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Abstract

The link between overparameterization, robustness,
and generalization in discontinuous classifiers re-
mains unclear. We establish generalization bounds
that tighten with class stability — the expected dis-
tance to the decision boundary — yielding a law
of robustness for classification that extends prior
smoothness based settings. As a consequence, any
interpolating model with p ~ n parameters is neces-
sarily unstable, implying that robust generalization
requires overparameterization. For infinite func-
tion classes, we obtain analogous results through
a stronger robustness measure, the normalized co-
stability, defined via output margins. Empirical re-
sults support our theory: stability grows with model
size and aligns closely with test performance.

1 Introduction

The generalization behavior of overparameterized
neural networks presents fundamental challenges
to classical statistical learning theory. Traditional
complexity measures, such as parameter counts or
spectral norms of weights, form the basis of many
generalization bounds, including those derived from
VC dimension theory [1] and Rademacher complex-
ity [2]. However, these approaches do not adequately
explain several empirical phenomena, e.g., double
descent [3] and benign overfitting [4], where test per-
formance improves beyond the interpolation thresh-
old. Empirical studies further show that norm-based
metrics often correlate poorly with generalization
[5], while the margin — the distance to the decision
boundary — emerges as a reliable predictor [6-8].
This suggests that generalization is governed not
by microscopic weight norms but by macroscopic
simplicity, the stability of predictions under pertur-
bations. The law of robustness of Bubeck and Sel-
lke [9] establishes a formal link between robustness,
generalization, and overparameterization: smooth-
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ness and overparameterization need to balance in
order to ensure good generalization while overfitting.
However, its reliance on smoothness assumptions
excludes discontinuous classifiers. We address this
limitation by introducing class stability and normal-
1zed co-stability — geometric, macroscopic measures
of functional simplicity that extend robustness laws
to classification.

2 Setup

We study binary classification on (X x{—1, 1}, ),
where X CR? is bounded and F C {f : X —{—1,1}}
a hypothesis class. Given n i.i.d. samples (z;,y;) ~ y,
the goal is to find f € F minimizing a bounded loss £.
We focus on the binary case; multi-class extensions
follow by one-vs-all reduction ( A.4). A canonical
loss is Lo.1(y,y') = Lyzy -

Class stability. Following Liu and Hansen [10],
we measure robustness by the expected distance to
the decision boundary. For f: X' —{—1,1}, define
the signed distance function

d(e, {1 ({-1))),
de(z) =
) {—d<x7f-1<{1}>>,

where d(z, A) = infyca ||z — y||2. The (unsigned)
margin and the class stability are

hi(x) = lds(x)],  S(f) = El[hy]. (2)

Here S(f) quantifies the average distance of samples
to the decision boundary — a notion of macroscopic
robustness. To extend our results to infinite, pa-
rameterized function classes, continuity in the pa-
rameterization is required. For this, we introduce a
stronger, codomain-based notion of stability.

=1

)

f(z)

G
f(@) .

__17

Co-stability. Any classifier can be written as f =
sgn og, where g is Lipschitz continuous with constant
L(g) (see Lemma 2). This representation allows us
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to define the (Lipschitz-normalized) co-margin and
co-stability as

(o) )

For the canonical choice g = d¢, they coincide with
S(f). Since perturbing x by r changes g(x) by
at most L(g)r, label flips require r > |g(z)|/L(g),
implying that in general we have the inequality

S(f) = 5*(g). (4)

Normalized co-stability thus lower-bounds class sta-
bility and provides another scale-invariant robust-
ness measure. Crucially, it guarantees that the score
function g remains, on average, at a nontrivial dis-
tance from the decision discontinuity, enabling ex-
tensions to infinite function classes.

S*(9) = E[hg(x)].

Isoperimetry. To control how stable functions fit
random labels, we assume p satisfies concentration
for Lipschitz functions:

P(|f(z) — E[f]|>1) < 2¢~9/CLD (5)

for all bounded L-Lipschitz f : X — R and ¢t > 0.
This c-isoperimetry holds for Gaussian measures
and for uniform measures on compact manifolds
with positive curvature [9, 11]. Under the manifold
hypothesis, d represents intrinsic dimension.

3 Main Results: A Law of Ro-
bustness for Classification

We establish a law of robustness for classification,
linking generalization to margin-based stability in
discontinuous classifiers. In contrast to Lipschitz-
based analyses [9], our bounds apply directly to dis-
crete decision functions through the notions of class
stability S(f) and normalized co-stability S*(g).

Finite class Rademacher bound. If the input
distribution is c-isoperimetric and F is finite with
minger S(f) > S > 0 and log|F| > n, then the
Rademacher complexity satisfies

1 1 JeloglF|
< m [
~ ax{\/ﬁ’S nd } (©)

(Precise statement and proof: Theorem 4.)

R, u(F)

Infinite class Rademacher bound. For parame-
terized classes f = sgnog,, with bounded parameter
set W C RP, where g, is Lipschitz in X (Lx(g) < L)
and Lipschitz in w, and S*(g,,) > S* > 0, one ob-

tains
L Jep
S*\V ndf "’

(Precise statement and proof: Theorem 5.)

RunlF) < max{;ﬁ, ™)
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Figure 1. Class stability for MLPs trained on CIFAR-
10.

Law of Robustness. Combining the above results
with the standard generalization bound in terms of
the Rademacher complexity [2] yields the following
informal statement. If 02 := minger Ro1(f) >
€ > 0 and a classifier satisfies Ro,l(f) < g% —¢ for
sufficiently large n, then with high probability

S'g) o1 Jep
L(g) ~ e\ nd
Hence, simultaneously achieving low training error
and high (co-)stability requires overparameterization
on the order of p ~ nd. An analogous relation holds
for finite function classes in terms of S(f). (Precise

finite and infinite formulations, together with proofs,
are given in the appendix A.3.)

(8)

Experiments. We trained 4- and 8-layer MLPs of
varying width on MNIST and CIFAR-10, estimating
S(f) via minimal ¢ adversarial radii and S* via
efficient lipschitz estimation (using the ECLIPSE
method [12]). Both measures increase with width
and correlate strongly with test accuracy. These
trends, support our theory that (co-)stability, grows
with overparameterization. Experimental details
and further plots are provided in the appendix A.5.

4 Conclusion

Our results show that good generalization in over-
parameterized regimes hinges on sufficient stability.
The inverse dependence on S or S*/L in our bounds
indicates that stability reduces effective complexity,
mitigating overfitting. In high dimensions, overpa-
rameterization becomes necessary for robust gener-
alization: limited capacity forces a trade-off with
(co-)stability, leading to large Lipschitz constants or
low prediction confidence. This aligns with observa-
tions that large neural networks, including LLMs,
generalize well despite overparameterization.
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A Appendix

A.1 The Signed Distance Function

We collect the main properties of the signed distance
function

if f(x) = 1,

) it f(x) = 1,

_ {d(x,f%{—l}», o

- e £ (1),
where d(x, A) := infye 4 |z — yl|2.

Lemma 1. Let X C R? be bounded and path-
connected, and let f : X — {—=1,1}. Then the
signed distance function dy is 1-Lipschitz.

CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

This is a classical fact, a special case of the Eikonal
equation. For completeness, we include a direct
proof inspired by Liu and Hansen [10, Prop. 7.5].

Proof. Case 1: f(x) f(y). Assume w.lo.g.
f(x) fly) = 1. Let (zn)n be a sequence in
7 {=1}) with |d(y, zn) — ds(y)| < 5. Then

df(x) = d(z, f~1({-1})) (10)
< d(x,zn) (11)
< lz = yll2 + d(y, 2n) (12)
<l —yll2 +dp(y) + +. (13)

Letting n — oo and exploiting symmetry yields
|dy () = ds(y)] < [lo = ylla-
Case 2: f(x) # f(y). Assume w.lo.g. f(z) =1,

f(y) = —1. Consider the line segment L = {(1 —
t)x +ty:t €[0,1]} C X and define

wy = (1 —t1)x + tyy, (14)
ty:=inf{t: f((1 —t)z+ty) = (15)
Wo = (1 — tQ)QL‘ + toy, (16)
to :=sup{t: f((1—t)z+ty) =1}. (17)
Path-connectedness ensures t; < to, since otherwise

the midpoint between w; and wy would be labeled
both 1 and —1, a contradiction.

Thus,
|dy(x) — ds(y)| = d(z, fT {—1})) + d(y, f1({1}))
(18)
<z —will2 + [Jly — wall2 (19)
< lz = yll2- (20)
O

Lemma 2. Let X CR? and f: X — {—1,1} with
F7L({1}) closed. Then f can be represented as

f(z) = sgn(ds(x)),

where we adopt the convention sgn(0) = 1.

(21)

Proof. If d¢(x) # 0, the claim follows directly from
the definition of dy. If d¢(z) = 0, then z € f~1({1})
by closedness, so f(x) =1 = sgn(0). O

Remark 3. Lemma 2 justifies the representation
f =sgnods used in the proof of Theorem 4. This
link between classifiers and their signed distance
functions is what allows stability arguments to be
combined with smoothness-based tools.

A.2 Proofs
Bounds

of the Rademacher

We now provide proofs for the Rademacher bounds
for finite and infinite function classes.
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Finite Rademacher Bound. We begin by re-
stating the assumptions.

(H1) (X, p) is a probability space with bounded sam-
ple space X and c-isoperimetric measure y;

(H2) the considered hypothesis class F of classifiers
f: X — {-1,1} is finite, that is |F| < oco.

Theorem 4 (Finite Rademacher Bound). Sup-
pose Assumptions (H1) and (H2) hold, and that
minger S(f) > S > 0 with log|F| > n. Let us fur-
thermore assume that f~*({1}) is closed and X path
connected, then the empirical Rademacher complex-
ity satisfies

Ron,u(F) < Kgmax{in, %W’

2 exp(—%) } (22)

for an absolute constant Ko > 0.

Proof. By Lemma 2, every f admits the represen-
tation f = sgnods. This allows us to follow the
infinite-class analysis (see the proof of Theorem 5)
without requiring the e-net construction in Equa-
tion 30. By Lemma 1, the signed distance function
dy is 1-Lipschitz, i.e., L(ds) = 1 under the stated
conditions. Moreover, recalling the definition of
co-stability, we obtain

Elldy|] = E[hs] = S(f)-

Plugging this into the general bound in Equation 25
gives the result. O

§*(dy) = (23)

Infinite Rademacher bound We extend the
finite-class result to infinite function classes via a
covering-number argument, for which the Lipschitz
continuity of the parameterization plays a crucial
role. To this end, we introduce a new regularity

assumption that replaces the finiteness condition
(H2).

(H3) The hypothesis class F is of the form F =
sgnoG, where G = {gy : X — [-1,1] : w € W}
is a parameterized class of Lipschitz continuous
functions. The parameter space W C RP is
bounded with diam(W) < W, and the parame-
terization is Lipschitz continuous, i.e.,

(24)

”gwl _ngnoo < J”wl —w2||-

Theorem 5 (Infinite Rademacher Bound). Under
assumptions (H1) and (HS3), suppose that S*(g) >
S* >0 and L(g) < L for all g € G. Furthermore,
assume that p > n. Then, for any covering precision
>0,

CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Ronu(F)

< Kmax{\/%, é\/%\/log(l + 60WJ5~71)7

5*2 -
chz)v SJ*Z':}‘ (25)

2 exp(

where K > 0 is an absolute constant independent
of p,n,d,S* ¢, L, J EW.

Proof. Given any discontinuous classifier f,, =
sgn og,, for g, € G, define its Lipschitz continuous
approximation for v > 0 as

Fy,, = sgn. ogy, (26)
where
__17 t f; -,
sgn, (t) == q 5, te [, (27)
1, t>n.

This approximation satisfies the useful property that
both Fy, and the absolute difference |f,, — Fy, | are
Lipschitz continuous in both the input space X and
the weight space W, with

L(gw)
e
(28)
Using Lipschitz-continuous surrogates Fy, we de-
compose the Rademacher complexity into a smooth
component, to which the analysis of Bubeck and
Sellke [9] applies, and a residual term.

|

n
<lg sup‘ o Fr(x;)

L(| sgn, ogw — sgnogw|) = L(sgn, ogw) =

Ronu(F) =

sup
fer

]Zﬁﬁa

O'CL‘

o,T

+1iE

sup [/ = Fy)(e

|

< Cl% + Ok [, flog(1 + 60W 7 /2)
sup‘ZUZ f—Fy) xz)] . (29)

0'(13

Here the parameter € > 0 is related to a é-net
of W, which we denote by Ws. Note, that [Ws| <
(1+60W Je~1)P (see e.g. [11] Corollary 4.2.13) so the
same holds true for the induced net Fz = {sgnog,, :
w € W:}, which allows us to treat the remaining
expectation by subdividing the supremum:
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el St~ P
1 n
“ateel o ]
lw—well<e "
<Le s 3 Vo B o]
! 5

we€We ;7
n

1
+7E{ sup fw — Fr,
n wsEWe jg:; || v /
w—wel|<& =

— ‘1205 _

Fy,.

(@) (30)

By Lipschitz continuity of the parameterization
and of |f — Fy| (Equation 28), we obtain

I fuw = Fr,l = fw: = Fr oo < 2€ (31)
for any ws € Wz and w € Bz(wg), so that
Lol sup 301 Frlla)
n we€Ws {5
= Vfue = Fr,, (@) ] <Ze @

Note, that the expectation of the maximum of
N subgaussians X1, ..., Xy with variance proxy o2
scales as

E Lr<nax | X, |] < o+v/2log(2N), (33)
see for instance [13]. The first expectation in Equa-
tion 30 can be bounded using Equation 33, since it
corresponds — up to centering — to a maximum of
sub-Gaussian random variables with variance proxy

o? :s < Therefore,
E o:[ SuPéizglfwg wa Ti)| =
L sup 3 1fu— e - Bl ~ Fr., ]
n ws€E € i=1 : :
+ sup E[|fu, — Fy,_|]
wzEW:
< 0 Z S /plog(T + 60w IE 1)
b 3’y nd plog
+ sup Em“fws-_Fwa-H' (34)
wegEWe
Finally, for every f € F,
AF — Fyl = /\f (@) di()
P(g(z) € [=7,7])- (35)

Choosing v = S*Q(g), we obtain by the definitions
of co-margin, and once again isoperimetry (since
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the co-margin inherits the Lipschitzness from g by
design)

Plola) € [-2a]) =P (low) < T{2)
<p (im0 - 501> T2
o £57) = e 25
d

= 2exp (—

Putting it all together, we have

R, u(F)

<C1I+CQSM/ \/plog1+60WJe—1) S—{é
(

Ci:;*Q

— 37
8cL? ) ’ )
for absolute constants Cp,C%, independent of
p,n,d,S*, c,L,J EW. O

+ 2exp<—

A.3 Proof of the Law of Robustness

Next, we provide the proof of the law of robustness
for classification problems.

Corollary 6 (Law of Robustness for Discontinuous
Functions). Assume we are in the setting of Theorem
4. Let p := log|F| > n. Fixed € (0,1) and
consider the 0—1 loss £y_;. There exists an absolute
constant K > 0 such that, if

1. the minimal risk o2
o2 >¢, and

:=minger Ro1(f) satisfies

2. the sample size n is large enough to ensure (i)
. 2log(2/5
%<%and(n} %<%,

then with probability at least 1 —§ (over the sample),
the following holds uniformly for all f € F:

Ro4(
S(f) < max {31{ /clo;cl;d\]-” / 6K }

Proof. Let K > 0 be an absolute constant such that
Equation 22 holds, and define the threshold stability

<O’ —€

Sy = S«(p,n,d, )

3K [clog |]—'
nd
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Then, Theorem 4, together with condition 2(¢), im-
plies that

Rn,u(}-S*)
1 +c [log|F]| dS?
< i _
_Kmax{ = 5. o d 72exp( 80)
<¢e/3, (40)
where Fg, := {f € F : S(f) > S.} is the subset

of functions in F with stability at least S.. Hence,
applying the standard generalization inequality in
terms of the Rademacher complexity [2], together
with condition 2(ii), yields that with probability at
least 1 — 4:

S (Ro-1(f) — Ro-1(f))
< 2R, (o1 0 Fs,) + 21%(2/6)
< Ro(Fs)+5 <& (41)
where we additionally used
Rollos o F) < sRuu(F), (42

in the second step. In particular, we can bound the
probability

P(Vf € Fs. : Ro1(f) > 0% —¢)
>P(Vf € Fs. : Roa(f) — Ro1(f) <) >1-4,
(43)
where the first inequality follows from
Ro-l(f) _ Ro-l(f) < concggn 1.
0'2 — RO—I(f) <& — RO—l(f) > 0'2 — €. (44)

Decomposing this probability into two disjoint (H3)” The hypothesis class has the form F

events
1-0 <P(VfeFs, :Roi(f) >0 —¢)

=P(VfeF:Roalf) >
+P3f € F& : Roa(f) <o?—e),

> 02 —¢)

(45)

enables us to easily recognize that the expression ex-
actly characterizes the probability that the following
implication, and thereby the result, holds uniformly
for all f € F:

Roa(f)<o®—e = S(f)<S..  (46)

Indeed, the implication above holds if, for a given
data sample (z;,y;)i,, either

e no function f € F satisfies Eo_l(f) < o? -,
or
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e any such f lies in F§ , that is, S(f) < S,

which is the case with probability at least 1 — § due
to Equation 45. O
With the same reasoning and Theorem 5, we ob-

tain a law of robustness for infinite classes.

Corollary 7 (Law of Robustness for Infinite Func-
tion Classes). Assume we are in the setting of The-
Consider the 0-1 loss

orem 5, and fix €, € (0,1).
Lo_1. There exists an absolute constant K > 0 such
that, if
1. the minimal risk 0 := minser Ro_;(f) satisfies
0% > ¢, and
2. the sample size n is large enough so that (i)
% < 5 and (ii) 72 log(2/9) 5

then with probability at least 1 — 9§, for all € > 0,
the following holds uniformly for all ¢ € G and

fg=sgnog:
Rg 1(f)<0’ — €

S* (g)
L(g)

\/>\/clog1+6OWJ5 1)
dlog<6f)}. (47)

A.4 Multi-Class Classification

In this section, we briefly outline how our results ex-
tend to categorical distributions with C € N classes.
We assume that a classifier is given by

f:x —={0,13°, (48)

with exactly one non-zero entry for each z € X.
The adaptations of the conditions in (H3) to the
multi-class setting can be formalized as follows.

argmax oG, where G = {g,, : X — [0,1]¢

W} is a parameterized family of Lipschitz func-
tions. The parameter space W C RP is bounded
with diam(W) < W, and the parameterization
is Lipschitz:

19wy = Gualloo < T llwr — w2l (49)
Thus, we can interpret g € G as representing the

class probabilities.

Remark 8. For binary classification, i.e. C = 2, the
classifiers are of the form f : X — {0,1}2, instead
of f: X = {-1,1}, as considered earlier. However,
one can translate between these representations by
post-composing with either
(#.15)
2072 )

or f(x):=
(50)

a(xy,m2) := 21 — X2
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By the contraction principle for Rademacher com-
plexity, it is therefore sufficient to compute the com-
plexity for one of these models.

As in the binary case, our proofs start by consid-
ering the Rademacher complexity of the function
class F:

1
Rou(F) = 2B

'iigijfj(xi)

sup
n fer i i3
(51)
1
S;HE i [;gg‘zmjf] x; 1 .
(52)

Each summand corresponds to a binary classification
problem with a one-vs-all classifier f;. Indeed, f; is
#—Lipschitz on Ai(f). Transforming via
j} = 21} —1: 4 — {__171}7 (53)
we can follow the same reasoning as in A.2, obtaining,
up to a linear factor of C, the same result as the first
part of Theorem 4, generalized to the multi-class
setting.
Similarly, under assumption (H3), we can write

2f; =1 = sgn(g; — maxgi(x)), (54)

which allows us to proceed as in Theorem 5 to obtain
a multi-class generalization of Theorem 5 and Corol-
lary 7. The only minor difference lies in bounding
the term in Equation 35:

(S ~ Fyl] < Bl @) ~ max (@) <] (55)
Choosing v = *2(9) we use that for all j, |g;(z) —

max;.; gi(w)| > hj(x), which yields

P {lg; (x)— max gi(w)| < =52 (56)
<P[lhp(@) - 5*(N) = 2] (67)
< 2exp( o 9)2) (58)
< 2exp( - 457) (59)
- 2exp<_d§:2) | (60)

We conclude that all results extend naturally to
the multi-class case. The main concepts are summa-
rized below.

e Isoperimetry:

P()If ()

~Elf]lloo > t) < 2exp(—525) (61)
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Rademacher complexity

Rou(F) = 11E“”"’“lsup’22%fg i ]
=1 j=1

feFr
(62)
e Margin
C .
=D _hj(@) (63)
() = inf{||z — 2|2 : f(2) # 4, z € R}
(64)
e Class stability
C .
=Y "s(f) =E[r}]  (65)
j=1
e Co-margin
C .
= > hyi @) (66)
(@) i= max (0, g(z) ~ maxgi()) ~ (67)
e Co-stability
9)=2_5(g), S(9):=E[ny’] (68)
j=1

A.5 Experimental Details for Stabil-
ity Measurement

Training setup. To empirically validate our ro-
bustness law, we trained fully connected MLPs on
MNIST and CIFAR-10 datasets. Each model has 4
hidden layers with widths w € {128, 256,512,
1024, 2048} for MNIST and up to w = 1024 for CI-
FAR10. All models use ReLLU activations, batch
normalization, and were initialized with standard
parametrization. Training was conducted using the
Adam optimizer [14] for the embedding and output
layers, and the Muon optimizer [15] for the hidden
layers. Models were trained with a batch size of 256
and learning rate 1073, until at least 99% training
accuracy was achieved, ensuring (near) interpolation.
We further used sharpness-aware optimization based
n [16, 17] to reduce variance of the normalized
co-stability on MNIST.

Parameter counts and normalization. For
each model, we recorded the total number of train-
able parameters p, input dimension d, and total
number of training samples n.
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Stability estimation. Class stability S(f) was
computed using adversarial perturbation analysis.
We performed a suite of ¢3-based attacks (FGSM,
PGD, DeepFool, and L2PGD [18-20]) using the
Foolbox library [21]. For each input z, we recorded
the minimum perturbation norm required to change
the classifier’s prediction, over a grid of radii r =
(0.002,0.01,0.05,0.1). The final stability score S(f)
was taken as the average /5 distance across the
dataset.

Normalized Co-Stability estimation. The em-
pirical co-stability S*(g) is computed via the multi-
class margin

9i(%) —maxgi(z),  j=argmaxgi(z), (69)
averaged over the dataset. We estimate the Lipschitz
constant L(g) using the efficient ECLIPSE method
[12], and report the normalized ratio S*(g)/L(g) as
a function of model size.

Implementation. Training and evaluation code
is implemented in PyTorch [22]. For MLPs, images
were flattened to vectors. Attack evaluations were
conducted over the full dataset (train and test).

Reproducibility. All experiments were run with
multiple random seeds {0,1,2,3,4}, and mean with
standard deviation are reported. Our code is avail-
able at anonymous GitHub.

Results. Figure A.1 shows that, for MLPs, both
class stability S(f) and normalized co-stability
S5*(g)/L(g) increase consistently with model size.
The observed saturation of (normalized co-) stability
aligns with theoretical intuition: the Bayes classi-
fier admits a finite (normalized co-) stability level,
and pushing beyond this level necessarily reduces
accuracy — an instance of the robustness/accuracy
trade-off extensively discussed in the literature [23—
25]. Accordingly, we expect stability to plateau once
models approach the Bayes decision boundary. For
CIFAR-10, although test accuracy remains far below
the Bayes optimal (around 50%), the same reason-
ing applies relative to the best classifier achievable
within the restricted MLP architecture.
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Figure A.1. Stability measures for 4- and 8-layer MLPs
trained on MNIST and CIFAR-10.
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