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Abstract

We present a method for estimating intravoxel parameters from a DW-MRI based on deep
learning techniques. We show that neural networks (DNNs) have the potential to extract
information from diffusion-weighted signals to reconstruct cerebral tracts. We present two
DNN models: one that estimates the axonal structure in the form of a voxel and the
other to calculate the structure of the central voxel using the voxel neighborhood. Our
methods are based on a proposed parameter representation suitable for the problem. Since
it is practically impossible to have real tagged data for any acquisition protocol, we used
a self-supervised strategy. Experiments with synthetic data and real data show that our
approach is competitive, and the computational times show that our approach is faster than
the SOTA methods, even if training times are considered. This computational advantage
increases if we consider the prediction of multiple images with the same acquisition protocol.

Keywords: Self-supervised neural network, Axonal structure estimation, DW-MRI, Mul-
titensor.

1. Introduction

Axonal structure estimation from Diffusion Weighted MRI (DW–MRI) data consists on
to estimate the preferred orientation of the water diffusion in brains which is usually con-
strained along the axon orientations. The analysis of DW-MRI allows one to estimate
neural connectivity patterns in vivo (Daducci et al., 2014). Application of such structure
and connectivity patterns are the study of sex differences (Ryman et al., 2014), brain struc-
ture discovery (Maller et al., 2019), neurological disorders (Maller et al., 2019) and brain
deceases (Assaf and Pasternak, 2008; Rose et al., 2008), among many others. It has been
remarked that to estimate connectivity pattern the recovered locally axonal structure needs
to be reliable (Maller et al., 2019).

The Diffusion Tensor (DT) model is maybe the most popular one for explaining the
diffusion MRI signal S(gi, bi) in a voxel with a unique axonal fiber. This model constructs
on the Stejskal-Tanner equation (Basser et al., 1994; Basser, 1995):

S(gi, bi) = S0 exp
(
−big>i Dgi

)
(1)

where gi is a unit vector (associated with a magnetic gradient) defining the i–th acquisition
direction, b > 0 is a predefined value representing parameters of acquisition, D ∈ IR3×3 is
the co-variance matrix of the diffusivity and S0 is the measured signal with no diffusion
weighting (the case when b = 0). Matrix D is a positive semi-definite (indeed, positive
definite by physical reasons) squared matrix with the six free parameters. Its eigenvectors
provides the model’s orientation and correspond to the axes of the ellipsoid representing
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the diffusion. Meanwhile, the eigenvalues provides diffusion magnitudes. In the case of
a single axonal bundle, the eigenvalues satisfy: λ1 > λ2 ≈ λ3. The first eigenvector is
the main diffusion tensor direction (fiber orientation), the second and third are orthogonal
to this one. According with Jeurissen et al. (2013), crossing fibers are present in 60–90%
of the diffusion data. Such voxels’s signal can be represented with the Diffusion Multi-
Tensor Model by a linear combination of t single Diffusion Tensor Models, each one with its
corresponding parameters. The Multi-tensor model is expressed as follows (Tournier et al.,
2011; Ramirez-Manzanares et al., 2007):

S(gi, bi) =S0

t∑
j=1

αj exp
(
−big>i Dj gi

)
+ η (2)

with 1>α = 1 (3)

α > 0.1 (4)

αj ≤ αk, j < k (5)

where, one has a matrix Dj for each tensor, the elements of α vector are the mixture
coefficients (volume fractions), η is the noise in the data, 1 is a vector with entries equal
to one and which size depends on the context, constraint (4) is a form of non–negativity
robust to noise and (5) imposes an artificial order useful in out notation.

We present a self-supervised strategy for analyzing DW-MRI: it consists of a proper
data representation based on a formal generative method and a simple neural network for
computing the fiber distribution. It is flexible to different acquisition protocols and can
be adapted to process data in a voxelwise or patches-wise manner. It is computationally
efficient and accurate. Recently there is attention for acquiring HARDI and super-HARDI
DW-MR images (Maller et al., 2019) which analysis demands faster methods, as proposed.

2. Artificial Neural Network for DW-MRI Analysis

Analyzing DW–MRI data is equivalent to estimate the parameters for the model (2)–(5),
or of any chosen generative model, given the acquired DW-MRI data. In recent years, Deep
Learning models (DL) has been used to approach this task by the reconstruction of fiber
Orientation Distribution Functions (ODF). It has been tackled as a classification approach
(Koppers and Merhof, 2016) with a Convolutional Neural Network (CNN) or a regression
approach with different architectures: 3D-CNN in (Lin et al., 2019), a Spherical U-Net in
(Sedlar et al., 2020) and, a U-Net and a HighResNet in (Lucena et al., 2020); the first two
allowing a signals neighborhood patch as input.

We assume that the lack of labeled real data (a golden standard) is a constant in this task:
the development of reliable analysis methods for DW–MRI continues nowadays. Moreover,
acquisition protocols may vary between acquisitions. In our work, we have chosen to develop
a self–supervised scheme: we train Artificial Neural Networks (ANNs) with synthetic signals
generated with direct models using the parameters which define our acquisition protocol.
Then the trained models are used in real signal to infer the voxel axonal structure.
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2.1. Self-supervised strategy

A DW-MR image I = {S} is composed of spatially (3D) correlated signals. Each signal is
assumed to be a measure of the Diffusion Multi-Tensor Model. The predefined acquisition
protocol includes the set G = {(gi, bi)}. This contains n pairs of gradients gi and its
correspondent bi values, where ||gi|| = 1, i = 1, 2, ..., n. A voxel’s signal S ∈ IRn is a vector
with the entries S(gi, bi); see (2). We compute our datasets by generating independent
synthetic signals of voxel’s neighborhood (patch) of size 3×3×3 for a preset acquisition
protocol G. We simplify our models by assuming normalized signals; ı.e, S0 = 1. It can be
achieved in real data by acquiring the S0 signal (corresponding to b = 0) and normalizing
the image’s signals. We also assume equal 3 the maximum number of tensors.

Now, given a DW-MRI volume acquired with a set of parameters G, we estimate the
diffusion tensor of reference by focusing on the corpus callosum (a brain zone characterized
by having a single coherent fiber population). For example, λ = [0.0014, 0.00029, 0.00029]
were the eigenvalues corresponding to the single tensor model of an analyzed DW–MRI
volume. Thus, to construct a neighborhood sample, we randomly set the noise level with
a SNR ∈ [20, 30] simulating Rician noise; Rician distribution is generally assumed for noise
in MRI data (Nowak, 1999). Then, a unique volume fractions α is randomly generated
according with (2)–(5) and set equal for the voxels in the patch. In this manner, the signals
in a patch share the volume fraction and noise level. Thus, we generate the angles (θ2, θ3)
from a uniform distribution in range [0, π] rad. Hence, we set the relative Principal Diffusion
Directions (PDDs) equal to [1, 0, 0]>, [1, cos θ2, 0]> and [1, 0, cos θ3]

>, for the first, second
and third components; respectively. Next, the PDDs are randomly rotated with rotation
angles uniformly distributed in the sphere. In this moment we have a set of PDDs, d,
following we explain how a PDDs set is assigned to each voxel in the patch and how slight
orientation changes are introduced. We generate the PDDS for the voxels at the corners of
the patch of 3×3×3 voxels: dk = d+nk, for k ∈ C the index set corresponding to the voxels
at the corners, nk,i ∼ N (0, σ2r ); we choose σr = 0.14 (approximately 8 degrees). The PDDs
of reminder voxels in the patch are trilinear interpolated. Finally, we normalize each PDD.
Once we defined the parameters for the patch, the signal of each voxel is generated according
to model (2)–(5); this process can be expressed mathematically as S = F (α,d; b,g). We use
the Diffusion Multi-Tensor Model implementation in the DiPy library (Garyfallidis et al.,
2014) to generate the signals. Figure 1 shows the Orientation Distribution Function (ODF)
of a generated patch. One can appreciate smooth variations of the tensors orientation.

Our goal is to predict the parameter vectors d and α for each tensor j composing a
signal. This ill-conditioned inverse problem that can be expressed by

α,d = F−1(S; b,g) (6)

when, in general, F−1 does not exists. Hence, it is important to use a variable encoding
that facilitates estimating from examples the relationship between parameters and signals.
Previous works have used a set (dictionary) of fixed signals (atoms), then they compute
a weighted combination of atoms that fit the original signal (Ramirez-Manzanares et al.,
2007). We also build upon the dictionaries strategy in parameter encoding. We compute

a dictionary D =
[
d̃k

]
with m = 362 PDDs uniformly distributed in the hemisphere.

Then, for each voxel, we find the PDDs in dictionary nearest to the generated PDD: k∗j =
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Figure 1: Neighborhood representation

argmink|d̃k
>
dj|. Hence, we set the coefficient dictionary α̃k∗j = αj for j = 1, 2, 3 and

α̃l /∈{k∗j } = 0. We design the ANNs models to estimate the α̃ coefficients. However, because

the dictionary is discrete, the dictionary’s PDDs do not coincide with the generated signals’
PDD. To reduce this inconvenient, we include a confusion matrix in comparison metrics, so
that we compare the estimated d̃k∗j , does not with the real dj , but with Wσdj ; where Wσ

is a matrix of Gaussian weights. That allows the model to better learn the labels without
penalizing small orientation misalignment. Wσ ∈ IRm×m is a symmetric matrix where each
row Wσ

i contains the blurring weights for the i-th dictionary direction, which are directed
related to the angles between directions. Satisfying Wik <Wij < 1 if the j-th direction is
nearest than k-th direction to the i-th one. Then small Gaussian Labels, Wσdj < 1e − 3
are clipped to zero values, normalized and used as the target for training the models.

2.2. Voxel Model

As mentioned before, each acquisition protocol needs a different analysis model because it
may implies different input size and/or different acquisition parameters. It is not realistic to
design a global model able to analyze any DW-MRI image. Our method can be separated in
two steps. First, the training data generation that capture most of the acquisition protocol
particularities, presented in previous subsection). Second, the analysis method based on a
general and simple Neural Network (NN) model: multilayer perceptron (MLP). Since we
implement an ad hoc data codification, the proposed neural network model is relatively
simple: a MLPs. Consequently, our models are fast to train and fast for computing the
predictions (the DW-MRI analysis). Simple models can be easily adapted to different ac-
quisition protocols. NN models for different acquisition protocols have similar architectures:
they only modify the input data size and some architectural hiperparameters.

Our MLP predicts the α̃ coefficients given the signals in a voxel. The model’s input is
the signal S (flatten vector of size n) taken from the central voxel in the generated patch.
The output is the α̃ coefficients (flatten vector of size m) associated with PDDs in the
dictionary G. Figure 2 illustrates the voxelwise model.

We implement the Voxel model as an MLP with six dense layers. The first five layers
have a ReLU activation function. The last one uses the sigmoid activation: the output is
in range [0, 1]. We include a dropout layer, with a 0.2 rate, previous final dense layer to
reduce the overfitting risk. We select Mean Squared Error (MSE) as a loss function for the

4



AxonNet

Neural Network

Input
Output

Directions

Prediction

Voxel

Signal

Figure 2: Voxel Model

training phase; we also investigate the mean absolute error without a clear advantage. We
investigate several optimization algorithms, and we obtain the best results using ADAM
algorithm (Kingma and Ba, 2014): (fast convergence, resiliency to overfitting, and accurate
results). The learning rate was set equal to 1× 10−4. A learning rate decay equal to
1× 10−6 avoids stuck the training. Appendix A presents the MLP’s architecture details for
the Voxel model.

Once the voxel model is trained, the prediction on real data is straight forward, voxel
to voxel. The output corresponds to the same coordinates than the predicted signal. Our
implementation predicts the entire image (volume) allocating the signals in a single batch.

2.3. Neighborhood Model

Our Neighborhood model tries to incorporate spatial context of a voxel’s signal. The signals
from a voxel patch of size 3×3×3 are taken, it give us a 4D input (3, 3, 3, n) which is flatten
to convert it into the input vector of size 27n. The output remains without changes: the
prediction for the patch’s central voxel of the coefficients α̃ associated with PDDs in a
hemisphere. Figure 7 in Appendix A illustrates the model, compare with Figure 2.

The architecture of MLP that implements the neighborhood-wise model is similar to
the voxel-wise model one. However, we increase the number of neurons in hidden layers
to process additional information of adjacent voxels. The training process uses the same
principle as the voxel model: MSE as loss function and ADAM as training algorithm. In
this case, we reduce the learning rate to 1× 10−5. Despite we found that the learning rate
decay has a more relevant function because it is more likely to be trapped by bad local
minima, the value 1× 10−6 accomplishes the task. We introduce a zeros margin of size
one (padding) to analyze an entire DW-MRI in the prediction stage. It increases by two
the x, y, and z dimensions. Appendix A presents the MLP’s architecture details for the
Neighborhood Model.
Implementation detail. We present our strategy for the simultaneous prediction of the
entire volume instead of predicting voxel by voxel. The idea is to produce as many 3×3×3
patches as voxels in the image, each patch center at each voxel. Then, we can generate a
data batch that contains adjacent and non-overlapped patches with an adequated slicing-
reshape strategy: if the coordinates (i, j, k) correspond to a predicted central voxel for a
given patch, then the voxels with coordinates (i+3`i, j+3`j , k+3`k) are also predicted in the
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batch, providing the voxel is in the volume; where `i, `j , `k ∈ Z. Based on this observation,
we note that the complete image can be processed with 27 batches. It is just necessary to
slide the image in 3×3×3 patches once and slip it twice by one element in each direction to
have all the predictions. Figure 3 illustrates how the algorithm works. The first row depicts
different patch batches (partitions). The blue diagram represents the partition to predict
the front upper right corner. Yellow, green, and orange diagrams illustrate the resultant
partitions of slipping the original one by one element: to the left, to the bottom, and to
back; respectively. Three dots represent the remainder partitions needed to process the
full image. The second row illustrates the voxels predicted corresponding to each partition.
In the third row is depicted the reconstruction of the entire image, the final result. Our
implementation takes care of the problems that can occur if it is not paid attention to the
image size.

…

…Output

Input

Final Result

Figure 3: Prediction by slices.

3. Results

Voxel and Neighborhood models were tuned and trained using the synthetic data for each
dataset generated with the same gradient table as the original. The performance of both
models was tested over the test synthetic dataset, obtaining qualitatively and quantitative
results.
Training stage. We compare the results of the proposed Voxel (VOX) and Neighbor-
hood (NBH) models with two of the SOTA methods which tackle the same task: Diffusion
Basis Functions (NNLS) proposed by Ramirez-Manzanares et al. (2007)) and Constrained
Spherical Deconvolution (CSD) proposed by Tournier et al. (2007). There are many op-
tions to compare distributions, a common comparisson procedure used in this context is
to detect peaks and compute the angular error between the real peaks and the estimated
ones. However, to compare modes in not a standard procedure for comparing distributions.
Among them two notable options are Kullback-Leibler (KL) Divergence and the Wasser-
stein Distance (also know as the Earth Mover Distance, EMD). Despite its computational
cost, EMD has shown to represents more precisely the distribution distance (Levina and
Bickel, 2001; Aranda et al., 2011; Arjovsky et al., 2017). EMD represents the minimum
cost of transforming a peak distribution into another, weighting by angle. We create a
synthetic dataset with gradient table of the Stanford HARDI dataset Rokem et al. (2015),
the eigenvalues of a Diffusion Tensor model fitted to the corpus callosum region, and the
SNR computed in such a data (Descoteaux et al., 2011). The estimated SNR depends on
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image region: most of the measures laid into [20, 24], so we randomly generate data select-
ing the SNR into [20, 30]. Figure 4 depicts the error for each analyzed model. The vertical
axis corresponds to the angle (θ1) between the first PDD and the second one. Meanwhile,
the horizontal axis shows the angle between the third PDD and the plane formed by the
first two PDDs. The dynamic range of the error maps shows a better performance of the
proposed models. We select some predictions for a visual inspection (qualitatively compari-
son). For illustration purposes, we choose one between the top–10 and one of the bottom–10
according to its EMD values for the studied models: VOX, NBH, NNLS, and CSD. The
results are presented in Figure 5. The first two columns correspond to the best predictions:
the first column shows the target and the second column shows the prediction. The third
and fourth columns follow the same order but for the worst predictions. Arrows illustrate
the generated PDDs (ground truth). According to the α value: blue, orange, and green
were used for the first, second, and third PDD, respectively.
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Figure 4: EMD (error) heat-maps by model predictions
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Figure 5: Predicted voxels with lowest (first two columns) and highest error (last two
columns).
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Table 1: Computational time for prediction, in minutes.

Dataset VOX NBH CSD NNLS
Stanford 0.23 0.81 6.08 27.08
Local 0.26 1.90 8.74 114.32

Inference stage. Now we present results of the inference stage with two DW-MRI real
datasets. First, the free access dataset Stanford HARDI Rokem et al. (2015) included in
DIPY Library, with dimension (81,106,76) voxels and 160 signals per voxel (number of
gradients). The acquisition protocol composed uses 150 gradients with b-value equal 2000
and 10 with b-value equal zero. Second, a local DW-MRI with (128, 128, 70) voxels with
64 gradients with b-value 1000 plus 1 gradient with b-value 0, each of them is repeated 5
times resulting in signals of size 325. Training time for our models by depends on datasets:
The Voxel model takes 1.24sec. for the Stanford HARDI and 1.24sec. for out local dataset.
Meanwhile, Neighborhood model takes 1.91sec. for the Stanford HARDI and 3.34sec. for
our local dataset. Prediction times are shown in Table 1. Figure 6 compares the final results
in a Stanford dataset slice, showing the local detected structure with the studied models.
More slices results are presented in Appendix C.

(a) DW-MRI (b) VOX (c) NBH

(d) Slice Zoom (e) NNLS (f ) CSD

Figure 6: Predicted intravoxel structure in real data with the compared models.

4. Conclusions

We propose a strategy for analyzing DW-MRI based on two stages: a proper data repre-
sentation based on a formal generative method (Diffusion Multitensor) and a simple neural
network (MLP) for computing the fiber distribution. Labeled data are unneeded in our self-
supervised strategy. We only require an estimate of diffusion parameters and the gradients
of the acquisition protocol. We demonstrate by experiments that our approach is flexible
by generating solutions for two datasets with different acquisition protocols and two kinds
of support regions (voxelwise and patches-wise). Also, it compares favorably with SOTA
methods: it processes entire volumes in a fraction of the time than SOTA methods and
with comparable (or even better) error metrics.
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Evaluating the accuracy of diffusion mri models in white matter, 2015. PLoS ONE 10(4):
e0123272. doi:10.1371/journal.pone.0123272.

Stephen E Rose, Andrew L Janke Phd, and Jonathan B Chalk. Gray and white matter
changes in alzheimer’s disease: a diffusion tensor imaging study. Journal of Magnetic Res-
onance Imaging: An Official Journal of the International Society for Magnetic Resonance
in Medicine, 27(1):20–26, 2008.

Sephira G Ryman, Martijn P van den Heuvel, Ronald A Yeo, Arvind Caprihan, Jessica
Carrasco, Andrei A Vakhtin, Ranee A Flores, Christopher Wertz, and Rex E Jung. Sex
differences in the relationship between white matter connectivity and creativity. Neu-
roImage, 101:380–389, 2014.
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Appendix A. Architecture detail of the MLP models

Neural Network

Input Output

Directions

Prediction
Voxel’s

Neighborhood

Signal

Flattened Data

Figure 7: Neighborhood Model illustration. The patch of signals is flatten to be the input,
the output (labels) keeps the same the size as in the Voxel model.

Next figures describe the details of MLPs’ models. The dense layers include bias and
the dropout rate was set equal to 0.2

Model: “VoxelModel” 

Total params: 4,450,666 
Trainable params: 4,450,666 
Non-trainable params: 0 

Loss function : mean_squared_error
Optimizer : Adam 
Learning Rate : 0.0001
Decay : 1e-06 

Layer Type Activation Function Input Shape Output Shape Param #

Dense_1 ReLU (None, 160) (None, 2048) 329728 

Dense_2 ReLU (None, 2048) (None, 1024) 2098176 

Dense_3 ReLU (None, 1024) (None, 1024) 1049600 

Dense_4 ReLU (None, 1024) (None, 512) 524800 

Dense_5 ReLU (None, 512) (None, 512) 262656 

Dropout - (None, 512) (None, 512) 0 

Output (Dense) tanh (None, 512) (None, 362) 185706 

Figure 8: Voxel Model Architecture.
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Model: “NeighborhoodModel”

Total params: 30,210,410 
Trainable params: 30,210,410 
Non-trainable params: 0 

Loss function : mean_squared_error
Optimizer : Adam 
Learning Rate : 0.0001
Decay : 1e-06 

Layer Type Activation Function Input Shape Output Shape Param #

Dense_1 ReLU (None, 4320) (None, 4096) 17698816 

Dense_2 ReLU (None, 4096) (None, 2048) 8390656 

Dense_3 ReLU (None, 2048) (None, 1024) 2098176

Dense_4 ReLU (None, 1024) (None, 1024) 1049600

Dense_5 ReLU (None, 1024) (None, 512) 524800

Dense_6 ReLU (None, 512) (None,512) 262656

Dropout - (None, 512) (None, 512) 0 

Output (Dense) tanh (None, 512) (None, 362) 185706 

Figure 9: Neighborhood Model Architecture.

Appendix B. Selection of de MLP hyperparameters

The appendix shows conducted some experiment to select hyper-parameters of our methods.
We investigate MSE and MAE metrics, the combinations were repeated 5 times each one

and we observed if some of them appears to be unstable. For Voxel Models, all the repeated
combinations show similar performance between them, but some repeated Neighborhood
Models got stuck on a plateau, such corresponding combinations were also dismissed. We
found that models using MSE as loss function lead to better results, specially if the hyper-
bolic tangent (tanh) is used as activation function for the last layer. In Figure 10 we can see
the evolution of the loss function evaluated in the validation set for four Voxel Models. The
models were trained using MSE as loss function and a learning rate of 1e− 4 using ADAM
and RMSprop as optimization algorithms and sigmoid and tanh as activation functions for
the last layer; RMSprop is unpublished, G. Hinton in Lecture 6e, Coursera Class.

Figure 11 shows the loss evolution for the Voxel Model (learning rate 1e−5 have a slower
MSE loss convergence). The experiments indicate that tanh is best choice as activation
function that the sigmoid and that ADAM algorithm has a smoother convergence that
RMSprop algorithm.

Figure 12 shows the mean plot of 5 repetitions by the 100 epochs for Stanford-HARDI
and and Local datasets: neighborhood model learns better to predict the labels.
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Figure 10: Voxel Models Training Process
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Figure 11: Loss value evolution during the training for Neighborhood Models.
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(a) Stanford-HARDI dataset
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(b) Local dataset

Figure 12: Comparison of the loss value evolution during the training process for Voxel
and Neighborhood Models.
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AxonNet

Appendix C. Axonal structure estimated in real data

(a) DW-MRI (b) VOX (c) NBH

(d) Slice Zoom (e) NNLS (f ) CSD

Figure 13: Example 2. Predicted intravoxel structure in real data.
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(a) DW-MRI (b) VOX (c) NBH

(d) Slice Zoom (e) NNLS (f ) CSD

Figure 14: Example 3. Predicted intravoxel structure in real data.
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