at 50% pruning, it maintains competitive average accuracy.
Further experiments (Appendices C.2 and C.3) demonstrate the robustness of RC+A across different
random seeds and its effectiveness on a different model (Llama-3.1-8B-Instruct).

Furthermore, our method is substantially more efficient than gradient-based techniques; it yields
up to 50-fold speedup relative to Taylor pruning (see Appendix B.7), though this speedup is hard-
ware and implementation dependent. This efficiency is particularly beneficial for large-scale models
where the computational cost (GPU memory requirement) of backpropagation is prohibitive.

1We leave the exploration of different cluster counts to future work.
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5 UNSUCCESSFUL ATTEMPTS: SIMILARITY-BASED CLUSTERING

Drawing inspiration from recent advances in pruning Mixture-of-Experts (MoE) models (He et al.,
2023; Li et al., 2024; Chen et al., 2024) and techniques for merging neurons in convolutional neural
networks (Kim et al., 2020), we explored an alternative strategy based on similarity-based cluster-
ing. The underlying hypothesis was that neurons with similar activation patterns likely perform
redundant functions and could, therefore, be merged or pruned more aggressively.

5.1 METHODOLOGY

In this approach, we applied agglomerative clustering (Müllner, 2011) with complete linkage to
group neurons based on the cosine distance between their Modulated-act vectors (as defined in
Section 2). Following the clustering step, we investigated several strategies:

Activation L2 Pruning: Within each cluster, retain the neuron with the highest L2 norm of its
Modulated-act vector. We used Modulated-act for compatibility with the merging algorithms.

Mean Merge: Average the weight matrices of all neurons within a cluster to form a single, merged
neuron, in a manner analogous to model averaging (Wortsman et al., 2022).

Dominant Merge: Retain the Gate and Up projections of the neuron with the highest Modulated-act
norm while combining the Down projections of all neurons in the cluster using a scaled sum, where
each neuron’s contribution is weighted by its Modulated-act norm (See B.6 for details).

5.2 RESULTS AND DISCUSSION

Table 2 shows the performance of these similarity-based clustering approaches, compared with our
RC+A method. For a direct comparison with RC+A, we also evaluated a variant using Post-act for
both similarity clustering and activation L2 pruning; these results are presented in Appendix C.5.

Table 2: Results of Similarity Clustering vs. RC+A on Qwen-2.5-7B-Instruct
25% Pruning 50% Pruning

Method Perplexity ↓ MMLU Average Perplexity ↓ MMLU Average

RC+A (Ours) 14.944 0.618 0.524 34.204 0.455 0.396
Similarity Cluster + Activation L2 16.930 0.607 0.516 49.134 0.424 0.395
Similarity Cluster + Mean Merge 91.430 0.497 0.454 15838.9 0.266 0.312
Similarity Cluster + Dominant Merge 20.241 0.562 0.485 72.560 0.346 0.335

Contrary to our expectations, similarity-based clustering followed by activation pruning performs
worse than our random clustering approach (RC+A). This surprising result highlights the criti-
cal role of randomness, rather than similarity, in effective pruning. We hypothesize that enforcing
similarity among neurons reduces representational diversity, which is crucial for maintaining per-
formance. Moreover, the neuron merging strategies we tested within similarity clusters (Mean and
Dominant Merge) significantly decreased performance. This contrasts sharply with the success of
model-level merging, suggesting that fine-grained neuron merging poses unique challenges.

6 CONCLUSION

This work highlights the effectiveness of randomness in post-training pruning of LLMs. At moder-
ate pruning ratios (25%) and when pruning certain models (Qwen-2.5-7B-Instruct), simple random
pruning can rival or outperform established methods. We posit that maintaining representational di-
versity may be more important than solely focusing on individual neuron importance. Our proposed
RC+A method, combining random clustering with activation-based pruning, achieves performance
comparable to gradient-based approaches with significantly greater efficiency. Based on the success
of this randomized approach, we speculate that the space of functionally viable LLM subnetworks
may be broader than what is typically explored by standard importance-based pruning techniques.
Future work could build on search-based approaches (Elsken et al., 2019; Klein et al., 2024) to
navigate this space efficiently. We discuss our limitations in D.
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A EXPERIMENTAL SETUP

A.1 CALIBRATION DATA

Following LLM-Pruner (Ma et al., 2023), our primary calibration data comprises 10 samples of
length 128 from BookCorpus (Zhu et al., 2015). For ablation studies (Table 3) and comparison with
Minitron (Muralidharan et al., 2024), we also use 1024 samples of length 2048 from C4 (Raffel
et al., 2019). Unless otherwise specified, we use BookCorpus in our experiments. We acknowledge
the small primary calibration set size, chosen for computational efficiency and comparability with
LLM-Pruner.

B IMPLEMENTATION DETAILS

B.1 TAYLOR PRUNING

Taylor pruning estimates the importance of a neuron based on the first-order Taylor expansion of the
loss function (Ma et al., 2023). For a given neuron i and its corresponding weight wi within an MLP
layer, the importance score si is approximated as:

si ≈ |wi · ∇wi
L| (1)

where L is the loss function and ∇wi
L is the gradient of the loss with respect to the weight. We sum

the absolute values of the products of the weights and their corresponding gradients across the gate,
up, and down projections. The neurons with the lowest scores are pruned. Gradients are computed
based on calibration data.

B.2 ACTIVATION-BASED PRUNING

Activation-based pruning uses the magnitudes of neuron activations to determine importance. We
consider three types of activations within an MLP layer:

• Pre-act apre(x) = Gate(x)

• Post-act: apost(x) = Act(Gate(x))

• Modulated-act: amod(x) = Act(Gate(x))⊙ Up(x)

where x is the input to the MLP layer. We consider two types of reduction: mean and L2-norm. For
a neuron’s activation vector ai, the importance score si is:

• Mean: si = 1
N

∑
j ai,j where N is the number of calibration samples and ai,j is the

activation of neuron i at the j-th sample.

• L2-Norm: si =
√∑

j a
2
i,j where ai,j is the activation of neuron i at the j-th sample,

aggregated across samples and sequence positions.

In the ablation studies in (Muralidharan et al., 2024), Mean performs better. We find L2-Norm
reduction works better in our case and adopt it in our clustering-based algorithms.

B.3 WEIGHT-BASED PRUNING

Weight-based pruning uses the magnitude of the weights to determine neuron importance. It is
discussed in (Han et al., 2016) and compared as a baseline in (Ma et al., 2023). We compute the L2
norm of the concatenated weight matrices (Wgate|Wup|Wdown). Specifically for a given neuron i, the
importance score is given by

si = ||(Wgate,i|Wup,i|WT
down,i)||2 (2)

Where Wgate,i, Wup,i represent the i-th row of the gate and up weights respectively, and Wdown,i

represents the i-th column of the down projection. The neurons with the lowest scores are pruned.
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B.4 RANDOM PRUNING

In random pruning, each neuron has an equal chance of being removed. A predefined ratio of
neurons are selected uniformly at random. Let N be the total number of neurons and r be the target
pruning ratio. Then, we generate a set of N × (1 − r) random indices uniformly from the range
[0, N − 1]. These indices represent the neurons to be kept after pruning.

B.5 RANDOM CLUSTERING + ACTIVATION L2 PRUNING

In this approach, we first randomly cluster the neurons into groups and then prune based on activation
magnitudes. Let N be the total number of neurons, k be the number of clusters (or the target number
of neurons to retain after pruning) and r be the pruning ratio, then k = N × (1− r).

1. We randomly and uniformly partition the N neurons into k clusters, each denoted by Ci.
2. For each cluster Ci, we calculate the Post-act norm activation vector aj for each neuron j

in Ci: sj = ||aj ||2.
3. We select the neuron with the highest activation norm in each cluster.

All other neurons are pruned.

B.6 SIMILARITY CLUSTERING

In similarity clustering, we cluster neurons based on the cosine similarity of their Modulated-act
activation vectors. Let ai be the Modulated-act activation vector for neuron i and let N be the total
number of neurons, and k be the target number of clusters.

1. Compute the activation vector ai for each neuron i ∈ [1, N ].
2. Define the distance between neurons as the cosine distance between the activation vector

of every pair of neurons: d(ai, aj) = 1− ai·aj

||ai||2||aj ||2 .

3. Perform agglomerative clustering using the complete linkage method to group neurons into
k clusters.

After clustering, we apply one of three different merging strategies for each cluster:

1. Activation L2 Prune: Within each cluster, the neuron with the highest L2-norm of its
Modulated-act is selected. All other neurons in the cluster are pruned.

2. Mean Merge: All weight matrices corresponding to the clustered neurons are averaged,
resulting in a merged neuron.

3. Dominant Merge: Within each cluster, we retain the Gate and Up projections of the neu-
ron with the highest L2 norm of Modulated-act and perform a scaled sum of the Down
projections. Let Wdown be the down projection and let si be the L2 norm of Modulated-act
of neuron i within cluster C. Then the weight of the merged neuron is given by

W̄down =
∑
i∈C

si
sdominant

Wdown,i (3)

where sdominant is the L2 norm of Modulated-act of the neuron in C with the highest
Modulated-act norm.

B.7 COMPUTATIONAL EFFICIENCY

We compare the runtime of our Random Clustering + Activation L2 pruning method (RC+A)
with Taylor pruning on the Qwen-2.5-7B-Instruct model. Experiments were conducted on a single
NVIDIA L40 GPU using Hugging Face Transformers (Wolf et al., 2020) (version 4.45.2), Accelerate
(Gugger et al., 2022) (version 1.3.0), and gradient checkpointing. Note that for Taylor pruning, we
performed back-propagation on the GPU but offloaded the final computation of importance (which
involves multiplication of gradient with weight magnitude) to the CPU to accommodate GPU mem-
ory constraints. The batch size was automatically set by the Accelerate library to maximize GPU
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utilization. Our RC+A method completes pruning in approximately 4 seconds for all 22 MLP layers,
while Taylor pruning requires ∼215 seconds due to the gradient computation. This represents an
approximately 50x speedup while maintaining competitive performance (see Table 1). This signifi-
cant speedup is primarily attributed to the avoidance of backpropagation in our method, which is a
computationally expensive operation. We acknowledge that the exact speedup is highly dependent
on hardware and implementation.

C ABLATION STUDIES

C.1 EFFECT OF CALIBRATION DATA

Table 3: Effect of calibration data on Qwen-2.5-7B-Instruct (25% pruning).
Method Perplexity ARC-c ARC-e HellaSwag MMLU OpenBookQA Winogrande

Activation Mean (BookCorpus) 15.995 0.357 0.654 0.504 0.587 0.266 0.601
Activation Mean (C4) 15.944 0.352 0.657 0.505 0.567 0.244 0.610

We evaluate the effect of different calibration datasets on the performance of activation-based prun-
ing. As shown in Table 3, using a larger and more diverse but arguably lower-quality dataset (C4)
improves perplexity but degrades accuracy on knowledge-based tasks for the Qwen-2.5-7B-Instruct
model.

C.2 EFFECT OF RANDOM SEED ON RC+A PERFORMANCE

We evaluated Random Cluster + Activation L2 pruning using different random seeds and report the
results in Table 4 and 5 for 25% and 50% pruning respectively, using the Qwen-2.5-7B-Instruct
model. These results demonstrate the stability of our method across different random seeds.

Table 4: Effect of different random seeds for Random Cluster + Activation L2 Pruning (25% prun-
ing, Qwen-2.5-7B-Instruct).

Method Perplexity ARC-c ARC-e HellaSwag MMLU OpenBookQA Winogrande Average

Original model 9.589 0.526 0.819 0.620 0.718 0.348 0.702 0.622
Seed 42 (reported) 14.944 0.397 0.681 0.510 0.618 0.288 0.650 0.524
Seed 0 14.867 0.391 0.674 0.508 0.623 0.290 0.657 0.524
Seed 1 14.913 0.408 0.686 0.503 0.610 0.292 0.642 0.524
Seed 7 14.948 0.371 0.660 0.501 0.617 0.290 0.658 0.516

Table 5: Effect of different random seeds for Random Cluster + Activation L2 Pruning (50% prun-
ing, Qwen-2.5-7B-Instruct).

Method Perplexity ARC-c ARC-e HellaSwag MMLU OpenBookQA Winogrande Average

Original model 9.589 0.526 0.819 0.620 0.718 0.348 0.702 0.622
Seed 42 (reported) 34.204 0.265 0.488 0.381 0.455 0.22 0.567 0.396
Seed 0 35.790 0.271 0.519 0.382 0.479 0.230 0.573 0.409
Seed 1 34.286 0.271 0.548 0.378 0.454 0.200 0.582 0.406
Seed 7 34.394 0.279 0.540 0.379 0.423 0.224 0.556 0.400

The performance of our proposed method, Random Cluster + Activation L2 pruning, is relatively
stable across different random seeds. The average downstream task accuracy varies only slightly
(within 0.01 for both 25% and 50% pruning) across different seeds, as shown in Tables 4 and 5.

C.3 DIFFERENT MODEL

We also evaluate our method on the Meta-Llama-3.1-8B-Instruct model. The results for 25% and
50% pruning are presented in Tables 6 and 7 respectively.
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Table 6: Pruning results on Llama-3.1-8B-Instruct (25% pruning).
Method Perplexity ARC-c ARC-e HellaSwag MMLU OpenBookQA Winogrande Average

Original model 8.641 0.520 0.819 0.591 0.680 0.336 0.743 0.615
Taylor 14.332 0.409 0.718 0.495 0.561 0.268 0.679 0.522
Random Prune 24.224 0.340 0.594 0.443 0.382 0.206 0.632 0.433
RC+A (Ours) 14.126 0.414 0.712 0.502 0.555 0.272 0.706 0.527
Activation L2 13.176 0.388 0.722 0.517 0.556 0.284 0.701 0.528
Activation Mean 22218.949 0.212 0.301 0.298 0.251 0.152 0.515 0.288
Weight L2 5973.610 0.238 0.407 0.283 0.273 0.168 0.541 0.318

Table 7: Pruning results on Llama-3.1-8B-Instruct (50% pruning).
Method Perplexity ARC-c ARC-e HellaSwag MMLU OpenBookQA Winogrande Average

Original model 8.641 0.520 0.819 0.591 0.680 0.336 0.743 0.615
Taylor 33.552 0.277 0.533 0.378 0.359 0.176 0.595 0.386
Random Prune 412660.209 0.212 0.262 0.257 0.248 0.164 0.508 0.275
RC+A (Ours) 30.528 0.307 0.540 0.392 0.414 0.212 0.618 0.414
Activation L2 30.420 0.302 0.551 0.402 0.404 0.218 0.617 0.416
Activation Mean 647082.039 0.220 0.271 0.262 0.242 0.182 0.528 0.284
Weight L2 27588.505 0.225 0.285 0.264 0.229 0.140 0.523 0.278

For Llama-3.1-8B-Instruct, our method outperforms Taylor pruning but is slightly behind pure Ac-
tivation L2 pruning. We hypothesize that this is due to the prevalence of very large activations in
Llama models (Sun et al., 2024), which makes pure activation-based pruning more effective.

C.4 EFFECTS OF ACTIVATION TYPES

Table 8: Ablation of activation types and calibration data on Qwen-2.5-7B-Instruct.
Methods Perplexity ARC-c ARC-e HellaSwag MMLU OpenBookQA Winogrande Average

Qwen-2.5-7B-Instruct 25%
Original model 9.589 0.526 0.819 0.620 0.718 0.348 0.702 0.622
Post-act Mean 15.995 0.357 0.654 0.504 0.587 0.266 0.601 0.495
Post-act Mean (c4) 15.944 0.352 0.657 0.505 0.567 0.244 0.610 0.489
Pre-act Mean (c4) 26.323 0.337 0.617 0.494 0.547 0.278 0.603 0.479
Modulated-act Mean (c4) 30.163 0.437 0.696 0.500 0.553 0.296 0.631 0.519

Qwen-2.5-7B-Instruct 50%
Original model 9.589 0.526 0.819 0.629 0.718 0.348 0.702 0.622
Post-act Mean (BookCorpus) 56.585 0.235 0.460 0.364 0.401 0.172 0.539 0.362
Post-act Mean (c4) 50.750 0.229 0.494 0.376 0.310 0.174 0.551 0.356
Pre-act Mean (c4) 81.373 0.246 0.458 0.375 0.265 0.204 0.542 0.348
Modulated-act Mean (c4) 82.340 0.322 0.549 0.385 0.330 0.210 0.564 0.393

We ablate the choice of activation types used for pruning. As shown in Table 8, Post-act generally
performs better than Pre-act and Modulated-act for both 25% and 50% pruning ratios on the Qwen-
2.5-7B-Instruct model. This suggests that the activation function plays a crucial role in determining
neuron importance.

C.5 SIMILARITY CLUSTERING WITH POST-ACT

Table 9: Results of Similarity Clustering using Post-act vs. RC+A on Qwen-2.5-7B-Instruct
25% Pruning 50% Pruning

Method Perplexity ↓ MMLU Average Perplexity ↓ MMLU Average

RC+A (Ours) 14.944 0.618 0.524 34.204 0.455 0.396
Similarity Cluster (Post-act) + Activation L2 16.606 0.588 0.506 46.703 0.412 0.375

11



ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Table 9 presents the results of similarity-based clustering when Post-act is used for both the cluster-
ing and the subsequent L2 pruning. This provides a more direct comparison with our RC+A method,
which also utilizes Post-act. As the table shows, even with this modification, similarity-based clus-
tering still underperforms RC+A.

D LIMITATIONS

Our study has several limitations:

Limited Focus on One-shot Pruning: We focused on one-shot pruning without considering it-
erative pruning or subsequent retraining. Pruning is often followed by retraining to recover per-
formance, and the interaction between our random pruning approach and retraining remains unex-
plored. It’s possible that networks pruned with randomness may exhibit different recovery behaviors
compared to those pruned using gradient-based methods. However, retraining requires significant
computational resources that we have limited access to.

Layer Type Restriction: We only studied MLP layers. While our method could theoretically
extend to attention layers (by pruning of attention intermediate neurons or entire attention heads),
we did not evaluate this scenario. The effectiveness of random pruning in attention layers may differ
significantly given their distinct functional roles.

Model Variability : Our experiments were limited to two decoder-only models (Qwen and
Llama). The effectiveness of random pruning may vary across architectures (e.g., encoder-decoder
models) or models with substantially different activation distributions (Sun et al., 2024), as evi-
denced by Llama’s stronger performance with activation-based methods compared to random prun-
ing.
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