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Abstract

We introduce the task of implicit offensive text
detection in dialogues, where a statement may
have either an offensive or non-offensive inter-
pretation, depending on the listener and con-
text. We argue that reasoning is crucial for
understanding this broader class of offensive
utterances, and create Mh-RIOT (Multi-hop
Reasoning Implicitly Offensive Text Dataset),
to support research on this task. Experiments
using the dataset show that state-of-the-art
methods of offense detection perform poorly
when asked to detect implicitly offensive state-
ments, achieving only ~0.11 accuracy.

In contrast to existing offensive text detection
datasets, Mh-RIOT features human-annotated
chains of reasoning which describe the men-
tal process by which an offensive interpreta-
tion can be reached from each ambiguous state-
ment. We explore the potential for a multi-hop
reasoning approach by utilizing existing entail-
ment models to score the transitions of these
chains, and show that even naive reasoning
models can result in improved performance in
most situations. Analysis of the chains pro-
vides insight into the human interpretation pro-
cess and emphasizes the importance of incor-
porating additional commonsense knowledge.

1 Introduction

With the development and popularity of online fo-
rums and social media platforms, the world is be-
coming an increasingly connected place to share
information and opinions. However, the benefit
these platforms provide to society is often marred
by the creation of an unprecedented amount of bul-
lying, hate, and other abusive speech!. Such toxic
speech has detrimental effects on online communi-
ties, and can cause great personal harm. Some
efforts by the NLP community to address this

'Disclaimer: due to the nature of this work, data and ex-
amples may contain content which is offensive to the reader.
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Figure 1: An instance illustrating Explicit OTD, Im-
plicit OTD and our multi-hop reasoning approach.

problem have achieved high accuracies in classify-
ing toxic speech in specific domains, such as sex-
ist (Golbeck et al., 2017), racist (Waseem, 2016),
or otherwise hateful text (Ross et al., 2016; Gao
and Huang, 2017; Davidson et al., 2017).

While many instances of toxic speech are
blatant and easily identified with sentence-level
classifiers, not all offensive text contains obvious
indicators. Waseem et al. (2017) argues for the
classification of offensive text into two categories,
(1) explicit offensive text?, which is unambiguous
in its potential to be offensive and often includes
overtly offensive terms, such as slurs, and (2)
implicit offensive text, which is more ambiguous,
and may use sarcasm, innuendo, or other rhetorical

“Waseem et al.(2017) originally defined these terms as “ex-
plicit/implicit abusive text”, but we adopt the phrase “offensive
text” as used by the OTD community.



devices to hide the intended nature of the statement.
In this work we argue that there exists a direct
relationship between these tasks, and that each
implicitly offensive statement corresponds to an
explicitly offensive statement which is realized
through the interpretation process. This explicitly
offensive statement is closer to the sentiment the
listener feels when interpreting the statement as
offensive. Consider the example in Figure 1, a
dialogue between two speakers, S1 and S2:

S1: “I love bookclubs, I go every week”

S2: “Everywhere with free food, right?”

By itself, the statement by S2 is innocuous and
could be interpreted as a simple prompt for more
information about the bookclub. However, other
interpretations of this statement could lead S1 to ar-
rive at a number of explicitly offensive statements,
such as (1) “You are poor”, (2) “You are fat”’, (3)
“You are not smart/sophisticated”. Thus we con-
sider the chain of reasoning which constitutes the
interpretation to be a crucial part of recognizing
implicitly offensive statements.

The importance of more complex reasoning
when resolving such ambiguities in offensive con-
tent is not new. The Hateful Memes dataset (Kiela
et al., 2021) pairs images with unrelated text cap-
tions. Both of these components are benign when
considered independently, but combining them can
occasionally create memes with offensive interpre-
tations. Consequently, approaches which jointly
reason over a combined representations of each
modality outperform those which treat each modal-
ity independently, hindering the system’s ability to
perform more complex reasoning.

To study this phenomenon purely in the text
domain, we use human annotators to construct a
dataset consisting of (1) an implicitly offensive
statement, (2) a corresponding explicitly offensive
statement, and (3) a chain of reasoning mapping
(1) to (2). When evaluated on the explicitly of-
fensive examples, state-of-the-art models perform
well, achieving > 90% accuracy. However, when
applied to the implicit OTD samples, the accu-
racy of the models drops to an average of about
< 11%. We then explore the use of a multi-hop
reasoning-based approach by utilizing a pre-trained
entailment model to score the transitions along each
“hop” of the reasoning chain. When incorporating
additional knowledge (from human annotations)

into the premises of each entailment, we achieve
higher accuracy than comparable methods which
do not utilize the reasoning chain. We present this
as evidence that a multi-hop reasoning-based ap-
proach is a promising solution to this problem, and
release our data to support further research into this
problem.
Our contributions in this work are threefold:

* We propose the task of implicit offensive
text detection (Implicit OTD), and construct a
dataset to research on this topic. The dataset
contains annotations of reasoning chains to
support study into multi-hop approaches.

* We conduct experiments using existing state-
of-the-art OTD models, and show they per-
form poorly on Implicit OTD task.

* We examine the use of entailment models as
part of a multi-hop reasoning approach for
Implicit OTD, showing improved accuracy in
most cases. We provide an analysis of which
types of reasoning are most challenging, and
which types of external knowledge is required.

2 Related Works

OTD in Text Classification Early approaches to
OTD relied primarily upon dictionaries like hate-
base 3 to lookup offensive words and phrases. The
creation of OTD datasets enabled the development
of ML-based approaches utilizing simple features,
such as bag-of-word representations (Davidson
et al., 2017). With the advent of social media plat-
forms, many resources have been developed for
identifying toxic comments in web text (Waseem
and Hovy, 2016; Davidson et al., 2017), includ-
ing a number of deep learning-based methods (Pit-
silis et al., 2018; Zhang et al., 2018b; Casula et al.,
2020; Yasaswini et al., 2021; Djandji et al., 2020).
Notably, all of these methods can be described as
building a contextual representation of a sentence
(whether trained end-to-end or on top of existing
pre-trained language models), and making a classi-
fication based on this representation.

OTD in Dialogue Systems As user-facing tech-
nologies, preventing dialogue systems from pro-
ducing offensive statements is crucial for their role
in society. As noted in Dinan et al. (2020), toxicity
in generated dialogue may begin with biases and

3www.hatebase.org
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offensive content in the training data, and debias-
ing techniques focused on gender can reduce the
amount of sexist comments generated by the re-
sulting system. Similar outcomes can be obtained
through adjustments to the model or training pro-
cedure, for instance, toxic words can be masked
during training to reduce their role in model pre-
dictions (Dale et al., 2021). GeDi (Krause et al.,
2020) proposed using class-conditional LMs as
discriminators to reduce the toxicity produced by
large pre-trained LMs (GPT-2). Additionally it
may also be important to identify offensive state-
ments made fo a dialogue system, as it has been
shown that dialogue systems can react with counter-
aggression (Cercas Curry and Rieser, 2018), and
systems which continuously learn during deploy-
ment may incorporate toxic user responses into
future generations.

Subjectivity in OTD Previous work has hit upon
the role that an individual’s own perspective may
play when determining offensiveness. For instance,
in the Offensive Language Identification Dataset
(OLID), a widely used OTD dataset (Zampieri
et al., 2019a,b, 2020), annotations exist on a hierar-
chy. Each level dictates the target of the offensive
text, in terms of their identity as a group, individual,
or entity. But to our knowledge, a person’s iden-
tity or attributes have not played a critical role in
existing OTD research. OLID was also augmented
with labels for capturing the degree of explicit-
ness (Caselli et al., 2020)), and may also support
research into resolving implicitly offensive state-
ments. However, implicitness in OLID is defined
primarily as the lack of an overtly offensive word
or slur, and the aforementioned personal attributes
or subjectivity of interpretation are not considered.
Our dataset differs in this respect, as we consider
not just if a statement is offensive, but how it can
be considered offensive, by defining the interpre-
tation process as a chain of reasoning towards a
subjective experience. In this sense, a more similar
approach comes from normative reasoning in moral
stories (Emelin et al., 2020), where a short chain of
reasoning is used to assess morality of actions and
consequences.

3 Data

We propose Mh-RIOT as a dataset for the study of
Implicit OTD as a multi-hop reasoning problem,
and for use as a diagnostic to test models’ ability
to identify implicitly offensive statements.

Each example in the dataset consists of three
parts:

1. A personal attribute of the reader/listener.

2. An implicitly offensive statement, its corre-
sponding explicitly offensive statement, and a
non-offensive statement.

3. A chain of reasoning, describing the iterative
process of how the ambiguity of the implicitly
offensive statement can be resolved into the
corresponding explicitly offensive statement.
Appendix A lists some sample chains in Mh-
RIOT.

We collect annotations for Mh-RIOT using Ama-
zon Mechanical Turk (AMT). Four pilot experi-
ments were conducted to select qualified annotators
for the final annotation. The instructions provided
to the annotators can be found in Appendix C.

3.1 Annotation Scheme

Personal Attribute As we have defined in Sec-
tion 1, we argue that the context in which a state-
ment occurs is crucial to understanding its potential
in creating an offensive interpretation, and there-
fore the context should play an important role in
the annotation task. However, providing an overly
specific context can increase the difficulty of pro-
viding a relevant implicitly offensive statement. To
make the annotation task more feasible we reduce
the context to a single feature: a personal attribute
of the reader/listener.

The set of attributes is obtained from the per-
sonas in the PERSON-CHAT corpus (Zhang et al.,
2018a), of the form “I like sweets.”, or “I work as a
stand up comedian.” Attributes related to ethnicity,
gender, and other protected classes are manually re-
moved, leaving 5334 distinct attributes. We divide
the attributes into several categories (detailed cate-
gory information can be found in Appendix B) be-
fore randomly sampling a subset of 920 attributes,
uniformly across categories, in order to increase
the number of workers assigned to each attribute.

Implicit, Explicit and Non-offensive Text For
each example, workers were provided 3 diverse at-
tributes and asked to choose one as writing prompt.
The workers are then instructed to provide annota-
tion in the form of example sentences, including:

Implicitly offensive statement Utterances that do
not express an overt intention to cause offense and
often require complicated reasoning or external



knowledge to be fully recognized as offensive con-
tents.

Explicitly offensive statement Utterances which
contain an obvious and direct intention or ex-
plicit expressions to cause offense without external
knowledge or reasoning processes.

Non-offensive statement Utterances that do not
cause offense under the context initiated with the
attribute.

Both explicit and implicit offensive statements
should share the same meaning in terms of how
they are offensive. Non-offensive statements are
collected to construct a balanced dataset and to
evaluate the accuracy of existing OTD models.

Chain of Reasoning A distinguishing character-
istic of our work is the collection of chains of
reasoning to explain the interpretation process for
implicitly offensive text. We represent the chain
of reasoning as a series of sentence-to-sentence
rewrites, similar to natural logic (MacCartney and
Manning, 2014). One practical advantage of using
a sentence-based representation for reasoning steps
(in comparison to a structured representation like
predicate-argument tuples) is that it allows the use
of powerful text-to-text (T5) (Raffel et al., 2019)
and entailment models (Liu et al., 2019; He et al.,
2021), which are trained on sentence-level input.

Formally each chain begins with an implicitly
offensive statement (0-th step, denoted as sg) and
ends with an explicit offense (s;). The length of the
chain then becomes the number of steps between
S0 and Si.

3.2 Post-processing

We were able to collect 2657 examples from the
AMT and performed post-processing to ensure the
quality of the data. We define three processes to
edit the collected annotations in order to standard-
ize the format of the reasoning steps, listed below.
Examples with steps that can not be handled by
any of the processes are removed from the dataset.
To reduce biases in post-processing, we assign 3
workers to each task.

Attribute Insertion Rule (AIR) We insert the
attribute statement into the first reasoning step (s1)
to make this information accessible to any model
taking the sentence as input. For instance, for an
example with the attribute, “I am colorblind.” and
the implicit offensive statement, “Oh, that would
explain your wardrobe!”, the reasoning step “Oh,

Knowledge

Only the best can win contests.

Classic things are usually old.
Grown-ups don’t play with dolls.
Parents want children to be independent.
Overworking makes people exhausted.

Table 1: Samples of the knowledge used to construct
chains of reasoning.

your color blindness would explain your wardrobe!”
generated by the worker is tagged as AIR.

Knowledge Insertion Rule (KIR) Steps that are
used to introduce external commonsense knowl-
edge are tagged as KIR. For instance, to support
the reasoning process from step “You are a grown-
up who can’t afford to rent a house.” to “You are
poor.”, the knowledge of “Poor people can’t afford
to rent a house.” is introduced. The following step
“You are poor.” 1is then tagged as KIR. To better
understand the effectiveness of external knowledge,
we also extract the commonsense knowledge dur-
ing the post-processing (Table 1).

Rephrasing Rule (RR). Steps that have equiva-
lent meaning to previous steps but can be simplified
by rephrasing are tagged as RR. For instance, to
express more explicit offensive meaning, an rea-
soning step written as a question “Do you like meat
too much, or just food in general?” is rephrased as
a declarative sentence step “You must love food too
much in general.” and tagged as RR.

3.3 Post-processing Results

Of the initially collected 2657 examples, 1050 re-
mained after the post-processing. The high task
rejection rate (60.5%) also conveys the difficulty of
this content generation task. In the dataset, the av-
erage length of a reasoning chain is 4.84 steps, with
a minimum length of 3 (60 examples) and a max-
imum of 6 (39 examples). Among all three tags,
RR is most frequently applied (59.6%), followed
by KIR (21.5%) and AIR (18.9%).

4 Experiments

We evaluate the difficulty of the Implicit OTD task
using existing state-of-the-art models, before ex-
ploring a multi-hop approach to Implicit OTD us-
ing existing entailment models to score transitions
in the reasoning chains. To further prove the prag-
matism of our multi-hop reasoning approach, we



Accuracy

Mh-RIOT Twitter OffensEval Toxicity
Models Implicit Explicit Non All All All All
RoBERTa-Twitter 1.7 79.0  99.7 595 85.9 85.8 89.1
BERT-OffensEval 15.9 932 99.2 628 82.2 824 84.2
ALBERT-OffensEval 9.7 88.6 945 65.2 82.4 82.7 85.2
BERT-Toxicity 14.8 96.6 985 619 81.2 81.9 83.6
ALBERT-Toxicity 11.4 91.5 949 62.8 79.4 80.3 82.6
Avg. 10.7 89.8 974 625 82.2 82.6 84.9

Table 2: Performance of SOTA OTD models on the classification task. Non: Non-offensive.

also conduct an experiment with existing fact veri-
fication systems.

4.1 Sentence Classification

We begin by evaluating existing state-of-the-art
OTD models on both the Implicit-OTD and
Explicit-OTD task. These include BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019), and AL-
BERT (Lan et al., 2020), three pretrained large
scale language models fine-tuned on existing OTD
datasets, which produce the highest accuracy re-
ported on the explicit OTD task.

These models are fine-tuned on three OTD
datasets, including (1) the OLID/OffensEval2019
dataset (Zampieri et al., 2019a), discussed in Sec-
tion 2, which contains 14,200 labeled tweets and
includes implicit offensive statements, (2) the
TWEETEVAL (Barbieri et al., 2020) multi-task of-
fensive Twitter set for detecting irony, hate speech
and offensive language, and (3) the Google Jigsaw
Toxic Comments dataset * which contains 159,571
samples in the training set. In the subsequent sec-
tions we refer to these datasets as OffensEval, Twit-
ter, and Toxicity, respectively.

Table 2 shows the results of the baseline models
on correctly classifying the implicitly and explicitly
offensive text as offensive/non-offensive (systems
are denoted as a hyphenated combination of pre-
trained model and dataset). In every situation, the
performance on the implicit task is significantly
lower. The overall trend is perhaps unsurprising, as
implicit examples lack clear indicators of offensive-
ness, such as highly offensive words. However, the
degree to which these models underperform in the
Implicit-OTD task illustrates the extent to which
these tasks differ, and highlights the risk of deploy-

*Google Jigsaw Toxic Comments

ing such models to perform this task in real-world
situations.

An underlying assumption of this work and the
motivation for reasoning chains is the expectation
that as the reasoning process is applied, the in-
terpretation of the implicitly offensive utterance
becomes increasingly (explicitly) offensive. We
evaluate the extent to which this holds true in the
dataset, using the baseline systems to predict the
offensiveness of each rewrite across the reasoning
chain. Appendix D shows that this is indeed the
case, that moving down the reasoning chain corre-
lates with higher accuracy, and implying that each
step gradually reveals more of the offensive con-
notations in implicit offense. It also verifies that
the collected/annotated chains have the property of
being orderly.

4.2 Reasoning by Entailment

The results of Section 4.1 indicate two things: cur-
rent OTD systems perform poorly on the implicit
OTD task, and the difficulty of using existing mod-
els decreases as each successive step of the reason-
ing chain is applied. This insight hints at a poten-
tial approach to implicit OTD: apply a reasoning
model to map initial statements to their simplest
and most explicit corresponding offensive state-
ment (and score the likelihood of it being entailed
by the original statement), and then score the re-
sulting statement with a dedicated OTD model. In
essence, this decomposes a difficult inference into
a series of smaller inferences which may be tack-
led with higher accuracy by current models. We
explore the possibility using this approach with
existing models, assuming the human-annotated
chains as gold proof paths.

We treat the problem of scoring reasoning chains
as a multi-hop textual entailment problem as in
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You go to bookclubs
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Attribute | love bookclubs, | go
there every week.

Step 4
You love eating a lot
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Figure 2: An example demonstrating the entailment experiment. Entailment scores between adjacent steps are
given by the text entailment models. Arrows represent the entailment processes. E, s, represents the entailment
score from step ¢ to step j, where sg represents the implicit offense and s; represents the last step (step 4 in this

example) of the chain.

Figure 2. Using an existing state-of-the-art textual
entailment model, we score the transition from each
step s; to the next, s;4+1. Such models take as input
a pair of texts, <premise, hypothesis>, and output
scores for a set of labels indicating “entailment”
(Ep—n), “netural” and “contradiction” (C)—,p,). An
example reasoning step, the premise “You look like
someone who could use more exercise.” entails the
hypothesis “You are fat.”.

A naive approach to multi-hop reasoning is to
treat each transition as an independent event, and
model the probability of a reasoning chain as a
product of transition scores. In the context of rea-
soning chains, we define the probability of a chain
c as:

-1
E(C) = H Esi—>si+1 (1)
=0

We refer to this as MU L, the product model ap-
proach to multi-hop reasoning. For the entailment
model scoring each transition in the chain, we con-
sider two systems, one derived from DeBERTa-
base (He et al., 2021) and one from RoBERTa-
large (Liu et al., 2019). Both systems were fine-
tuned on the MNLI corpus (Nangia et al., 2017), a
standard corpus for textual entailment.

In our experiments we are most interested in
comparing the scores of M U L to those of methods
which ignore the reasoning chain, either by scoring
the entailment of the explicitly offensive statement
given the implicit one(sy — s;), or by using one
of the current state-of-the-art approaches to clas-
sify the implicit statement directly(Table 2). While
MU L is a naive model, any advantage of a model
with such strong independence assumptions sug-

gests areas where future multi-hop reasoning mod-
els could significantly improve over non-reasoning
“single hop” counterparts.

The results of the multi-hop experiments are pre-
sented in Table 3. We observe that under most
conditions, MU L outperforms E,_,s, by a mod-
est margin. The performance of MU L does suffer
on the longest reasoning chains as a result of an in-
creasing number of < 1.0 multiplications (a conse-
quence of the independence assumptions), negating
the margins between the two systems. The detailed
results can be found in Appendix G.

In terms of the types of reasoning which are
most beneficial, we observe large changes in the
transition scores before and after knowledge is inte-
grated into the reasoning process, i.e., around KIR
steps. We examine this behavior further, analyzing
the performance of OTD models on predicting the
final layer at points s;_; and sg, before and after
knowledge integration (Table 5). We observe sig-
nificant (2-3 fold) improvements when predicting
after knowledge is integrated. Similar results can
also be observed on textual inference models as
shown in Appendix E.

To explore the effectiveness of the external
knowledge, we utilize the extracted knowledge
mentioned in Section 3.2 and perform an additional
set of experiments (denoted k+) where the external
knowledge acquired in data annotation is added
to each statement as a conjunction, until after a
KIR step occurs. For instance, if the knowledge
in sy is “Eating too much can make people fat.”,
this knowledge will then be connected to all steps
in {s;|i =0,1,....,k — 1} to form “<s;> and eat-
ing too much can make people fat.” As shown



Entailment Scores

RoBERTa DeBERTa
Chain Length Chain Length
Step 3 4 5 6 ALL 3 4 5 6 ALL

so—s1 647 844 899 90.0
s1—s2 371 580 469 574
sy —+s3 73.6 551 425 502

S3 — 84 582 61.6 40.6
S4 — S5 609 65.9
S5 — S6 67.5

- 68.4 782 865 90.7 -
- 29.7 46.1 412 45.0 -
- 64.4 505 355 443 -

- 51.0 55.6 375 -
- 50.0 63.3 -
- 57.8 -

..... o 143 131 46 54
Esyss, 172 91 44 56

115 121 77 18 33 6.8
76 83 59 24 36 45

MUL,,.. . (k+) 381 320 179 165
Eqs (k+) 359 159 108 86

235 302 203 76 40 14.1
15.0 253 119 75 6.6 109

Table 3: Entailment scores between various steps of the reasoning chain, and the scores of a product model pro-
cessing each step sequentially (MU L). Column headers indicate subsets of the data, where all chains are of 3, 4, 5,
or 6 steps respectively. k+: scores indicate those where external knowledge is concatenated to all statements prior

to a KIR step.

in Table 3, adding knowledge increases scores for
both models, but notably resulting in a significant
advantage to the ROBERTa product model, which
now outperforms direct prediction, and all previous
baseline models, in all scenarios. The resulting sys-
tem is also more robust to long reasoning chains.
We even observe that the performance margins over
direct prediction in the 6-step chains exceeds that
of 3-step setting.

5 Discussion

We introduced this work based on a hypothesis
of multi-hop approach as having a conceptual ad-
vantage over existing approaches to offensive text
detection, in that humans must each be perform-
ing some reasoning process in order to find state-
ments either offensive or unoffensive in different
situations. We then showed that this conceptual
advantage could translate to an empirical one, and
showed performance gains over current approaches.
However, we do so under strong assumptions and
with access to additional information. How realis-
tic is our experimental setup?

5.1 What Knowledge is Necessary?

In a separate experiment, we identified the biggest
obstacle to accurate reasoning to be the integration
of existing knowledge. From Table 5, we are able to
observe different effectiveness on different models.

Entailment Scores
Steps RoBERTa DeBERTa
S0 — S1 86.1 83.1
S0 — Sy 6.7 3.9

(a)
Contradiction Scores
Steps RoBERTa DeBERTa
implicit — non 13.7 17.9
explicit — non 94.6 97.0

(b)

Table 4: The entailment scores (a) and contradiction
scores (b) from implicit statements to non-offerensive
statements versus explicit statements to non-offensive
statements.

It is worth exploring what type of knowledge is nec-
essary. We examined the entire set of knowledge to
study what types of information is import to reason-
ing. Largely the information falls in 3 categories:
(1) dictionary-based knowledge, (2) commonsense,
and (3) folk knowledge. Statements of knowledge
like “classic things are old.” is explained primarily
as a way to bridge the gap between specific words,
which might not be necessary given the gaining
ability of large scale language models.

A second form of knowledge, commonsense



Accuracy

Models s;,_1  si
RoBERTa-Twitter 7.9 29.6
BERT-OffensEval 13.6 42.5
ALBERT-OffensEval 24.1 51.1
BERT-Toxicity 9.3 35.8
ALBERT-Toxicity 15.5 39.1

Table 5: Performance of SOTA OTD models on steps
before KIR (sx—1) and steps after KIR (sy,).

Model Knowledge Coverage
Openai-GPT 46.9
GPT-2 66.7
GPT-3 (ada) 70.3
GPT-3 (davinci) 76.0

Table 6: Coverage rate of knowledge from Mh-RIOT
by different generations of GPT models.

knowledge is exemplified in statements like, “salad
is healthy.”. Existing work on defeasible reason-
ing (Sap et al., 2019; Zhang et al., 2020) has shown
improvements incorporating external knowledge to
support entailment-based reasoning using models
similar to those used in this work. However, ex-
isting knowledge base may contain sensitive and
offensive contents that can be applied into reason-
ing models without careful design. In this sense,
practitioners should refer to works that put efforts
on removing offensive contents from knowledge
base (Fisher et al., 2020) to make sure the reason-
ing models away from biases, discrimination and
other offensive contents. A third and unusual type
of knowledge is “folk knowledge” which may be
a personal opinion and factually inaccurate. Ex-
amples of this in the dataset can be “smart peo-
ple don’t make mistakes.” Although it is potentially
possible to embed such folk knowledge into pre-
trained language models through training, current
trend in NLP research is to remove the biases from
the training data (Bender et al., 2021). In this case,
it is still difficult to collect such knowledge. We
leave this to the future work.

5.2 Knowledge Incorporating Models?

Large generative models GPT (Radford et al.,
2018), and its upgraded models, GPT-2 (Radford
etal., 2019), GPT-3 (Brown et al., 2020) show great
performance on text completion tasks incorporating

with knowledge. Such models are trained on large
amount of web-based contents which are filled with
commonsense knowledge. GPT-3 can achieve state-
of-the-art performance on various completion tasks
even without fine-tuning. It is worth to explore if
such models can cover some of the knowledge.

We conduct another separate experiment to ex-
plore the accessibility to commonsense knowledge
of pre-trained language models. We utilize the
knowledge extracted from Mh-RIOT and design
a prompt completion task for various GPT mod-
els and evaluate the performance. We use a 2-step
prompt as shown in Appendix H, Table 13 to force
the models give reasonable explanations on each
knowledge pieces used in Mh-RIOT. We perform
human evaluation via AMT on the generated ex-
planations. An instruction and the interface can be
found in Appendix H, Figure 5,6.

Table 6 shows the results of human evaluation.
We are able to observe that GPT-3 is able to cover
> 70% of the knowledge used in our dataset. More-
over, the results show an ascending trend of cov-
ering more knowledge by the models with more
training. These results show the potential of build-
ing reasoning and entailment models with more
knowledge.

6 Conclusion

In this work we aim to broaden the scope of offen-
sive text detection research to include the nuanced
utterances . Improvements in these models have
applications ranging from distant futures where hu-
mans frequently interact with dialogue systems in
situated ways which require such pragmatic reason-
ing to avoid unintended offense, to today’s online
forums, where often a cat-and-mouse game of in-
creasingly more creative offensive text creation and
moderation occurs.

In addition to providing a dataset of implicitly of-
fensive text, which can itself be used purely as a di-
agnostic of systems’ ability to identify more subtle
instances of offensive text, we also provide chain of
reasoning annotations which we hope can provide
insight to how statements lead to offensive interpre-
tations in certain situations. Our experiments pro-
vide a proof of concept of how multi-hop reasoning
models have the potential to outperform directly
classifying offensive text using current state-of-the-
art approaches, and identify areas for improvement
via future research in commonsense knowledge
base construction and inference.



7 Ethical Considerations

In this work we aim to develop models which can
more accurately predict the emotions elicited from
text statements. Although our goal is to identify
potentially harmful statements in order to avoid
them, it is important to consider potential negative
use-cases for such work. A system which can iden-
tify offensive statements can also select for them,
and it may be possible to use such a system to tar-
get users, attacking them on topics or attributes
which they are most sensitive about. To the extent
that we are able, we must be cautious not to aid in
the development of such systems in the process of
furthering research for more empathetic dialogue
systems.

We tailor our study in four ways in an effort to
reduce the risk of harm. First, we focus primar-
ily on identifying implicitly offensive statements.
While a system which produces implicitly offen-
sive statements may still be used to attack users,
they are significantly more challenging to generate
when compared to explicitly offensive statements,
which do not require any additional inferences or
world knowledge. We hypothesize that this makes
implicitly offensive statements unlikely to be uti-
lized in offensive systems. Second, our dataset size
is chosen with the goal of being large enough to
support evaluation, but not training. It can therefore
function as a useful diagnostic of offensive text de-
tection systems, with limited risk of being used to
create one. Third, in our dataset we have removed
protected attributes such as ethnicity, gender and
race. Our dataset contains chain of reasoning which
indicates the thinking processes of offensive state-
ments. Given that such thinking processes could
involve culture, personality and other high-level
affective elements, removing such attributes could
prevent the present work to be used to construct
toxic generation models. Forth, in all crowdsourc-
ing processes in this research, we make explicit
clarifications that this task contains potential offen-
sive contents. All workers are instructed with the
goal of this research and should stop annotation
immediately if they feel uncomfortable with the
contents. Moreover, we make sure every worker
can get a base salary of > 6.2 per hour (average
salary is 3$ in the authors’ region) with bonuses
to motivate the workers and to compensate their
potential uncomfortableness.
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A Samples

Table 7 shows some examples in Mh-RIOT. Each
sample contains an Attribute, an Implicit State-
ment, an Explicit Statement, a Non-offensive State-
ment and a chain of reasoning mapping from im-
plicit statement to explicit statement. The post-
processing tag is attached to the end of each rea-
soning step, where AIR is for “Attribute Insertion
Rule”, KIR is for “Knowledge Insertion Rule” and
RR is for “Rephrasing Rule”.

Table 8 shows some examples of extracted
knowledge from KIR steps of the chain of reason-
ing during post-processing. s;_1 indicates the rea-
soning steps before applying KIR and s; indicates
the reasoning steps after applying KIR.
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Attribute I eat lots of pancakes and syrup.
Implicit Statement  That can indeed give you extra energy.
Explicit Statement  You are fat.
Non-offensive I love pancakes, too.
Chain of Reasoning  Pancakes and syrup can indeed give you extra energy. (AIR)

You got extra energy from eating. (RR)
You eat too much. (RR)
You eat too much which makes you fat. (KIR)
You are fat. (RR)

Attribute I am a guitar player.
Implicit Statement  Oh did you learn that by yourself?
Explicit Statement  Your guitar skills are awful.
Non-offensive  That’s why you are so good at music.
Chain of Reasoning  Did you learn guitar by yourself? (AIR)

You must have learned guitar by yourself. (RR)
You must have learned guitar by yourself because you don’t look so professional. (KIR)
You are not professional at guitar. (RR)
Your guitar skills are awful. (RR)

Attribute I wear contacts.
Implicit Statement  Another reason why I’'m scared to get old.
Explicit Statement  You are so old.
Non-offensive I usually wear glasses.
Chain of Reasoning  Wearing contacts is another reason why I'm scared to get old. (AIR)

I’'m scared to get old because I don’t want to wear contacts like you. (RR)
I’'m scared to get old because old people wear contacts like you. (KIR)
Old people like you wear contacts like you. (RR)
You are so old. (RR)

Attribute I come from a small town.
Implicit Statement  Are you coming here for higher education?
Explicit Statement  You are uneducated, then.
Non-offensive I always want to move to a small town.
Chain of Reasoning  Are you coming to this big city for higher education? (AIR)

You come to this big city for higher education. (RR)
You come to this big city for education because you couldn’t get enough education in the small town. (KIR)
You couldn’t get enough education in the small town. (RR)
You are uneducated. (RR)

Table 7: Some chain of reasoning samples.

Sk_1 You eat too much.
sk You eat too much which makes you fat.
Knowledge Eating too much can make people fat.
sx—1 D've never seen you on TV as a comedian.
s I've never seen you on TV as a comedian because you’re not famous.
Knowledge Famous comedians are always on TV.
Sk—1 You should lose weight.
si  You should lose weight because you are fat.
Knowledge Fat people should lose weight.
Sk—1 You quit school.
sk You quit school which makes you uneducated.
Knowledge People who quit school are uneducated.

Table 8: Some external knowledge samples.
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B Attribute Categories

Table 9 shows how we categorized and selected
different attributes. The original attributes are di-
vided into four big categories: AM, HAVE, MY and
OTHER based on the syntax features (subject type,
POS, Norm) of the sentence. Each category of AM,
HAVE and MY are then divided into several sub-
categories based on the object type of the sentence.
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Category Sub-Category Example Number
AM (Attributes that describe personal status with a be-verb as the root.) 1429 (230)
AM-noun I am a teacher. 754 (50)
AM-number I am 30 years old. 76 (15)
AM-status I’m getting married next week. 149 (25)
I am funny.
AM-other I’m from San Francisco. 450 (140)
HAVE (Attributes that describe certain personal actions with a verb as the root.) 3203 (230)
HAVE-preference 1 like to remodel homes. 901 (65)
I hate talking to people.
Have-status I have a dog named bob. 540 (40)
Have-other I own my home. 1762 (125)
I live in Colorado.
MY (Attributes that describe possession status related to the speaker.) 731 (230)
MY-preference My favorite sport is football. 256(80)
My favorite movie is pretty woman.
My favorite food is cheeseburgers.
My-other My mom is a checker at the local grocery store. 475(150)
My wife and i like to go scuba diving.
OTHER (Other remaining attributes that do not have specific syntax features.) 763(230)
Before i die , i want to skydive. 763 (230)
While both my parents have thick European accents, I do not.
It is my universe, and everyone else is just a character in it.
Total 5334 (920)

Table 9: Different categories of personal attributes and the number of selected attributes (numbers in parentheses).
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C Crowdsourcing Instruction

Figure 3 shows a template instruction that we used
in our AMT tasks. Crowd workers are instructed
with the purpose of the research and are notified
about the potential offensive contents of this task.

In order to protect the crowd workers due to the
nature of this research, we have explicitly men-
tioned on the AMT task control panel that the cur-
rent task may contain offensive contents. Moreover,
we check the collected attributes and remove po-
tential dangerous ones before posting the tasks.

This task requires more effort due to a great
amount of content generation. To compensate
the crowd workers, we guarantee every qualified
worker to get a base salary of > 6.2% per hour
(average salary is 3$ in the authors’ region) with
bonuses to motivate the workers.

16



Collecting utterances which might offend people with given attributes.

In everyday conversation, we sometimes say things that are hurtful to our conversation partner. Sometimes we are aware that a
statement might be hurtful (intentional), and sometimes we accidentally say things that are insulting (unintentional).

Goal of this research:

We want to understand how some statements can be implicitly offensive. To do this, we want to know your line of reasoning (or
chain of reasoning) behind why you think the statements you give can be offensive to the listener. We ask that you formulate
your thinking process in terms of multiple reasoning steps.

Your task, from implicit to explicit:

In the HIT, you will be given an “attribute” of a hypothetical listener (person). Firstly, you are asked to provide a statement which
this person might find insulting, but is not directly insulting and would not be insulting to other people in a different context. We
refer to this as the implicit offensive statement. Now explain why it is insulting. Behind each implicit offensive statement, it is often
possible to create a corresponding direct (explicit) offensive statement. Secondly, your need to provide the explicit offensive
statement, and any reasoning steps needed to create it.

For instance, for the attribute “I like horseback riding.”, an implicit offensive statement might be “Oh, they are so strong!”. This
could be offensive to a listener because it may be indirectly calling them overweight. And the explicit offensive statement can be
"You are very fat." Therefore a chain of reasoning which converts the implicit offensive statement to an explicit offensive one may
be:

“Oh, they are so strong!”

— “Oh, horses must be very strong to lift you.”

— “Oh, horses must be very strong to life you because you are very heavy.”

— “You are very heavy.”

— “You are very fat.”

Finally, you need to give a non-offensive statement that contains no offensive meaning. An example non-offensive statement for
the above attribe might be “You riding on a horse must be so cool!” or “| always want to do that once!”.

Check the examples.
Steps:

1. Select one attribute that you think is easier for you.

2. Write your implicit offensive statement.

3. Write the corresponding explicit/directly offensive statement.

4. Write the non-offensive statement. 5. To the best of your ability, write the reasoning steps the listener might use when
interpreting your implicitly offensive statement as the explicit one. Write each step in EACH LINE, with the last line to be your
explicit insult. Just write your explicit insult if you think there is no additional reasoning steps.

Important:

1. All utterances should be given in Fluent English. Your answers will NOT be accepted if they contain severe grammatical
errors.

2. The quality will be judged by the consistency of the chain of reasoning.

3. You utterances will NOT be used under any scopes beyond this research.

Figure 3: Introduction in the crowdsourcing task
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D Sentence Classification Results

Figure 4 shows the results of existing SOTA OTD
models on each step of the chain of reasoning in
Mh-RIOT.
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* RoBERTa-Twitter « BERT-OffensEval = ALBERT-OffensEval « BERT-Toxicity * ALBERT-Toxicity

1.00 1.00
0.75 0.75
0.50 0.50
0.25 0.25
0.00 0.00
3-steps 4-steps
1.00
0.75
0.50
0.25
0.00

5-steps 6-steps

Figure 4: Performance of the models on each step of the chains of reasoning with different lengths.
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E Model Details

Table 10 shows the details of the models used in
all of our experiments. We implemented the frame-
work with the “TextClassification” pipeline from
HuggingFace’. All models can be directly down-
loaded from the links given in the table.

We selected models fine-tuned on MNLI for en-
tailment models because MNLI provides a large
size textual inference dataset that contains multi-
ple genres and thus can greatly reduce biases of
the models trained on. Both RoBERTa and De-
BERTa models fine-tuned on MNLI have achieved
state-of-the-art performance.

Shttps://huggingface.co/
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https://huggingface.co/

Experiment | Model | Sources

Base model: RoBERTa-base

RoBERTa-Twitter | #Parameters: 125M

Trained on: TWEETEVAL (2020)

Source: https://huggingface.co/cardiffnlp/twitter-roberta-base-offensive

Base model: BERT-base-uncased
Classification BERT-OffensEval #Parameters: 110M
Trained on: OLID/OffensEval2019 (2019)
Source: https://huggingface.co/mohsenfayyaz/bert-base-uncased-offenseval2019-downsample

Base model: ALBERT-base-v2

#Parameters: 12M

Trained on: OLID/OffensEval2019 (2019)

Source: https://huggingface.co/mohsenfayyaz/albert-base-v2-offenseval2019-downsample

ALBERT-OffensEval

Base model: BERT-base-uncased

#Parameters: 110M

Trained on: Toxic Comment (2018)

Source: https://huggingface.co/mohsenfayyaz/toxicity-classifier

BERT-toxicity

Base model: ALBERT-base-v2

#Parameters: 12M

Trained on: Toxic Comment (2018)

Source: https://huggingface.co/mohsenfayyaz/albert-base-v2-toxicity

ALBERT-toxicity

Base model: RoBERTa-large

#Parameters: 355M

ROBERTa | 1, ined on: MNLI (2017)

Entailment Source: https://huggingface.co/roberta-large-mnli
Reported Acc. on MNLI: 90.2

Base model: DeBERTa-large

#Parameters: 355M

Trained on: MNLI (2017)

Source: https://huggingface.co/microsoft/deberta-large-mnli
Reported Acc. on MNLI: 91.1

DeBERTa

Table 10: Details of the models used in the experiments.
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F Knowledge Entailment Experiment

Table 11 shows the results of running text inference

models around KIR steps of the chain of reasoning.

To be noticed, we were not able to find any KIR

steps in the chain of reasoning whose length is 3.

This implies that knowledge insertion might not be
necessary to interpret implicit statements that are
not “implicit” enough.

G Knowledge Entailment Experiment

Table 12 shows the final accuracy calculated with
the entailment scores and accuracy of OTD models
on Explicit inputs.

22



Entailment Scores
Length Models s;_1 — sx S — Sg+1

4-steps RoBERTa 28.2 66.4
DeBERTa 19.8 58.3
5-steps  RoBERTa 23.0 78.2
DeBERTa 15.7 66.5
6-steps  RoBERTa 19.1 79.5
DeBERTa 17.5 71.5

Table 11: Entailment scores between the KIR step (sj) and step before KIR (s;_1) and step after KIR (sg1). The
chains with length of three are not included in this evaluation as they do not frequently contain a KIR step.

Accuracy
. MUL*Explicit MUL (k+)*Explicit
Implicit
OTD Models RoBERTa DeBERTa RoBERTa DeBERTa
RoBERTa-Twitter 1.7 9.1 5.4 18.6 11.1
BERT-OffensEval 15.9 10.7 6.3 21.9 13.1
ALBERT-OffensEval 9.7 10.2 6.0 20.8 12.5
BERT-Toxicity 14.8 11.1 6.6 22.7 13.6
ALBERT-Toxicity 11.4 10.5 6.2 21.5 12.9

Table 12: Full accuracy calculated from reasoning models and the accuracy of OTD models on Explicit.
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H Knowledge Coverage Experiment

Table 13 shows the prompt used in the knowledge
coverage experiment. In order to make sure that the
models have access to the knowledge, we apply a
2-step conversational prompt. In step 1, the models
are asked if they know the knowledge or not. In
step 2, the model will have to give an reason to
explain the knowledge. Based on the explanations
we should be able verify the accessibility to the
knowledge.

Figure 5 shows the instruction for annotators and
Figure 6 shows the interface used in the task. The
annotators are asked to select if the generated ex-
planations are able to explain the given knowledge.
Given that the generated text may contain offen-
sive contents, we have made specific clarification
that the workers are able to report the examples
that contain offensive contents and have the right
to immediately stop the task.

We have filtered out all knowledge examples that
are related to protected classes such as gender, race,
etc. For each example of knowledge, we assign 5
annotators to vote for the final answers with the
Krippendorff’s a = 0.724. Given that removing
protected classes related examples may create more
biases on our evaluation, we have asked an expert
to finish the evaluation task under the same con-
dition however without protected classes removed.
Table 14 shows the evaluation results given by the
expert.

Table 6 shows the knowledge coverage rate by
different GPT models. The trend of improvement
on knowledge coverage implies that with more
training data and better engineering, pre-trained
language models are able to gain more knowledge
significantly. In our experiment, GPT-3 is able to
cover > 70% of the knowledge used in our dataset.
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Select if one sentence explains another one.

In each task, you will be given a statement and an explanation. You will need to tell us if that explanation is explaining the
given statement with the corrent knowledge.

For example:

Statement: Hamburgers usually contain cheese.

Explanation: Because it's a good source of calcium.

You can give an answer of "The explanation is explaining the statement.”

You can also choose

"The explanation is NOT explaining but the syntax is somehow correct.”

or

"The explanation doen't make sense neither the contents nor the syntax."

IMPORTANT CLARIFICATION

We worked hard to remove most of the offensive statements from this task. The explanations are all generated by Al
systems. Our goal of this research is to check how an Al system can have access to general knowledge. For this reason,
there might be offensive contents generated by the Al systems in the explanations. To be clarified, this task DOES NOT
intend to spread any of the potential offensive contents. Please understand that we have to keep the generated contents
as original as possible to be able to get valid results. However, we do want to protect all the workers from being harmed
by those unintentionally offensive contents. Therefore, if you feel uncomfortable with any of the contents in this task,

please stop finishing the task immediately. Alternatively, you are welcome to report the offensive contents back to us by
choosing "This explanation contains offensive contents.” Thank you so much for your understanding.

Figure 5: The instruction for annotators used in the knowledge coverage experiment.

I've understood:

[] the clarifications

Select one label:
Statement:
${knowledge}
Explanation:
${explanation}
Label:

O The explanation is explaining the statement.
O The explanation is NOT explaining but the syntax is somehow correct.
O The explanation doen't make sense neither the contents nor the syntax.

[J This explanation contains offensive contents.

By clicking the submit button, you understand our clarification in the instruction.

Figure 6: The interface used in the knowledge coverage experiment.
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Prompt:

Q: Do you know that <knowledge>?

A: Yes.

Q: Why?

A:

Examples:

Q: Do you know that junk food are unhealthy?
A: Yes.

Q: Why?

A: Because junk food is high in calories and can cause obesity.
Q: Do you know that people hate disasters?

A: Yes.

Q: Why?

A: Because they think that they are going to die.

Table 13: The prompt used in knowledge accessibility experiment and some example answers by GPT-3.

Model Coverage Rate

Openai-GPT 324
GPT-2 51.5

GPT-3 (ada) 62.6
GPT-3 (davinci) 69.7

Table 14: Coverage rate of the extracted knowledge by
different generations of GPT models. This evaluation
is done by the expert on a full knowledge set without
removing protected classes.
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