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Abstract

We introduce the task of implicit offensive text001
detection in dialogues, where a statement may002
have either an offensive or non-offensive inter-003
pretation, depending on the listener and con-004
text. We argue that reasoning is crucial for005
understanding this broader class of offensive006
utterances, and create Mh-RIOT (Multi-hop007
Reasoning Implicitly Offensive Text Dataset),008
to support research on this task. Experiments009
using the dataset show that state-of-the-art010
methods of offense detection perform poorly011
when asked to detect implicitly offensive state-012
ments, achieving only ∼0.11 accuracy.013

In contrast to existing offensive text detection014
datasets, Mh-RIOT features human-annotated015
chains of reasoning which describe the men-016
tal process by which an offensive interpreta-017
tion can be reached from each ambiguous state-018
ment. We explore the potential for a multi-hop019
reasoning approach by utilizing existing entail-020
ment models to score the transitions of these021
chains, and show that even naive reasoning022
models can result in improved performance in023
most situations. Analysis of the chains pro-024
vides insight into the human interpretation pro-025
cess and emphasizes the importance of incor-026
porating additional commonsense knowledge.027

1 Introduction028

With the development and popularity of online fo-029

rums and social media platforms, the world is be-030

coming an increasingly connected place to share031

information and opinions. However, the benefit032

these platforms provide to society is often marred033

by the creation of an unprecedented amount of bul-034

lying, hate, and other abusive speech1. Such toxic035

speech has detrimental effects on online communi-036

ties, and can cause great personal harm. Some037

efforts by the NLP community to address this038

1Disclaimer: due to the nature of this work, data and ex-
amples may contain content which is offensive to the reader.

I love bookclubs, I go there every week.

Everywhere with free food, right?

You go to bookclubs
because of free food.

You love free food and
eating.

You love eating a lot
which makes you fat.

You are fat.

Is that how you became fat?
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Figure 1: An instance illustrating Explicit OTD, Im-
plicit OTD and our multi-hop reasoning approach.

problem have achieved high accuracies in classify- 039

ing toxic speech in specific domains, such as sex- 040

ist (Golbeck et al., 2017), racist (Waseem, 2016), 041

or otherwise hateful text (Ross et al., 2016; Gao 042

and Huang, 2017; Davidson et al., 2017). 043

While many instances of toxic speech are 044

blatant and easily identified with sentence-level 045

classifiers, not all offensive text contains obvious 046

indicators. Waseem et al. (2017) argues for the 047

classification of offensive text into two categories, 048

(1) explicit offensive text2, which is unambiguous 049

in its potential to be offensive and often includes 050

overtly offensive terms, such as slurs, and (2) 051

implicit offensive text, which is more ambiguous, 052

and may use sarcasm, innuendo, or other rhetorical 053

2Waseem et al.(2017) originally defined these terms as “ex-
plicit/implicit abusive text”, but we adopt the phrase “offensive
text” as used by the OTD community.
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devices to hide the intended nature of the statement.054

In this work we argue that there exists a direct055

relationship between these tasks, and that each056

implicitly offensive statement corresponds to an057

explicitly offensive statement which is realized058

through the interpretation process. This explicitly059

offensive statement is closer to the sentiment the060

listener feels when interpreting the statement as061

offensive. Consider the example in Figure 1, a062

dialogue between two speakers, S1 and S2:063

064

S1: “I love bookclubs, I go every week”065

S2: “Everywhere with free food, right?”066

067

By itself, the statement by S2 is innocuous and068

could be interpreted as a simple prompt for more069

information about the bookclub. However, other070

interpretations of this statement could lead S1 to ar-071

rive at a number of explicitly offensive statements,072

such as (1) “You are poor”, (2) “You are fat”, (3)073

“You are not smart/sophisticated”. Thus we con-074

sider the chain of reasoning which constitutes the075

interpretation to be a crucial part of recognizing076

implicitly offensive statements.077

The importance of more complex reasoning078

when resolving such ambiguities in offensive con-079

tent is not new. The Hateful Memes dataset (Kiela080

et al., 2021) pairs images with unrelated text cap-081

tions. Both of these components are benign when082

considered independently, but combining them can083

occasionally create memes with offensive interpre-084

tations. Consequently, approaches which jointly085

reason over a combined representations of each086

modality outperform those which treat each modal-087

ity independently, hindering the system’s ability to088

perform more complex reasoning.089

To study this phenomenon purely in the text090

domain, we use human annotators to construct a091

dataset consisting of (1) an implicitly offensive092

statement, (2) a corresponding explicitly offensive093

statement, and (3) a chain of reasoning mapping094

(1) to (2). When evaluated on the explicitly of-095

fensive examples, state-of-the-art models perform096

well, achieving > 90% accuracy. However, when097

applied to the implicit OTD samples, the accu-098

racy of the models drops to an average of about099

< 11%. We then explore the use of a multi-hop100

reasoning-based approach by utilizing a pre-trained101

entailment model to score the transitions along each102

“hop” of the reasoning chain. When incorporating103

additional knowledge (from human annotations)104

into the premises of each entailment, we achieve 105

higher accuracy than comparable methods which 106

do not utilize the reasoning chain. We present this 107

as evidence that a multi-hop reasoning-based ap- 108

proach is a promising solution to this problem, and 109

release our data to support further research into this 110

problem. 111

Our contributions in this work are threefold: 112

• We propose the task of implicit offensive 113

text detection (Implicit OTD), and construct a 114

dataset to research on this topic. The dataset 115

contains annotations of reasoning chains to 116

support study into multi-hop approaches. 117

• We conduct experiments using existing state- 118

of-the-art OTD models, and show they per- 119

form poorly on Implicit OTD task. 120

• We examine the use of entailment models as 121

part of a multi-hop reasoning approach for 122

Implicit OTD, showing improved accuracy in 123

most cases. We provide an analysis of which 124

types of reasoning are most challenging, and 125

which types of external knowledge is required. 126

2 Related Works 127

OTD in Text Classification Early approaches to 128

OTD relied primarily upon dictionaries like hate- 129

base 3 to lookup offensive words and phrases. The 130

creation of OTD datasets enabled the development 131

of ML-based approaches utilizing simple features, 132

such as bag-of-word representations (Davidson 133

et al., 2017). With the advent of social media plat- 134

forms, many resources have been developed for 135

identifying toxic comments in web text (Waseem 136

and Hovy, 2016; Davidson et al., 2017), includ- 137

ing a number of deep learning-based methods (Pit- 138

silis et al., 2018; Zhang et al., 2018b; Casula et al., 139

2020; Yasaswini et al., 2021; Djandji et al., 2020). 140

Notably, all of these methods can be described as 141

building a contextual representation of a sentence 142

(whether trained end-to-end or on top of existing 143

pre-trained language models), and making a classi- 144

fication based on this representation. 145

OTD in Dialogue Systems As user-facing tech- 146

nologies, preventing dialogue systems from pro- 147

ducing offensive statements is crucial for their role 148

in society. As noted in Dinan et al. (2020), toxicity 149

in generated dialogue may begin with biases and 150

3www.hatebase.org
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offensive content in the training data, and debias-151

ing techniques focused on gender can reduce the152

amount of sexist comments generated by the re-153

sulting system. Similar outcomes can be obtained154

through adjustments to the model or training pro-155

cedure, for instance, toxic words can be masked156

during training to reduce their role in model pre-157

dictions (Dale et al., 2021). GeDi (Krause et al.,158

2020) proposed using class-conditional LMs as159

discriminators to reduce the toxicity produced by160

large pre-trained LMs (GPT-2). Additionally it161

may also be important to identify offensive state-162

ments made to a dialogue system, as it has been163

shown that dialogue systems can react with counter-164

aggression (Cercas Curry and Rieser, 2018), and165

systems which continuously learn during deploy-166

ment may incorporate toxic user responses into167

future generations.168

Subjectivity in OTD Previous work has hit upon169

the role that an individual’s own perspective may170

play when determining offensiveness. For instance,171

in the Offensive Language Identification Dataset172

(OLID), a widely used OTD dataset (Zampieri173

et al., 2019a,b, 2020), annotations exist on a hierar-174

chy. Each level dictates the target of the offensive175

text, in terms of their identity as a group, individual,176

or entity. But to our knowledge, a person’s iden-177

tity or attributes have not played a critical role in178

existing OTD research. OLID was also augmented179

with labels for capturing the degree of explicit-180

ness (Caselli et al., 2020)), and may also support181

research into resolving implicitly offensive state-182

ments. However, implicitness in OLID is defined183

primarily as the lack of an overtly offensive word184

or slur, and the aforementioned personal attributes185

or subjectivity of interpretation are not considered.186

Our dataset differs in this respect, as we consider187

not just if a statement is offensive, but how it can188

be considered offensive, by defining the interpre-189

tation process as a chain of reasoning towards a190

subjective experience. In this sense, a more similar191

approach comes from normative reasoning in moral192

stories (Emelin et al., 2020), where a short chain of193

reasoning is used to assess morality of actions and194

consequences.195

3 Data196

We propose Mh-RIOT as a dataset for the study of197

Implicit OTD as a multi-hop reasoning problem,198

and for use as a diagnostic to test models’ ability199

to identify implicitly offensive statements.200

Each example in the dataset consists of three 201

parts: 202

1. A personal attribute of the reader/listener. 203

2. An implicitly offensive statement, its corre- 204

sponding explicitly offensive statement, and a 205

non-offensive statement. 206

3. A chain of reasoning, describing the iterative 207

process of how the ambiguity of the implicitly 208

offensive statement can be resolved into the 209

corresponding explicitly offensive statement. 210

Appendix A lists some sample chains in Mh- 211

RIOT. 212

We collect annotations for Mh-RIOT using Ama- 213

zon Mechanical Turk (AMT). Four pilot experi- 214

ments were conducted to select qualified annotators 215

for the final annotation. The instructions provided 216

to the annotators can be found in Appendix C. 217

3.1 Annotation Scheme 218

Personal Attribute As we have defined in Sec- 219

tion 1, we argue that the context in which a state- 220

ment occurs is crucial to understanding its potential 221

in creating an offensive interpretation, and there- 222

fore the context should play an important role in 223

the annotation task. However, providing an overly 224

specific context can increase the difficulty of pro- 225

viding a relevant implicitly offensive statement. To 226

make the annotation task more feasible we reduce 227

the context to a single feature: a personal attribute 228

of the reader/listener. 229

The set of attributes is obtained from the per- 230

sonas in the PERSON-CHAT corpus (Zhang et al., 231

2018a), of the form “I like sweets.”, or “I work as a 232

stand up comedian.” Attributes related to ethnicity, 233

gender, and other protected classes are manually re- 234

moved, leaving 5334 distinct attributes. We divide 235

the attributes into several categories (detailed cate- 236

gory information can be found in Appendix B) be- 237

fore randomly sampling a subset of 920 attributes, 238

uniformly across categories, in order to increase 239

the number of workers assigned to each attribute. 240

Implicit, Explicit and Non-offensive Text For 241

each example, workers were provided 3 diverse at- 242

tributes and asked to choose one as writing prompt. 243

The workers are then instructed to provide annota- 244

tion in the form of example sentences, including: 245

Implicitly offensive statement Utterances that do 246

not express an overt intention to cause offense and 247

often require complicated reasoning or external 248
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knowledge to be fully recognized as offensive con-249

tents.250

Explicitly offensive statement Utterances which251

contain an obvious and direct intention or ex-252

plicit expressions to cause offense without external253

knowledge or reasoning processes.254

Non-offensive statement Utterances that do not255

cause offense under the context initiated with the256

attribute.257

Both explicit and implicit offensive statements258

should share the same meaning in terms of how259

they are offensive. Non-offensive statements are260

collected to construct a balanced dataset and to261

evaluate the accuracy of existing OTD models.262

Chain of Reasoning A distinguishing character-263

istic of our work is the collection of chains of264

reasoning to explain the interpretation process for265

implicitly offensive text. We represent the chain266

of reasoning as a series of sentence-to-sentence267

rewrites, similar to natural logic (MacCartney and268

Manning, 2014). One practical advantage of using269

a sentence-based representation for reasoning steps270

(in comparison to a structured representation like271

predicate-argument tuples) is that it allows the use272

of powerful text-to-text (T5) (Raffel et al., 2019)273

and entailment models (Liu et al., 2019; He et al.,274

2021), which are trained on sentence-level input.275

Formally each chain begins with an implicitly276

offensive statement (0-th step, denoted as s0) and277

ends with an explicit offense (sl). The length of the278

chain then becomes the number of steps between279

s0 and sl.280

3.2 Post-processing281

We were able to collect 2657 examples from the282

AMT and performed post-processing to ensure the283

quality of the data. We define three processes to284

edit the collected annotations in order to standard-285

ize the format of the reasoning steps, listed below.286

Examples with steps that can not be handled by287

any of the processes are removed from the dataset.288

To reduce biases in post-processing, we assign 3289

workers to each task.290

Attribute Insertion Rule (AIR) We insert the291

attribute statement into the first reasoning step (s1)292

to make this information accessible to any model293

taking the sentence as input. For instance, for an294

example with the attribute, “I am colorblind.” and295

the implicit offensive statement, “Oh, that would296

explain your wardrobe!”, the reasoning step “Oh,297

Knowledge

Only the best can win contests.
Classic things are usually old.
Grown-ups don’t play with dolls.
Parents want children to be independent.
Overworking makes people exhausted.

Table 1: Samples of the knowledge used to construct
chains of reasoning.

your color blindness would explain your wardrobe!” 298

generated by the worker is tagged as AIR. 299

Knowledge Insertion Rule (KIR) Steps that are 300

used to introduce external commonsense knowl- 301

edge are tagged as KIR. For instance, to support 302

the reasoning process from step “You are a grown- 303

up who can’t afford to rent a house.” to “You are 304

poor.”, the knowledge of “Poor people can’t afford 305

to rent a house.” is introduced. The following step 306

“You are poor.” is then tagged as KIR. To better 307

understand the effectiveness of external knowledge, 308

we also extract the commonsense knowledge dur- 309

ing the post-processing (Table 1). 310

Rephrasing Rule (RR). Steps that have equiva- 311

lent meaning to previous steps but can be simplified 312

by rephrasing are tagged as RR. For instance, to 313

express more explicit offensive meaning, an rea- 314

soning step written as a question “Do you like meat 315

too much, or just food in general?” is rephrased as 316

a declarative sentence step “You must love food too 317

much in general.” and tagged as RR. 318

3.3 Post-processing Results 319

Of the initially collected 2657 examples, 1050 re- 320

mained after the post-processing. The high task 321

rejection rate (60.5%) also conveys the difficulty of 322

this content generation task. In the dataset, the av- 323

erage length of a reasoning chain is 4.84 steps, with 324

a minimum length of 3 (60 examples) and a max- 325

imum of 6 (39 examples). Among all three tags, 326

RR is most frequently applied (59.6%), followed 327

by KIR (21.5%) and AIR (18.9%). 328

4 Experiments 329

We evaluate the difficulty of the Implicit OTD task 330

using existing state-of-the-art models, before ex- 331

ploring a multi-hop approach to Implicit OTD us- 332

ing existing entailment models to score transitions 333

in the reasoning chains. To further prove the prag- 334

matism of our multi-hop reasoning approach, we 335
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Accuracy

Mh-RIOT Twitter OffensEval Toxicity

Models Implicit Explicit Non All All All All

RoBERTa-Twitter 1.7 79.0 99.7 59.5 85.9 85.8 89.1
BERT-OffensEval 15.9 93.2 99.2 62.8 82.2 82.4 84.2

ALBERT-OffensEval 9.7 88.6 94.5 65.2 82.4 82.7 85.2
BERT-Toxicity 14.8 96.6 98.5 61.9 81.2 81.9 83.6

ALBERT-Toxicity 11.4 91.5 94.9 62.8 79.4 80.3 82.6
Avg. 10.7 89.8 97.4 62.5 82.2 82.6 84.9

Table 2: Performance of SOTA OTD models on the classification task. Non: Non-offensive.

also conduct an experiment with existing fact veri-336

fication systems.337

4.1 Sentence Classification338

We begin by evaluating existing state-of-the-art339

OTD models on both the Implicit-OTD and340

Explicit-OTD task. These include BERT (Devlin341

et al., 2019), RoBERTa (Liu et al., 2019), and AL-342

BERT (Lan et al., 2020), three pretrained large343

scale language models fine-tuned on existing OTD344

datasets, which produce the highest accuracy re-345

ported on the explicit OTD task.346

These models are fine-tuned on three OTD347

datasets, including (1) the OLID/OffensEval2019348

dataset (Zampieri et al., 2019a), discussed in Sec-349

tion 2, which contains 14,200 labeled tweets and350

includes implicit offensive statements, (2) the351

TWEETEVAL (Barbieri et al., 2020) multi-task of-352

fensive Twitter set for detecting irony, hate speech353

and offensive language, and (3) the Google Jigsaw354

Toxic Comments dataset 4 which contains 159,571355

samples in the training set. In the subsequent sec-356

tions we refer to these datasets as OffensEval, Twit-357

ter, and Toxicity, respectively.358

Table 2 shows the results of the baseline models359

on correctly classifying the implicitly and explicitly360

offensive text as offensive/non-offensive (systems361

are denoted as a hyphenated combination of pre-362

trained model and dataset). In every situation, the363

performance on the implicit task is significantly364

lower. The overall trend is perhaps unsurprising, as365

implicit examples lack clear indicators of offensive-366

ness, such as highly offensive words. However, the367

degree to which these models underperform in the368

Implicit-OTD task illustrates the extent to which369

these tasks differ, and highlights the risk of deploy-370

4Google Jigsaw Toxic Comments

ing such models to perform this task in real-world 371

situations. 372

An underlying assumption of this work and the 373

motivation for reasoning chains is the expectation 374

that as the reasoning process is applied, the in- 375

terpretation of the implicitly offensive utterance 376

becomes increasingly (explicitly) offensive. We 377

evaluate the extent to which this holds true in the 378

dataset, using the baseline systems to predict the 379

offensiveness of each rewrite across the reasoning 380

chain. Appendix D shows that this is indeed the 381

case, that moving down the reasoning chain corre- 382

lates with higher accuracy, and implying that each 383

step gradually reveals more of the offensive con- 384

notations in implicit offense. It also verifies that 385

the collected/annotated chains have the property of 386

being orderly. 387

4.2 Reasoning by Entailment 388

The results of Section 4.1 indicate two things: cur- 389

rent OTD systems perform poorly on the implicit 390

OTD task, and the difficulty of using existing mod- 391

els decreases as each successive step of the reason- 392

ing chain is applied. This insight hints at a poten- 393

tial approach to implicit OTD: apply a reasoning 394

model to map initial statements to their simplest 395

and most explicit corresponding offensive state- 396

ment (and score the likelihood of it being entailed 397

by the original statement), and then score the re- 398

sulting statement with a dedicated OTD model. In 399

essence, this decomposes a difficult inference into 400

a series of smaller inferences which may be tack- 401

led with higher accuracy by current models. We 402

explore the possibility using this approach with 403

existing models, assuming the human-annotated 404

chains as gold proof paths. 405

We treat the problem of scoring reasoning chains 406

as a multi-hop textual entailment problem as in 407
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I love bookclubs, I go
there every week.

Everywhere with
free food, right? Attribute Insertion

Rephrasing Knowledge Insertion Rephrasing

You love bookclubs
with free food.

You love free
food and eating.

You love eating a lot
which makes you fat.

 You are fat.


Eating a lot makes
people fat.

Speaker Listener

You go to bookclubs
for free food.

Rephrasing

Attribute

Step 1

Step 2

Step 3

Step 4

Step 5

Knowledge

Implicit

Figure 2: An example demonstrating the entailment experiment. Entailment scores between adjacent steps are
given by the text entailment models. Arrows represent the entailment processes. Esi→sj represents the entailment
score from step i to step j, where s0 represents the implicit offense and sl represents the last step (step 4 in this
example) of the chain.

Figure 2. Using an existing state-of-the-art textual408

entailment model, we score the transition from each409

step si to the next, si+1. Such models take as input410

a pair of texts, <premise, hypothesis>, and output411

scores for a set of labels indicating “entailment”412

(Ep→h), “netural” and “contradiction” (Cp→h). An413

example reasoning step, the premise “You look like414

someone who could use more exercise.” entails the415

hypothesis “You are fat.”.416

A naive approach to multi-hop reasoning is to417

treat each transition as an independent event, and418

model the probability of a reasoning chain as a419

product of transition scores. In the context of rea-420

soning chains, we define the probability of a chain421

c as:422

E(c) =
l−1∏
i=0

Esi→si+1 (1)423

We refer to this as MUL, the product model ap-424

proach to multi-hop reasoning. For the entailment425

model scoring each transition in the chain, we con-426

sider two systems, one derived from DeBERTa-427

base (He et al., 2021) and one from RoBERTa-428

large (Liu et al., 2019). Both systems were fine-429

tuned on the MNLI corpus (Nangia et al., 2017), a430

standard corpus for textual entailment.431

In our experiments we are most interested in432

comparing the scores of MUL to those of methods433

which ignore the reasoning chain, either by scoring434

the entailment of the explicitly offensive statement435

given the implicit one(s0 → sl), or by using one436

of the current state-of-the-art approaches to clas-437

sify the implicit statement directly(Table 2). While438

MUL is a naive model, any advantage of a model439

with such strong independence assumptions sug-440

gests areas where future multi-hop reasoning mod- 441

els could significantly improve over non-reasoning 442

“single hop” counterparts. 443

The results of the multi-hop experiments are pre- 444

sented in Table 3. We observe that under most 445

conditions, MUL outperforms Es0→sL by a mod- 446

est margin. The performance of MUL does suffer 447

on the longest reasoning chains as a result of an in- 448

creasing number of < 1.0 multiplications (a conse- 449

quence of the independence assumptions), negating 450

the margins between the two systems. The detailed 451

results can be found in Appendix G. 452

In terms of the types of reasoning which are 453

most beneficial, we observe large changes in the 454

transition scores before and after knowledge is inte- 455

grated into the reasoning process, i.e., around KIR 456

steps. We examine this behavior further, analyzing 457

the performance of OTD models on predicting the 458

final layer at points sk−1 and sk, before and after 459

knowledge integration (Table 5). We observe sig- 460

nificant (2-3 fold) improvements when predicting 461

after knowledge is integrated. Similar results can 462

also be observed on textual inference models as 463

shown in Appendix E. 464

To explore the effectiveness of the external 465

knowledge, we utilize the extracted knowledge 466

mentioned in Section 3.2 and perform an additional 467

set of experiments (denoted k+) where the external 468

knowledge acquired in data annotation is added 469

to each statement as a conjunction, until after a 470

KIR step occurs. For instance, if the knowledge 471

in sk is “Eating too much can make people fat.”, 472

this knowledge will then be connected to all steps 473

in {si|i = 0, 1, ..., k − 1} to form “<si> and eat- 474

ing too much can make people fat.” As shown 475
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Entailment Scores

RoBERTa DeBERTa

Chain Length Chain Length

Step 3 4 5 6 ALL 3 4 5 6 ALL

s0 → s1 64.7 84.4 89.9 90.0 - 68.4 78.2 86.5 90.7 -
s1 → s2 37.1 58.0 46.9 57.4 - 29.7 46.1 41.2 45.0 -
s2 → s3 73.6 55.1 42.5 50.2 - 64.4 50.5 35.5 44.3 -
s3 → s4 58.2 61.6 40.6 - 51.0 55.6 37.5 -
s4 → s5 60.9 65.9 - 50.0 63.3 -
s5 → s6 67.5 - 57.8 -

MULs0,...,sl 14.3 13.1 4.6 5.4 11.5 12.1 7.7 1.8 3.3 6.8
Es0→sl 17.2 9.1 4.4 5.6 7.6 8.3 5.9 2.4 3.6 4.5

MULs0,...,sl (k+) 38.1 32.0 17.9 16.5 23.5 30.2 20.3 7.6 4.0 14.1
Es0→sl (k+) 35.9 15.9 10.8 8.6 15.0 25.3 11.9 7.5 6.6 10.9

Table 3: Entailment scores between various steps of the reasoning chain, and the scores of a product model pro-
cessing each step sequentially (MUL). Column headers indicate subsets of the data, where all chains are of 3, 4, 5,
or 6 steps respectively. k+: scores indicate those where external knowledge is concatenated to all statements prior
to a KIR step.

in Table 3, adding knowledge increases scores for476

both models, but notably resulting in a significant477

advantage to the RoBERTa product model, which478

now outperforms direct prediction, and all previous479

baseline models, in all scenarios. The resulting sys-480

tem is also more robust to long reasoning chains.481

We even observe that the performance margins over482

direct prediction in the 6-step chains exceeds that483

of 3-step setting.484

5 Discussion485

We introduced this work based on a hypothesis486

of multi-hop approach as having a conceptual ad-487

vantage over existing approaches to offensive text488

detection, in that humans must each be perform-489

ing some reasoning process in order to find state-490

ments either offensive or unoffensive in different491

situations. We then showed that this conceptual492

advantage could translate to an empirical one, and493

showed performance gains over current approaches.494

However, we do so under strong assumptions and495

with access to additional information. How realis-496

tic is our experimental setup?497

5.1 What Knowledge is Necessary?498

In a separate experiment, we identified the biggest499

obstacle to accurate reasoning to be the integration500

of existing knowledge. From Table 5, we are able to501

observe different effectiveness on different models.502

Entailment Scores
Steps RoBERTa DeBERTa

s0 → s1 86.1 83.1
s0 → sl 6.7 3.9

(a)

Contradiction Scores
Steps RoBERTa DeBERTa

implicit→ non 13.7 17.9
explicit→ non 94.6 97.0

(b)

Table 4: The entailment scores (a) and contradiction
scores (b) from implicit statements to non-offerensive
statements versus explicit statements to non-offensive
statements.

It is worth exploring what type of knowledge is nec- 503

essary. We examined the entire set of knowledge to 504

study what types of information is import to reason- 505

ing. Largely the information falls in 3 categories: 506

(1) dictionary-based knowledge, (2) commonsense, 507

and (3) folk knowledge. Statements of knowledge 508

like “classic things are old.” is explained primarily 509

as a way to bridge the gap between specific words, 510

which might not be necessary given the gaining 511

ability of large scale language models. 512

A second form of knowledge, commonsense 513
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Accuracy
Models sk−1 sk

RoBERTa-Twitter 7.9 29.6
BERT-OffensEval 13.6 42.5

ALBERT-OffensEval 24.1 51.1
BERT-Toxicity 9.3 35.8

ALBERT-Toxicity 15.5 39.1

Table 5: Performance of SOTA OTD models on steps
before KIR (sk−1) and steps after KIR (sk).

Model Knowledge Coverage

Openai-GPT 46.9
GPT-2 66.7

GPT-3 (ada) 70.3
GPT-3 (davinci) 76.0

Table 6: Coverage rate of knowledge from Mh-RIOT
by different generations of GPT models.

knowledge is exemplified in statements like, “salad514

is healthy.”. Existing work on defeasible reason-515

ing (Sap et al., 2019; Zhang et al., 2020) has shown516

improvements incorporating external knowledge to517

support entailment-based reasoning using models518

similar to those used in this work. However, ex-519

isting knowledge base may contain sensitive and520

offensive contents that can be applied into reason-521

ing models without careful design. In this sense,522

practitioners should refer to works that put efforts523

on removing offensive contents from knowledge524

base (Fisher et al., 2020) to make sure the reason-525

ing models away from biases, discrimination and526

other offensive contents. A third and unusual type527

of knowledge is “folk knowledge” which may be528

a personal opinion and factually inaccurate. Ex-529

amples of this in the dataset can be “smart peo-530

ple don’t make mistakes.”Although it is potentially531

possible to embed such folk knowledge into pre-532

trained language models through training, current533

trend in NLP research is to remove the biases from534

the training data (Bender et al., 2021). In this case,535

it is still difficult to collect such knowledge. We536

leave this to the future work.537

5.2 Knowledge Incorporating Models?538

Large generative models GPT (Radford et al.,539

2018), and its upgraded models, GPT-2 (Radford540

et al., 2019), GPT-3 (Brown et al., 2020) show great541

performance on text completion tasks incorporating542

with knowledge. Such models are trained on large 543

amount of web-based contents which are filled with 544

commonsense knowledge. GPT-3 can achieve state- 545

of-the-art performance on various completion tasks 546

even without fine-tuning. It is worth to explore if 547

such models can cover some of the knowledge. 548

We conduct another separate experiment to ex- 549

plore the accessibility to commonsense knowledge 550

of pre-trained language models. We utilize the 551

knowledge extracted from Mh-RIOT and design 552

a prompt completion task for various GPT mod- 553

els and evaluate the performance. We use a 2-step 554

prompt as shown in Appendix H, Table 13 to force 555

the models give reasonable explanations on each 556

knowledge pieces used in Mh-RIOT. We perform 557

human evaluation via AMT on the generated ex- 558

planations. An instruction and the interface can be 559

found in Appendix H, Figure 5,6. 560

Table 6 shows the results of human evaluation. 561

We are able to observe that GPT-3 is able to cover 562

> 70% of the knowledge used in our dataset. More- 563

over, the results show an ascending trend of cov- 564

ering more knowledge by the models with more 565

training. These results show the potential of build- 566

ing reasoning and entailment models with more 567

knowledge. 568

6 Conclusion 569

In this work we aim to broaden the scope of offen- 570

sive text detection research to include the nuanced 571

utterances . Improvements in these models have 572

applications ranging from distant futures where hu- 573

mans frequently interact with dialogue systems in 574

situated ways which require such pragmatic reason- 575

ing to avoid unintended offense, to today’s online 576

forums, where often a cat-and-mouse game of in- 577

creasingly more creative offensive text creation and 578

moderation occurs. 579

In addition to providing a dataset of implicitly of- 580

fensive text, which can itself be used purely as a di- 581

agnostic of systems’ ability to identify more subtle 582

instances of offensive text, we also provide chain of 583

reasoning annotations which we hope can provide 584

insight to how statements lead to offensive interpre- 585

tations in certain situations. Our experiments pro- 586

vide a proof of concept of how multi-hop reasoning 587

models have the potential to outperform directly 588

classifying offensive text using current state-of-the- 589

art approaches, and identify areas for improvement 590

via future research in commonsense knowledge 591

base construction and inference. 592
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7 Ethical Considerations593

In this work we aim to develop models which can594

more accurately predict the emotions elicited from595

text statements. Although our goal is to identify596

potentially harmful statements in order to avoid597

them, it is important to consider potential negative598

use-cases for such work. A system which can iden-599

tify offensive statements can also select for them,600

and it may be possible to use such a system to tar-601

get users, attacking them on topics or attributes602

which they are most sensitive about. To the extent603

that we are able, we must be cautious not to aid in604

the development of such systems in the process of605

furthering research for more empathetic dialogue606

systems.607

We tailor our study in four ways in an effort to608

reduce the risk of harm. First, we focus primar-609

ily on identifying implicitly offensive statements.610

While a system which produces implicitly offen-611

sive statements may still be used to attack users,612

they are significantly more challenging to generate613

when compared to explicitly offensive statements,614

which do not require any additional inferences or615

world knowledge. We hypothesize that this makes616

implicitly offensive statements unlikely to be uti-617

lized in offensive systems. Second, our dataset size618

is chosen with the goal of being large enough to619

support evaluation, but not training. It can therefore620

function as a useful diagnostic of offensive text de-621

tection systems, with limited risk of being used to622

create one. Third, in our dataset we have removed623

protected attributes such as ethnicity, gender and624

race. Our dataset contains chain of reasoning which625

indicates the thinking processes of offensive state-626

ments. Given that such thinking processes could627

involve culture, personality and other high-level628

affective elements, removing such attributes could629

prevent the present work to be used to construct630

toxic generation models. Forth, in all crowdsourc-631

ing processes in this research, we make explicit632

clarifications that this task contains potential offen-633

sive contents. All workers are instructed with the634

goal of this research and should stop annotation635

immediately if they feel uncomfortable with the636

contents. Moreover, we make sure every worker637

can get a base salary of > 6.2$ per hour (average638

salary is 3$ in the authors’ region) with bonuses639

to motivate the workers and to compensate their640

potential uncomfortableness.641
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Kartoziya, and Michael Granitzer. 2020. I feel of- 672
fended, don’t be abusive! implicit/explicit messages 673
in offensive and abusive language. In Proceedings of 674
the 12th Language Resources and Evaluation Con- 675
ference, pages 6193–6202, Marseille, France. Euro- 676
pean Language Resources Association. 677

Camilla Casula, Alessio Palmero Aprosio, Stefano 678
Menini, and Sara Tonelli. 2020. FBK-DH at 679
SemEval-2020 task 12: Using multi-channel BERT 680
for multilingual offensive language detection. In 681
Proceedings of the Fourteenth Workshop on Seman- 682
tic Evaluation, pages 1539–1545, Barcelona (on- 683
line). International Committee for Computational 684
Linguistics. 685

Amanda Cercas Curry and Verena Rieser. 2018. 686
#MeToo Alexa: How conversational systems re- 687
spond to sexual harassment. In Proceedings of 688
the Second ACL Workshop on Ethics in Natural 689
Language Processing, pages 7–14, New Orleans, 690
Louisiana, USA. Association for Computational Lin- 691
guistics. 692

David Dale, Anton Voronov, Daryna Dementieva, Var- 693
vara Logacheva, Olga Kozlova, Nikita Semenov, and 694
Alexander Panchenko. 2021. Text detoxification us- 695
ing large pre-trained neural models. 696

Thomas Davidson, Dana Warmsley, Michael Macy, 697
and Ingmar Weber. 2017. Automated hate speech 698
detection and the problem of offensive language. 699

9

https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://aclanthology.org/2020.lrec-1.760
https://aclanthology.org/2020.lrec-1.760
https://aclanthology.org/2020.lrec-1.760
https://aclanthology.org/2020.lrec-1.760
https://aclanthology.org/2020.lrec-1.760
https://doi.org/10.18653/v1/2020.semeval-1.201
https://doi.org/10.18653/v1/2020.semeval-1.201
https://doi.org/10.18653/v1/2020.semeval-1.201
https://doi.org/10.18653/v1/2020.semeval-1.201
https://doi.org/10.18653/v1/2020.semeval-1.201
https://doi.org/10.18653/v1/W18-0802
https://doi.org/10.18653/v1/W18-0802
https://doi.org/10.18653/v1/W18-0802
http://arxiv.org/abs/2109.08914
http://arxiv.org/abs/2109.08914
http://arxiv.org/abs/2109.08914
http://arxiv.org/abs/1703.04009
http://arxiv.org/abs/1703.04009
http://arxiv.org/abs/1703.04009


Jacob Devlin, Ming-Wei Chang, Kenton Lee, and700
Kristina Toutanova. 2019. Bert: Pre-training of deep701
bidirectional transformers for language understand-702
ing.703

Emily Dinan, Angela Fan, Adina Williams, Jack Ur-704
banek, Douwe Kiela, and Jason Weston. 2020.705
Queens are powerful too: Mitigating gender bias in706
dialogue generation. In Proceedings of the 2020707
Conference on Empirical Methods in Natural Lan-708
guage Processing (EMNLP), pages 8173–8188, On-709
line. Association for Computational Linguistics.710

Marc Djandji, Fady Baly, Wissam Antoun, and Hazem711
Hajj. 2020. Multi-task learning using AraBert for712
offensive language detection. In Proceedings of713
the 4th Workshop on Open-Source Arabic Corpora714
and Processing Tools, with a Shared Task on Offen-715
sive Language Detection, pages 97–101, Marseille,716
France. European Language Resource Association.717

Denis Emelin, Ronan Le Bras, Jena D. Hwang,718
Maxwell Forbes, and Yejin Choi. 2020. Moral719
stories: Situated reasoning about norms, in-720
tents, actions, and their consequences. CoRR,721
abs/2012.15738.722

Joseph Fisher, Arpit Mittal, Dave Palfrey, and Christos723
Christodoulopoulos. 2020. Debiasing knowledge724
graph embeddings. In Proceedings of the 2020 Con-725
ference on Empirical Methods in Natural Language726
Processing (EMNLP), pages 7332–7345, Online. As-727
sociation for Computational Linguistics.728

Lei Gao and Ruihong Huang. 2017. Detecting on-729
line hate speech using context aware models. In730
Proceedings of the International Conference Recent731
Advances in Natural Language Processing, RANLP732
2017, pages 260–266, Varna, Bulgaria. INCOMA733
Ltd.734

Jennifer Golbeck, Zahra Ashktorab, Rashad O. Banjo,735
Alexandra Berlinger, Siddharth Bhagwan, Cody736
Buntain, Paul Cheakalos, Alicia A. Geller, Quint737
Gergory, Rajesh Kumar Gnanasekaran, Raja Ra-738
jan Gunasekaran, Kelly M. Hoffman, Jenny Hot-739
tle, Vichita Jienjitlert, Shivika Khare, Ryan Lau,740
Marianna J. Martindale, Shalmali Naik, Heather L.741
Nixon, Piyush Ramachandran, Kristine M. Rogers,742
Lisa Rogers, Meghna Sardana Sarin, Gaurav Sha-743
hane, Jayanee Thanki, Priyanka Vengataraman, Zi-744
jian Wan, and Derek Michael Wu. 2017. A large745
labeled corpus for online harassment research. In746
Proceedings of the 2017 ACM on Web Science Con-747
ference, WebSci ’17, page 229–233, New York, NY,748
USA. Association for Computing Machinery.749

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and750
Weizhu Chen. 2021. Deberta: Decoding-enhanced751
bert with disentangled attention.752

Douwe Kiela, Hamed Firooz, Aravind Mohan, Vedanuj753
Goswami, Amanpreet Singh, Pratik Ringshia, and754
Davide Testuggine. 2021. The hateful memes chal-755
lenge: Detecting hate speech in multimodal memes.756

Ben Krause, Akhilesh Deepak Gotmare, Bryan Mc- 757
Cann, Nitish Shirish Keskar, Shafiq Joty, Richard 758
Socher, and Nazneen Fatema Rajani. 2020. Gedi: 759
Generative discriminator guided sequence genera- 760
tion. 761

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, 762
Kevin Gimpel, Piyush Sharma, and Radu Soricut. 763
2020. Albert: A lite bert for self-supervised learn- 764
ing of language representations. 765

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 766
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 767
Luke Zettlemoyer, and Veselin Stoyanov. 2019. 768
Roberta: A robustly optimized BERT pretraining ap- 769
proach. CoRR, abs/1907.11692. 770

Bill MacCartney and Christopher D. Manning. 2014. 771
Natural Logic and Natural Language Inference, 772
pages 129–147. Springer Netherlands, Dordrecht. 773

Nikita Nangia, Adina Williams, Angeliki Lazaridou, 774
and Samuel Bowman. 2017. The RepEval 2017 775
shared task: Multi-genre natural language inference 776
with sentence representations. In Proceedings of the 777
2nd Workshop on Evaluating Vector Space Represen- 778
tations for NLP, pages 1–10, Copenhagen, Denmark. 779
Association for Computational Linguistics. 780

Georgios K. Pitsilis, Heri Ramampiaro, and Helge 781
Langseth. 2018. Effective hate-speech detection in 782
twitter data using recurrent neural networks. Ap- 783
plied Intelligence, 48(12):4730–4742. 784

Alec Radford, Karthik Narasimhan, Tim Salimans, and 785
Ilya Sutskever. 2018. Improving language under- 786
standing by generative pre-training. 787

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, 788
Dario Amodei, Ilya Sutskever, et al. 2019. Lan- 789
guage models are unsupervised multitask learners. 790
OpenAI blog, 1(8):9. 791

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 792
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 793
Wei Li, and Peter J. Liu. 2019. Exploring the limits 794
of transfer learning with a unified text-to-text trans- 795
former. CoRR, abs/1910.10683. 796

Björn Ross, Michael Rist, Guillermo Carbonell, Ben 797
Cabrera, Nils Kurowsky, and Michael Wojatzki. 798
2016. Measuring the Reliability of Hate Speech An- 799
notations: The Case of the European Refugee Cri- 800
sis. In Proceedings of NLP4CMC III: 3rd Workshop 801
on Natural Language Processing for Computer- 802
Mediated Communication, pages 6–9. 803

Maarten Sap, Ronan LeBras, Emily Allaway, Chan- 804
dra Bhagavatula, Nicholas Lourie, Hannah Rashkin, 805
Brendan Roof, Noah A. Smith, and Yejin Choi. 2019. 806
Atomic: An atlas of machine commonsense for if- 807
then reasoning. 808

Zeerak Waseem. 2016. Are you a racist or am I seeing 809
things? annotator influence on hate speech detection 810
on Twitter. In Proceedings of the First Workshop on 811

10

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.18653/v1/2020.emnlp-main.656
https://doi.org/10.18653/v1/2020.emnlp-main.656
https://doi.org/10.18653/v1/2020.emnlp-main.656
https://aclanthology.org/2020.osact-1.16
https://aclanthology.org/2020.osact-1.16
https://aclanthology.org/2020.osact-1.16
http://arxiv.org/abs/2012.15738
http://arxiv.org/abs/2012.15738
http://arxiv.org/abs/2012.15738
http://arxiv.org/abs/2012.15738
http://arxiv.org/abs/2012.15738
https://doi.org/10.18653/v1/2020.emnlp-main.595
https://doi.org/10.18653/v1/2020.emnlp-main.595
https://doi.org/10.18653/v1/2020.emnlp-main.595
https://doi.org/10.26615/978-954-452-049-6_036
https://doi.org/10.26615/978-954-452-049-6_036
https://doi.org/10.26615/978-954-452-049-6_036
https://doi.org/10.1145/3091478.3091509
https://doi.org/10.1145/3091478.3091509
https://doi.org/10.1145/3091478.3091509
http://arxiv.org/abs/2006.03654
http://arxiv.org/abs/2006.03654
http://arxiv.org/abs/2006.03654
http://arxiv.org/abs/2005.04790
http://arxiv.org/abs/2005.04790
http://arxiv.org/abs/2005.04790
http://arxiv.org/abs/2009.06367
http://arxiv.org/abs/2009.06367
http://arxiv.org/abs/2009.06367
http://arxiv.org/abs/2009.06367
http://arxiv.org/abs/2009.06367
http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.1007/978-94-007-7284-7_8
https://doi.org/10.18653/v1/W17-5301
https://doi.org/10.18653/v1/W17-5301
https://doi.org/10.18653/v1/W17-5301
https://doi.org/10.18653/v1/W17-5301
https://doi.org/10.18653/v1/W17-5301
https://doi.org/10.1007/s10489-018-1242-y
https://doi.org/10.1007/s10489-018-1242-y
https://doi.org/10.1007/s10489-018-1242-y
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
https://arxiv.org/pdf/1701.08118.pdf
https://arxiv.org/pdf/1701.08118.pdf
https://arxiv.org/pdf/1701.08118.pdf
https://arxiv.org/pdf/1701.08118.pdf
https://arxiv.org/pdf/1701.08118.pdf
http://arxiv.org/abs/1811.00146
http://arxiv.org/abs/1811.00146
http://arxiv.org/abs/1811.00146
https://doi.org/10.18653/v1/W16-5618
https://doi.org/10.18653/v1/W16-5618
https://doi.org/10.18653/v1/W16-5618
https://doi.org/10.18653/v1/W16-5618
https://doi.org/10.18653/v1/W16-5618


NLP and Computational Social Science, pages 138–812
142, Austin, Texas. Association for Computational813
Linguistics.814

Zeerak Waseem, Thomas Davidson, Dana Warmsley,815
and Ingmar Weber. 2017. Understanding abuse: A816
typology of abusive language detection subtasks. In817
Proceedings of the First Workshop on Abusive Lan-818
guage Online, pages 78–84, Vancouver, BC, Canada.819
Association for Computational Linguistics.820

Zeerak Waseem and Dirk Hovy. 2016. Hateful sym-821
bols or hateful people? predictive features for hate822
speech detection on Twitter. In Proceedings of the823
NAACL Student Research Workshop, pages 88–93,824
San Diego, California. Association for Computa-825
tional Linguistics.826

Konthala Yasaswini, Karthik Puranik, Adeep827
Hande, Ruba Priyadharshini, Sajeetha Thava-828
reesan, and Bharathi Raja Chakravarthi. 2021.829
IIITT@DravidianLangTech-EACL2021: Trans-830
fer learning for offensive language detection in831
Dravidian languages. In Proceedings of the First832
Workshop on Speech and Language Technologies833
for Dravidian Languages, pages 187–194, Kyiv.834
Association for Computational Linguistics.835

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,836
Sara Rosenthal, Noura Farra, and Ritesh Kumar.837
2019a. Predicting the type and target of offensive838
posts in social media. In Proceedings of the 2019839
Conference of the North American Chapter of the840
Association for Computational Linguistics: Human841
Language Technologies, Volume 1 (Long and Short842
Papers), pages 1415–1420, Minneapolis, Minnesota.843
Association for Computational Linguistics.844

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,845
Sara Rosenthal, Noura Farra, and Ritesh Kumar.846
2019b. SemEval-2019 task 6: Identifying and cat-847
egorizing offensive language in social media (Of-848
fensEval). In Proceedings of the 13th Interna-849
tional Workshop on Semantic Evaluation, pages 75–850
86, Minneapolis, Minnesota, USA. Association for851
Computational Linguistics.852

Marcos Zampieri, Preslav Nakov, Sara Rosenthal, Pepa853
Atanasova, Georgi Karadzhov, Hamdy Mubarak,854
Leon Derczynski, Zeses Pitenis, and Çağrı Çöltekin.855
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A Samples878

Table 7 shows some examples in Mh-RIOT. Each879

sample contains an Attribute, an Implicit State-880

ment, an Explicit Statement, a Non-offensive State-881

ment and a chain of reasoning mapping from im-882

plicit statement to explicit statement. The post-883

processing tag is attached to the end of each rea-884

soning step, where AIR is for “Attribute Insertion885

Rule”, KIR is for “Knowledge Insertion Rule” and886

RR is for “Rephrasing Rule”.887

Table 8 shows some examples of extracted888

knowledge from KIR steps of the chain of reason-889

ing during post-processing. sk−1 indicates the rea-890

soning steps before applying KIR and sk indicates891

the reasoning steps after applying KIR.892
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Attribute I eat lots of pancakes and syrup.
Implicit Statement That can indeed give you extra energy.
Explicit Statement You are fat.

Non-offensive I love pancakes, too.
Chain of Reasoning Pancakes and syrup can indeed give you extra energy. (AIR)

You got extra energy from eating. (RR)
You eat too much. (RR)
You eat too much which makes you fat. (KIR)
You are fat. (RR)

Attribute I am a guitar player.
Implicit Statement Oh did you learn that by yourself?
Explicit Statement Your guitar skills are awful.

Non-offensive That’s why you are so good at music.
Chain of Reasoning Did you learn guitar by yourself? (AIR)

You must have learned guitar by yourself. (RR)
You must have learned guitar by yourself because you don’t look so professional. (KIR)
You are not professional at guitar. (RR)
Your guitar skills are awful. (RR)

Attribute I wear contacts.
Implicit Statement Another reason why I’m scared to get old.
Explicit Statement You are so old.

Non-offensive I usually wear glasses.
Chain of Reasoning Wearing contacts is another reason why I’m scared to get old. (AIR)

I’m scared to get old because I don’t want to wear contacts like you. (RR)
I’m scared to get old because old people wear contacts like you. (KIR)
Old people like you wear contacts like you. (RR)
You are so old. (RR)

Attribute I come from a small town.
Implicit Statement Are you coming here for higher education?
Explicit Statement You are uneducated, then.

Non-offensive I always want to move to a small town.
Chain of Reasoning Are you coming to this big city for higher education? (AIR)

You come to this big city for higher education. (RR)
You come to this big city for education because you couldn’t get enough education in the small town. (KIR)
You couldn’t get enough education in the small town. (RR)
You are uneducated. (RR)

Table 7: Some chain of reasoning samples.

sk−1 You eat too much.
sk You eat too much which makes you fat.

Knowledge Eating too much can make people fat.
sk−1 I’ve never seen you on TV as a comedian.
sk I’ve never seen you on TV as a comedian because you’re not famous.

Knowledge Famous comedians are always on TV.
sk−1 You should lose weight.
sk You should lose weight because you are fat.

Knowledge Fat people should lose weight.
sk−1 You quit school.
sk You quit school which makes you uneducated.

Knowledge People who quit school are uneducated.

Table 8: Some external knowledge samples.
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B Attribute Categories893

Table 9 shows how we categorized and selected894

different attributes. The original attributes are di-895

vided into four big categories: AM, HAVE, MY and896

OTHER based on the syntax features (subject type,897

POS, Norm) of the sentence. Each category of AM,898

HAVE and MY are then divided into several sub-899

categories based on the object type of the sentence.900
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Category Sub-Category Example Number

AM (Attributes that describe personal status with a be-verb as the root.) 1429 (230)
AM-noun I am a teacher. 754 (50)
AM-number I am 30 years old. 76 (15)
AM-status I’m getting married next week. 149 (25)

I am funny.
AM-other I’m from San Francisco. 450 (140)

HAVE (Attributes that describe certain personal actions with a verb as the root.) 3203 (230)
HAVE-preference I like to remodel homes. 901 (65)

I hate talking to people.
Have-status I have a dog named bob. 540 (40)
Have-other I own my home. 1762 (125)

I live in Colorado.

MY (Attributes that describe possession status related to the speaker.) 731 (230)
MY-preference My favorite sport is football. 256(80)

My favorite movie is pretty woman.
My favorite food is cheeseburgers.

My-other My mom is a checker at the local grocery store. 475(150)
My wife and i like to go scuba diving.

OTHER (Other remaining attributes that do not have specific syntax features.) 763(230)
Before i die , i want to skydive. 763 (230)
While both my parents have thick European accents, I do not.
It is my universe, and everyone else is just a character in it.

Total 5334 (920)

Table 9: Different categories of personal attributes and the number of selected attributes (numbers in parentheses).
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C Crowdsourcing Instruction901

Figure 3 shows a template instruction that we used902

in our AMT tasks. Crowd workers are instructed903

with the purpose of the research and are notified904

about the potential offensive contents of this task.905

In order to protect the crowd workers due to the906

nature of this research, we have explicitly men-907

tioned on the AMT task control panel that the cur-908

rent task may contain offensive contents. Moreover,909

we check the collected attributes and remove po-910

tential dangerous ones before posting the tasks.911

This task requires more effort due to a great912

amount of content generation. To compensate913

the crowd workers, we guarantee every qualified914

worker to get a base salary of > 6.2$ per hour915

(average salary is 3$ in the authors’ region) with916

bonuses to motivate the workers.917
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Figure 3: Introduction in the crowdsourcing task
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D Sentence Classification Results918

Figure 4 shows the results of existing SOTA OTD919

models on each step of the chain of reasoning in920

Mh-RIOT.921
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Figure 4: Performance of the models on each step of the chains of reasoning with different lengths.
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E Model Details922

Table 10 shows the details of the models used in923

all of our experiments. We implemented the frame-924

work with the “TextClassification” pipeline from925

HuggingFace5. All models can be directly down-926

loaded from the links given in the table.927

We selected models fine-tuned on MNLI for en-928

tailment models because MNLI provides a large929

size textual inference dataset that contains multi-930

ple genres and thus can greatly reduce biases of931

the models trained on. Both RoBERTa and De-932

BERTa models fine-tuned on MNLI have achieved933

state-of-the-art performance.934

5https://huggingface.co/
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Experiment Model Sources

Classification

RoBERTa-Twitter
Base model: RoBERTa-base
#Parameters: 125M
Trained on: TWEETEVAL (2020)
Source: https://huggingface.co/cardiffnlp/twitter-roberta-base-offensive

BERT-OffensEval Base model: BERT-base-uncased
#Parameters: 110M
Trained on: OLID/OffensEval2019 (2019)
Source: https://huggingface.co/mohsenfayyaz/bert-base-uncased-offenseval2019-downsample

ALBERT-OffensEval Base model: ALBERT-base-v2
#Parameters: 12M
Trained on: OLID/OffensEval2019 (2019)
Source: https://huggingface.co/mohsenfayyaz/albert-base-v2-offenseval2019-downsample

BERT-toxicity Base model: BERT-base-uncased
#Parameters: 110M
Trained on: Toxic Comment (2018)
Source: https://huggingface.co/mohsenfayyaz/toxicity-classifier

ALBERT-toxicity Base model: ALBERT-base-v2
#Parameters: 12M
Trained on: Toxic Comment (2018)
Source: https://huggingface.co/mohsenfayyaz/albert-base-v2-toxicity

Entailment

RoBERTa

Base model: RoBERTa-large
#Parameters: 355M
Trained on: MNLI (2017)
Source: https://huggingface.co/roberta-large-mnli
Reported Acc. on MNLI: 90.2

DeBERTa

Base model: DeBERTa-large
#Parameters: 355M
Trained on: MNLI (2017)
Source: https://huggingface.co/microsoft/deberta-large-mnli
Reported Acc. on MNLI: 91.1

Table 10: Details of the models used in the experiments.
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F Knowledge Entailment Experiment935

Table 11 shows the results of running text inference936

models around KIR steps of the chain of reasoning.937

To be noticed, we were not able to find any KIR938

steps in the chain of reasoning whose length is 3.939

This implies that knowledge insertion might not be940

necessary to interpret implicit statements that are941

not “implicit” enough.942

G Knowledge Entailment Experiment943

Table 12 shows the final accuracy calculated with944

the entailment scores and accuracy of OTD models945

on Explicit inputs.946
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Entailment Scores
Length Models sk−1 → sk sk → sk+1

4-steps RoBERTa 28.2 66.4
DeBERTa 19.8 58.3

5-steps RoBERTa 23.0 78.2
DeBERTa 15.7 66.5

6-steps RoBERTa 19.1 79.5
DeBERTa 17.5 71.5

Table 11: Entailment scores between the KIR step (sk) and step before KIR (sk−1) and step after KIR (sk+1). The
chains with length of three are not included in this evaluation as they do not frequently contain a KIR step.

Accuracy

Implicit
MUL*Explicit MUL(k+)*Explicit

OTD Models RoBERTa DeBERTa RoBERTa DeBERTa

RoBERTa-Twitter 1.7 9.1 5.4 18.6 11.1
BERT-OffensEval 15.9 10.7 6.3 21.9 13.1

ALBERT-OffensEval 9.7 10.2 6.0 20.8 12.5
BERT-Toxicity 14.8 11.1 6.6 22.7 13.6

ALBERT-Toxicity 11.4 10.5 6.2 21.5 12.9

Table 12: Full accuracy calculated from reasoning models and the accuracy of OTD models on Explicit.
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H Knowledge Coverage Experiment947

Table 13 shows the prompt used in the knowledge948

coverage experiment. In order to make sure that the949

models have access to the knowledge, we apply a950

2-step conversational prompt. In step 1, the models951

are asked if they know the knowledge or not. In952

step 2, the model will have to give an reason to953

explain the knowledge. Based on the explanations954

we should be able verify the accessibility to the955

knowledge.956

Figure 5 shows the instruction for annotators and957

Figure 6 shows the interface used in the task. The958

annotators are asked to select if the generated ex-959

planations are able to explain the given knowledge.960

Given that the generated text may contain offen-961

sive contents, we have made specific clarification962

that the workers are able to report the examples963

that contain offensive contents and have the right964

to immediately stop the task.965

We have filtered out all knowledge examples that966

are related to protected classes such as gender, race,967

etc. For each example of knowledge, we assign 5968

annotators to vote for the final answers with the969

Krippendorff’s α = 0.724. Given that removing970

protected classes related examples may create more971

biases on our evaluation, we have asked an expert972

to finish the evaluation task under the same con-973

dition however without protected classes removed.974

Table 14 shows the evaluation results given by the975

expert.976

Table 6 shows the knowledge coverage rate by977

different GPT models. The trend of improvement978

on knowledge coverage implies that with more979

training data and better engineering, pre-trained980

language models are able to gain more knowledge981

significantly. In our experiment, GPT-3 is able to982

cover > 70% of the knowledge used in our dataset.983
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Figure 5: The instruction for annotators used in the knowledge coverage experiment.

Figure 6: The interface used in the knowledge coverage experiment.
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Prompt:

Q: Do you know that <knowledge>?
A: Yes.
Q: Why?
A:
Examples:
Q: Do you know that junk food are unhealthy?
A: Yes.
Q: Why?
A: Because junk food is high in calories and can cause obesity.
Q: Do you know that people hate disasters?
A: Yes.
Q: Why?
A: Because they think that they are going to die.

Table 13: The prompt used in knowledge accessibility experiment and some example answers by GPT-3.

Model Coverage Rate

Openai-GPT 32.4
GPT-2 51.5

GPT-3 (ada) 62.6
GPT-3 (davinci) 69.7

Table 14: Coverage rate of the extracted knowledge by
different generations of GPT models. This evaluation
is done by the expert on a full knowledge set without
removing protected classes.
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