
A Theoretical Framework for Partially-Observed
Reward States in RLHF

Chinmaya Kausik
University of Michigan

Mirco Mutti
Technion

Aldo Pacchiano
Broad Insitute of MIT & Harvard

Ambuj Tewari
University of Michigan

Abstract
The growing deployment of reinforcement learning from human feedback (RLHF)
calls for a deeper theoretical investigation of its underlying models. The prevalent
models of RLHF do not account for neuroscience-backed, partially-observed “inter-
nal states” that can affect human feedback, nor do they accommodate intermediate
feedback during an interaction. Both of these can be instrumental in speeding
up learning and improving alignment. To address these limitations, we model
RLHF as reinforcement learning with partially observed reward-states (PORRL).
We accommodate two kinds of feedback – cardinal and dueling feedback. We
first demonstrate that PORRL subsumes a wide class of RL problems, including
traditional RL, RLHF, and reward machines. For cardinal feedback, we present two
model-based methods (POR-UCRL, POR-UCBVI). We give both cardinal regret
and sample complexity guarantees for the methods, showing that they improve over
naive history-summarization. We then discuss the benefits of a model-free method
like GOLF with naive history-summarization in settings with recursive internal
states and dense intermediate feedback. For this purpose, we define a new history
aware version of the Bellman-eluder dimension and give a new guarantee for GOLF
in our setting, which can be exponentially sharper in illustrative examples. For
dueling feedback, we show that a naive reduction to cardinal feedback fails to
achieve sublinear dueling regret. We then present the first explicit reduction that
converts guarantees for cardinal regret to dueling regret. In both feedback settings,
we show that our models and guarantees generalize and extend existing ones.

1 Introduction
As automated systems become more ubiquitous, the need to understand how to align their objectives
with the needs of humans that interact with them has become increasingly important [15, 22, 35, 28].
The development and study of reinforcement learning from human feedback (RLHF) has been an
important way of formalizing these problems and design methods for alignment [16, 56]. RLHF is
concerned with the study of how to find a policy that maximizes an objective defined in terms of
human labeled data in an RL domain [16, 56].

Many RLHF methods entail learning a reward function from human data, and then using the learned
reward function as an input to a traditional reinforcement learning algorithm such as PPO [46]. These
methods have been pivotal in the development of several technologies such as robotics [16, 7, 47],
recommender systems [58], and most notably the training of large language models (LLMs) [6, 41, 1].

There exist two dominant kinds of feedback in reward-based RLHF, cardinal and dueling feedback.
Cardinal feedback requires the human labeler to provide a single label over an entire trajectory
of interaction between the agent and the environment [19, 11]. Dueling feedback requires the
human to specify a preference between two trajectories. In practice, dueling feedback has been
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used to train reward models, which have been successfully combined with RL algorithms to train
LLMs [62, 48, 3, 6, 41]. Past work [11, 55, 45] has designed algorithms for both cardinal and dueling
feedback under various metrics – standard/cardinal regret, sample complexity or dueling regret.

We observe that current models of reward-based RLHF assume a very specific model of non-
Markovian rewards. Modeling rewards as non-Markovian is natural, since human responses to stimuli
are known to be affected by partially-observed and evolving “internal states” [20]. For example,
when a human reads a piece of text (possibly generated by an LLM), their assessment may oscillate
between opposing sentiments in different parts of the text. Unfortunately, current models do not
explicitly incorporate such “internal states” that affect rewards, and are limited to a specific linear
model of rewards. While one can incorporate internal states using naive history-summarization, i.e.
by treating the entire trajectory τ rhs so far as the state, we show below that better general algorithms
can be designed with improved guarantees.

Additionally, current models assume that feedback is received only once at the end of an episode
or pair of episodes. In many applications such as motion [34] and mathematical reasoning [52],
correctly incorporating intermediate or “snippet-level” feedback can speed up learning as well as
improve alignment. With this in mind, we ask the following questions:

How do we generalize the RLHF setting to incorporate internal states and intermediate feedback?
What algorithms and guarantees can improve over naive history-summarization here?

Contributions:

• Introducing PORRL: In Section 2, we introduce PORRL, which generalizes current RLHF models
to incorporate “internal states” and intermediate feedback.

• Improving over naive history-summarization: In Section 3.1, we design model-based op-
timistic algorithms, POR-UCRL and POR-UCBVI, achieving a regret of rOpppolypH,S,Aq `

p
?
dEdCq

?
T q and a sample complexity of rOpppolypH,S,Aq{ε2`p2dEdC{ε2q under minimal as-

sumptions.1 The polypH,S,Aq term would be exponential inH under naive history-summarization.
We show that our guarantees subsume and improve over past results in RLHF.

• Leveraging recursive structure on internal states: In Section 3.2, we study the model-free
algorithm GOLF, applied using history-summarization. We define a new “history-aware” notion
of dimension, dHABE and show that GOLF has regret rOppH

?
dHABEdCT q. We show using an

example that when internal states have a recursive structure, our guarantee can be exponentially
smaller than existing guarantees and guarantees for our model-based methods.

• Reduction from Dueling to Cardinal PORRL: We show that a naive blackbox reduction from
dueling to cardinal PORRL always fails. We design a whitebox reduction from dueling PORRL to
a large class of optimistic algorithms for cardinal PORRL. To the best of our knowledge, this is the
first explicit reduction that converts guarantees for cardinal regret to dueling regret in RL.

1.1 Related Work
RLHF. RL with human preferences has a long history [2, 8, 44]. It has been successfully used in
disparate domains such as robotics, games, and LLMs. The problem of learning from cardinal feed-
back has been theoretically studied in [19, 11]. Theoretical guarantees for utility-based preferential
(dueling) feedback can be found in [40, 45, 14, 60]. The non-Markovian nature of the optimal policy
under these RLHF models contributes greatly to why the problem is harder than traditional RL.

Internal states and intermediate feedback. There is evidence in neuroscience research indicating
that human responses to stimuli are affected by “internal states” — partially hidden variables that
profoundly shape perception, cognition, and action” [see 20]. Despite not explicitly recognizing the
phenomenon of human internal states, several works in RLHF incorporate richer forms of feedback.
For example, Wu et al. [57] consider human labeling over sub-sections of the text. In work on process
supervision [52, 36], humans give feedback on intermediate steps. Motivated by these, our work
is a first attempt at laying the groundwork for a theoretical treatment of internal human states and
intermediate feedback in RLHF, using partially observed reward-states.

Partial observability in RL. The problem of partial observability in RL is not new. Although learning
in POMDPS [4] is known to be statistically intractable in general [33, 31], a flurry of recent works

1dE is a relevant eluder dimension and dC is a relevant covering dimension.
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have studied POMDPS under various structural assumptions [18, 37, 38, 21, 59, 9, 12, 13, 54, 61].
Our model is distinct from POMDPS since our results do not require the latent state evolution to be
Markovian, but assumes Markovian transitions for observed states. See Section 2.3 for a discussion.

2 Defining RL with Partially-Observed Reward States (PORRL)
In this paper, we consider an episodic reinforcement learning setting in which a learner interacts with
an MDP having a state space S, an action space A, transitions dynamics P, and episode length H .
At each time-step h P rHs of an episode, the learner observes the state sh and takes an action ah,
generating a trajectory τ “ ps1, a1, ¨ ¨ ¨ , sH , aHq P Γ, where Γ denotes the space of trajectories.2 In
a typical RLHF setting, the learner observes a human feedback oH P O at the end of the episode,
which is associated to but potentially different from a reward r : Γ Ñ R encoding the task. We
now describe how internal states and intermediate feedback shall be incorporated in the latter RLHF
framework through a guiding example, and we use this to formally introduce the PORMDP model.

2.1 PORMDPs
Let us consider the example of a human interacting with a language model. In this example, an action
is a token, the state is the text so far, and reward is some score representing the human’s satisfaction,
which induces stochastic feedback. The internal states could be the human’s emotional reaction to
the text (e.g., happy, frustrated, or amused), or numbers in r0, 1s encoding a confidence level that the
text is progressing towards a coherent response. While an agent goes through a sequence of states
and actions, the system (i.e., the human) progresses through internal states, which inevitably affect,
together with agent’s actions and the state of the process, the human’s satisfaction.

Formally, this can be modeled by introducing internal states u P U and defining the set of underlying
histories Γu

h´1 that incorporate internal states by Γu
h´1 :“ tτurh ´ 1s “ tpsl, ul, alqu

h´1
l“1 | sl P

S, al P A, ul P Uu. We model the dynamics of internal states by saying that there exists an internal
state generator wh : Γu

h´1 ˆ S ˆ A Ñ ∆pUq so that the human’s internal state uh is sampled from
the distribution defined by whpτurh´ 1s, sh, ahq. The human’s satisfaction at time h should then be
a function of the current state and action, but also the current internal state, given by rhpsh, uh, ahq.

The agent does not observe the reward rh directly, but a feedback oh depending on rh. Typically, oh
will be t0, 1u feedback reflecting whether the human says that they are satisfied or not. In general, this
could be stochastic. For instance, this could be Berpσhprhqq for some function σh. So, oh „ ehprhq

for some distribution ehprhq. This leads to the general definition below, where we have introduced
new objects U ,Hp, w, e not seen in traditional RL:

Definition 1. A PORMDP M with cardinal feedback is a tuple pS,A,U ,O,P,Hp, r, w, eq, where:

• S,A are fully observable states and actions, U are unobserved internal reward-states, O is a space
of feedback, Pp¨ | s, aq is a Markovian transition matrix, s1 P S is an initial state.3

• Hp Ă rHs is a set of timesteps where reward and feedback is obtained with size |Hp| “ p.
• r :“ trhuhPHp

so that rh : S ˆ U ˆ A Ñ R are reward functions at time h.

• w :“ twhuhPHp
so that wh : Γu

h´1 ˆ S ˆ A Ñ ∆pUq are internal state generators that map
underlying histories of ps, a, uq tuples to distributions over U .

• e :“ tehuhPHp are feedback functions so that the feedback oh „ ehprhq is sampled from an
ηh-subgaussian distribution eh with mean σhprhq for some activation function σh : R Ñ R.4

In some relevant RLHF applications, the human is presented with two trajectories and they pro-
vide feedback based on the pair. In most cases, this involves indicating a 0-1 preference between
trajectories. To accommodate this setting, we extend the framework to dueling feedback.

Definition 2. A PORMDP M with dueling feedback is a tuple pS,A,U ,O,P,Hp, r, w, eq, where
everything is identical to Definition 1, except that every episode now involves running two trajectories
τ1, τ2 that produce rewards rh,1, rh,2 @h P Hp, and feedback is distributed as oh „ ehprh,1 ´ rh,2q.

2We will further denote τ rhs “ ps1, a1, . . . , sh, ahq the sub-trajectory of τ of length h and Γh the corre-
sponding space of sub-trajectories of length h.

3Recall that choosing a formal state s1 to serve as a placeholder initial state is not restrictive.
4This subsumes and generalizes the example of Bernoulli feedback in RLHF.
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We note that PORMDPS subsume and model a wide class of RL settings, including RLHF. A brief
list of settings that PORMDPS subsume is as follows: (i) traditional MDPs, by setting U “ t‹u; (ii)
existing linear models of RLHF, setting U “ tϕpτqJwu for a known feature map ϕ and unknown w
[11, 19, 45, 55]; (iii) learning reward models with stochastic feedback by setting U to be the set of
reward states [26, 24, 25, 23]. By using U to model implicit intentions, PORMDPS can also model
learning from the following feedback: (iv) process supervision [36, 52], (v) fine-grained feedback
[57] and (vi) snippet-level feedback [34]. Further, one can show that in all these settings, we can
define the U generators wh to be deterministic.

One illustrative hard example of PORRL is that of a combination lock,5 which we will also use later
in the paper. Consider an H-digit numerical lock with a set A of options at each digit. Let the true
combination be a‹

1, . . . a
‹
H . An agent tries to unlock it by listening for “clicks” while rotating the dial

at each digit h. Naturally, we only hear clicks at digit h if the entire combination so far is correct.
We thus model this as a PORMDP with non-Markovian rewards, S “ t‹u, U “ t

Ť

h Ahu and the
appropriate dynamics. Arguing that the click might sometimes be too faint, we consider stochastic
rewards. Specifically, we model this as rhpsh, uh, ahq “ Berpq1a‹

1,...a
‹
h

puhqq for some uncertainty
parameter q. Notice that the internal states have a recursive structure here, and they evolve in a
Markovian way. This is a toy model for the problem of learning to take desirable sequences of actions
using intermediate feedback. It can be viewed as a simplified version of many such tasks – navigating
mazes, writing structured essays with guidance, writing a proof with feedback on correctness.

2.2 Reinforcement Learning in PORMDPs (PORRL) with Cardinal and Dueling Feedback
Due to the complex nature of observability in our problem, we will use this subsection to carefully set
up a meaningful set of RL problems, in which an agent interacts with a PORMDP to optimize a policy.
At each step h, the agent observes a history τ rh´1s P Γh´1 and takes an action ah „ πpτ rh´1s, shq.
The agent does not observe the reward rh, but receives an observation oh „ ehprhq.

Defining the learning objective. Since rewards are partially observed and dependent on the entire
history, there is a subtlety in defining value functions. We first choose and fix some subclass Π of
history-dependent policies and we define the total expected reward of a policy π P Π as

VwpM, πq :“ Eτu„Pw,π

„

ÿ

hPHp

rhpsh, uh, ahq

ȷ

VwpM, πq is taking an expectation over the dynamics of underlying trajectories τu “

tpsh, uh, ahquHh“1 „ Pw,π . Since the states u are never revealed, these dynamics can never be learnt,
making Vw hard to directly deal with. In this light, we introduce stochastic functions gh : Γh Ñ ∆pUq

that marginalize the internal state generator wh over the sequence u1, . . . uh´1. That is, given an
ps, aq history τ rhs, we can define6 ghpτ rhsq „ uh | τ rhs. Now define

VgpM, πq :“ Eτ„Pπ

„

ÿ

hPHp

Euh„ghpτrhsqrrhpsh, uh, ahqs

ȷ

VgpM, πq is a much more tractable object, where the outer expectation is taken over the dynamics of
the observed trajectories τ . The following result establishes that as one would hope, Vw “ Vg .

Lemma 1 (Replacing w with g). For any history-dependent policy π that selects an action ah „

πpτ rh´ 1s, shq, VwpM, πq “ VgpM, πq holds for any M.

For the purposes of value functions, M is fully specified by pS,A,U ,O,P,Hp, r, g, eq. Henceforth
we replace w with g and denote the value function VgpM, πq by V pM, πq. Define the optimal policy
as π‹ :“ argmaxπPΠ V pM, πq.

Cardinal PORRL. Consider an algorithm producing a sequence of policies π1, . . . , πT P Π, where
πt is chosen only using trajectories tτiu

t´1
i“1 generated by tπiu

t´1
i“1. We measure the performance of

such an algorithm by its cardinal regret under model M‹:

RegretpT q “

T
ÿ

t“1

V pM‹, π‹q ´ V pM‹, πtq

5This is a variant of a common example used to generate lower bounds in POMDPS [33, 31]. In contrast,
we will use it to illustrate the power of our upper bounds.

6More technically, define ghpτ rhsq to be the regular conditional distribution of the random variable
whppτ rh ´ 1s, u1, . . . uh´1q, sh, ahq, conditioned on τ rhs.
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One can also ask for the sample complexity of learning a good policy. Given a randomized algorithm
that completes N episodes of interaction and outputs πN , the sample complexity Npε, δq of the
algorithm is the minimum N so that V pM‹, π‹q ´ V pM‹, πN q ď ε with probability at least 1 ´ δ
over the randomness of the feedback and the algorithm. It makes sense to study cardinal regret and
sample complexity in two RLHF settings:

• Using a learnt reward model: In most deployments of offline RLHF, an offline dataset of dueling
feedback from humans is typically used to create a cardinal feedback oracle (a reward model),
which is then used to train the policy using RL. In fact, [43] do exactly this under our model. The
sample complexity of the algorithm is important in this setting.

• Improving a deployed model with batched feedback: One can learn from batches of interaction
with humans and hope to improve the model/policy adaptively over multiple batches. This is
compatible with deploying LLMs or recommender systems to users, collecting a batch of good/bad
feedback, and then fine-tuning the model offline using this batch. This approach is also discussed in
[49, 17]. Regret is a better metric than sample complexity here, since we want users to be satisfied
(exploiting) while improving the model (exploring). Instead of good/bad feedback, we can also ask
for dueling feedback against a fixed policy π0 and treat it as cardinal feedback.7

Dueling PORRL. In dueling PORRL, we play a duel by running two policies pπ1, π2q P Π ˆ Π in
parallel to obtain trajectories pτ1, τ2q and receive feedback tohuhPHp

. Again, note that the rewards
of the policies are not observed. While the definitions of V pM, πq and π‹ are the same as before,
we define a new measure of regret accordingly. If we play T duels pπ1,1, π2,1q, . . . , pπ1,T , π2,T q

according to an algorithm, we aim to minimize the dueling regret given by

RegretDpT q “

T
ÿ

t“1

V pM‹, π‹q ´
V pM‹, π1,tq ` V pM‹, π2,tq

2

It makes sense to consider this metric when improving a deployed model with batched dueling
feedback. We can do the same batching as the batched feedback example above, but instead compare
our model/policy πt to a fixed base policy π0 and ask for dueling feedback. The induced feedback
can be treated as cardinal feedback. This is similar to the ideas in [55], who consider this setting and
give cardinal regret/sample complexity guarantees. However, when deploying a model, we typically
want humans to be satisfied with both the options they are given. Cardinal regret only accounts for
one of the options being good. Dueling regret demands that both policies used are good policies.

Remark 1. PORRL subsumes the settings of [45, 11], which in turn subsume the feedback models of
RLHF [55]. Crucially, [55, 11] measure performance using only sample complexity or cardinal regret,
while [45] only study dueling regret. We have discussed above why both metrics are important.

2.3 A General Yet Tractable Case
The nature of the feedback in PORMDPS , which depends on a reward that is function of the entire
history, signals that PORRL may be intractable in general. We now instantiate the model into a
statistically tractable sub-class that still subsumes most existing work on RLHF and all the examples
provided at the end of Section 2.1. Specifically, we assume that the internal reward-state functions gh
are deterministic and the feedback is emitted according to a Bernoulli distribution depending on the
reward. We will work under this assumption in the remainder of the paper.

Assumption 1. We work in a known class P of transition kernels P and known classes Rh of reward
functions rh : S ˆ U ˆ A Ñ R with |rh| ď B for all h. Let gh be deterministic (but unknown)
and belonging to a known class of “decoder functions” Gh. Let O “ t0, 1u and let eh only depend
on the rewards. For dueling feedback, let ehprh,1 ´ rh,2q be ηh-subgaussian with known mean
σhpr1,h ´ r2,hq. Also assume that σh and σ´1

h are Lipschitz with Lipschitz constants κ1,h and κ2,h
respectively. Call the resulting class of PORMDPS M.

We also define a function class induced by Rh and Gh.

Definition 3. Let us then consider the decoder-induced function classes Fh given by

Fh :“
!

fh : Γh Ñ R
ˇ

ˇ

ˇ
Dgh P Gh, rh P Rh s.t. fhpτ rhsq “ rhpsh, ghpτ rh´ 1sq, ahq, @τ

)

7If the activation function is Lipschitz and monotone, then we can get cardinal regret guarantees for this
problem by using the difference function class.
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Also define F :“
ś

hPHp
Fh so that f “ tfhuhPHp P F . A model M is then fully determined by

pP, fq, so we denote V pP, f, πq :“ V pM, πq. Note that V pP, f, πq “ EτPPπ

”

ř

hPHp
fhpτ rhsq

ı

.

Remark 2. We note that all examples from Section 2.1 work with deterministic dynamics for U and
satisfy Assumption 1.

Giving statistically efficient algorithms for this framework comes with numerous challenges:

• Traditional RL incurs linear regret: We show in Lemma 3 that any method returning a possibly
time-dependent but memoryless policy can incur linear regret.

• POMDP results do not apply: PORMDPS cannot be viewed as a subcase of POMDPS with
latent states S ˆ U since s, u, a Ñ s1, u1 is not Markovian.8 Even if we considered the subclass of
PORMDPS where s, u, a Ñ s1, u1 is Markovian, which would be a subclass of reward machines,
this is a specific kind of overcomplete POMDP . Literature on overcomplete POMDPS is much
more scarce than their undercomplete counterpart. The only paper that gives guarantees for
overcomplete POMDPS to our knowledge is [37], which makes reward function fully observable.
This cannot apply to our setting, since our rewards have to be partially observable.

• Naive history-summarization is inefficient: It is overkill to use naive history-summarization
– where one treats the history τ rhs as the state sh and executes traditional RL. This is because
while policies are non-Markovian, state transitions are Markovian. It is unclear if we can leverage
this structure without running into exponential dependence on H . Moreover, a lot of work on RL
assumes that the reward is known, while learning the reward function is itself a hard problem here.

• Ensuring satisfactory utilization of additional structure: Examples like the combination lock
signal that there are intuitive ways to leverage a recursive structure on the internal states. In
the combination lock, one should wait for the “click” at each digit before moving onto the next
digit, giving us a polynomial dependence on A,H in sample complexity. It is unclear if general
algorithms for PORRL can implicitly leverage such structure to achieve polynomial guarantees.

3 Optimistic Algorithms for Cardinal PORRL
3.1 Improving over Naive History-Summarization with Model-Based Methods
In this section, we present two optimistic methods that leverage Markovian transitions in PORMDPS
– POR-UCRL and POR-UCBVI. We describe them briefly here, deferring details to Appendix D, E.

• POR-UCRL: At each timestep t, we maintain a least squares estimate f̂ t`1 of f and an MLE
estimate P̂t and define confidence sets Ct

hpδq that consider all fh with a small mean squared error
against f̂ t`1

h , such that Ct
F pδq “

śH
h“1 Ct

hpδq. The probability transition confidence sets Ct
Ppδq are

the exact same ones in UCRL [27]. At timestep t, following confidence-set optimism, we play an
optimistic policy rπt that maximizes its highest value V pM, πq over all models M P Ct

F ˆ Ct
P .

• POR-UCBVI: It is trickier to adapt ideas from UCBVI [5]. Yet again, we maintain a least squares
estimate f̂ t and an MLE estimate P̂t. Instead of confidence sets, we design trajectory-dependent
bonuses for F as btF pτ, δq “

ř

hPHp
maxfh,f 1

hPCt
hpδq fhpτ rhsq ´ f 1

hpτ rhsq. We use these to define
policy-level bonuses for F as btF pP, π, δq :“ Eτ„Pπ

‹
rbtF pτ, δqs. Then, we use the standard UCBVI

bonuses to similarly define policy level bonuses for P . At timestep t, following bonus-based
optimism, we play an optimistic policy π̃t that maximizes its bonus-boosted value under f̂ t, P̂t.

We show that POR-UCRL enjoys the guarantee below.

Theorem 1 (POR-UCRL Regret). Under Assumption 1, the regret RegretpT q of POR-UCRL is
bounded by the following with probability at least 1 ´ δ

rO
´´

pS
?
HA`

ÿ

hPHp

a

dE,hdC,h

¯?
T
¯

where dE,h “ dimE

`

Fh,
B
T

˘

and dC,h “ logpN pFh, 1{T, } ¨ }8qq.

Here, the first term comes from uncertainty in P. Under naive history-summarization, the first term
would be exponential in H since the modified state space of trajectories would have size ΩppSAqHq.

8Since observed state transitions are Markovian, PORMDPS are also not more general than POMDPS .
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Similar regret guarantees are given for POR-UCBVI in Theorem 8. Both guarantees are proved
by viewing each algorithm as a specific instance of a generic optimistic algorithm for PORRL (see
Appendix C, D, E). By a simple regret-to-PAC conversion, we also show that POR-UCRL has sample
complexity of rO

´

p2HS2A
ε2 `

p2dEdC

ε2

¯

, where dE :“ maxhPHp
dE,h, and dC :“ maxhPHp

dC,h.

POR-UCBVI has sample complexity rO
´

p2HSAmaxpH,Sq

ε2 `
p2dE maxpdC ,Hq logp1{δq

ε2

¯

.

Challenges: There are three main technical challenges in proving these guarantees. First, we have to
handle non-Markovian reward functions with Markovian transitions. Second, in POR-UCBVI, we
have the added challenge of ensuring that the bonus is uniformly optimistic over all history-dependent
policies. This is typically a doubly exponential set (ApSAq

H

), so a union bound does not help us.
Third, we are working with general function approximation for reward functions.

Remark 3 (Comparison to Past Results). Notice that with U “ ϕpτqJw with w P Rd and Hp “ tHu,
we are in the setting of [11]. Here, dE,H “ dC,H “ d, so POR-UCRL improves over their guarantees.
POR-UCBVI improves over their guarantees by a smaller amount. With respect to sample complexity
guarantees, we compare to [55]. While they use dueling feedback, our methods use cardinal feedback.
In their setting, U is the set of all histories and Hp “ tHu. Their best guarantee is from P-OMLE,

which makes rO
´

H2S2A
ε2 `

H2dE,HdC,H

ε2

¯

dueling oracle queries for tabular P . Both POR-UCRL
and POR-UCBVI have a smaller complexity for cardinal feedback queries.

3.2 Leveraging Recursive Structures Using Model-Free Methods
We have established that the model-based methods POR-UCRL and POR-UCBVI improve over naive
history-summarization and have a polypS,A,Hq guarantee in terms of transition function estimation.
However, we recall the last challenge mentioned in Section 2.3 – can they adapt to examples like the
combination lock, where there is a recursive structure on the internal states? Disappointingly, we will
see in Proposition 1 that the answer is no, since the eluder dimension of reward functions is Ah for
the combination lock. Since POR-UCRL and POR-UCBVI decouple the learning of reward functions
across timesteps, they are unable to incorporate a recursive structure on the reward functions.

In this light, we consider model-free methods. Unlike model-based methods that have to account for
Markovian transitions, we can simply use naive history-summarization here and treat τ rhs as the state
for Q-functions Qh. However, under history-summarization, there is a subtlety involved in choosing
the class Q of Q-functions given a known class M of models. Using product classes Q1 ˆ ¨ ¨ ¨ ˆ QH

is wasteful, since often exponentially many tuples in a product class cannot be realized by any model
M.9 Instead, one should consider the class of all individual tuples pQ1, . . . , QHq that can be realized
by a model M. In practice, this translates to the problem of good representation learning – one
should use a shared network for all Q-functions instead of using a different network for each timestep.
This is reflected in the experimental choices of [43].

Model-free methods rely on the Bellman error, which relates consecutive Q-functions and couples
their learning. It is thus natural to expect model-free methods like GOLF [32] to adapt to a recursive
structure on internal states and perform better than model-based methods. However, existing guar-
antees do not reflect this, since it turns out from Proposition 1 below that the Bellman eluder (BE)
dimension of the combination lock problem with the minimal Q-function class is still AH .

The issue is that the proof of GOLF bounds the h-step Bellman errors in a decoupled manner, which
is why it still fails to incorporate a recursive structure on internal states. Intuitively, one wants to wait
for Bellman errors at timesteps 1, . . . , h´ 1 to become small before bounding the Bellman error at h.
In this light, given a parameter α, we define the function class

Qpα, hq :“
␣

Q P Q | |EµlpQqrQl ´ TlQl`1s| ď α, @1 ď l ď h
(

that considers all tuples pQ1, . . . , QHq where the Bellman errors until step h are already low. We
can use this class to define the α-history aware Bellman eluder dimension (HABE) of Q as follows.
Recall that πQ is the policy that acts greedily according to Q “ pQ1, . . . QHq.

Definition 4. Consider the Bellman errors Φh :“
␣

Qh ´ThQh`1

ˇ

ˇQ P Qpα, h´1q
(

. Denote µhpQq

the distribution induced on τ rh´1s, ah by πQ and let Dh,Q :“ tµhpQq | Q P Qu. Let dimDE the dis-
tributional eluder dimension and define dimHABEpQ, α, εq :“ maxh dimDEpΦh,Dh,Qpα,h´1q, εq.

9The reader can use the example of the combination lock to convince themselves of this.
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Intuitively, α-HABE dimension measures how hard it is to reduce the Bellman error at timestep h if
the errors at previous timesteps 1, . . . , h´ 1 are already small. This captures the hardness of adapting
to the recursive structure on internal states one/a few timesteps at a time. We discuss in Appendix F.1
how the α-HABE dimension compares to the Bellman eluder dimension in general. We now give a
new guarantee for GOLF using the α-HABE dimension.

Theorem 2 (Modified GOLF Regret). Let Assumption 1 hold, and let dHABE “

dimHABEpQ, α,minpα,
a

1{T qq. Choose hyperparameter β “ c logpHTN pQ Y G, 1{T, } ¨ }8qq

for some universal constant c and the auxiliary function class G used in GOLF, and define
dC,Q :“ logpN pQ Y G, 1{T, } ¨ }8qq. Then, GOLF satisfies RegretpT q “ O

`

pH
a

dHABEdC,QT
˘

.

Using a regret-to-PAC conversion, we also show in Corollary 6 that the sample complexity of GOLF
is rO

´

p2H2dHABEdC,Q
ε2

¯

. As foreshadowed above, we now show in Proposition 1 that these guarantees
can be polynomial even when the the usual guarantees for GOLF as well as guarantees for our
model-based algorithms are exponential. Note that this improvement is achieved only given dense
intermediate feedback. Under sparse intermediate feedback, one cannot adapt to internal states "a
few timesteps at a time."

Proposition 1 (Dimensions for the Combination Lock). Consider the combination lock problem with
model class M “ P ˆ F and induced Q-function class Q.

• Under dense intermediate feedback with Hp “ rHs, the dimHABEpQ, αqA for all α ă q, while its
BE dimension is at least AH ´ 2. The eluder dimension for reward functions dimEpFh,

B
T q is at

least Ah for any h ď H .
• For sparse intermediate feedback with Hp “ tHu and any α ą 0, the α-HABE dimension, the BE

dimension and the eluder dimension of FH are all at least AH ´ 2.

We discuss in Appendix F.1 that in general, we do not have an inequality in either direction. However,
the α-HABE dimension is typically smaller.

4 Dueling to Optimism Reduction
The dueling and cardinal feedback models are intimately related. It is thus tempting to use algorithms
for cardinal PORRL to solve dueling PORRL. However, we detail why the “obvious” reduction from
dueling feedback to cardinal feedback fails. This both demonstrates the hardness of the problem and
motivates our reduction.

4.1 The Naive Reduction Always Fails
Consider a modified PORMDP M with S :“ S ˆ S, A :“ A ˆ A, P :“ P b P, where we run
the pair of policies π :“ pπ1, π2q and obtain observations based on the decoder-induced function
fhpτ1rhs, τ2rhsq :“ fhpτ1rhsq ´ fhpτ2rhsq. Consider the space of all such PORMDPS induced by
M, and denote it by M. Since cardinal feedback in M exactly corresponds to dueling feedback in M,
it is tempting to restrict to searching over Π ˆ Π and run any algorithm for cardinal PORRL on this
modified PORMDP M to achieve low dueling regret.

This fails because the feedback model and regret metric are fundamentally non-aligned in dueling
feedback, unlike in cardinal feedback. While the agent receives dueling feedback over the duel for
pπ1,t, π2,tq, dueling regret is instead concerned with duels for pπ‹, π1,tq and pπ‹, π2,tq. Running an
algorithm for cardinal PORRL on the modified MDP will maximize the dueling feedback itself. This
is achieved by playing one good and one really bad policy, unlike the two good policies needed for
low dueling regret. We formalize this in Lemma 4, showing that the naive reduction leads to linear
dueling regret for any PORMDP and any cardinal PORRL algorithm with sublinear regret.

4.2 Reducing Dueling to Optimistic Cardinal PORRL
The naive reduction fails because maximizing dueling feedback can lead to bad policies being
played. In this subsection, we present a white-box reduction where we ensure that we only play
potentially good policies for both π1,t and π2,t. We detail here how we can obtain an algorithm for
the dueling feedback problem from any optimistic algorithm for cardinal PORRL. We will focus
on the case of confidence sets here for smoother exposition, the much harder case of bonuses is
treated in Appendix G.2. A generic optimistic algorithm using confidence sets maintains confidence
sets CMpDt, δq using the collected dataset Dt of trajectories and feedback. We define it formally in
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Appendix C.1. For the reduction to work, we require that the confidence sets are well-designed, as
demanded by Assumption 2. This assumption is satisfied for confidence sets used by POR-UCRL.

Assumption 2 (Controlling Value Error due to Confidence Sets). M‹ P CMpDt, δq for arbitrary
sequences pPt, f

tq P CMpDt, δq, both
ˇ

ˇ

řT
t“1 V pPt, f

t, πtq ´ V pP‹, f
t, πtq

ˇ

ˇ “ rOpCP pM, T, δqq

and
ˇ

ˇ

řT
t“1 V pP‹, f

t, πtq ´ V pP‹, f‹, πtq
ˇ

ˇ “ rOpCF pM, T, δqq hold with probability 1 ´ δ{2 each.

The key insight is to use confidence sets from cardinal PORRL to search for π1,t and π2,t only
among policies that both have a chance of being optimal. Then one plays the most uncertain duel
among all possible choices for π1,t and π2,t. This generalizes and abstracts out ideas in [42], which
presents a specific algorithm to achieve low dueling regret in their model. We present the reduction
to optimism over confidence sets in Algorithm 1, the version for bonuses is in Appendix G.2. Define
VDpM, π, π1q “ V pM, πq ´ V pM, π1q. We compute the confidence sets CPpD, δq as the image of
CPpD, δq under P ÞÑ P. We compute CF pD, δq by treating tohuhPHp

as cardinal feedback in M. As
an example, for POR-UCRL, we perform a least squares fit for f and use Lemma 7 to define our
confidence sets again.

Algorithm 1 Reduction from Dueling to Cardinal Confidence-Set Optimism

1: Input Known reward function trhuHh“1, method to compute CMpD, δq Ø CPpD, δq ˆCF pD, δq

2: Initialize dataset D1 Ð tu, CMpD1, δq :“ P ˆ F
3: for t “ 1, ..., T do
4: Compute Πt “

!

π P Π
ˇ

ˇ

ˇ
DM P CMpDt, δq s.t. V pM, π, π1q ě 0 @π1 P Π

)

{Candidates π‹}

5: Play pπ1,t, π2,tq P argmax
π,π1PΠt

max
M,M

1
PCMpDt,δq

VDpM, π, π1q ´ VDpM
1
, π, π1q {Most uncertain duel}

6: Observe trajectories τi,t “
␣

psti,h, a
t
i,hq

(H

h“1
along with feedback tohuhPHp

7: Update Dt to Dt`1 using the data and compute CPpDt`1, δq, CF pDt`1, δq

8: end for

We then get the following regret guarantee and the corresponding corollary.

Theorem 3 (Reduction from Dueling to Confidence-Set-Based Optimism). If the confidence sets
CMpDt, δq satisfy Assumption 2, then the dueling regret RegretDpT q of Algorithm 1 is given by

RegretDpT q “ rOpCP pM, T, δq ` CF pM, T, δqq

Note that complexity parameter CF depends on M. It is a priori unclear how the complexity of M
relates to that of M. Fortunately, Lemma 2 below settles this, and we can then use our results for
POR-UCRL to get Corollary 1 below.

Lemma 2 (Relating F and F). For any function class F , dimEpF , εq ď 9 dimEpF , ε{2q.

Corollary 1 (Dueling Regret using POR-UCRL Confidence Sets). The confidence sets from POR-
UCRL satisfy Assumption 2 and using them in Algorithm 1 leads to the following regret bound
RegretDpT q “ rO

´´

pS
?
HA`

ř

hPHp

a

dE,hdC,h

¯?
T
¯

.

5 Conclusions and Future Work
In this work, we have introduced PORMDPS and their analysis as a way to better model internal
states of humans and intermediate feedback in RLHF. We have introduced two statistically efficient
algorithms for handling partially observed reward-states and have shown that they improve over naive
history summarization. We have noted that these methods subsume as well as improve over a lot of
past work in RLHF. We have studied how one can further leverage a recursive structure over internal
states using model-free methods. For this purpose, we have defined a new notion of dimension, the
α-HABE dimension, that captures the hardness of utilizing the recursive structure. Finally, we have
also provided a novel reduction from dueling regret to optimistic algorithms for cardinal regret. We
hope that our ideas lay the groundwork for further theoretical understanding of the statistical limits
of learning good policies when interacting with “stateful” feedback such as that of humans. Our
algorithms and proofs are presented in high generality and modularity in the appendix, and we hope
that they can be used to provide novel algorithms and bounds in the future.
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A Lemmas and Discussion
A.1 Relation between Vw and Vg
Lemma 1 (Replacing w with g). For any history-dependent policy π that selects an action ah „

πpτ rh´ 1s, shq, VwpM, πq “ VgpM, πq holds for any M.

Proof. By a slight abuse of notation, the following chain of equalities holds. Here, piq holds since
rhpsh, uh, ahq is a function of sh, uh, ah. Equation piiq holds since we have already conditioned on
τ rhs, which includes sh, ah. Equation piiiq holds by the definition of ghpτ rhsq as the conditional
distribution of uh given τ rhs.

VwpM, πq “ Eτu„Pw,π

»

–

ÿ

hPHp

rhpsh, uh, ahq

fi

fl

“
ÿ

hPHp

Eτu„Pw,π rrhpsh, uh, ahqs

“
ÿ

hPHp

Eτurhs„Pw,π rrhpsh, uh, ahqs

“
ÿ

hPHp

Eτrhs„Pπ

”

Eτurhs„Pw,π rrhpsh, uh, ahqs

ˇ

ˇ

ˇ
τ rhs

ı

piq
“

ÿ

hPHp

Eτrhs„Pπ

”

Euh,sh,ah„Pw,π rrhpsh, uh, ahqs

ˇ

ˇ

ˇ
τ rhs

ı

piiq
“

ÿ

hPHp

Eτrhs„Pπ

”

Euh„Pw,π rrhpsh, uh, ahqs

ˇ

ˇ

ˇ
τ rhs

ı

piiiq
“

ÿ

hPHp

Eτrhs„Pπ

“

Euh„ghpτrhsq rrhpsh, uh, ahqs
‰

“
ÿ

hPHp

Eτ„Pπ

“

Euh„ghpτrhsq rrhpsh, uh, ahqs
‰

“ Eτ„Pπ

»

–

ÿ

hPHp

Euh„ghpτrhsq rrhpsh, uh, ahqs

fi

fl

“ VgpM, πq

A.2 Ignoring Internal Reward-States is Bad for Alignment
We define traditional RL methods as those that output possibly time-dependent Markovian policies.
In this section, we provide a toy example showing that there is a PORMDP with good sublinear
regret guarantees where any time-dependent Markovian policy has value bounded away from the
maximum value. This means that traditional RL methods will always incur linear regret. We hope
that this illustrates that RL methods that ignore internal reward-states can be bad for alignment.

Lemma 3 (Markovian policies are not enough). There is a PORMDP where POR-UCRL and
POR-UCBVI achieve polypH,S,Aq

?
T regret, but any Markovian policy is at least 1

4 -suboptimal
and so any method that outputs Markovian (possibly time-dependent) policies will lead to linear
regret.

Proof. Consider a PORMDP M in the setting of [11] (see point (ii) below Definition 2) and set
S “ ts1, s2u, A “ ta1, a2u and w “ 1 P R. Let the transition matrix be Pps1 | s, aq “ 1

2 for all
s, a, s1. Let the starting state always be s1.

Consider the set T of all trajectories that have a2 until s2 appears, and then only have a1. Choose
ϕpτq “ 1pτ P T q. The best non-Markovian policy π‹ can follow this rule and achieve ϕpτq “ 1 for
all τ „ Pπ‹ . Thus, maxπPΠ V pM, πq “ 1, where Π is given by all history-dependent policies.
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On the other hand, consider a Markovian but potentially time-dependent policy π. If πpa2q “ 0, then
its value is zero. If πpa2q ą 0, then conditioned on the event that s2 appears first at timestep 1, the
expected total reward is at most π1pa2qp1 ´ π2pa2qq. Conditioned on the event that s2 appears first
at timestep 2, the expected total reward is at most π1pa2qπ2pa2q. Conditioned on seeing s2 at or after
h “ 3, the expected total reward is certainly at most 1. Using these crude inequalities, we can bound
the expected reward of a Markovian policy π by

π1pa2qp1 ´ π2pa2qq

2
`
π1pa2qπ2pa2q

4
`

H
ÿ

h“3

1

2h
ď
π1pa1qp2 ´ π2pa2qq

4
`

1

4
ď

1

2
`

1

4
“

3

4

This means that the value of any time-dependent Markovian policy is at most 3
4 and so any time-

dependent Markovian policy is at least 1
4 -suboptimal and incurs T

4 regret.

Recall that we defined traditional RL algorithms as those that output (possibly time-dependent)
Markovian policies. Clearly, any traditional RL algorithm in this sense will have at least T

4 regret,
which is linear regret.

A.3 The Naive Reduction from Dueling to Cardinal PORRL Fails
Lemma 4 (Naive Reduction Lower Bound). Using any algorithm for cardinal PORRL with sublinear
cardinal regret on M with policy class Π1 :“ Π ˆ Π to get a sequence pπ1,1, π2,1q, . . . , pπ1,T , π2,T q

leads to linear dueling regret for M whenever all policies π do not have the same value V pM, πq.

Proof. Define π‹ :“ argmaxπPΠ V pM, πq and let πmin :“ argminπPΠ V pM, πq. Then note that

max
π,π1PΠ

VDpM, π, π1q “ max
π,π1PΠ

V pM, πq ´ V pM, π1q

“ max
πPΠ

V pM, πq ` max
π1PΠ

“

´V pM, π1q
‰

“ max
πPΠ

V pM, πq ´ min
π1PΠ

V pM, π1q

“ V pM, π‹q ´ V pM, πminq

Under the naive reduction described in Section 4, a cardinal PORRL algorithm is used to maxi-
mize dueling feedback. If the algorithm has sublinear cardinal regret, then it will produce duels
pπ1,t, π2,tq, t “ 1 Ñ T , satisfying

T
ÿ

t“1

max
π,π1PΠ

VDpM, π, π1q ´ VDpM, π1,t, π2,tq “ opT q

From above, this means that
T
ÿ

t“1

rV pM, π‹q ´ V pM, π1,tqs ` rV pM, π2,tq ´ V pM, πminqs “ opT q

Now note that by definition of π‹ and πmin, both terms are positive. This is the key point. We thus
have

T
ÿ

t“1

V pM, π‹q ´ V pM, π1,tq “ opT q

T
ÿ

t“1

V pM, π2,tq ´ V pM, πminq “ opT q

This means that for dueling regret RegretDpT q, we have the following.

RegretDpT q “

T
ÿ

t“1

rV pM, π‹q ´ V pM, π1,tqs ` rV pM, π‹q ´ V pM, π2,tqs

“

T
ÿ

t“1

rV pM, π‹q ´ V pM, π1,tqs ` rV pM, π‹q ´ V pM, πminqs
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`

T
ÿ

t“1

rV pM, πminq ´ V pM, π2,tqs

“ opT q ` T rV pM, π‹q ´ V pM, πminqs

“ ΘpT q

Where the last line holds since all policies π do not have the same value V pM, πq, and so V pM, π‹q ´

V pM, πminq ą 0.
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B Regret-to-PAC Conversion
When learning in MDPs, we can turn any guarantee on the regret into a corresponding PAC guarantee,
the so-called “regret-to-PAC conversion” [30, 39, 53, 51]. Similarly, we want to convert guarantees
on the cardinal and dueling regret (see Section 2) into corresponding PAC guarantees, which are more
adherent to an offline setting. We provide distinct results for the cardinal and dueling regret below.

Lemma 5 (Cardinal regret to PAC). For T P N and δ P r0, 1s, let ALG be an algorithm for cardinal
PORRL producing a sequence of policies pπtqtPrT s with cardinal regret bounded with probability at
least 1 ´ δ as

T
ÿ

t“1

V pM, π‹q ´ V pM, πtq ď RpT, δq P R.

Then, a policy pπT „ π1, . . . , πT sampled uniformly satisfies with probability at least 1 ´ 2δ

V pM, π‹q ´ V pM, pπT q ď
RpT, δq

T
` 8Bp

c

logp1{δq

T
.

Proof. We consider the sequence of random variables Yt “ V pM, π‹q ´V pM, πtq @t P rT s. Through
the Hoeffding’s inequality on Yt and |rh| ď B we have

V pM, π‹q ´ V pM, pπT q “ ErV pM, π‹q ´ V pM, πtqs

ď
1

T

T
ÿ

t“1

´

V pM, π‹q ´ V pM, πtq
¯

` 8Bp

c

logp1{δq

T

with probability at least 1 ´ δ. Then, combining the latter inequality with the upper bound on the
regret and a union bound, we get

V pM, π‹q ´ V pM, pπT q ď
RpT, δq

T
` 8Bp

c

logp1{δq

T

with probability at least 1 ´ 2δ.

The latter result implies a PAC guarantee of the form PpV pM, π‹q ´ V pM, pπT q ě εq ď δ for some
ε ą 0 and δ P r0, 1s with a number of episodes of order rOp1{ε2q. An analogous result can be stated
for the dueling setting.

Lemma 6 (Dueling regret to PAC). For T P N and δ P r0, 1s, let ALG be an algorithm for dueling
PORRL producing a sequence of policy pairs pπ1,t, π2,tqtPrT s with dueling regret bounded with
probability at least 1 ´ δ as

T
ÿ

t“1

V pM, π‹q ´
V pM, π1,tq ` V pM, π2,tq

2
ď RDpT, δq P R.

Then, a policy pπT „ π1, . . . , πT sampled uniformly satisfies with probability at least 1 ´ 4δ

V pM, π‹q ´ V pM, pπT q ď
RDpT, δq

T
` 16Bp

c

logp1{δq

T
.

Proof. The proof proceeds as in the previous lemma by applying Hoeffding separately on the
sequences Y1,t “ V pM, π‹q ´ V pM, π1,tq and Y2,t “ V pM, π‹q ´ V pM, π2,tq, then applying a union
bound.
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C Proofs for General Optimistic Algorithms for Cardinal PORRL
C.1 Generic Model-Based Optimism using Confidence-Sets
We present a template to get regret bounds for a generic model-based optimistic algorithm using
confidence sets, which we will later instantiate into POR-UCRL and also use in our reduction from
the dueling PORRL to optimistic algorithms for cardinal PORRL.

A generic algorithm using confidence sets is determined by confidence sets CMpD, δq based on a
dataset D. Maintaining a running dataset Dt, at each step t, we run πt given by

πt, rMt :“ argmax
πPΠ,MPCMpDt,δq

V pP, f, πq

We obtain a trajectory τt „ Pπt
‹ and append it to Dt to get Dt`1, recompute confidence sets

CMpDt`1, δq, and continue. This algorithm is formally presented in Appendix C.1 below.

Algorithm 2 Generic Confidence-Set Optimism

1: Input Known family of reward functions tRhuHh“1, known model class M induced by known
probability transition kernel class P and known decoder-induced function class F , confidence
level δ.

2: Initialize dataset D1 Ð tu and CMpD1, δq Ð M.
3: for t “ 1, ..., T do
4: Compute the optimistic history dependent policy,

πt, rMt “ argmax
π, MPCMpDt,δq

V pM, πq

5: Observe trajectory τt “ tpsth, a
t
hqu

H

h“1 and feedback tohuhPHp
.

6: Update Dt`1 Ð Dt Y tτtu and compute new confidence set CMpDt`1, δq.
7: end for

We now make the following assumption about our confidence sets. It essentially controls the effect of
shrinking confidence sets for P and F on the value. Showing this assumption is the core of proving
regret bounds for any instantiation of this generic algorithm. We will see later that it is satisfied by
the confidence sets for POR-UCRL.

Assumption 3 (Controlling Value Error due to Confidence Sets, Refined Version). For a transition
kernel P‹ and function f‹, consider any sequence of policies πt and datasets Dt that contain tτiu

t
i“1

generated under pPπt
‹ , f

‹q. We require that M‹ P CMpDt, δq for all t with probability 1 ´ δ{16.
We require that there exist problem dependent functions CP pM, T, δq and CF pM, T, δq so that for
arbitrary sequences pPt, f

tq P CMpDt, δq, the following hold with probability 1 ´ δ{2 each.
ˇ

ˇ

ˇ

ˇ

ˇ

T
ÿ

t“1

V pPt, f
t, πtq ´ V pP‹, f

t, πtq

ˇ

ˇ

ˇ

ˇ

ˇ

“ rOpCP pM, T, δqq

ˇ

ˇ

ˇ

ˇ

ˇ

T
ÿ

t“1

V pP‹, f
t, πtq ´ V pP‹, f‹, πtq

ˇ

ˇ

ˇ

ˇ

ˇ

“ rOpCF pM, T, δqq

Theorem 4 (Regret for Confidence-Set Optimism). Under Assumption 3, any generic optimistic
algorithm using confidence sets CMpD, δq satisfies the regret bound

RegretpT q “ rO pCP pM, T, δq ` CF pM, T, δqq

Proof. Let rMt be given by rPt and rf t. Note the following inequalities, where piq holds with probability
1 by the optimistic definition of πt.

RegretpT q “

T
ÿ

t“1

V pP‹, f
‹, π‹q ´ V pP‹, f

‹, πtq
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piq
ď

T
ÿ

t“1

V prPt, rf
t, πtq ´ V pP‹, f

‹, πtq

ď

T
ÿ

t“1

V prPt, rf
t, πtq ´ V pP‹, rf

t, πtq
looooooooooooooooomooooooooooooooooon

pIq

`V pP‹, rf
t, πtq ´ V pP‹, f

‹, πtq
looooooooooooooooomooooooooooooooooon

pIIq

We now apply Assumption 3 to bound pIq and pIIq. We can use the assumption since Dt contains
trajectories tτiu

t
i“1 generated by Pπt

‹ , rf t P CF pDt, δq Ă F and rPt P CF pDt, δq. This immediately
gives us that with probability 1 ´ δ

RegretpT q “ rOpCF pM, T, δq ` CP pM, T, δqq

as desired.
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C.2 Generic Model-Based Optimism using Bonuses
We present a template to get regret bounds for a generic model-based optimistic algorithm using
bonuses, which we will later instantiate into POR-UCBVI and also use in our reduction from the
dueling PORRL to optimistic algorithms for cardinal PORRL.

A generic optimistic algorithm using bonuses relies on bonuses bDP pP, π, δq, bDF pP, π, δq that depend
on a policy π, transition kernel P and dataset D. It also relies on estimates P̂D and f̂D that depend
on D. Maintaining a running dataset Dt, at each step t, we run πt :“ argmaxπPΠ

rV pP̂Dt
, f̂Dt

, πq,
where rV pP̂Dt , f̂Dt , πq is given by:

V pP̂Dt
, f̂Dt

, πq ` bDt

F pP̂Dt
, π, δq ` zpBpqbDt

P pP̂Dt
, π, δq

where z is defined below. We obtain a trajectory τt „ Pπt
‹ and append it to Dt to get Dt`1, compute

new bonuses and estimates, and continue. This algorithm is formally presented in Appendix C.2.

Algorithm 3 Generic Bonus-Based Optimism

1: Input Known family of reward functions tRhuHh“1, method EstpDq to estimate P̂D and f̂D from
dataset D, bonus functions bDF pP, π, δq and bDP pP, π, δq, confidence level δ

2: Initialize D1 Ð tu, initialize f̂D1 , P̂D1
arbitrarily.

3: for t “ 1, ..., T do
4: Compute optimistic history dependent policy,

πt “ argmax
π

V pP̂Dt , f̂Dt , πq ` bDt

F pP̂Dt , π, δq ` zpBpqpbDt

P pP̂Dt , π, δqq

5: Observe trajectory τt “ tpsth, a
t
hqu

H

h“1 and feedback tohuhPHp .
6: Compute new estimates f̂Dt`1 , P̂Dt`1 Ð EstpDt`1q and compute new bonus functions

b
Dt`1

F pf̂Dt`1 , ¨, δq, b
Dt`1

P pP̂Dt`1 , ¨, δq.
7: end for

We now make the following assumption about our bonuses. Showing this assumption is the core
of proving regret bounds for any instantiation of this generic algorithm. We will see later that it is
satisfied by the bonuses for POR-UCBVI.

Assumption 4 (Controlling Value Error via Bonuses). For a transition kernel P‹ and function f‹,
consider any sequence of policies πt and datasets Dt that contain tτiu

t
i“1 generated under pPπt

‹ , f
‹q.

We require that for sequences P̂Dt
and f̂Dt

and any sequence f t P F , the following hold.

• Bounding effect of error in F: With probability 1 ´ δ{32, for any P and uniformly over all
policies π, |V pP, f̂Dt

, πq´V pP, f‹, πq| ď bDt

F pP, π, δq and there is a functionCF pM, T, δq

so that
řT

t“1 b
Dt

F pP‹, πt, δq “ rOpCF pM, T, δqq with probability 1 ´ δ{32
• Bounding effect of error in P: For any function µ : ΓH Ñ R bounded by D, there is a

function zpDq ě D so that the following holds uniformly over all policies π with probability
1 ´ δ{32.

Eτ„pP̂Dt qπ
µpτq ´ Eτ„Pπ

‹
µpτq ď zpDqbDt

P pP‹, π, δq

The statement also holds if we switch P‹ and P̂Dt . Additionally, the statement holds for
a suitable D if we replace Eτ„Pπµpτq with bPpP, π, δq or bF pP, π, δq.10 Finally, there is
a function CP pM, T, δq so that

řT
t“1 b

Dt

P pP‹, πt, δq “ rOpCP pM, T, δqq with probability
1 ´ δ{32.

Theorem 5 (Regret for Bonus-Based Optimism). Under Assumption 4, with z1pDq “ zpDq `

zp2Dq ` zp2zpDqq, any generic optimistic algorithm using bonuses satisfies

RegretpT q “ rO pCF pM, T, δq ` z1pBpqCP pM, T, δqq

10This would instantly hold with D “ Bp if bF pP, π, δq :“ Eτ„PπbF pτ, δq for some trajectory level bonus
bF pτ, δq, and similarly for P .
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Proof. Note that we can use Assumption 4 since Dt contains trajectories tτiu
t
i“1 generated by

Pπt
‹ , f̂Dt P F is computed using Dt and P̂Dt is computed using Dt. Also note that WLOG,
bDt

P pP, π, δq ď 2 always holds since we can otherwise clip it at 2 and our assumption will still hold.
Similarly, WLOG bDt

F pP, π, δq ď 2zpBpq, otherwise we can clip it at 1 and our assumption will still
hold. Now note the following inequalities.

RegretpT q “

T
ÿ

t“1

V pP‹, f
‹, π‹q ´ V pP‹, f

‹, πtq

piq
ď

T
ÿ

t“1

V pP̂Dt
, f‹, π‹q ` zpBpqpbDt

P pP̂Dt
, π‹, δqq ´ V pP‹, f

‹, πtq

piiq
ď

T
ÿ

t“1

V pP̂Dt
, f̂Dt

, π‹q ` bDt

F pP̂Dt
, π‹, δq ` zpBpqpbDt

P pP̂Dt
, π‹, δqq ´ V pP‹, f

‹, πtq

piiiq
ď

T
ÿ

t“1

V pP̂Dt , f̂Dt , πtq ` bDt

F pP̂Dt , πt, δq ` zpBpqpbDt

P pP̂Dt , πt, δqq ´ V pP‹, f
‹, πtq

“

T
ÿ

t“1

V pP̂Dt
, f̂Dt

, π‹q ´ V pP‹, f
‹, πtq ` bDt

F pP̂Dt
, πt, δq ` zpBpqpbDt

P pP̂Dt
, πt, δqq

“

T
ÿ

t“1

V pP̂Dt
, f̂Dt

, π‹q ´ V pP̂Dt
, f‹, π‹q ` V pP̂Dt

, f‹, π‹q ´ V pP‹, f
‹, πtq

`

T
ÿ

t“1

bDt

F pP̂Dt , πt, δq ` zpBpqpbDt

P pP̂Dt , πt, δqq

Here, inequality piq holds with probability 1 ´ δ{16 by the second point in Assumption 4. Inequality
piiq holds with probability 1 ´ δ{16 by the first point in Assumption 4. Inequality piiiq holds with
probability 1 by the optimistic definition of πt. Continuing, we have

RegretpT q
pivq

ď 2
T
ÿ

t“1

bDt

F pP̂Dt , πt, δq ` zpBpqpbDt

P pP̂Dt , πt, δqq

pvq

ď 2
T
ÿ

t“1

bDt

F pP‹, πt, δq ` 2zpBpqpbDt

P pP‹, πt, δqq ` zpBpqpbDt

P pP‹, πt, δqq

` 2zpzpBpqqpbDt

P pP‹, πt, δqq

“ O

˜

T
ÿ

t“1

bDt

F pP‹, πt, δq ` z1pBpqpbDt

P pP‹, πt, δqq

¸

Here, inequality pivq holds with probability 1 ´ δ{8 by a union bound over the first and the second
point in Assumption 4. Finally, inequality pvq holds with probability 1 ´ δ{4 by a union bound over
four applications of the second point of Assumption 4. Finally, we use a union bound over both points
of Assumption 4 to conclude that with probability 1 ´ δ{8

O

˜

T
ÿ

t“1

bDt

F pP‹, πt, δq ` z1pBpqpbDt

P pP‹, πt, δqq

¸

“ rO pCF pM, T, δq ` z1pBpqCP pM, T, δqq

By taking a union bound over the events of all inequalities above, we have that with probability 1 ´ δ

RegretpT q “ rO pCF pM, T, δq ` z1pBpqCP pM, T, δqq

as desired.
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C.3 Generic Model-Free Optimism

Algorithm 4 Generic Model-Free Optimism

1: Input Known Bellman-complete class of Q-functions Q, confidence level δ.
2: Initialize dataset D1 Ð tu and CQpD1, δq Ð Q.
3: for t “ 1, ..., T do
4: τ r0s Ð pq

5: for h “ 1, . . . H do
6: Play ath, Qt

h Ð argmaxa,QPCQpDt,δq Qhpτ rhs, aq and observe feedback oth
7: end for
8: Update Dt`1 Ð Dt Y tτ, pot1, . . . o

t
Hu

9: Compute CQpDt`1, δq

10: end for

Note that the method for choosing actions ath at time t induces a history dependent policy πt, whose
suboptimality is what we use to define regret. Regret is still given by

RegretpT q “

T
ÿ

t“1

V pM‹, π‹q ´ V pM‹, πtq

We now make the following assumption about our confidence sets. Showing this assumption is the
core of proving regret bounds for any instantiation of this generic algorithm. We know that this
is satisfied by GOLF using the BE-dimension. We will show that in our case, it is also satisfied
by a more refined notion known as the α-HABE dimension (the α-history aware Bellman eluder
dimension).

Assumption 5. For a Q-function Q‹ induced by model M‹, consider any sequence of policies πt and
datasets Dt that contain tτiu

t
i“1 generated under M‹. We require that Q‹ P CQpDt, δq for all t with

probability 1 ´ δ{16. We require that there exists a problem dependent function CQpQ, T, δq, so that
for arbitrary sequences Qt P CQpDt, δq, the following holds for all h with probability 1 ´ δ{2.

t
ÿ

j“1

|EµhpQtqrQt
h ´ ThQj`1

h s| ď CQpQ, T, δq

Theorem 6 (Regret for Generic Model-Free Optimism). If the confidence sets CQpD, δq used in
Algorithm 4 satisfy Assumption 5, then the regret of Algorithm 4 is bounded by

RegretpT q “ O pHCQpQ, T, δqq

Proof. Note that V pM‹, π‹q “ maxaQ
‹
1ps1, aq ď maxaQ

t
1ps1, aq for all t, giving us the following

result by the policy loss decomposition in [29].

RegretpT q “

T
ÿ

t“1

V pM‹, π‹q ´ V pM‹, πtq

ď

T
ÿ

t“1

max
a

Qt
1ps1, aq ´ V pM‹, πtq

“

T
ÿ

t“1

H
ÿ

h“1

EµhpQtqrQt
h ´ ThQj`1

h s

“

H
ÿ

h“1

T
ÿ

t“1

EµhpQtqrQt
h ´ ThQj`1

h s

“ OpHCQpQ, T, δqq

where the last line holds by Assumption 5.
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D Details and Proofs for Cardinal POR-UCRL
We now instantiate Algorithm 2 using standard confidence sets to get POR-UCRL. We show that
they satisfy Assumption 3 and get regret bounds for the algorithm. Note that our algorithm is
crucially different from naively summarizing the history to define a modified state space, since we
are separating the use of history summarization for getting confidence sets f from using only the
current state while learning the Markovian transitions P. In this case, it is a priori unclear if we can
use ideas from optimism to prove guarantees with a favorable (non-exponential) dependence on the
complexity of transitions.

Recall that given a dataset of the first t trajectory samples tτiu
t
i“1 and an index h P rHs, we consider

the following least squares objective to estimate f :

pf t`1
h “ argmin

fhPFh

t
ÿ

i“1

`

σhpfhpτirhsqq ´ oih
˘2

Simple least squares guarantees imply the lemma below.

Lemma 7 (Concentration for σ ˝ fh). Define

MSEh,tpfh, f
1
hq :“

t
ÿ

i“1

`

σhpfhpτirhsqq ´ σhpf 1
hpτirhsqq

˘2

Also define β̄h,tpδq “ η2h log

ˆ

NpFh,
B
T ,}¨}8q
δ

˙

` αh,t with αh,t :“
tB`tηh logp t

δ q
T . Then f‹

h simulta-

neously satisfies MSEh,tpf
‹
h ,

pf
pt`1q

h q ď β̄h,t
`

δ
2t2H

˘

for all h, t with probability 1 ´ δ{32.

Proof. We apply Lemma 6 in [10] and the last statement in its proof to each h separately with the
function class in the lemma set to tσh˝fh|fh P Fhu, P “ 1, xt,p “ xt,1 “ τtrhs and misspecification
ε “ 0 (decoupled from the Eluder dimension’s ε). We also note that oth are ηh-subgaussian samples
with mean σhpfhpτ rhsqq. This gives us that each of event indexed by h, t below holds with probability
at least 1 ´ δ

2t2H .

t
ÿ

i“1

`

σhpfhpτirhsqq ´ σhpf 1
hpτirhsqq

˘2
ď β̄h,t

ˆ

δ

2t2H

˙

So, the events all simultaneously hold with probability at least 1 ´ δ by a union bound.

Recall the definition of our confidence sets below.

Confidence Sets for POR-UCRL. We instantiate the generic optimistic algorithm using confi-
dence sets by defining CMpDt, δq :“ Ct

Ppδq ˆ Ct
F pδq as our confidence sets below. We name the

resulting algorithm POR-UCRL. We use the data from trajectories tτiu
t
i“1 to build the confidence

sets Ct`1
F pδq “

ś

h C
t`1
h pδq with Ct`1

h pδq defined below, where βh,tpδq :“ β̄h,t
`

δ
2t2H

˘

.

Ct`1
h pδq :“

!

fh P Fh

ˇ

ˇ

ˇ
MSEh,tpf

‹
h ,

pf
pt`1q

h q ď βh,t pδq

)

We also use the MLE estimate for P after t episodes to define P̂tp¨ | s, aq :“ Ntps,a,s1
q

Ntps,aq
. Now for

ζpn, δq “ 2
b

S logp2q`logpnpn`1qSA{δq

2n , define Ct
Ppδq as below:

!

P
ˇ

ˇ

ˇ
}Pp¨ | s, aq ´ P̂tp¨ | s, aq}1 ď ζpNtps, aq, δq@s, a

)

Confidence Sets for POR-UCRL in case P‹ is known. For known-model UCRL, the confidence
sets Ct

F pδq are still as above, but Ct
Ppδq :“ tP‹u

For completeness, we repeat the algorithm POR-UCRL here, which is an instantiation of Algorithm 2,
the generic optimistic algorithm using confidence sets.
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Algorithm 5 POR-UCRL

1: Input: Known family of reward functions tRhuHh“1, known probability transition kernel class P
and known decoder-induced function class F , confidence level δ.

2: Initialize dataset D1 Ð tu and CF pD1, δq Ð
śH

h“1 Fh, CPpD1, δq Ð P .
3: for t “ 1, ..., T do
4: Compute the optimistic history dependent policy,

πt, rft, rPt “ argmax
π, FPCF pDt,δq,PPPpDt,δq

V pP, f, πq

5: Collect trajectory τt “ tpsth, a
t
hqu

H

h“1 and feedback tohuhPHp
by sampling from Pπt

‹ with
true decoder-induced function f‹.

6: Update Dt`1 Ð Dt Y tτtu, P̂t`1, f̂
t`1
h for all h

7: Compute new confidence sets CF pDt`1, δq Ð
śH

h“1 C
t`1
h pδq and CPpDt`1, δq where

Ct`1
h pδq Ð

!

fh P Fh

ˇ

ˇ

ˇ
MSEh,tpf

‹
h ,

pf
pt`1q

h q ď βh,t pδq

)

CPpDt`1, δq Ð

!

P
ˇ

ˇ

ˇ
}Pp¨ | s, aq ´ P̂t`1p¨ | s, aq}1 ď ζpNt`1ps, aq, δq@s, a

)

8: end for

We will now show our regret bound.

Theorem 1 (POR-UCRL Regret). Under Assumption 1, the regret RegretpT q of POR-UCRL is
bounded by the following with probability at least 1 ´ δ

rO
´´

pS
?
HA`

ÿ

hPHp

a

dE,hdC,h

¯?
T
¯

where dE,h “ dimE

`

Fh,
B
T

˘

and dC,h “ logpN pFh, 1{T, } ¨ }8qq.

D.1 Showing that Assumption 3 is Satisfied
D.1.1 Bounding Reward Model Deviations
Lemma 8 (Bounding Reward Model Deviations). Consider decoder-induced functions tfhuhPHp

satisfying |fh| ď B that induce value functions V pP, f, πq. For any sequence of policies πt, if the
confidence Ct

F pδq is generated using data τi „ Pπi
‹ , i “ 1 Ñ t and rf t P Ct

F pδq is an arbitrary
sequence of functions, then we have the following with probability 1 ´ δ{4.

ˇ

ˇ

ˇ

ˇ

ˇ

T
ÿ

t“1

V pP‹, rf
t, πtq ´ V pP‹, f

‹, πtq

ˇ

ˇ

ˇ

ˇ

ˇ

is bounded by

O

¨

˝Bp
a

T logpT {δq `
ÿ

hPHp

Bκ2,hdE,h `
ÿ

hPHp

κ2,h

b

dE,hβh,T pδqT

˛

‚

Proof.

T
ÿ

t“1

V pP‹, rf
t, πtq ´ V pP‹, f

‹, πtq “

T
ÿ

t“1

Eτ„Pπt
‹

«

H
ÿ

h“1

rf thpτ rhsq

ff

´ Eτ„Pπt
‹

«

H
ÿ

h“1

f‹
hpτ rhsq

ff

“

T
ÿ

t“1

Eτ„Pπt
‹

»

–

ÿ

hPHp

rf thpτ rhsq

fi

fl ´ Eτ„Pπt
‹

»

–

ÿ

hPHp

f‹
hpτ rhsq

fi

fl

“

T
ÿ

t“1

Eτ„Pπt
‹

»

–

ÿ

hPHp

rf thpτ rhsq ´ f‹
hpτ rhsq

fi

fl
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“

T
ÿ

t“1

»

–

ÿ

hPHp

rf thpτtrhsq ´ f‹
hpτtrhsq `X1,t `X2,t

fi

fl

piiq
ď

T
ÿ

t“1

»

–

ÿ

hPHp

rf thpτtrhsq ´ f‹
hpτtrhsq

fi

fl ` O
´

Bp
a

T logpT {δq

¯

where

X1,t :“ Eτ„Pπ

»

–

ÿ

hPHp

rf thpτ rhsq

fi

fl ´

»

–

ÿ

hPHp

rf thpτtrhsq

fi

fl

X2,t :“

»

–

ÿ

hPHp

f‹
hpτtrhsq

fi

fl ´ Eτ„Pπ

»

–

ÿ

hPHp

f‹
hpτ rhsq

fi

fl

Inequality piq follows by the definition of πt and rf th – that is, by optimism. Inequality piiq holds
with probability at least 1 ´ δ since X1,t and X2,t are both martingales with respect to the filtration
Gt given by the data of trajectories tτsu

t´1
s“1. Also, |X1,t|, |X2,t| ď Bp. We can thus apply the

Azuma-Hoeffding inequality twice to obtain inequality piiq.

Continuing, note the following.

T
ÿ

t“1

V pP‹, rf
t, πtq ´ V pP‹, f

‹, πtq

ď

«

H
ÿ

h“1

f thpτtrhsq ´ f‹
hpτtrhsq

ff

`Bp
a

T logpT {δq

ď

«

H
ÿ

h“1

κ2,hσhpf thpτtrhsqq ´ κ2,hσhpf‹
hpτtrhsqq

ff

`Bp
a

T logpT {δq

ď κ2,h

T
ÿ

t“1

ÿ

hPHp

max
fh,f 1

hPWt
hpδq

σhpfhpτtrhsqq ´ σhpf 1
hpτtrhsqq

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

“:γ̄h,tpτtrhs,δq

`Bp
a

T logpT {δq

“ κ2,h
ÿ

hPHp

«

T
ÿ

t“1

γ̄h,tpτtrhs, δq

ff

`Bp
a

T logpT {δq

The sum of these maximum uncertainty evaluations can be upper bounded using the Eluder dimension.
The inequality below holds by applying Lemma 3 in [10] for each h separately, with the function
class in the lemma set to tσh ˝ fh|fh P Fhu, P “ 1, xt,p “ xt,1 “ τtrhs and misspecification ε “ 0
(decoupled from the Eluder dimension’s ε). We also recall that oth are ηh-subgaussian samples with
mean σhpfhpτtrhsqq. We obtain

T
ÿ

t“1

γ̄h,tpτtrhs, δq ď O
ˆ

BdE,h `

b

dE,hβh,T pδqT

˙

Where dE,h “ dimE

`

Fh,
B
T

˘

is the Eluder dimension of Fh and βh,T pδq “ β̄h,t
`

δ
2t2H

˘

. Therefore,
we have our result.

T
ÿ

t“1

V pP‹, rf
t, πtq ´ V pP‹, f

‹, πtq
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is bounded by

O

¨

˝

ÿ

hPHp

Bκ2,hdE,h `
ÿ

hPHp

κ2,h

b

dE,hβh,T pδqT `Bp
a

T logpT {δq

˛

‚

Note that this entire argument can be repeated with f‹ and rf t switched, by the symmetry of the
definition of γ̄h,tpτtrhs, δq and the fact that the negative of a martingale is also a martingale.

D.1.2 Bounding Probability Model Deviations
Lemma 9 (Bounding Probability Model Deviations). Consider an arbitrary sequence of functions
f t P F satisfying |fh| ď B that induce value functions V pP, f, πq. For any sequence of policies πt,
if the confidence Ct

Ppδq is generated using data that includes τi „ Pπi
‹ , i “ 1 Ñ t and rPt P Ct

Ppδq is
an arbitrary sequence of transition structures, then we have the following with probability 1 ´ δ{4.
ˇ

ˇ

ˇ

ˇ

ˇ

T
ÿ

t“1

V prPt, f
t, πtq ´ V pP‹, f

t, πtq

ˇ

ˇ

ˇ

ˇ

ˇ

ď O
´

cδBp
?
SAHT ` cδBpHSA`Bp

a

pT logpT {δq

¯

where cδ :“ 8
a

S logp2q ` logpHTSA{δq.

Proof. We first show the following.

Lemma 10.
T
ÿ

t“1

V prPt, f
t, πtq ´ V pP‹, f

t, πtq ď

T
ÿ

t“1

H
ÿ

h“1

2pζpNtps
t
h, a

t
hq, δq ` O

´

Bp
a

pT logpT {δq

¯

Recall that we denote the Bellman operator by T π where T πf “ Ea„πPf . Momentarily define the
following for τ “ pτl´1, sl, τ

1q, where τl´1 is an arbitrary trajectory of length l ´ 1 ď H , and sl is
an arbitrary state.

V t
l,Ppτl´1, slq :“ Eτ 1„Pπt

«

H
ÿ

h“l

rf thpτ rhsq

ff

“ Eτ 1„Pπt

»

–

ÿ

hPHp,hěl

rf thpτ rhsq

fi

fl

So in the definition above, the first l´1 observations in τ come from τl´1 while the rest are generated
by the input P starting with state sl. Note that V pP, f t, πtq “ V t

1,PpH, s1q. Also note that by the
Bellman equation, we have the following.

V t
l,Ppτtrl ´ 1s, slq “ Ea„πt

“

f tl pτtrlsq
‰

` Ea„πt

“

Es1„Pp¨|sl,aqV
t
l`1,Pppτtrl ´ 1s, s, aq, s1qq

‰

“ Ea„πt

“

f tl pτtrlsq
‰

` Ea„πt

“

Pp¨ | sl, aqJV t
l`1,Pppτtrl ´ 1s, sl, aq, ¨q

‰

Now use τt to set τl´1 :“ τtrl ´ 1s and define the following.

∆t
lpslq :“ V t

l,P‹
pτtrl ´ 1s, slq ´ Vl,rPt

pτtrl ´ 1s, slq

Note that
∆t

1ps1q “ V prPt, f
t, πtq ´ V pP‹, f

t, πtq (1)
The computation above then gives us the following.

∆t
lps

t
lq “ Ea„πt

”

rPtp¨ | stl , aqJV t
l`1,rPt

ppτtrl ´ 1s, stl , aq, ¨qq

ı

´ Ea„πt

“

P‹p¨ | stl , aqJV t
l`1,P‹

ppτtrl ´ 1s, stl , aq, ¨qq
‰

“ rPtp¨ | stl , a
t
lq

JV t
l`1,rPt

pτtrls, ¨q ´ P‹p¨ | stl , a
t
lq

JV t
l`1,P‹

pτtrls, ¨q ` Yl,t ` Zl,t
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where Yl,t and Zl,t are stochastic processes defined below.

Yl,t :“ P‹p¨ | stl , aqJV t
l`1,P‹

pτtrls, ¨q ´ Ea„πt

“

P‹p¨ | stl , aqJV t
l`1,P‹

ppτtrl ´ 1s, stl , aq, ¨q
‰

Zl,t :“ Ea„πt

”

rPtp¨ | stl , aqJV t
l`1,rPt

ppτtrl ´ 1s, stl , aq, ¨q
ı

´ rPtp¨ | stl , aqJV t
l`1,rPt

pτtrls, ¨qq

Consider the filtration Gl,t induced by the data of tτsu
t´1
s“1 Y τtrl ´ 1s Y tstlu. Since atl „ πt and

pτtrl ´ 1s, stl , a
t
lq “ τtrls, we get that ErYl,t|Gl,ts “ ErZl,t|Gl,ts “ 0. So, one can see that both

processes are martingales over Gl,t. Also note that |Yl,t|, |Zl,t| ď p. We thus have that

∆t
lps

t
lq “

”

rPtp¨ | stl , a
t
lq ´ P‹p¨ | stl , a

t
lq

ı

V t
l`1,rPt

pτtrls, ¨qq

` P‹p¨ | stl , a
t
lq

J
”

V t
l`1,rPt

pτtrls, ¨qq ´ V t
l`1,P‹

pτtrls, ¨q
ı

` Yl,t ` Zl,t

“

”

rPtp¨ | stl , a
t
lq ´ P‹p¨ | stl , a

t
lq

ı

V t
l`1,rPt

pτtrls, ¨qq ` P‹p¨ | stl , a
t
lq

J∆t
l`1ps1q ` Yl,t ` Zl,t

“

”

rPtp¨ | stl , a
t
lq ´ P‹p¨ | stl , a

t
lq

ı

V t
l`1,rPt

pτtrls, ¨qq ` Es1„P‹p¨|stl ,a
t
lq

“

∆t
l`1ps1q

‰

` Yl,t ` Zl,t

“

”

rPtp¨ | stl , a
t
lq ´ P‹p¨ | stl , a

t
lq

ı

V t
l`1,rPt

pτtrls, ¨qq ` ∆t
l`1pstl`1q ` Ul,t ` Yl,t ` Zl,t

where
Ul,t :“ Es1„P‹p¨|stl ,a

t
lq

“

∆t
l`1ps1q

‰

´ ∆t
l`1pstl`1q

Consider the filtration Ḡl,t defined by the data of tτsu
t´1
s“1 Y τtrls. Clearly, Ul,t is a martingale over

Ḡl,t. Also note that |Ul,t| ď p To conclude, we have that

∆t
lps

t
lq ´ ∆t

l`1pstl`1q “

”

rPtp¨ | stl , a
t
lq ´ P‹p¨ | stl , a

t
lq

ı

V t
l`1,rPt

pτtrls, ¨qq ` Ul,t ` Yl,t ` Zl,t

Using a telescoping sum over l for a fixed t and equation 1, we get that for any t, the following holds.

V prPt, f
t, πtq ´ V pP‹, f

t, πtq

“ ∆t
1ps1q

“

H
ÿ

l“1

”

rPtp¨ | stl , a
t
lq ´ P‹p¨ | stl , a

t
lq

ı

V t
l`1,rPt

pτtrls, ¨qq ` Ul,t ` Yl,t ` Zl,t

V prPt, f
t, πtq ´ V pP‹, f

t, πtq

ď

H
ÿ

l“1

Bp
›

›

›

rPtp¨ | stl , a
t
lq ´ P‹p¨ | stl , a

t
lq

›

›

›

1
` Ul,t ` Yl,t ` Zl,t

ď

H
ÿ

l“1

Bp
›

›

›

rPtp¨ | stl , a
t
lq ´ P̂tp¨ | stl , a

t
lq

›

›

›

1
`Bp

›

›

›
P‹p¨ | stl , a

t
lq ´ P̂tp¨ | stl , a

t
lq

›

›

›

1
` Ul,t ` Yl,t ` Zl,t

(2)

Until equation 2, all statements have held with probability 1 and did not use any facts about rPt. The
last inequality also holds with probability 1 and uses the design of the confidence sets. Now, note the
following well known concentration lemma. See, for example, [50].

Lemma 11. For ζpn, δq “ 8
b

S logp2q`logpnpn`1qSA{δq

2n and

Ct
Ppδq “

!

P
ˇ

ˇ

ˇ
}Pp¨ | s, aq ´ P̂tp¨ | s, aq}1 ď ζpNtps, aq, δq@s, a

)

the true model P‹ P Ct
Ppδq for all t ě 1 with probability at least 1 ´ δ{32.
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Applying the lemma twice and applying a union bound imply that the following holds with probability
1 ´ δ{8.

T
ÿ

t“1

V prPt, f
t, πtq ´ V pP‹, f

t, πtq

piq
ď

H
ÿ

l“1

2BpζpNtps
t
l , a

t
lq, δq ` Ul,t ` Yl,t ` Zl,t

“

T
ÿ

t“1

H
ÿ

h“1

2BpζpNtps
t
h, a

t
hq, δq `

»

–

T
ÿ

t“1

ÿ

hPHp

Uh,t ` Yh,t ` Zh,t

fi

fl

piiq
ď

T
ÿ

t“1

H
ÿ

h“1

2BpζpNtps
t
h, a

t
hq, δq ` O

´

Bp
a

pT logpT {δq

¯

Note that inequality piq is subtle since we could have used more data than that from τi, i “ 1 Ñ t to
construct Ct

P . The inequality still holds since ζpn, δq is decreasing in n. Also, inequality piiq holds
by the Azuma-Hoeffding inequality.

Now note that the whole argument above can be repeated with P‹ and rPt switched, since the negative
of a martingale is also a martingale. So, we have that with probability 1 ´ δ{4

ˇ

ˇ

ˇ

ˇ

ˇ

T
ÿ

t“1

V prPt, f
t, πtq ´ V pP‹, f

t, πtq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

T
ÿ

t“1

H
ÿ

h“1

2BpζpNtps
t
h, a

t
hq, δq ` O

´

Bp
a

pT logpT {δq

¯

Finally, we need the following easy lemma, proved in [50].

Lemma 12. Let cδ :“ 8
a

S logp2q ` logpHTSA{δq. Then the following holds almost surely.

T
ÿ

t“1

H
ÿ

h“1

2BpζpNtps
t
h, a

t
hq, δq ď cδBp

?
SAHT ` cδBpHSA

This establishes our claim.

D.2 Putting It All Together

Theorem 1 (POR-UCRL Regret). Under Assumption 1, the regret RegretpT q of POR-UCRL is
bounded by the following with probability at least 1 ´ δ

rO
´´

pS
?
HA`

ÿ

hPHp

a

dE,hdC,h

¯?
T
¯

where dE,h “ dimE

`

Fh,
B
T

˘

and dC,h “ logpN pFh, 1{T, } ¨ }8qq.

Proof. We can now combine Lemmas 7and 11 to conclude that M‹ P CMpDt, δq for all t with
probability 1 ´ δ{16. We can now combine this observation with Lemmas 8 and 9 to observe that
Assumption 3 is satisfied by POR-UCRL. By Theorem 4, the following holds with probability 1 ´ δ.

RegretpT q “ O

¨

˝cδBp
?
SAHT ` cδBpHSA`

ÿ

hPHp

Bκ2,hdE,h `
ÿ

hPHp

κ2,h

b

dE,hβh,T pδqT

˛

‚

where cδ “ 8
a

S logp2q ` logpHTSA{δq, dE,h “ dimE

`

Fh,
B
T

˘

is the Eluder dimension of Fh

and βh,T pδq “ βh,t

´

δ
2t2H “ rOpB2η2hdC,hq

¯

. This is because all the terms dependent on p get
absorbed by the first term in our expression below.
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We further refine it by ignoring terms independent of T and using the fact that βh,T pδq “ rOpdC,hq to
get that

RegretpT q “ rO

¨

˝pS
?
AHT `

ÿ

hPHp

a

dE,hdC,hT

˛

‚

Analogously, we can provide a sample complexity result for POR-UCRL.

Corollary 2 (POR-UCRL Sample complexity). Let ε ą 0, δ P r0, 1s. Ignoring polynomial terms
independent of ε, we can bound the sample complexity Npε, δq of POR-UCRL as follows

rO
ˆ

p2HS2A

ε2
`
p2dEdC
ε2

˙

where dE :“ maxhPHp
dE,h, and dC :“ maxhPHp

dC,h.

Proof. We invoke the regret-to-PAC conversion in Lemma 5 with confidence δ1 “ δ{2 and we plug
the regret bound in Theorem 1 to write

ε “ rO

¨

˝

ˆ

BpS
?
AH `

ÿ

hPHp

κ2,h
a

dE,hdC,h `Bp
a

logp1{δq

˙ˆ

1
?
T

˙

˛

‚

from which we get the result by picking N “ T and the definition of dE , dC .

Also note the following theorem and corresponding corollary.

Theorem 7 (POR-UCRL Regret if P‹ is Known). If we know the transition matrix P‹ in POR-UCRL,
then our regret is given by the following with probability 1´δ, ignoring polynomial terms independent
of T .

RegretpT q “ rO

¨

˝

¨

˝Bp`
ÿ

hPHp

a

dE,hdC,h

˛

‚

?
T

˛

‚

Proof. We can now use Lemmas 8 and the fact that Ct
Ppδq is always a singleton to observe that

Assumption 3 is satisfied by this version of POR-UCRL as well. By Theorem 4, the following holds
with probability 1 ´ δ.

RegretpT q “ rO

¨

˝Bp
?
T `

ÿ

hPHp

Bκ2,hdE,h `
ÿ

hPHp

κ2,h

b

dE,hβh,T pδqT

˛

‚

We further refine it by ignoring terms independent of T and using the fact that βh,T pδq “ rOpdC,hq to
get that

RegretpT q “ rO

¨

˝

¨

˝Bp`
ÿ

hPHp

κ2,h

b

dE,hβh,T pδq

˛

‚

?
T

˛

‚

Corollary 3 (POR-UCRL sample complexity if P‹ is Known). Let ε ą 0, δ P r0, 1s. Ignoring
polynomial terms independent of ε, we can bound the sample complexity Npε, δq of POR-UCRL
when P‹ is known as follows

rO
ˆ

p2dEdC
ε2

˙

where dE :“ maxhPHp
dE,h, and dC,h :“ maxhPHp

dC,h.

Proof. The proof proceeds as in Corollary 2 by plugging Theorem 7 in Lemma 5.
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E Details and Proofs for Cardinal POR-UCBVI
We now describe how we instantiate POR-UCBVI from a generic optimistic algorithm using bonuses.
Note that again, this is crucially different from naively summarizing the history to define a modified
state space, since we are separating the use of history summarization for getting bonuses for f
from using only the current state while getting bonuses for the Markovian transitions P. Like with
confidence sets, it is a priori unclear if we can use ideas from optimism to prove guarantees with
a favorable (non-exponential) dependence on the complexity of transitions. In particular, we will
note that showing that the bonuses are optimistic would naively need a union bound over the doubly
exponential (ApSAq

H

) set of history-dependent policies, which is a non-trivial challenge to overcome.

Given a dataset of the first t trajectory samples tτiu
t
i“1 and an index h P rHs, we consider the

following:

Estimates for POR-UCBVI:

pf t`1
h “ argmin

fhPFh

t
ÿ

i“1

`

σpfhpτirhsqq ´ oih
˘2

We also use the MLE estimate for P after t episodes to define P̂tp¨ | s, aq :“ Ntps,a,s1
q

Ntps,aq
. Now for

ζpn, δq “ 2
b

S logp2q`logpnpn`1qSA{δq

2n , define CPtpδq as below:
!

P
ˇ

ˇ

ˇ
}Pp¨ | s, aq ´ P̂tp¨ | s, aq}1 ď ζpNtps, aq, δq@s, a

)

Recall the definition of our bonus below.

Bonuses for POR-UCBVI. Recall that simple least squares guarantees imply the lemma below.

Lemma 7 (Concentration for σ ˝ fh). Define

MSEh,tpfh, f
1
hq :“

t
ÿ

i“1

`

σhpfhpτirhsqq ´ σhpf 1
hpτirhsqq

˘2

Also define β̄h,tpδq “ η2h log

ˆ

NpFh,
B
T ,}¨}8q
δ

˙

` αh,t with αh,t :“
tB`tηh logp t

δ q
T . Then f‹

h simulta-

neously satisfies MSEh,tpf
‹
h ,

pf
pt`1q

h q ď β̄h,t
`

δ
2t2H

˘

for all h, t with probability 1 ´ δ{32.

We use the data from trajectories tτiu
t
i“1 to build the confidence sets Ct`1

F pδq “
ś

h C
t`1
h pδq with

Ct`1
h pδq defined below, where βh,tpδq :“ β̄h,t

`

δ
2t2H

˘

.

Ct`1
h pδq :“

!

fh P Fh

ˇ

ˇ

ˇ
MSEh,tpf

‹
h ,

pf
pt`1q

h q ď βh,t pδq

)

We first define a trajectory dependent bonus term below, with δ̄ :“ δ
HSHAH

γh,tpτ rhs, δq “ max
fh,f 1

hPCt
hpδ̄q

fhpτ rhsq ´ f 1
hpτ rhsq

Note that according to the definition of β, this does not create any exponential dependence in the
confidence intervals used to define Ct`1

h .

βh,t

ˆ

δ

16SHAH

˙

ď 64
`

logpNpFh, α, } ¨ }8qq `B ` ηh logp1{δq ` η2hH logpTHSA{δq
˘

“ OpdC,h `Hq

It follows by a union bound over all trajectory segments and all timesteps t that with probability at
least 1 ´ δ{16 and for any trajectory τ and t ě 1, h P Hp,

|f‹
hpτ rhsq ´ f̂ thpτ rhsq| ď γh,tpτ rhs, δq (3)
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Remark 4. In the case of many popular function classes F , like the linear class FH “ tτ ÞÑ

ϕpτqJw | }w} ď W u, we can compute γh,tpτ rhs, δq quite easily. In this case γH,t is given by

sup
w,w1PWt

ϕpτqJpw ´ w1q “ }ϕpτq}Vt
sup

w,w1PWt

}w ´ w1}V ´1
t

for a suitable quadratic form Vt.

γh,tpτ rhs, δq induces a trajectory-dependent bonus, given by

btF pτ, δq :“
ÿ

hPHp

γh,tpτ rhs, δq

This in turn induces a policy-level bonus (which depends on the transition kernel), given by:

btF pP, π, δq :“ Eτ„Pπ
‹

“

btF pτ, δq
‰

“ Eτ„Pπ

»

–

ÿ

hPHp

γh,tpτ rhs, δq

fi

fl

Let us define a term ξtps, a, δq that will be used to define the probability bonus.

ξtps, a, δq :“ min

˜

2, 4

d

H logp6HSAq ` S logp8t2H2q ` logp32t2Ntps, aq{δq

2Ntps, aq

¸

This induces a trajectory-dependent bonus, given by

btPpτ, δq :“
H´1
ÿ

h“1

ξtpsh, ah, δq

This induces a policy-level bonus (which depends on the transition kernel), given by:

btPpP, π, δq :“ min
`

4,Eτ„Pπ
‹

“

btF pτ, δq
‰˘

“ min

˜

4,Eτ„Pπ

«

H´1
ÿ

h“1

ξtpsh, ah, δq

ff¸

Estimates and Bonuses in case P‹ is known. If P‹ is instead known, keep f̂ t and btF pP, π, δq the
same as above, but set P̂t :“ P‹ and btPpP, π, δq :“ 0 for all t.

For completeness we state POR-UCBVI here, which is an instantiation of Algorithm 3, the generic
optimistic algorithm using bonuses.

Algorithm 6 POR-UCBVI

1: Input Known family of reward functions tRhuHh“1, methods EstpDq to estimate P̂t and f̂ t from
dataset D, confidence level δ

2: Initialize D1 Ð tu, initialize f̂D1 , P̂D1
arbitrarily.

3: for t “ 1, ..., T do
4: Compute optimistic history dependent policy,

πt “ argmax
π

V pP̂t, f̂
t, πq ` btF pP̂t, π, δq ` zpBpqpbtPpP̂t, π, δqq

5: Observe trajectory τt “ tpsth, a
t
hqu

H

h“1 and feedback tohuhPHp .
6: Compute new estimates f̂ t`1, P̂t`1 Ð EstpDt`1q and compute new bonus functions

bt`1
F pf̂ t`1, ¨, δq, bt`1

P pP̂t`1, ¨, δq.
7: end for

We will show the following regret bound.
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Theorem 8 (POR-UCBVI Regret). Under Assumption 1, POR-UCBVI satisfies Assumption 4 and its
regret RegretpT q is bounded by the following with probability at least 1 ´ δ, ignoring polynomial
terms independent of T .

rO

¨

˝

¨

˝pCpH,S,Aq `
ÿ

hPHp

b

dE,hpdC,h `Hq

˛

‚

?
T

˛

‚

where CpH,S,Aq :“ H
?
SA` S

?
HA

E.1 Showing that Assumption 4 is Satisfied
E.1.1 Bounding effect of error in F
Lemma 13 (Bounding f̂ t Value Error). Given any P, with f̂ t computed using data from tτiu

t
i“1 „

Pπi
‹ for any sequence of policies πi using least squares, the following holds with probability 1 ´ δ{16

uniformly over all π.

|V pP, f̂ t, πq ´ V pP, f‹, πq| ď btF pP, π, δq

Proof. Recall that with probability at least 1 ´ δ{16, the following holds for any trajectory τ and any
t ě 1, h P Hp.

|f‹
hpτ rhsq ´ f̂ thpτ rhsq| ď γh,tpτ rhs, δq (4)

Now note the following inequalities, where piq holds with probability 1 ´ δ{16 uniformly over all
policies due to inequality 4 above.

V pP, f̂ t, πq ´ V pP, f‹, πq “ Eτ„Pπ

»

–

ÿ

hPHp

f̂ thpτ rhsq ´ f‹
hpτ rhsq

fi

fl

piq
ď Eτ„Pπ

»

–

ÿ

hPHp

γh,tpτ rhs, δq

fi

fl

“ btF pP, π, δq

Lemma 14 (Bounding Sum of F Bonuses). The following holds with probability 1.

T
ÿ

t“1

btF pP‹, πt, δq “ rO

¨

˝

ÿ

hPHp

BdE,h `
ÿ

hPHp

b

dE,hβh,T pδ̄qT `Bp
a

T logpT {δq

˛

‚

Proof. First note the following inequality, which hold with probability 1 ´ δ{16 by the Azuma-
Hoeffding inequality.

T
ÿ

t“1

btF pP‹, πt, δq “

T
ÿ

t“1

Eτ„Pπt
‹

»

–

ÿ

hPHp

γt,hpτ rhs, δq

fi

fl

ď

T
ÿ

t“1

ÿ

hPHp

γt,hpτ rhs, δq ` O
´

Bp
a

T logpT {δq

¯

Now apply Lemma 3 in [10] for each h separately, with the function class in the lemma set to
tσ ˝ fh|fh P Fhu, P “ 1, xt,p “ xt,1 “ τtrhs and misspecification ε “ 0 (decoupled from the

32



Eluder dimension’s ε). We also note that oth are η-subgaussian samples with mean σpfhpτ rhsqq. We
obtain

T
ÿ

t“1

max
fh,f 1

hPCt
hpδq

σpfhpτ rhsqq ´ σpf 1
hpτ rhsqq ď O

ˆ

BdE,h `

b

dE,hβh,T pδ̄qT

˙

where dE,h “ dimE

`

Fh,
B
T

˘

is the Eluder dimension of Fh and βh,T pδ̄q “ β̄
´

δ̄
2t2H

¯

. Since the

Lipschitz constant of σ´1 is κ2, we have that the following holds with probability 1.

T
ÿ

t“1

γt,hpτ rhs, δq ď O
ˆ

Bκ2dE,h ` κ2

b

dE,hβh,T pδ̄qT

˙

This implies that the following holds with probability 1 ´ δ{16.

T
ÿ

t“1

btF pP‹, πt, δq ď

T
ÿ

t“1

ÿ

hPHp

γt,hpτ rhs, δq ` O
´

Bp
a

T logpT {δq

¯

“ rO

¨

˝

ÿ

hPHp

Bκ2dE,h `
ÿ

hPHp

κ2

b

dE,hβh,T pδ̄qT `Bp
a

T logpT {δq

˛

‚

E.1.2 Bounding effect of error in P
We now restate Lemma B.2 of [11] in our notation.

Lemma 15 (Change of Measure Inequality). For any function µ of trajectories bounded by D, if P̂t

is computed from data that includes trajectories tτi „ Pπi
‹ uti“1 for any sequence of policies πi, then

the following holds uniformly over all policies π with probability 1 ´ δ{16.

Eτ„P‹
rµpτqs ´ Eτ„P̂t

rµpτqs ď 2D
a

logpDqbtPpP̂t, π, δq

The same statement holds if we switch the roles of P and P̂t on both sides.

Proof. For the order of P and P̂t in the statement, the following follows from Lemma B.2 of [11]
with η “ D and ε “ 1

t2 . We pull the additive logpDq in the square root outside to fit our assumption’s
phrasing.

Eτ„P‹
rµpτqs ´ Eτ„P̂t

rµpτqs ď D
a

logpDqbtPpP̂t, π, δq `
1

t2
ď 2D

a

logpDqbtPpP̂t, π, δq

The only subtlety is that more data than that from tτiu
t
i“1 could have been used to compute P̂t. The

proof still follows since cPpP̂t, π,Dq is decreasing in the counts Ntps, aq.

Finally, if we switch P and P̂t on both sides, we can follow the proof of Lemma B.2 verbatim with P
and P̂t switched everywhere, except for the martingale argument. There, instead of switching the two
transition kernels, we negate the martingale to get our desired result. This exception is because we
still need the expectation to be over the true transition kernel P‹ for the stochastic process defined to
be a martingale.

Lemma 16 (Bounding P̂t Value Error). Consider any sequence of functions f t that induce value
functions V pP, f t, πq. For any sequence of policies πt, if the estimates P̂t, bonuses bP and costs cP
are generated using data including that of τi „ Pπi

‹ , i “ 1 Ñ t, then the following holds uniformly
over t and over all policies with probability 1 ´ δ{16.

V pP̂t, f
t, πtq ´ V pP‹, f

t, πtq “ Bp
a

logpBpqpbtPpP‹, π, δqq

The statement also holds if we switch P̂t and P‹.
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Proof. Note the following two inequalities that immediately follow from Lemma 15

V pP‹, f
t, πtq ´ V pP̂t, f

t, πtq ď Bp
a

logpBpqpbtPpP̂t, π, δqq

V pP̂t, f
t, πtq ´ V pP‹, f

t, πtq ď Bp
a

logpBpqpbtPpP‹, π, δqq

Our result follows immediately.

Lemma 17 (Bounding Sum of P Bonuses). The following holds with probability 1 ´ δ{16 whenever
the data used to compute btPpP, π, δq includes the data of trajectories τi, t “ 1 Ñ t.

T
ÿ

t“1

btPpP‹, πt, δq “ rO
´

SAc̄δ ` c̄δ
?
HSAT

¯

where

c̄δ :“ 4

c

H logp6HSAq ` S logp8t2H2q ` logp32t2NT ps, aq{δq

2

This means that for any s, a, ξtps, a, δq “ 2 until Ntps, aq ě
c̄δ
2

Proof. First note that by the definition of the bonus and the Azuma-Hoeffding inequality, we have
the following.

T
ÿ

t“1

btPpP‹, πt, δq ď

T
ÿ

t“1

Eτ„PπbtPpτ, δq

ď

T
ÿ

t“1

btPpτt, δq ` Op4
a

T logpT {δqq

“

T
ÿ

t“1

H´1
ÿ

h“1

ξtpsth, a
t
h, δq ` Op4

a

T logpT {δqq

Now note that the first inequality holds even if more data beyond that of tτiu
t
i“1 is used to compute

ξtps, a, δq, since ξtps, a, δq is decreasing in Ntps, aq.
T
ÿ

t“1

H´1
ÿ

h“1

ξtpsth, a
t
h, δq ď SAc̄δ `

T
ÿ

t“1

H´1
ÿ

h“1

c̄δ
b

Ntps
ptq
h , a

ptq
h q

ď SAc̄δ ` c̄δ
ÿ

ps,aqPSˆA

NT ps,aq
ÿ

l“1

1
?
l

ď SAc̄δ ` 2c̄δ
ÿ

ps,aqPSˆA

a

NT ps, aq

ď SAc̄δ ` 2c̄δ

d

SA
ÿ

ps,aqPSˆA

NT ps, aq

“ O
´

SAc̄δ ` c̄δ
?
SATH

¯

This concludes our proof, since 1 “ rOp
?
HSAq

E.1.3 Putting everything together

Theorem 8 (POR-UCBVI Regret). Under Assumption 1, POR-UCBVI satisfies Assumption 4 and its
regret RegretpT q is bounded by the following with probability at least 1 ´ δ, ignoring polynomial
terms independent of T .

rO

¨

˝

¨

˝pCpH,S,Aq `
ÿ

hPHp

b

dE,hpdC,h `Hq

˛

‚

?
T

˛

‚

where CpH,S,Aq :“ H
?
SA` S

?
HA
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Proof. Note that by Lemmas 13, 14, 15, 16, 17, Assumption 4 is satisfied by POR-UCBVI. Using
Theorem 5 and Lemmas 14 and 17, we have the following.

RegretpT q “ O
´

ÿ

hPHp

Bκ2,hdE,h `BpHSAc̄δ `
ÿ

hPHp

κ2,h

b

dE,hβh,T pδ̄qT

`Bp
a

T logpT {δq ` c̄δBpH
?
SAT

¯

We further refine it grouping terms and ignoring terms independent of T , and also noting that
c̄δ “ rOp

?
H `

?
Sq as well as βh,T pδ̄q “ OpdC,h `Hq

RegretpT q “ rO

¨

˝

¨

˝

ÿ

hPHp

κ2

b

dE,hpdC,h `Hq `BppH
?
SA` S

?
HAq

˛

‚

?
T

˛

‚

“ O

¨

˝

¨

˝ppH
?
SA` S

?
HAq `

ÿ

hPHp

b

dE,hpdC,h `Hq

˛

‚

?
T

˛

‚

From the latter we derive a sample complexity result as follows.

Corollary 4 (POR-UCBVI Sample complexity). Let ε ą 0, δ P r0, 1s. Ignoring polynomial terms
independent of ε, we can bound the sample complexity Npε, δq of POR-UCBVI as follows

rO
ˆ

p2HSAmaxpH,Sq

ε2
`
p2dE maxpdC , Hq logp1{δq

ε2

˙

where dE :“ maxhPHp dE,h, and dC :“ maxhPHp dC,h.

Proof. We invoke the regret-to-PAC conversion in Lemma 5 with confidence δ1 “ δ{2 and we plug
the regret bound in Theorem 8 to write

ε “ rO

¨

˝

ˆ

BppH
?
SA` S

?
HAq `

ÿ

hPHp

b

dE,hβh,T pδ̄q `Bp
a

logp1{δq

˙ˆ

1
?
T

˙

˛

‚

from which we get the result by noting N “ pT and the definition of dE , dC .

We also have the following theorem and corollary, in the same vein as Theorem 7.

Theorem 9 (Regret for POR-UCBVI if P‹ is Known). When P‹ is known, POR-UCBVI that sets
P̂t :“ P‹ and btPpP, πδq :“ 0 for all t ě 1 still satisfies Assumption 4 and its regret RegretpT q is
bounded by the following with probability at least 1 ´ δ, ignoring terms independent of T .

rO

¨

˝

¨

˝

ÿ

hPHp

b

dE,hpdC,h `Hq

˛

‚

?
T

˛

‚

where dE,h “ dimE

`

Fh,
B
T

˘

.

Proof. Note that by Lemmas 13 and 14, Assumption 4 is satisfied by POR-UCBVI. Using Lemma 14,
we have the following.

RegretpT q “ O

¨

˝

ÿ

hPcHp

Bκ2dE,h `
ÿ

hPHp

κ2

b

dE,hβh,T pδqT `Bp
a

T logpT {δq

˛

‚
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We further refine it grouping terms and ignoring terms independent of T , and also noting that
c̄δ “ rOp

?
H `

?
Sq

RegretpT q “ rO

¨

˝

¨

˝

ÿ

hPHp

κ2

b

dE,hβh,T pδq `Bp

˛

‚

?
T

˛

‚

“ O

¨

˝

¨

˝Bp`
ÿ

hPHp

b

dE,hβh,T pδq

˛

‚

?
T

˛

‚

“ rO

¨

˝

¨

˝

ÿ

hPHp

b

dE,hpdC,h `Hq

˛

‚

?
T

˛

‚

Corollary 5 (POR-UCBVI Sample complexity if P‹ is Known). Let ε ą 0, δ P r0, 1s. Ignoring
polynomial terms independent of ε, we can bound the sample complexity Npε, δq of POR-UCBVI
when P‹ is known as follows

rO
ˆ

p2HdE maxpdC , Hq

ε2

˙

where dE :“ maxhPHp dE,h, β :“ maxhPHp βT,hpδq, and dC :“ maxhPHp dC,h.

Proof. The proof proceeds as in Corollary 4 by plugging Theorem 9 in Lemma 5.
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F Details and Proofs for PORRL with GOLF
For completeness and establishing notation, we recall GOLF here.

Algorithm 7 GOLF

1: Input Known class of Bellman consistent Q-functions Q, confidence level δ.
2: Initialize dataset D1 Ð tu and CQpD1, δq Ð Q.
3: for t “ 1, ..., T do
4: τ r0s Ð pq

5: for h “ 1, . . . H do
6: Compute ath, Qt

h Ð argmaxa,QPCQpDt,δq Qpτ rhs, aq

7: Play ath and observe feedback oth
8: end for
9: Update Dt`1 Ð Dt Y tτ, pot1, . . . o

t
Hu

10: Compute

CQpDt`1, δq Ð

"

LDt
pQh, Qh`1q ď inf

gPGh

LDt
pg,Qh`1q ` β

*

11: end for

Theorem 2 (Modified GOLF Regret). Let Assumption 1 hold, and let dHABE “

dimHABEpQ, α,minpα,
a

1{T qq. Choose hyperparameter β “ c logpHTN pQ Y G, 1{T, } ¨ }8qq

for some universal constant c and the auxiliary function class G used in GOLF, and define
dC,Q :“ logpN pQ Y G, 1{T, } ¨ }8qq. Then, GOLF satisfies RegretpT q “ O

`

pH
a

dHABEdC,QT
˘

.

Proof. The meat of the theorem is in proving Lemma 18. We β “ c logpHTN pQ Y G, 1{T, } ¨ }8qq

for some suitably large universal constant c, and use Theorem 6 and Lemma 18 to get that

RegretpT q “

H
ÿ

h“1

˜

Tω `Bp

ˆ

B2p2β

α2
` 1

˙

˜

h´1
ÿ

l“1

dlpαq

¸

` minpdhpωq, T qBp` 2Bp
a

βdhpωqT

¸

where dhpεq :“ dimDEpΦh,Dh, εq. Now set ω “
Bp
T and use the fact that dhpεq increases with

decreasing ε to get that

RegretpT q “ rO
´

pH
a

dHABEβT
¯

“ rO
´

pH
a

dHABEdC,QT
¯

since dHABE :“ dimHABEpQ,minpα,Bp{T qq :“ maxh dhpminpα,Bp{T qq.

Corollary 6 (GOLF Sample complexity). Let ε ą 0, δ P r0, 1s. Ignoring polynomial terms indepen-
dent of ε, we can bound the sample complexity Npε, δq of GOLF as follows

rO
ˆ

p2H2dHABEdc,Q
ε2

˙

.

Proof. Again, we use Lemma 5 and a quick computation shows our result.

F.1 Comparing dimHABE and dimBE

It is easy to see that since the function class Φh is a subset of the class Ψh of all Bellman errors,
dimHABE ď maxh dimDEpΨh,Dh,Q, εq. Recall that the Bellman eluder dimension is a minimum
over the RHS and another term that uses Dirac-δ distributions, but typically, the RHS is smaller.
So, in many cases, dimHABE ď dimBE. However, we don’t have a universal inequality in either
direction.
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F.2 Computing dimensions for the combination lock

Proposition 1 (Dimensions for the Combination Lock). Consider the combination lock problem with
model class M “ P ˆ F and induced Q-function class Q.

• Under dense intermediate feedback with Hp “ rHs, the dimHABEpQ, αqA for all α ă q, while its
BE dimension is at least AH ´ 2. The eluder dimension for reward functions dimEpFh,

B
T q is at

least Ah for any h ď H .
• For sparse intermediate feedback with Hp “ tHu and any α ą 0, the α-HABE dimension, the BE

dimension and the eluder dimension of FH are all at least AH ´ 2.

Proof. We separately resolve the cases of sparse and dense intermediate feedback.

F.2.1 Dense intermediate feedback, Hp “ rHs

Notice that we get a reward Berpqq at every step as long as we are on the correct sequence of actions
a‹
1, . . . a

‹
H , and as soon as we take a wrong action, we always get a reward of 0 subsequently. It is then

easy to see that the induced function classes Q then are given by Q “ tpQ1, . . . QHq | Da1, . . . aH P

A s.t. Qh “ pH ´ h` 1qq1a1,...ah
u.

α-HABE dimension: It suffices to show the upper bound using Dh,Qpα,h´1q, since the α-HABE
dimension takes the minimum of distirbutional eluder dimensions over two distributions. For any
α ă q, consider the function class

Qpα, h´ 1q “

!

Q P Q,
ˇ

ˇ

ˇ
|EµlpQqrQl ´ TlQl`1s| ď α, @1 ď l ď h´ 1

)

Now note that EµlpQqrQl ´ TlQl`1s “ q1a1,...al
´ q1a‹

1,...a
‹
l
. If this is smaller than α, then this is

smaller than q and thus must be 0. So, pa1, . . . ah´1q “ pa‹
1, . . . a

‹
h´1q for any Q P Qpα, h ´ 1q.

This also means that any ϕh P Φh, there is a Q P Qpα, h´ 1q so that

ϕh “ Qh ´ ThQh`1 “ q1a‹
1,...a

‹
h´1,ah

´ q1a‹
1,...a

‹
h´1,a

‹
h

Thus, the size of Φh is just A. More importantly, the set Dh,Qpα,h´1q of distributions µhpQq

induced by Q P Qpα, h ´ 1q only include indicators of the form 1a‹
1,...a

‹
h´1,a

for actions a. Thus,
the set of distributions DQpα,h´1q has size A. We know that the distributional eluder dimension
d “ dimDEpΦh,DDpα,h´1q,minpα,Bp{T qq is bounded by the number of possible distributions
ˇ

ˇDQpα,h´1q

ˇ

ˇ. So, d ď A.

BE dimension: The Bellman differences, from above, are q1a1,...ah
´ q1a‹

1,...a
‹
h

. This is an affine
transformation of a family of AH indicator functions. The distributions µlpQq over trajectories
induced by Q include indicators 1a1

1,...a
1
l

of all trajectories of length l. Now for any sequence
µ1, . . . µn, µn`1 of different indicator distributions not including a‹

1, . . . a
‹
l , we consider the Bellman

difference gn`1 “ q1a1,...ah
´q1a‹

1,...a
‹
h

with action sequence given by µn`1. Note that Eµi
gn`1 “ 0

for all i ď n but Eµn`1
gn`1 “ q. This means that the longest possible sequence in the definition of

the distributional eluder dimension has length AH ´ 2. So, the BE dimension is at least AH ´ 2.

Eluder dimension: The reward function class Fh is given by all functions of the form q1a1,...ah
.

This is a scaled version of a class of Ah indicator functions. Since it contains Ah indicator functions,
its eluder dimension is at least Ah.

F.2.2 Sparse intermediate feedback, Hp “ rHs

Notice that we get a reward Berpqq at the last step if we took correct sequence of actions a‹
1, . . . a

‹
H ,

and reward 0 otherwise. It is then easy to see that now, the induced function classes Q then are given
by Q “ tpQ1, . . . QHq | Da1, . . . aH P A s.t. Qh “ q1a1,...ah

u.

α-HABE dimension: This time, note that EµhpQqrQl ´ ThQh`1s “ 0 for all h ď H ´ 1. So,
the function class Φh “ t0u for all h ď H ´ 1. Only for h “ H do we have that EµHpQqrQH ´

THQH`1s “ q1a1,...aH
´ q1a‹

1,...a
‹
H

. Also note that Qpα,H ´ 1q “ Q for all α since EµhpQqrQl ´

ThQh`1s “ 0 for all h ď H ´ 1. So, this is merely the BE dimension of the problem. Now, the
Bellman differences at timestep H are identical to those for the sparse feedback problem, and the
distributions DQpα,H´1q “ DQ since we have established that Qpα,H ´ 1q “ Q. This means that
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by the argument for BE dimension in the dense feedback case, we have that the distributional eluder
dimension of ΦH is at least AH ´ 2, which is then also the α-HABE dimension of this problem.

BE dimension: From the argument for the α-HABE dimension in the sparse case, the BE dimension
and the α-HABE dimension match in this case, and are both at least AH ´ 2.

Eluder dimension: Again, the reward function class FH is given by all functions of the form
q1a1,...aH

. This is a scaled version of a class of AH indicator functions. Since it contains AH

indicator functions, its eluder dimension is at least AH .

F.3 Proofs of Lemmas
Recall that Qpα, hq “ tQ P Q | |EµlpQqrQl ´ TlQl`1s| ď α, @1 ď l ď hu, that µhpQq is the
distribution induced on τ rh´ 1s, ah by πQ and Dh,Q :“ tµhpQq | Q P Qu.

Lemma 18. Let dhpεq :“ dimDEpΦh,Dh,Qpα,h´1q, εq with

Φh :“
!

Qh ´ ThQh`1

ˇ

ˇ

ˇ
Q P Qpα, h´ 1q

)

Then, we have that for β “ c logpHTN pQ Y G, 1{T, } ¨ }8qq,
řt

j“1 |EµhpQjqrQj
h ´ ThQj

h`1s| is
bounded by

tω `Bp

ˆ

B2p2β

α2
` 1

˙

˜

h´1
ÿ

l“1

dlpαq

¸

` minpdhpωq, tqBp` 2Bp
a

βdhpωqt

Proof. We modify the proof of Lemma 41 in [32]. Pick arbitrary h and t and let Ψh be the function
class given by

Φh :“
!

Qh ´ ThQh`1

ˇ

ˇ

ˇ
Q P Qpα, hq

)

“

!

Qh ´ ThQh`1

ˇ

ˇ

ˇ
pQ1, ¨ ¨ ¨QHq P Q, |EµlpQqrQl ´ TlQl`1s| ď α, @1 ď l ď h´ 1

)

Also note that we have the function class Φh of timestep h Bellman errors induced by "historically
α-accurate" functions - functions whose expected Bellman errors in previous timesteps are smaller
than α. The distribution used for computing the expected Bellman errors for previous timesteps is
µlpQq.

Now abbreviating ψj
l :“ Qj

l ´ TlQj
l`1 gives a sequence ψ1

l , . . . ψ
t
l of functions in Ψl for every

1 ď l ď h. This must have a subsequence ϕ1l , . . . ϕ
rl
l consisting of all the functions in the sequence

that lie in Φl, for every 1 ď l ď h. Also let dhpεq “ dimDEpΦh,Dh, εq for any ε. Now note that

t
ÿ

j“1

|EµhpQjqrQj
h ´ ThQj

h`1s|

“

t
ÿ

j“1

|EµhpQjqrψj
hs|

piq
“

t
ÿ

j“1

ˇ

ˇ

ˇ
EµhpQjqrψj

hs

ˇ

ˇ

ˇ
1
´

|EµhpQjqrψj
hs| ď ω

¯

`

h´1
ÿ

l“1

t
ÿ

j“1

ˇ

ˇ

ˇ
EµhpQjqrψj

hs

ˇ

ˇ

ˇ
1
´

|EµhpQjqrψj
hs| ą ω,Q P Qpα, l ´ 1qzQpα, lq

¯

`

t
ÿ

j“1

ˇ

ˇ

ˇ
EµhpQjqrψj

hs

ˇ

ˇ

ˇ
1
´

|EµhpQjqrψj
hs| ą ω,Q P Qpα, h´ 1q

¯

ď

t
ÿ

j“1

ˇ

ˇ

ˇ
EµhpQjqrψj

hs

ˇ

ˇ

ˇ
1
´

|EµhpQjqrψj
hs| ď ω

¯
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`

h´1
ÿ

l“1

t
ÿ

j“1

ˇ

ˇ

ˇ
EµhpQjqrψj

hs

ˇ

ˇ

ˇ
1 pQ P Qpα, l ´ 1qzQpα, lqq

`

t
ÿ

j“1

ˇ

ˇ

ˇ
EµhpQjqrψj

hs

ˇ

ˇ

ˇ
1
´

|EµhpQjqrψj
hs| ą ω,Q P Qpα, h´ 1q

¯

ď tω `

h´1
ÿ

l“1

t
ÿ

j“1

ˇ

ˇ

ˇ
EµhpQjqrψj

hs

ˇ

ˇ

ˇ
1
´

|EµlpQjqψ
j
l | ą α,Q P Qpα, l ´ 1q

¯

t
ÿ

j“1

ˇ

ˇ

ˇ
EµhpQjqrψj

hs

ˇ

ˇ

ˇ
1
´

|EµhpQjqrψj
hs| ą ω,Q P Qpα, h´ 1q

¯

piiq
ď tω `

h´1
ÿ

l“1

rl
ÿ

j“1

ˇ

ˇ

ˇ
EµhpQjqrϕjhs

ˇ

ˇ

ˇ
1
´

|EµlpQjqrϕjl s| ą α
¯

`

rh
ÿ

j“1

ˇ

ˇ

ˇ
EµhpQjqrϕjhs

ˇ

ˇ

ˇ
1
´

|EµhpQjqrϕjhs| ą ω
¯

piiq
ď tω `Bp

ˆ

B2p2β

α2
` 1

˙

˜

h´1
ÿ

l“1

dlpαq

¸

`

rh
ÿ

j“1

ˇ

ˇ

ˇ
EµhpQjqrϕjhs

ˇ

ˇ

ˇ
1
´

|EµhpQjqrϕjhs| ą ω
¯

Here, piq holds since one of three possibilities holds – either
ˇ

ˇ

ˇ
EµhpQjqrψj

hs

ˇ

ˇ

ˇ
ď ω, or |EµhpQjqψ

j
l | ą ω

and there is a least l ď h ´ 1 so that Q P Qpα, l ´ 1q but Q R Qpα, h ´ 1q, or Q P Qpα, h ´ 1q.
piiq holds since if |EµkpQjqψ

j
k| ď α for all k ď l ´ 1, then ψj

l “ ϕil for some i. Finally, piiiq

holds by Proposition 43 of [32] since
řs´1

j“1 EµlpQjqrpϕjl q2s ď β by Lemma 39(a) of [32]. While our
rewards are stochastic and theirs are not, we can repeat their arguments verbatim after noting that the
martingale defined in the beginning of their proof continues to be a martingale even for stochastic
rewards that have second moments.

Now arrange the sequence
ˇ

ˇEµhpQjqϕs
ˇ

ˇ in order to get e1, . . . erh . We can then write
t
ÿ

j“1

ˇ

ˇ

ˇ
EµhpQjqrQj

h ´ ThQj
h`1s

ˇ

ˇ

ˇ
ď tω `Bp

ˆ

B2p2β

α2
` 1

˙

˜

h´1
ÿ

l“1

dlpαq

¸

`

rh
ÿ

j“1

ej1pej ą ωq

For any ej ą ω, consider arbitrary γ such that ej ą γ ą ω. This means that by Proposition 43 of
[32] again,

j ď

rh
ÿ

i“1

1pei ą γq ď

ˆ

B2p2β

γ2
` 1

˙

dhpωq

This means that γ ď Bp
b

βdhpωq

j´dhpωq
for any such γ. Since ej ď Bp, we get that ej ď

min
´

Bp,Bp
b

βdhpωq

j´dhpωq

¯

. Finally, this means that

t
ÿ

j“1

ˇ

ˇ

ˇ
EµhpQjqrQj

h ´ ThQj
h`1s

ˇ

ˇ

ˇ

ď tω `Bp

ˆ

B2p2β

α2
` 1

˙

˜

h´1
ÿ

l“1

dlpαq

¸

`

rh
ÿ

j“1

ej1pej ą ωq

ď tω `Bp

ˆ

B2p2β

α2
` 1

˙

˜

h´1
ÿ

l“1

dlpαq

¸

`

rh
ÿ

j“1

min

˜

Bp,Bp

d

βdhpωq

j ´ dhpωq

¸

ď tω `Bp

ˆ

B2p2β

α2
` 1

˙

˜

h´1
ÿ

l“1

dlpαq

¸

` minpdh, rhqBp`

rh
ÿ

j“1

Bp

d

βdhpωq

j

ď tω `Bp

ˆ

B2p2β

α2
` 1

˙

˜

h´1
ÿ

l“1

dlpαq

¸

` minpdhpωq, rhqBp` 2Bp
a

βdhpωqrh
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ď tω `Bp

ˆ

B2p2β

α2
` 1

˙

˜

h´1
ÿ

l“1

dlpαq

¸

` minpdhpωq, tqBp` 2Bp
a

βdhpωqt

as desired.
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G Proofs for Dueling Feedback
G.1 Proof for Reduction to Confidence-Set Optimism
Theorem 3 (Reduction from Dueling to Confidence-Set-Based Optimism). If the confidence sets
CMpDt, δq satisfy Assumption 2, then the dueling regret RegretDpT q of Algorithm 1 is given by

RegretDpT q “ rOpCP pM, T, δq ` CF pM, T, δqq

Remark 5. While the theorem states that we need Assumption 2 from the main paper, we actually
use its slightly more refined version – Assumption 3. The less refined version was added to the main
paper for brevity.

Proof. For ease of notation, let us use the sets CMpDt, δq given by the pre-image of CMpDt, δq under
the map M ÞÑ M from Section 4. We first recall that M‹ P CMpDt, δq and so π‹ P Πt for all t with
probability 1 ´ δ{16. Recall that the value of a duel pπ, π1q under model M Ø is denoted by

VDpM, π, π1q :“ V pM, πq ´ V pM, π1q “ V pP, f, πq ´ V pP, g, π1q

We overload notation and use the natural maps pP, fq Ø M ÞÑ M to define

VDpM, π, π1q :“ VDpM, π, π1q

For ease of notation, we will then work with CMpDt, δq in this proof until we can. Since πi,t P Πt for
i “ 1, 2, there exists some Mi,t P CMpDt, δq for i “ 1, 2 so that VDpMi,t, π, π1,tq ď 0 for all π. Note
that dueling regret is given below. Inequality piq is by definition of Mi,t, since VDpMi,t, π‹, πi,tq ď 0
for i “ 1, 2. Inequality piiq holds by definition of π1,t, π2,t.

RegretDpT q “

T
ÿ

t“1

2
ÿ

i“1

VDpM‹, π‹, πi,tq

“

T
ÿ

t“1

”

2
ÿ

i“1

VDpM‹, π‹, πi,tq ´ VDpMi,t, π‹, πi,tq `

2
ÿ

i“1

VDpMi,t, π‹, πi,tq
ı

piq
ď

2
ÿ

i“1

T
ÿ

t“1

rVDpM‹, π‹, πi,tq ´ VDpMi,t, π‹, πi,tqs

piiq
ď

T
ÿ

t“1

2 max
M,M1PCMpDt,δq

“

VDpM, π1,t, π2,tq ´ VDpM1, π1,t, π2,tq
‰

Continuing, we have

RegretDpT q ď

T
ÿ

t“1

2 max
M,M1PCMpDt,δq

“

VDpM, π1,t, π2,tq ´ VDpM1, π1,t, π2,tq
‰

“ 2
T
ÿ

t“1

max
M,M1PCMpDt,δq

”

VDpM, π1,t, π2,tq ´ VDpM‹, π1,t, π2,tq ` VDpM‹, π1,t, π2,tq

´ VDpM1, π1,t, π2,tq
ı

ď 2
T
ÿ

t“1

max
M,M1PCMpDt,δq

rVDpM, π1,t, π2,tq ´ VDpM‹, π1,t, π2,tqs `

max
M,M1PCMpDt,δq

“

VDpM‹, π1,t, π2,tq ´ VDpM1, π1,t, π2,tq
‰

“ 2
T
ÿ

t“1

”

VDprMt, π1,t, π2,tq ´ VDpM‹, π1,t, π2,tq
ı

`

”

VDpM‹, π1,t, π2,tq ´ VDprM1
t, π1,t, π2,tq

ı
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where rMt and rM1
t are the respective maximisers. It suffices to analyse only one of the terms, as a

consequence of the symmetry of Assumption 3.

We can now use the fact that M is described by pP, fq to analyse the first term, letting rMt Ø prPt, rf
tq.

T
ÿ

t“1

”

VDprMt, π1,t, π2,tq ´ VDpM‹, π1,t, π2,tq
ı

“ 2
T
ÿ

t“1

”

VDprPt, rf
t, π1,t, π2,tq ´ VDpP‹, f

‹, π1,t, π2,tq
ı

ď 2
T
ÿ

t“1

”

VDprPt, rf
t, π1,t, π2,tq ´ VDpP‹, rf

t, π1,t, π2,tq
ı

`

”

VDpP‹, rf
t, π1,t, π2,tq ´ VDpP‹, f

‹, π1,t, π2,tq
ı

ď 2
T
ÿ

t“1

”

VDprPt, rf
t, π1,t, π2,tq ´ VDpP‹, rf

t, π1,t, π2,tq
ı

`

”

VDpP‹, rf
t, π1,t, π2,tq ´ VDpP‹, f

‹, π1,t, π2,tq
ı

piq
“ 2

T
ÿ

t“1

”

V prPt, rf
t, π1,tq ´ V pP‹, rf

t, π1,tq
ı

´

”

V prPt, rf
t, π2,tq ´ V pP‹, rf

t, π2,tq
ı

`

”

VDpP‹, rf
t, π1,t, π2,tq ´ VDpP‹, f

‹, π1,t, π2,tq
ı

piiq
“ 2

T
ÿ

t“1

”

V prPt, rf
t, π1,tq ´ V pP‹, rf

t, π1,tq
ı

´

”

V prPt, rf
t, π2,tq ´ V pP‹, rf

t, π2,tq
ı

`

”

V pP‹ b P‹, f
t
, pπ1,t, π2,tqq ´ V pP‹ b P‹, f

‹
, pπ1,t, π2,tqq

ı

Where piq holds by the definition of VD and V , and piiq holds in the product MDP M‹ once we define
f
t

hppτ1, τ2qrhsq :“ rf thpτ1rhsq ´ rf thpτ2rhsq and recall that P‹ “ P‹ b P‹. Now, we can immediately
apply Assumption 3 to the last line in two different ways. For the first two terms, we apply the first
point in the assumption to each under cardinal feedback for MDP M‹, noting that the datasets Dt

contain trajectories from π1,t as well as π2,t. For the last term, we apply the second point in the
assumption under cardinal feedback for the MDP pP‹, f

‹
q.

This gives us that with probability 1 ´ δ,

RegretpT q “ rOpCP pM, T, δq ` CF pM, T, δqq

We have the following lemma, which is an immediate consequence of

Lemma 2 (Relating F and F). For any function class F , dimEpF , εq ď 9 dimEpF , ε{2q.

Proof. Let dh “ dimEpFh, εq. Pick the ε1 so that there is a sequence of dh pairs τ j , j “ 1 Ñ dh of
length h trajectories, where each one is ε1-independent of its predecessors. Note that τ j “ pτ1,j , τ2,jq.
We now inductively build a sequence ij so that each τij ,j is ε1{2-independent of its predecessors.

Pick the first i1 arbitrarily. Now assume that we have built the sequence until index j “ k. Also,

by definition of this sequence, there exist f j , f
1

j , we have
b

řk
j“1pf jpτ jq ´ f

1

jpτ jqq2 ď ε1 but

|fk`1pτ jq ´ f
1

k`1pτ jq| ě ε1. Since a2 ` b2 ď 2pa` bq2, we have that
g

f

f

e

k
ÿ

j“1

pfjpτij ,jq ´ f 1
jpτij ,jqq2 ď

g

f

f

e

k
ÿ

j“1

pfjpτij ,jq ´ f 1
jpτij ,jqq2 ` pfjpτ3´ij ,jq ´ f 1

jpτ3´ij ,jqq2

ď

g

f

f

e

k
ÿ

j“1

2pf jpτ jq ´ f
1

jpτ jqq2 ď
?
2ε1
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Additionally, since

|fk`1pτ1,k`1q ´ f 1
k`1pτ1,k`1q| ` |fk`1pτ2,k`1q ´ f 1

k`1pτ2,k`1q| ě |fk`1pτ jq ´ f
1

k`1pτ jq| ě ε1

. So, there is an ik`1 so that

|fk`1pτik`1,k`1q ´ f 1
k`1pτik`1,k`1q| ě ε1{2

So, we have a sequence xj :“ τij ,j and a sequence of pairs of functions fj , f 1
j so that for any

1 ď k ď dh,
řk

j“1pfjpxjq ´ f 1
jpxjqq2 ď 2pε1q2 but |fk`1pxk`1q ´ f 1

k`1pxk`1q| ě ε1{2. This
implies the following. Inequality piq holds by Proposition 43 of [32] upon setting β “ 2pε1q2 and
setting the proposition’s ε to ε1{2. Inequality piiq holds since ε1{2 ě ε{2.

dh “

dh
ÿ

j“1

1p|fjpxjq ´ f 1
jpxjq| ě ε1{2q

piq
ď

ˆ

2pε1q2

pε1{2q2
` 1

˙

dimEpFh, ε{2q

“ 9 dimEpFh, ε
1{2q

ď 9 dimEpFh, ε{2q

This establishes our claim.

We have the following immediate corollary of Theorem 4, Theorem 7 and Lemma 2.

Corollary 1 (Dueling Regret using POR-UCRL Confidence Sets). The confidence sets from POR-
UCRL satisfy Assumption 2 and using them in Algorithm 1 leads to the following regret bound
RegretDpT q “ rO

´´

pS
?
HA`

ř

hPHp

a

dE,hdC,h

¯?
T
¯

.

44



G.2 Reduction to Bonus-Based Optimism
We define the reduction using the algorithm below.

Algorithm 8 Reduction from Dueling to Cardinal Bonus-Based Optimism

1: Input Known reward function trhuHh“1, method EstpDq to estimate P̂D and fD from dataset D,
bonus functions bDF pP, π, δq and bDP pP, π, δq, confidence level δ.

2: Initialize dataset D1 Ð tu

3: for t “ 1, ..., T do
4: Compute good set Πt {Valid π‹ candidates}

Πt :“
!

π P Π
ˇ

ˇ

ˇ
VDppP̂Dt

, fDt
q, π, π1q ` bF pP̂Dt

, pπ, π1q, δq

` zpBpqbPpP̂Dt
, π, δq ` zpBpqbPpP̂Dt

, π1, δq ě 0, @π1 P Π
)

5: Pick pπ1,t, π2,tq given by {Most uncertain duel}

argmax
π,π1PΠt

bF pP̂Dt
, pπ, π1q, δq ` zpBpqbPpP̂Dt

, π, δq ` zpBpqbPpP̂Dt
, π1, δq

6: Collect trajectories τt,i “

!

psth,i, a
t
h,iqq

)H

h“1
along with feedback tohuhPHp

by sampling

from Pπi,t
‹ for i “ 1, 2.

7: Append the data to Dt to get Dt`1, update estimates and bonuses.
8: end for

Theorem 10 (Reduction from Dueling to Bonus-Based Optimism). If the bonuses and estimates
used in Algorithm 8 satisfy Assumption 3, then with probability 1´ δ, the dueling regret RegretDpT q

of Algorithm 8 is given by

RegretDpT q “ rOpCP pM, T, δq ` CF pM, T, δqq

Proof. Recall that the value of a duel pπ, π1q under model M Ø M Ø pP, fq is denoted by

VDpM, π, π1q :“ V pM, πq ´ V pM, π1q “ V pP, f, πq ´ V pP, g, π1q

We overload notation and use the natural bijection M Ø M to define

VDpM, π, π1q :“ VDpM, π, π1q

For ease of notation in the proof, we often work with an arbitrary pre-image f̂D of fD under the map
f ÞÑ f . A careful read will confirm that this does not affect the correctness of any of the statements.
First note that π‹ P Πt for all T with probability 1 ´ δ{16 since the following hold uniformly over
all π1 P Π

´VDppP̂Dt
, f̂Dt

q, π‹, π1q “ V pP̂Dt
, f̂Dt

, π1q ´ V pP̂Dt
, f̂Dt

, π‹q

“

”

V pP̂Dt
, f̂Dt

, π1q ´ V pP‹, f̂Dt
, π1q

ı

´

”

V pP‹, f̂Dt
, π1q ´ V pP̂Dt

, f̂Dt
, π1q

ı

` V pP‹, f
‹, π1q ´ V pP‹, f

‹, π‹q

` VDppP‹, fDt
q, π1, π‹q ´ VDppP‹, f

‹q, π1, π‹q

ď zpBpqbPpP̂Dt
, π‹, δq ` zpBpqbPpP̂Dt

, π1, δq

` 0

` bF pP̂Dt , pπ‹, π1q, δq`

“ bF pP̂Dt
, pπ‹, π1q, δq ` zpBpqbPpP̂Dt

, π‹, δq ` zpBpqbPpP̂Dt
, π1, δq

where the inequality holds by Assumption 4 and the optimality of π‹ in the true model. Note let M̂t

be the model given by P̂Dt , f̂Dt and let Mt be the corresponding model in M. We make the following
abbreviation:

bMpMt, pπ, π
1q, δq :“ bF pP̂Dt

, pπ, π1q, δq ` zpBpqbPpP̂Dt
, π, δq ` zpBpqbPpP̂Dt

, π1, δq
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RegretDpT q “

T
ÿ

t“1

2
ÿ

i“1

VDpM‹, π‹, πi,tq

“

T
ÿ

t“1

”

2
ÿ

i“1

VDpM‹, π‹, πi,tq ´ VDpM̂t, π‹, πi,tq ` bMpMt, pπ‹, πi,tq, δq

`

2
ÿ

i“1

VDpM̂t, π‹, πi,tq ´ bMpMt, pπ‹, πi,tq, δq

ı

piq
ď

2
ÿ

i“1

T
ÿ

t“1

”

VDpM‹, π‹, πi,tq ´ VDpM̂t, π‹, πi,tq ` bMpMt, pπ‹, πi,tq, δq

ı

Inequality piq holds since VDpM̂t, π‹, πi,tq “ ´VDpM̂t, πi,t, π‹q, and πi,t P Πt for i “ 1, 2 implies
that
VDpM̂t, πi,t, π‹q ` bF pP̂Dt

, pπ‹, π1q, δq ` zpBpqbPpP̂Dt
, π‹, δq ` zpBpqbPpP̂Dt

, π1, δq ě 0

Now note that the following holds uniformly over all timesteps t with probability 1´3δ{8 for i “ 1, 2
simultaneously using Assumption 4 multiple times and applying a union bound.

VDpM‹, π‹, πi,tq ´ VDpM̂t, π‹, πi,tq “ VDppP‹, f
‹
q, π‹, πi,tq ´ VDppP̂Dt , fDt

q, π‹, πi,tq

“ VDppP‹, f
‹
q, π‹, πi,tq ´ VDppP̂Dt

, f
‹
q, π‹, πi,tq

` VDppP̂Dt
, f

‹
q, π‹, πi,tq ´ VDppP̂Dt

, fDt
q, π‹, πi,tq

“ V pP‹, f
‹
, π‹q ´ V pP̂Dt

, f
‹
, π‹q ` V pP̂Dt

, f
‹
, πi,tq ´ V pP‹, f

‹
, πi,tq

` VDppP̂Dt , f
‹
q, π‹, πi,tq ´ VDppP̂Dt , fDt

q, π‹, πi,tq

“ zpBpqbPpP̂Dt
, π‹, δq ` zpBpqbPpP̂Dt

, πi,t, δq

` bF pP̂Dt
, pπ‹, πi,tq, δq

“ bMpMt, pπ‹, πi,tq, δq

So, with probability 1 ´ 3δ{16, we have that

RegretDpT q ď

T
ÿ

t“1

2
ÿ

i“1

bMpMt, pπ‹, πi,tq, δq

piq
ď 2

T
ÿ

t“1

bMpMt, pπ1,t, π2,tq, δq

“ 2
T
ÿ

t“1

zpBpqbPpP̂Dt , π1,t, δq ` zpBpqbPpP̂Dt , π2,t, δq ` bF pP̂Dt , pπ1,t, π2,tq, δq

piiq
ď rO

˜

T
ÿ

t“1

pz1pBpqbPpP‹, π1,t, δq ` z1pBpqbPpP‹, π2,t, δq ` bF pP‹, pπ1,t, π2,tq, δq

¸

where inequality piq holds since pπ1,t, π2,tq “ argmaxπ,π1PΠt
bMpMt, pπ, π

1q, δq and inequality piiq
holds with probability 1´3δ{8 by 6 applications of the change of measure inequality in Assumption 4.

Now, we can use the fact that Assumption 4 is satisfied again to conclude that with probability
1 ´ δ{32.
T
ÿ

t“1

pz1pBpqbPpP‹, π1,t, δq ` z1pBpqbPpP‹, π2,t, δq ` bF pP‹, pπ1,t, π2,tq, δq “ rOpCP pM, T, δq ` CF pM, T, δqq

Taking a union bound over all inequalities stated so far, we have the following with probability 1 ´ δ

RegretDpT q “ rOpCP pM, T, δq ` CF pM, T, δqq

as desired.
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Again, the following corollary is immediate from Theorem 5, Theorem 9 and Lemma 2.

Corollary 7. By using POR-UCBVI as the algorithm in the dueling reduction in Algorithm 8, we can
get a bound on the dueling regret given by

RegretDpT q “ rO

¨

˝

¨

˝pCpH,S,Aq `
ÿ

hPHp

b

d̄E,hpdC,h `Hq

˛

‚

?
T

˛

‚

where d̄E,h “ dimE

`

Fh,
B
2T

˘

.
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