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Abstract

The fundamental assumption in regression analysis that each response-predictor pair cor-
responds to the same observational unit is not always valid, especially with mismatched
data. This paper presents a novel approach for uncertainty quantification in linear regres-
sion when data mismatch occurs. Using the generalized fiducial inference framework, we
develop a method to generate fiducial samples for constructing confidence intervals and
measuring uncertainty in key regression parameters. We establish the theoretical properties
of our approach and demonstrate its practical effectiveness through empirical tests on both
simulated and real datasets. To our knowledge, this is the first study to explore uncertainty
quantification for mismatched data in linear regression.

1 Introduction

Linear regression and its numerous extensions serve as fundamental tools in statistics and machine learning.
A significant challenge arises when the correspondence between predictors X and responses y is not fully
established. Specifically, while both predictors and responses are available as separate datasets, the precise
matching between them may be partially or entirely unknown. This issue, often referred to as “permuted
data” or “sparsely permuted data” when only a small fraction of pairs are mismatched, has garnered signifi-
cant attention in recent works (e.g., Pananjady et al., 2017a; Hsu et al., 2017; Tsakiris & Peng, 2019; Slawski
et al., 2020; Zhang & Li, 2020; 2023a;b; Azadkia & Balabdaoui, 2024).

Historically, this problem has been studied under the umbrella of the “broken sample problem,” a term
introduced in the 1970s (e.g., DeGroot et al., 1971; DeGroot & Goel, 1980). Early research focused primarily
on parameter estimation, such as regression coefficients, rather than recovering the correspondence between
predictors and responses. This line of investigation is closely related to record linkage and statistical analysis
based on merged datasets (e.g., Lahiri & Larsen, 2005). These challenges frequently arise in real-world
applications such as the U.S. Census Bureau, where multiple data sources are integrated to address complex
questions. In these contexts, mismatches and ambiguities in record linkage—often caused by the absence of
unique identifiers or errors in quasi-identifiers (e.g., names, addresses, or dates of birth)—can lead to selection
bias and pervasive outliers. For example, linkage errors resulting from privacy-preserving measures, such as
the removal of social security numbers, may contaminate statistical analyses and hinder accurate parameter
estimation. Additionally, identifying matching pairs may sometimes be undesirable due to confidentiality
concerns. Notable examples include linkage attacks that exposed sensitive medical histories and the partial
de-anonymization of Netflix movie rankings. These cases underscore the dual importance of mitigating the
impact of mismatches while preserving data confidentiality (Domingo-Ferrer & Muralidhar, 2016). Another
real example of mismatched data is discussed in Millimet (2024). Data are linked across sources or over
time, and the unit of observation changes. A crosswalk is used to convert to a common unit of observation.
For example, convert county-level data to congressional district-level data.

In recent work, Pananjady et al. (2017b) established the statistical limits of exact and approximate permu-
tation recovery as a function of the signal-to-noise ratio (SNR), defined as the ratio of signal energy to noise
variance. It was also shown in Pananjady et al. (2017b) that least squares estimation of the permutation
matrix is NP-hard in general. To address these computational challenges, Hsu et al. (2017) proposed a
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polynomial-time approximation algorithm and derived lower bounds on the required SNR for approximate
signal recovery in noisy scenarios; related results can be found in Abid et al. (2017) and Slawski & Ben-David
(2019). Additionally, Slawski & Ben-David (2019) investigated both signal and permutation recovery in cases
where only a small fraction of the rows in the sensing matrix are permuted. Furthermore, Chakraborty &
Datta (2024) proposed a robust Bayesian framework for this setting and developed an efficient posterior
sampling scheme.

While prior works have focused on recovering the correct permutation and estimating regression parameters,
they have largely overlooked the crucial aspect of uncertainty quantification. In regression with mismatched
data, uncertainty arises not only from noise in the observations but also from ambiguity in the data cor-
respondence itself. Without a principled way to quantify this uncertainty, models may provide unreliable
estimates, leading to overconfident conclusions and poor decision-making. Confidence and prediction in-
tervals are essential for assessing the reliability of estimates and ensuring robust inference, particularly
in real-world applications where mismatches are unavoidable. To address this gap, our study develops a
systematic approach to uncertainty quantification.

1.1 Contributions

Our main contributions are summarized as follows:

• We propose the first formal framework for uncertainty quantification in linear regression with mis-
matched data by introducing a generalized fiducial density for permutations. This approach enables
systematic probabilistic analysis of model parameters and includes theoretical guarantees, such as
asymptotic consistency (see Section 4).

• We develop a practical algorithm for generating fiducial samples, which facilitates the construction
of confidence and prediction intervals (see Section 3). Numerical experiments demonstrate the
effectiveness and robustness of the proposed method across various settings. As shown below, fiducial
samples play a similar role to posterior samples in Bayesian analysis.

• Our method addresses the limitations of relying on one single permutation estimate for inference. By
considering multiple potential permutation candidates through the framework of generalized fiducial
density, our method provides a more stable and reliable method for uncertainty quantification.

1.2 Problem Definition

Suppose the data consists of xi, yi, for i = 1, · · · , n, where xi ∈ Rp and yi ∈ R. Due to errors in the
record linkage process, some xi may be paired with a non-corresponding yi (Slawski & Ben-David, 2019).
If the number of such mismatches is known to be at most k, then there exists an unknown permutation
φ on {1, · · · , n} that moves at most k indices. Consequently,

(
y1, xφ(1)

)
, . . . ,

(
yn, xφ(n)

)
are independent

realizations from the classical linear regression model:

y = xT β∗ + e, where e ∼ N(0, σ2), x ⊥ e. (1)

The general mismatch setting also considers scenarios with missing matches or one-to-many matches, where
multiple elements in y may correspond to the same element in x (Slawski et al., 2020). Our proposed method
can naturally accommodate such cases.

Let Π∗ and Π∗T represent the matrix form of φ and its inverse, respectively. Define X = (x1, · · · , xn)T ,
y = (y1, · · · , yn)T , and e = (e1, · · · , en)T . The model equation can be expressed as:

y = Π∗Xβ∗ + e, (2)
⇐⇒ Π∗T y = Xβ∗ + Π∗T e, (3)

where ei
i.i.d.∼ N(0, σ2).
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Also, we assume a Gaussian design:

xi
i.i.d.∼ N(0, Ip), i = 1, · · · , n. (4)

Our results extend to the case
xi

i.i.d.∼ N(0, Σ), i = 1, · · · , n,

where Σ is a symmetric positive definite matrix, by redefining the regression parameter as Σ 1
2 β∗.

A toy example is provided in Table 1 for illustration. The first two columns represent the true pairs of
data, while the third and fourth columns show the observed data with mismatches caused by the unknown
permutation. For example, the first observation is (x2, y1), while the true pair is (x1, y1). The last two
columns detail the permutation φ(i), and the corresponding permutation matrix is shown in (5).

Table 1: A toy example
Truth Observation i φ(i)

y1 x1 y1 x2 1 2
y2 x2 y2 x3 2 3
y3 x3 y3 x4 3 4
y4 x4 y4 x5 4 5
y5 x5 y5 x1 5 1

Π∗ =


0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 (5)

1.3 Outline

The remainder of this paper is organized as follows. Section 2 introduces the concept of generalized fiducial
inference. In Section 3, we present the proposed method for applying generalized fiducial inference to linear
regression with mismatched data. The theoretical properties of this method are developed in Section 4.
Simulation studies and real data applications are discussed in Sections 5 and 6, respectively. Finally, the
conclusions are drawn in Section 7, and technical details are deferred to the appendix.

1.4 Notation

Let |S| denote the cardinality of a set S, and range(A) denote the column space of a matrix A. Write ⟨u, v⟩
as the inner product of the vectors u and v, and Sn−1 as the unit sphere in Rn. Also, ∥ · ∥0 denotes the ℓ0-
“norm,” i.e., the number of non-zero entries of a vector. Lastly, we make use of the usual Big-O notation in
terms of O, o, Ω and Θ.

2 Introduction to Generalized Fiducial Inference

The concept of fiducial inference, originally proposed by Fisher, was developed as an alternative to Bayes’
theorem in situations where prior information is unavailable. Fisher introduced a “switching principle,”
akin to the maximum likelihood approach, to derive a prior directly from the observed data (Fisher, 1930).
In recent years, there have been numerous efforts to expand and refine the principles of fiducial inference,
leading to various modern extensions. The generalized fiducial inference (GFI) framework has emerged as a
prominent modern adaptation, demonstrating its effectiveness in tackling contemporary challenges such as
graphon estimation (Su et al., 2022) and multi-task learning (Wei & Lee, 2023).
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The foundation of GFI is to model the relationship between the observed data Y and the unknown parameters
θ through:

Y = G(θ, U), (6)

where G(·, ·) is a deterministic function, and U is a random variable with a fully specified distribution (e.g.,
i.i.d. N(0, 1)). The key aspect of GFI is the application of the switching principle, which treats the roles of
Y and θ as interchangeable in the likelihood function: Y is treated as fixed, while θ is regarded as random.

Assuming that G(·, ·) has a well-defined inverse mapping, we define:

QY (u) = {θ : Y = G(θ, u)},

where u is a realization of U . It is important to note that this inverse mapping may not always exist.
In cases where no θ satisfies the equation, the corresponding u is excluded from the sample space, and
probabilities are renormalized. Conversely, if multiple solutions exist, a single θ is selected at random from
the set {θ : Y = G(θ, u)} Hannig & Lee (2009).

Given that the distribution of U is fully known, random samples ũ1, ũ2, . . . can be drawn, and corresponding
fiducial samples

θ̃1 = QY (ũ1), θ̃2 = QY (ũ2), . . .

can be generated. These fiducial samples, analogous to Bayesian posterior samples, allow for statistical
inference, such as constructing confidence intervals for θ. Furthermore, the corresponding fiducial density
r(θ|Y ), analogous to a Bayesian posterior density, can also be obtained.

While the above description of GFI appears conceptually straightforward, it may not be directly suitable for
all scenarios. Under a continuous distribution of data and some differentiability assumptions Hannig et al.
(2016), the fiducial density r(θ|Y ) can be expressed as:

r(θ|Y ) = f(Y , θ)J(Y , θ)∫
Θ f(Y , θ′)J(Y , θ′)dθ′ , (7)

where f(Y , θ) is the likelihood function, and

J(Y , θ) = D

(
∂G(θ, u)

∂θ

∣∣∣∣
u=G−1(Y ,θ)

)
,

with D(A) = det(A⊤A)1/2.

However, equation (7) assumes a fixed model dimension, which does not fit in the current problem where
the number of mismatches k is unknown. For problems involving model classes M, the marginal fiducial
probability for a model M ∈ M is given by:

r(M) ∝ e−q(M)
∫

ΘM

fM (Y , θM )JM (Y , θM )dθM , (8)

where q(M) is a penalty term of the model M .

In general, GFI is a valuable tool for modern statistical inference. By leveraging fiducial samples and
fiducial densities, it provides an intuitive framework for analyzing parameter uncertainty without relying
on the subjective priors required in Bayesian methods. Furthermore, GFI shares connections with Bayesian
methodologies, such as the resemblance of J(Y , θ) to Jeffreys’ prior, and its behavior is analogous to that
of a Bayesian posterior.

3 GFI For Mismatched Data

This section applies the above GFI framework to the current problem of regression with mismatched data.
The parameter set is

θM = {ΠM , σ2
M , βM },
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where M denotes a specific permutation. With these, the data generation function (6) is

Y = G(θM , U) = ΠM XβM + σM U, (9)

where U ∼ N(0, In). Let PX and P ⊥
X denote the orthogonal projection onto the range of X and its

orthogonal complement, respectively. Note that P ⊥
X = In − PX . Define the set of indices of mismatched

pairs as
S∗ = {i : Π∗

ii = 0}
and also define

SM = {i : ΠM,ii = 0},

where ΠM,ii is the (i, i)-th element of the permutation matrix ΠM .

Following the framework of GFI, we calculate:

JM (y, θM ) = σ−1
M | det(XT X)| 1

2 ∥P ⊥
XΠT

M y∥2,

where ∥P ⊥
XΠT

M y∥2
2 represents the residual sum of squares under the permutation ΠM . The calculation of

JM (y, θM ) is similar to Lai et al. (2015).

Next, the likelihood function is given by:

fM (y, θM ) = (2πσ2
M )− n

2 exp
{

− 1
2σ2

M

∥P ⊥
XΠT

M y∥2
2

}
.

We incorporate the Bayesian Information Criterion (BIC) as the penalty, defined as

q(M) = 1
2 log n · |SM |.

Consequently, the generalized fiducial density of a candidate model M is then:

r(ΠM ) ∝ R(ΠM )

= ∥P ⊥
XΠT

M y∥p+1−n
2 e− 1

2 log n·|SM |. (10)

It is important to note that the estimation of σ2
M and βM relies on ΠM , which is the central component of the

problem. Note that r(ΠM ) includes the residual sum of squares∥P ⊥
XΠT

M y∥2
2 and the penalty − 1

2 log n · |SM |.
Notice that once ΠM is specified, σ2

M and βM can be uniquely estimated. Therefore, for simplicity, we refer
ΠM as the parameter set instead of θM .

3.1 Practical Generation of Fiducial Sample

This section develops a practical procedure for generating fiducial samples. We begin by presenting a modified
version of the algorithm in Slawski et al. (2020) for estimating Π∗. The main steps of this algorithm are:

1. Obtain β̂ and ĝ as
arg min

β∈Rp,g∈Rn

1
n

∥y − Xβ −
√

ng∥2
2 + λ∥g∥1,

where λ > 0 is a tuning parameter, g targets g∗ = 1√
n

(Π∗ − In)Xβ∗. Note that g∗ signifies the
locations of the mismatches; to be more specific i ∈ S∗ ⇐⇒ g∗

i ̸= 0.

2. Detect the mismatches by inspecting the centered magnitudes of the ĝi’s in ĝ = (ĝ1, · · · , ĝn)T . The
rationale behind this is that the larger the magnitude of ĝi, the more likely the i-th observation is
an outlier, which also implies the more likely it is a mismatch. Define the set of outlier indices as:

Ŝ = {i : |ĝi − median(ĝi)| > l · MAD},

where MAD is the median absolute deviation of ĝi and l is a tuning parameter. Notice that k can
be naturally estimated by

k̂ = |Ŝ|. (11)
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3. Refine β̂ by performing ordinary least squares on the subset of data points {(xi, yi) : i /∈ Ŝ}.

4. Estimate Π∗ by
min

Π
∥y − ΠXβ̂∥2

2

subject to for any i /∈ Ŝ, the row i of Π and In are identical, i.e, only the rows in Ŝ are permuted.

Note that Step 4 is a linear assignment problem Burkard et al. (2012), a specific linear program that can
be solved efficiently by the Hungarian Algorithm. As mentioned before, the purpose of Step 2 is to locate
the indices of mismatches, which are then used as inputs for Steps 3 and 4. The rationale is that the index
i is mismatched if |ĝi| is large. Step 2 is a novel and practical addition to the original algorithm proposed
by Slawski et al. (2020). This original algorithm uses the true k as a threshold in Step 2 to detect outliers.
This algorithm is also included in simulations. Finally, we note that Step 2 can be replaced with alternative
methods designed for outlier detection.

Next, we experiment with different tuning parameters (λ, l) to generate a set of model candidates, denoted
as P̂ = {ΠM }. When the chosen tuning parameters are reasonably close to the optimal values, it is expected
that

∑
ΠM ∈P̂ r(ΠM ) is very close to 1.

Finally we can generate a fiducial sample {Π̃M , σ̃2
M , β̃M } with the following steps:

1. Generate a ΠM from
r̂(ΠM ) = R(ΠM )∑

ΠM ∈P̂ R(ΠM ) ,

where R(ΠM ) is defined in (10).

2. With ΠM , generate a σ2
M from

σ2
M ∼ ∥P ⊥

XΠT
M y∥2

2/χ2
n−p.

3. With ΠM , σ2
M , generate a βM from

βM ∼ N((XT X)−1XT ΠT
M y, σ2

M (XT X)−1).

Step 2 and 3 are derived from the distributional assumptions on the residuals ei’s.

3.2 Inference with Fiducial Sample

Repeating the above steps, one can obtain multiple copies of {(Π̃M , σ̃2
M , β̃M )}. With these copies, one

can then form point estimates and confidence intervals for the unknown parameters, which are similar to
Bayesian posterior samples.

For any xi, the corresponding conditional mean is

µxi = E[yi|xi] = xT
i β.

Based on one copy of {(Π̃M , σ̃2
M , β̃M )}, a fiducial sample µ̃xi

can be obtained as µ̃xi
= xT

i β̃.

Let µ̂xi be the sample mean and Ŝxi the sample standard deviation of these µ̃xi . Then, µ̂xi is a point
estimate for µxi . Additionally, one can construct a 100(1 − α)% confidence interval for µxi :

µ̂xi ± ŜxiZα,

where Zα is the upper (100α)th percentile of standard normal distribution.

Similarly, a prediction point estimate and a prediction interval can be obtained for any new observation yi

at xi. Compared to the conditional mean µxi
, a new observation yi exhibits greater variability. A fiducial

sample can be obtained by adding a noise term: µ̃∗
xi

= µ̃xi
+ σ̃M z with z ∼ N(0, 1). Let µ̂∗

xi
be the sample

mean and Ŝ∗
xi

the sample standard deviation of all µ̃xi
values. Then µ̂∗

xi
is a point estimate for yi. A

100(1 − α)% prediction interval for yi can then be constructed as:

µ̂∗
xi

± Ŝ∗
xi

Zα.
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4 Theoretical Properties

This section establishes the asymptotic properties of the generalized fiducial-based method described above.
We begin by introducing the necessary notations. Let Pn denote the set of all permutation matrices in Rn×n,
and define

Pn,k = {ΠM ∈ Pn : |SM | ≤ k},

where |SM | represents the number of mismatches associated with the permutation matrix ΠM .

We define the signal-to-noise ratio (SNR) as:

SNR = ∥β∗∥2
2

σ2 .

The SNR serves as a critical assumption to establish the consistency of the proposed method.

For a compact and symmetric1 set S ⊆ Rn, its Gaussian width is defined as:

ω(S) = E sup
x∈S

|⟨g, x⟩|, g ∼ N(0, In), (12)

where ⟨g, x⟩ represents the inner product of g and x. The Gaussian width is a complexity measure widely
used in high-dimensional linear inverse problems (Cai et al., 2016).

In our theoretical analysis, we consider the set Pn,k̃ with k̃ ≥ k, which allows for at most k̃ mismatches. The
Gaussian width is applied to the set

T =
⋃

Π∈Pn,k̃

{range(Π − Π∗T )} ∩ Sn−1. (13)

Notice for any v ∈ Rn, Π ∈ Pn,k̃,

∥(Π − Π∗T )v∥0 ≤ ∥Πv∥0 + ∥Π∗T v∥0 ≤ 2k̃.

So T ⊆ B0(2k̃, n) ∩ Sn−1, where the set

B0(r, n) = {v ∈ Rn : ∥v∥0 ≤ r}.

By Lemma 2.3 in Plan & Vershynin (2012), we have

ω(T ) ≤ ω(B0(2k̃, n) ∩ Sn−1) ≤ 3.5
√

2k̃ log en

2k̃
. (14)

The above result is utilized for concentration inequalities in the proof. Now, we establish the key theoretical
results for our method.
Theorem 4.1. Under the model (3), assume limn→∞

p
n < 1. Also, assume for any constant δ ∈ (0, 1), there

exist constants ϵ ∈ (0, 1) and C such that

∥β∗∥2
2

σ2 ≥ 2k̃ log n

k̃
( 3k̃nC

δ(n − p)(1 − ϵ) )2 − 1 and k̃ log n

k̃
= o(n).

Then for any ΠM ∈ Pn,k̃, ΠM ̸= Π∗, we have

r(Π∗)
r(ΠM ) −→ ∞, n −→ ∞ (15)

1A set S is symmetric if x ∈ S implies −x ∈ S.
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with probability at least

1 − δ − 2 exp
{

−(n − p)(ϵ2

4 − ϵ3

6 )
}

− exp
{

−C2(k̃ log n
k̃

)
8

}
.

Additionally, let Qn,l = {ΠM ∈ Pn : |SM | = l}, l = 0, 1, · · · , and assume |Qn,l| ≤ n
l
2 then

P

 ∑
ΠM ∈

⋃k̃

l=1
Qn,l

r(Π∗)
r(ΠM ) −→ 1

 ≥ 1 − δ, n → ∞. (16)

The proof can be found in Appendix B. The proof relies on analyzing the relative likelihood of different
permutations. Specifically, the theorem shows that the ratio of fiducial densities r(Π∗)

r(ΠM ) diverges to infinity
for any incorrect permutation ΠM , implying that the probability assigned to incorrect permutations asymp-
totically vanishes. This result justifies the practical approach for generating model candidates described in
Section 3.1.

To establish this result, we derive a lower bound on the difference between the residual sum of squares (RSS)
under Π∗ and that under any incorrect ΠM . Additionally, by the assumption of the upper bound on the
number of candidate models |Qn,l|, we show that the probability mass assigned to the true model converges
to 1 asymptotically.

Lastly, we remark that when compared to the theoretical results in Slawski & Ben-David (2019), our results
are more general in the sense that the set Pn,k̃ contains the true value of k. We believe our work better
aligns with real-world scenarios.

5 Simulations

This section reports results from simulation experiments that compared the practical performance of our
proposed method with that of competing methods.

The simulation settings are as follows. The structure of the permutation φ is similar to the toy example
given in Table 1, where φ(i) = i + 1 for i = 1, · · · , k − 1, and φ(k) = 1. The number of predictors is p = 40.
The true coefficient vector is set to β = b · 1p, and the noise level is σ = 1. Each simulation is replicated 500
times. We evaluate the method under SNR=(20, 40, 80), the mismatch proportions k/n = (0.02, 0.05, 0.08)
and the sample size n = (100, 200, 300). We note that the above SNR values are comparable to those in the
simulations conducted in Slawski et al. (2020).

We consider the following five methods for comparison:

• oracle: Least-squares regression using true permutation matrix Π∗ is first applied to estimate β∗.
Confidence and prediction intervals are then obtained using classical linear model results.

• naive: Least-squares regression is first applied directly to the original data for parameter estima-
tion without accounting for mismatches. Then, classical linear model results are used to construct
confidence and prediction intervals.

• proposed: The GFI-based method proposed in this paper.

• SBL-truek: With the true value of k, the method of Slawski et al. (2020) is applied to estimate β∗

and Π∗. Then, classical linear model results are used to obtain confidence and prediction intervals.
Obviously, this method cannot be applied in practice, as the true value of k is seldom known.

• SBL-BIC: Similar to SBL-truek except the single model is selected by BIC from all model candidates
in Section 3.1.
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Notice that for most practical situations, the oracle and SBL-truek methods cannot be applied, as the true
values of Π∗, β∗, and k are often unknown.

For the tuning parameters in the proposed method, the penalty parameter in the optimization is set as
λ = c1

σ̂√
n

, where c1 ∈ {0.5, 1, 2, 4}, and σ̂ is estimated using the MAD (median absolute deviation) of the
residuals obtained from the robust regression with Huber loss.

To evaluate their relative performance, for each of the five methods, we construct the confidence intervals for
the conditional expectation E[yi|xi] and the prediction intervals for yi at the levels 90%, 95%, and 99%. The
test set is set to X = Ip to analyze the regression coefficient. Then E[yi|xi] = βi, i = 1, · · · , p. We calculate
the average empirical coverage rates and the average lengths of the confidence and prediction intervals. The
proposed method constructs these intervals as described in Section 3.2, while classical linear model theory is
used to build the intervals for the other methods. Additionally, we report the average mean squared errors
of the coefficients MSE(βi) = 1

p

∑p
i=1(β̂i − βi)2, with the standard errors provided in parentheses. Results

are presented in Tables 2 to 8.

No single method consistently outperforms the others across all scenarios. However, when considering the
empirical coverage rates of the confidence intervals for E[yi|xi] (Tables 2, 4, and 6) and the prediction
intervals for yi (Tables 3, 5, and 7), the proposed method demonstrates performance comparable to the
oracle method; it achieves the best coverage rates in most cases. Even in instances where it does not achieve
the closest coverage rate, the proposed method’s results remain consistently close to the optimal rates. Notice
that the confidence intervals constructed by the naive method are excessively wide and over-conservative,
which makes them ineffective for meaningful inference. Moreover, when examining the tables summarizing
the MSE results (Table 8), the proposed method achieves the smallest MSE in the majority of cases, second
only to the oracle method. Finally, we note that the performance of the proposed method is similar to that
of SBL-truek. However, as mentioned before, SBL-truek cannot be applied in most practical situations as k
is typically unknown.

Table 2: Empirical coverage rates and average lengths of confidence intervals of βi with p = 40, n = 200,
and k = 10.

SNR Method 90% Length 95% Length 99% Length
20 oracle 89.8 0.259 94.7 0.308 98.8 0.405

proposed 85.1 0.255 91.3 0.304 97.1 0.400
naive 88.7 0.437 94.0 0.521 98.6 0.684

SBL-truek 84.7 0.253 91.1 0.302 97.3 0.396
SBL-BIC 73.5 0.217 80.7 0.259 89.8 0.340

40 oracle 89.8 0.259 94.7 0.308 98.8 0.405
proposed 86.0 0.257 92.2 0.306 97.8 0.403

naive 88.6 0.559 94.0 0.666 98.6 0.875
SBL-truek 85.8 0.256 91.9 0.306 97.7 0.402
SBL-BIC 77.8 0.229 84.9 0.273 93.0 0.359

80 oracle 89.8 0.259 94.7 0.308 98.8 0.405
proposed 86.9 0.258 92.5 0.308 98.0 0.404

naive 88.4 0.744 94.0 0.887 98.6 1.166
SBL-truek 87.1 0.259 92.7 0.309 98.1 0.406
SBL-BIC 80.9 0.237 87.6 0.283 95.0 0.372

6 Real Data Example

This section reports results from applying the above five methods to the El Niño data set obtainable from
the UCI Machine Learning Repository.2

This data set contains oceanographic and surface meteorological readings collected from buoys distributed
across the equatorial Pacific. After excluding the missing values, there are 93, 935 records with the following
attributes: ID, date, location (latitude and longitude), zonal and meridional wind speeds (zon, mer), relative

2https://archive.ics.uci.edu/dataset/122/el+nino
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Table 3: Empirical coverage rates and average lengths of prediction intervals of yi with p = 40, n = 200, and
k = 10.

SNR Method 90% Length 95% Length 99% Length
20 oracle 89.9 3.298 94.9 3.936 98.9 5.196

proposed 88.2 3.173 93.6 3.781 98.3 4.969
naive 98.9 5.570 99.7 6.649 100.0 8.776

SBL-truek 89.1 3.228 94.3 3.853 98.7 5.087
SBL-BIC 82.0 2.772 88.3 3.308 95.3 4.367

40 oracle 89.9 3.298 94.9 3.936 98.9 5.196
proposed 88.9 3.206 94.0 3.821 98.5 5.021

naive 99.8 7.124 100.0 8.504 100.0 11.226
SBL-truek 89.5 3.270 94.6 3.903 98.8 5.152
SBL-BIC 84.7 2.921 90.9 3.487 96.9 4.603

80 oracle 89.9 3.298 94.9 3.936 98.9 5.196
proposed 89.0 3.235 94.3 3.854 98.7 5.066

naive 100.0 9.490 100.0 11.328 100.0 14.953
SBL-truek 89.8 3.305 94.9 3.946 98.9 5.208
SBL-BIC 86.2 3.028 92.2 3.615 97.8 4.771

Table 4: Empirical coverage rates and average lengths of confidence intervals of βi with p = 40, n = 200,
and b = 1.

k/n Method 90% Length 95% Length 99% Length
0.02 oracle 89.8 0.259 94.7 0.308 98.8 0.405

proposed 87.4 0.256 93.0 0.305 98.0 0.401
naive 89.3 0.403 94.4 0.480 98.8 0.630

SBL-truek 88.9 0.261 94.0 0.311 98.6 0.409
SBL-BIC 80.4 0.233 87.1 0.278 94.4 0.365

0.05 oracle 89.8 0.259 94.7 0.308 98.8 0.405
proposed 86.0 0.257 92.2 0.306 97.8 0.403

naive 88.6 0.559 94.0 0.666 98.6 0.875
SBL-truek 85.8 0.256 91.9 0.306 97.7 0.402
SBL-BIC 77.8 0.229 84.9 0.273 93.0 0.359

0.08 oracle 89.8 0.259 94.7 0.308 98.8 0.405
proposed 84.1 0.256 90.6 0.305 96.8 0.400

naive 87.4 0.679 93.0 0.809 98.4 1.064
SBL-truek 83.0 0.251 89.9 0.299 96.8 0.393
SBL-BIC 74.1 0.223 81.3 0.265 90.6 0.348

Table 5: Empirical coverage rates and average lengths of prediction intervals of yi with p = 40, n = 200, and
b = 1.

k/n Method 90% Length 95% Length 99% Length
0.02 oracle 89.9 3.298 94.9 3.936 98.9 5.196

proposed 88.8 3.202 94.0 3.816 98.4 5.014
naive 97.6 5.134 99.1 6.129 99.9 8.090

SBL-truek 90.3 3.333 95.1 3.979 99.0 5.252
SBL-BIC 85.4 2.976 91.5 3.552 97.3 4.689

0.05 oracle 89.9 3.298 94.9 3.936 98.9 5.196
proposed 88.9 3.206 94.0 3.821 98.5 5.021

naive 99.8 7.124 100.0 8.504 100.0 11.226
SBL-truek 89.5 3.270 94.6 3.903 98.8 5.152
SBL-BIC 84.7 2.921 90.9 3.487 96.9 4.603

0.08 oracle 89.9 3.298 94.9 3.936 98.9 5.196
proposed 88.2 3.177 93.7 3.786 98.3 4.976

naive 100.0 8.662 100.0 10.339 100.0 13.648
SBL-truek 88.7 3.199 94.0 3.819 98.6 5.041
SBL-BIC 83.2 2.838 89.7 3.388 96.3 4.472
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Table 6: Empirical coverage rates and average lengths of confidence intervals of βi with p = 40, k = 10, and
b = 1.

n Method 90% Length 95% Length 99% Length
100 oracle 88.0 0.417 93.6 0.497 98.5 0.653

proposed 81.2 0.434 87.9 0.517 95.0 0.679
naive 87.5 1.200 93.1 1.430 98.2 1.879

SBL-truek 79.7 0.419 86.9 0.499 94.9 0.656
SBL-BIC 61.8 0.315 68.9 0.375 80.0 0.493

200 oracle 89.8 0.259 94.7 0.308 98.8 0.405
proposed 86.0 0.257 92.2 0.306 97.8 0.403

naive 88.6 0.559 94.0 0.666 98.6 0.875
SBL-truek 85.8 0.256 91.9 0.306 97.7 0.402
SBL-BIC 77.8 0.229 84.9 0.273 93.0 0.359

300 oracle 89.9 0.204 94.9 0.243 98.9 0.319
proposed 87.2 0.201 93.0 0.240 98.2 0.315

naive 88.7 0.383 94.0 0.457 98.7 0.601
SBL-truek 87.8 0.203 93.5 0.242 98.4 0.318
SBL-BIC 82.8 0.190 89.6 0.227 96.5 0.298

Table 7: Empirical coverage rates and average lengths of prediction intervals of yi with p = 40, k = 10, and
b = 1.

n Method 90% Length 95% Length 99% Length
100 oracle 89.3 3.298 94.5 3.949 98.9 5.252

proposed 88.3 3.271 93.5 3.898 98.0 5.123
naive 99.9 9.499 100.0 11.373 100.0 15.125

SBL-truek 89.2 3.315 94.4 3.969 98.8 5.279
SBL-BIC 75.7 2.489 83.0 2.980 92.0 3.964

200 oracle 89.9 3.298 94.9 3.936 98.9 5.196
proposed 88.9 3.206 94.0 3.821 98.5 5.021

naive 99.8 7.124 100.0 8.504 100.0 11.226
SBL-truek 89.5 3.270 94.6 3.903 98.8 5.152
SBL-BIC 84.7 2.921 90.9 3.487 96.9 4.603

300 oracle 89.9 3.296 95.0 3.932 99.1 5.181
proposed 89.1 3.208 94.2 3.823 98.8 5.024

naive 99.4 6.208 99.9 7.405 100.0 9.758
SBL-truek 89.9 3.287 94.9 3.921 99.0 5.167
SBL-BIC 87.4 3.083 93.1 3.678 98.3 4.846

Table 8: Means and standard errors (in parentheses) of MSEs (×10−3) for βi. The smallest value for each
experimental configuration is bolded, excluding those from the oracle method.

n = 200, p = 40, k/n = 0.05
SNR 20 40 80
oracle 6.296 (0.070) 6.296 (0.070) 6.296 (0.070)

proposed 7.743 (0.100) 7.469 (0.096) 7.261 (0.088)
naive 19.969 (0.418) 33.469 (0.798) 60.411 (1.558)

SBL-truek 7.925 (0.105) 7.586 (0.096) 7.336 (0.091)
SBL-BIC 9.298 (0.142) 8.662 (0.133) 8.210 (0.117)

n = 200, p = 40, b = 1
k/n 0.02 0.05 0.08

oracle 6.296 (0.070) 6.296 (0.070) 6.296 (0.070)
proposed 6.984 (0.089) 7.469 (0.096) 8.083 (0.107)

naive 16.642 (0.440) 33.469 (0.798) 51.620 (1.078)
SBL-truek 6.781 (0.082) 7.586 (0.096) 8.325 (0.109)
SBL-BIC 7.941 (0.117) 8.662 (0.133) 9.552 (0.146)

p = 40, b = 1, k = 10
n 100 200 300

oracle 17.480 (0.241) 6.296 (0.070) 3.885 (0.043)
proposed 26.988 (0.544) 7.469 (0.096) 4.376 (0.051)

naive 160.068 (4.001) 33.469 (0.798) 15.498 (0.345)
SBL-truek 27.566 (0.518) 7.586 (0.096) 4.380 (0.052)
SBL-BIC 32.747 (0.610) 8.662 (0.133) 4.782 (0.061)
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humidity (humidity), air temperature (air temp), sea surface temperature, and subsurface temperatures down
to a depth of 500 meters (ss temp).

For our analysis, we focused on a linear regression model with air temp as the response variable while using
zon, mer, humidity, and ss temp as covariates (i.e., p = 4). To avoid the situation where n ≫ p, we randomly
drew n = 300 data points from the full dataset (of size 93, 935) and standardized the covariates. Then 80%
of these 300 data points were designated as the training set while the remaining 20% were treated as the
testing set. The response variable of the first 8% of the training set was randomly shuffled, resulting in a
mismatching rate of 8%. The above five methods were first applied to the training set to fit the regression
model, and then the fitted models were used to predict the responses in the testing set, as well as to obtain
the corresponding prediction intervals. Denote the i-th predicted response in the testing set as ŷi. The
process was repeated 500 times.

The results from the five methods are summarized in Table 9. In addition to the empirical coverage rates
and lengths of the prediction intervals, we also report the averages and standard errors of the mean squared
prediction error, MSPE(yi) = 1

ñ

∑ñ
i=1(ŷi − yi)2, where ñ is the sample size of the testing set (i.e., ñ =

0.2 × n = 60). One can see that the proposed method consistently delivered high coverage rates close to the
nominal levels, which demonstrates its reliability in capturing the true uncertainty of the air temperature
prediction. Furthermore, apart from the oracle method, the proposed method attains the smallest MSPE,
reinforcing its effectiveness. These findings agree with the empirical conclusions drawn from the simulation
experiments.

Table 9: Empirical coverage rates and average lengths of prediction intervals of yi on real data. Also shown
are the means and standard errors (in parentheses) of MSPE.

Method 90% Length 95% Length 99% Length MSPE
oracle 90.4 1.684 94.4 2.008 98.2 2.646 0.2642 (0.0029)

proposed 88.1 1.569 92.5 1.870 97.1 2.457 0.2661 (0.0030)
naive 97.1 2.577 98.6 3.074 99.7 4.050 0.2855 (0.0034)

SBL-truek 88.2 1.566 92.7 1.868 97.3 2.460 0.2663 (0.0030)
SBL-BIC 87.5 1.553 92.2 1.852 96.9 2.440 0.2665 (0.0030)

7 Conclusion

In this paper, we study linear regression problems where the correspondence between responses and predictors
is lost. While recent work has extensively studied the statistical limits of permutation recovery and coefficient
estimation, the important aspect of uncertainty quantification has remained unexplored. To bridge this gap,
we proposed a novel method for uncertainty quantification under the framework of generalized fiducial
inference. Specifically, we derived the generalized fiducial density for the problem and developed a practical
method to generate fiducial samples from it to construct confidence and prediction intervals for key quantities
of interest. Theoretical properties of the proposed method were established to ensure consistency. Through
extensive simulations and real data applications, our method demonstrated performance comparable to the
oracle method and outperformed other approaches.

One direction for future work is to extend the proposed method to handle multivariate response variables.
While, in the context of permutation and coefficient estimation, extensions to multivariate settings have
been explored in previous literature, adapting our method for uncertainty quantification may present new
challenges, as we expect alternative proof techniques and methodologies to be required. Another direction for
future work involves extending the method beyond classical linear models, such as generalized linear models.
This extension would enhance flexibility in addressing categorical responses and other non-continuous data
types and, therefore, broaden the proposed approach’s applicability to more complex and diverse datasets.
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A Lemmas

Lemma A.1. For any positive δ, γ and ΠM ∈ Pn,k̃, ΠM ̸= Π∗, if ∥β∗∥2
2 + σ2 ≥ 2k̃2γ2

δ2 , then

P(∥(ΠT
M − Π∗T )y∥2

2 ≤ γ2) ≤ δ. (17)

Proof. Notice that only when i ∈ S∗ ∪ SM , the i-th element of (ΠT
M − Π∗T )y is nonzero. Also,

|S∗ ∪ SM | ≤ |S∗| + |SM | ≤ 2k̃.

We can rewrite the vector (ΠT
M − Π∗T )y = (yφ−1

M
(1) − yφ−1(1), · · · , yφ−1

M
(n) − yφ−1(n))T ,

P(∥(ΠT
M − Π∗T )y∥2

2 ≤ γ2) = P(
∑

i∈S∗∪SM

(yφ−1
M

(i) − yφ−1(i))2) ≤ γ2)

≤
∑

i∈S∗∪SM

P((yφ−1
M

(i) − yφ−1(i))2) ≤ γ2)

≤ 2k̃ max
i̸=j

P((yi − yj)2 ≤ γ2)

≤ 2k̃
γ√

2(∥β∗∥2
2 + σ2)

.

The last inequity comes from
yi − yj ∼ N(0, 2(∥β∗∥2

2 + σ2))
and if g ∼ N(0, 1),

P(|g| < t) ≤
√

2
π

t < t.

Finally, choose 2k̃ γ√
2(∥β∗∥2

2+σ2)
≤ δ.

Lemma A.2. (Lemma 2.2 in Dasgupta & Gupta (2003)) Let P denote the orthogonal projection on an
N -dimensional subspace of Rp chosen uniformly at random from the Grassmannian G(p, N). Then for any
v ∈ Rp and any ϵ ∈ (0, 1),

P((1 − ϵ)∥v∥2
2 ≤ p

N
∥P v∥ ≤ (1 + ϵ)∥v∥2

2) ≥ 1 − 2 exp{−N(ϵ2

4 − ϵ3

6 )} (18)

Lemma A.3. (Concentration of Gaussian processes (Boucheron et al., 2013)) Let S be a closed subset of
the unit sphere in Rn with Gaussian width ω(S), and let g ∼ N(0, In). Then for any positive t,

P(sup
x∈S

|⟨g, x⟩| ≥ ω(S) + t) ≤ e− t2
2 . (19)

B Proof of Theorem 4.1

Proof. Proof of the first section (15): At first, we rewrite the fraction,

log r(Π∗)
r(ΠM ) = n − p − 1

2 ( ∥P ⊥
XΠT

M y∥2
2

∥P ⊥
XΠ∗T y∥2

2
) − k − |SM |

2 log n.

Next we will find the lower bound for T1 = ∥P ⊥
XΠT

M y∥2
2 − ∥P ⊥

XΠ∗T y∥2
2.

T1 = ∥P ⊥
XΠ∗T y + P ⊥

X(ΠT
M − Π∗T )y∥2

2 − ∥P ⊥
XΠ∗T y∥2

2

= ∥P ⊥
X(ΠT

M − Π∗T )y∥2
2 + 2⟨P ⊥

XΠ∗T y, (ΠT
M − Π∗T )y⟩

= ∥P ⊥
X(ΠT

M − Π∗T )y∥2
2 + 2⟨P ⊥

Xe, (ΠT
M − Π∗T )y⟩. (20)
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Let vM = (ΠT
M − Π∗T )y and apply lemma A.2 to the first term ∥P ⊥

X(ΠT
M − Π∗T )y∥2

2 with P = P ⊥
X , i.e.

P( n

n − p
∥P ⊥

XvM ∥ ≥ (1 − ϵ)∥vM ∥2
2) ≥ 1 − 2 exp{−(n − p)(ϵ2/4 − ϵ3/6)}. (21)

As for the second term ⟨P ⊥
Xe, vM ⟩, let t1 > 0,

t2 = t1 − E[sup
v∈T

|⟨P ⊥
Xe, v⟩∥P ⊥

X ] ≥ t1 − σω(T ),

we have

P(|⟨P ⊥
Xe,

vM

∥vM ∥2
⟩| > t1|P ⊥

X) ≤ P(sup
v∈T

|⟨P ⊥
Xe, v⟩| > t1|P ⊥

X)

≤ P(sup
v∈T

|⟨P ⊥
Xe, v⟩| > E[sup

v∈T
|⟨P ⊥

Xe, v⟩∥P ⊥
X ] + t2|P ⊥

X)

≤ P(sup
v∈T

⟨P ⊥
Xe, v⟩ > t2 + σω(T )|P ⊥

X)

≤ e−
t2

2
2σ2 . (22)

The third inequality a consequence of the Sudakov-Fernique comparison inequality (Adler & Taylor, 2009,
Theorem 2.2.3) and the last inequality comes from Lemma A.3. Choose the constant C2 ≥ 99 such that

C

√
k̃ log n

k̃
> 7
√

2k̃ log en

2k̃
≥ 2ω(T )

according to (14). Because for large n,

C
√

k̃ log n
k̃

7
√

2k̃ log en
2k̃

=

√
C2 log n

k̃

98(log n
k̃

+ log e
2 ) > 1.

Then let t1 = Cσ
√

k̃ log n
k̃

and t2 ≥ t1 − σω(T ) ≥ Cσ
2

√
k̃ log n

k̃
in inequality (22), we have

P(|⟨P ⊥
Xe,

vM

∥vM ∥2
⟩| > Cσ

√
k̃ log n

k̃
|P ⊥

X) ≤ exp{−
C2k̃ log n

k̃

8 }

P(⟨P ⊥
Xe,

vM

∥vM ∥2
⟩ > −Cσ

√
k̃ log n

k̃
|P ⊥

X) ≥ 1 − exp{−
C2k̃ log n

k̃

8 }.

Combine the inequality of the first term and the second term of T1 in equation (20),

T1 ≥ ∥vM ∥2(n − p

n
(1 − ϵ)∥vM ∥2 − 2σC

√
k̃ log n

k̃
)

with probability at least

1 − 2 exp{−(n − p)(ϵ2

4 − ϵ3

6 )} − exp{−
C2(k̃ log n

k̃
)

8 }.

Next we use (17) with n−p
n (1 − ϵ)γ ≥ 3σC

√
k̃ log n

k̃
and the new assumption of SNR,

T1 ≥ γ(n − p

n
(1 − ϵ)γ − 2σC

√
k̃ log n

k̃
) ≥ C1σ2k̃ log n

k̃
,
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where C1 = 3C2n
(n−p)(1−ϵ) . Next notice that ∥P ⊥

XΠ∗T y∥2
2 = ∥P ⊥

Xe∥2
2 ∼ σ2χ2

n−p since rank(P ⊥
X) = n − p. By

Chebyshev’s inequality, we have

P(|χ2
n−p − (n − p)| > log n

√
2(n − p) ≤ 1

(log n)2 .

Finally, we look at the target fraction,

log r(ΠM )
r(Π∗) = −n − p − 1

2 log(1 + T1

∥P ⊥
XΠ∗T y∥2

2
) + 1

2 log n(k − |SM |)

≤ −n − p − 1
2 log(1 +

C1k̃ log n
k̃

n − p + log n
√

2(n − p)
) + k − |SM |

2 log n

→ −1
2C1k̃ log n

k̃
+ k − |SM |

2 log n, n → ∞.

As a result,

log r(ΠM )
r(Π∗) ≤ −1

2C1k̃ log n

k̃
+ k − |SM |

2 log n

≤ −1
2C1k̃ log n

k̃
+ k̃

2 log n

→ −∞.

Because C1 = 3C2n
(n−p)(1−ϵ) > 3C2 ≥ 3 × 99.

Proof of the second section (16):

With the additional assumption, we have

∑
ΠM ∈

⋃k̃

l=1
Qn,l,ΠM ̸=Π∗

r(ΠM )
r(Π∗) ≤

k̃∑
l=0

|Qn,l| max
ΠM ∈Qn,l,ΠM ̸=Π∗

r(ΠM )
r(Π∗)

≤
k̃∑

l=0
|Qn,l|e− l

2 log n exp{−1
2C1k̃ log n

k̃
+ k

2 log n}

≤
k̃∑

l=0
exp{−1

2C1k̃ log n

k̃
+ k

2 log n}

= exp{log k̃ − 1
2C1k̃ log n

k̃
+ k

2 log n} P−→ 0.

The above is equivalent to ∑
ΠM ∈

⋃k̃

l=1
Qn,l

r(Π∗)
r(ΠM )

P−→ 1.

17


	Introduction
	Contributions
	Problem Definition
	Outline
	Notation

	Introduction to Generalized Fiducial Inference
	GFI For Mismatched Data
	Practical Generation of Fiducial Sample
	Inference with Fiducial Sample

	Theoretical Properties
	Simulations
	Real Data Example
	Conclusion
	Lemmas
	Proof of Theorem 4.1

