
NLDL
#34

NLDL
#34

NLDL 2026 Abstract Submission #34. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

The Price of Robustness: Stable Classifiers Need Overparame-
terization

Jonas von Berg∗1,2, Adalbert Fono1,2, Massimiliano Datres1,2, Sohir Maskey1,2,3, and Gitta
Kutyniok1,2,4,5

1Ludwig-Maximilians-Universität München
2 Munich Center for Machine Learning (MCML)
3Aleph Alpha Research
4University of Tromsø
5DLR-German Aerospace Center
{berg, fono, datres, kutyniok}@math.lmu.de sohir.maskey@aleph-alpha-research.com

Abstract001

The link between overparameterization, robustness,002

and generalization in discontinuous classifiers re-003

mains unclear. We establish generalization bounds004

that tighten with class stability – the expected dis-005

tance to the decision boundary – yielding a law006

of robustness for classification that extends prior007

smoothness based settings. As a consequence, any008

interpolating model with p ≈ n parameters is neces-009

sarily unstable, implying that robust generalization010

requires overparameterization. For infinite func-011

tion classes, we obtain analogous results through012

a stronger robustness measure, the normalized co-013

stability, defined via output margins. Empirical re-014

sults support our theory: stability grows with model015

size and aligns closely with test performance.016

1 Introduction017

The generalization behavior of overparameterized018

neural networks presents fundamental challenges019

to classical statistical learning theory. Traditional020

complexity measures, such as parameter counts or021

spectral norms of weights, form the basis of many022

generalization bounds, including those derived from023

VC dimension theory [1] and Rademacher complex-024

ity [2]. However, these approaches do not adequately025

explain several empirical phenomena, e.g., double026

descent [3] and benign overfitting [4], where test per-027

formance improves beyond the interpolation thresh-028

old. Empirical studies further show that norm-based029

metrics often correlate poorly with generalization030

[5], while the margin – the distance to the decision031

boundary – emerges as a reliable predictor [6–8].032

This suggests that generalization is governed not033

by microscopic weight norms but by macroscopic034

simplicity, the stability of predictions under pertur-035

bations. The law of robustness of Bubeck and Sel-036

lke [9] establishes a formal link between robustness,037

generalization, and overparameterization: smooth-038
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ness and overparameterization need to balance in 039

order to ensure good generalization while overfitting. 040

However, its reliance on smoothness assumptions 041

excludes discontinuous classifiers. We address this 042

limitation by introducing class stability and normal- 043

ized co-stability – geometric, macroscopic measures 044

of functional simplicity that extend robustness laws 045

to classification. 046

2 Setup 047

We study binary classification on (X ×{−1, 1}, µ), 048

where X ⊂Rd is bounded and F⊂{f : X →{−1, 1}} 049

a hypothesis class. Given n i.i.d. samples (xi, yi)∼µ, 050

the goal is to find f ∈F minimizing a bounded loss ℓ. 051

We focus on the binary case; multi-class extensions 052

follow by one-vs-all reduction ( A.4). A canonical 053

loss is ℓ0-1(y, y
′) = 1y ̸=y′ . 054

Class stability. Following Liu and Hansen [10], 055

we measure robustness by the expected distance to 056

the decision boundary. For f : X →{−1, 1}, define 057

the signed distance function 058

df (x) =

{
d(x, f−1({−1})), f(x) = 1,

−d(x, f−1({1})), f(x) = −1,
, (1) 059

where d(x,A) = infy∈A ∥x − y∥2. The (unsigned) 060

margin and the class stability are 061

hf (x) = |df (x)|, S(f) = E[hf ]. (2) 062

Here S(f) quantifies the average distance of samples 063

to the decision boundary – a notion of macroscopic 064

robustness. To extend our results to infinite, pa- 065

rameterized function classes, continuity in the pa- 066

rameterization is required. For this, we introduce a 067

stronger, codomain-based notion of stability. 068

Co-stability. Any classifier can be written as f = 069

sgn ◦g, where g is Lipschitz continuous with constant 070

L(g) (see Lemma 2). This representation allows us 071
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to define the (Lipschitz-normalized) co-margin and072

co-stability as073

h̄∗
g(x) =

|g(x)|
L(g)

, S̄∗(g) = E[h̄∗
g(x)]. (3)074

For the canonical choice g = df , they coincide with075

S(f). Since perturbing x by r changes g(x) by076

at most L(g)r, label flips require r ≥ |g(x)|/L(g),077

implying that in general we have the inequality078

S(f) ≥ S̄∗(g). (4)079

Normalized co-stability thus lower-bounds class sta-080

bility and provides another scale-invariant robust-081

ness measure. Crucially, it guarantees that the score082

function g remains, on average, at a nontrivial dis-083

tance from the decision discontinuity, enabling ex-084

tensions to infinite function classes.085

Isoperimetry. To control how stable functions fit086

random labels, we assume µ satisfies concentration087

for Lipschitz functions:088

P(|f(x)− E[f ]|≥ t) ≤ 2e−dt2/(2cL2) (5)089

for all bounded L-Lipschitz f : X → R and t ≥ 0.090

This c-isoperimetry holds for Gaussian measures091

and for uniform measures on compact manifolds092

with positive curvature [9, 11]. Under the manifold093

hypothesis, d represents intrinsic dimension.094

3 Main Results: A Law of Ro-095

bustness for Classification096

We establish a law of robustness for classification,097

linking generalization to margin-based stability in098

discontinuous classifiers. In contrast to Lipschitz-099

based analyses [9], our bounds apply directly to dis-100

crete decision functions through the notions of class101

stability S(f) and normalized co-stability S̄∗(g).102

Finite class Rademacher bound. If the input103

distribution is c-isoperimetric and F is finite with104

minf∈F S(f) ≥ S > 0 and log |F| ≥ n, then the105

Rademacher complexity satisfies106

Rn,µ(F) ≲ max

{
1√
n
,
1

S

√
c log |F|

nd

}
. (6)107

(Precise statement and proof: Theorem 4.)108

Infinite class Rademacher bound. For parame-109

terized classes f = sgn ◦gω with bounded parameter110

set W ⊂ Rp, where gω is Lipschitz in X (LX (g) ≤ L)111

and Lipschitz in ω, and S̄∗(gω) ≥ S∗ > 0, one ob-112

tains113

Rn,µ(F) ≲ max

{
1√
n
,

L

S∗

√
c p

n d

}
. (7)114

(Precise statement and proof: Theorem 5.)115

Figure 1. Class stability for MLPs trained on CIFAR-
10.

Law of Robustness. Combining the above results 116

with the standard generalization bound in terms of 117

the Rademacher complexity [2] yields the following 118

informal statement. If σ2 := minf∈F R0–1(f) > 119

ε > 0 and a classifier satisfies R̂0–1(f) ≤ σ2 − ε for 120

sufficiently large n, then with high probability 121

S∗(g)

L(g)
≲

1

ε

√
c p

n d
. (8) 122

Hence, simultaneously achieving low training error 123

and high (co-)stability requires overparameterization 124

on the order of p ≈ nd. An analogous relation holds 125

for finite function classes in terms of S(f). (Precise 126

finite and infinite formulations, together with proofs, 127

are given in the appendix A.3.) 128

Experiments. We trained 4- and 8-layer MLPs of 129

varying width on MNIST and CIFAR-10, estimating 130

S(f) via minimal ℓ2 adversarial radii and S̄∗ via 131

efficient lipschitz estimation (using the ECLipsE 132

method [12]). Both measures increase with width 133

and correlate strongly with test accuracy. These 134

trends, support our theory that (co-)stability, grows 135

with overparameterization. Experimental details 136

and further plots are provided in the appendix A.5. 137

4 Conclusion 138

Our results show that good generalization in over- 139

parameterized regimes hinges on sufficient stability. 140

The inverse dependence on S or S̄∗/L in our bounds 141

indicates that stability reduces effective complexity, 142

mitigating overfitting. In high dimensions, overpa- 143

rameterization becomes necessary for robust gener- 144

alization: limited capacity forces a trade-off with 145

(co-)stability, leading to large Lipschitz constants or 146

low prediction confidence. This aligns with observa- 147

tions that large neural networks, including LLMs, 148

generalize well despite overparameterization. 149
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A Appendix292

A.1 The Signed Distance Function293

We collect the main properties of the signed distance294

function295

df (x) :=

{
d(x, f−1({−1})), if f(x) = 1,

−d(x, f−1({1})), if f(x) = −1,
(9)296

where d(x,A) := infy∈A ∥x− y∥2.297

Lemma 1. Let X ⊂ Rd be bounded and path-298

connected, and let f : X → {−1, 1}. Then the299

signed distance function df is 1-Lipschitz.300

This is a classical fact, a special case of the Eikonal 301

equation. For completeness, we include a direct 302

proof inspired by Liu and Hansen [10, Prop. 7.5]. 303

Proof. Case 1: f(x) = f(y). Assume w.l.o.g. 304

f(x) = f(y) = 1. Let (zn)n be a sequence in 305

f−1({−1}) with |d(y, zn)− df (y)| ≤ 1
n . Then 306

df (x) = d(x, f−1({−1})) (10) 307

≤ d(x, zn) (11) 308

≤ ∥x− y∥2 + d(y, zn) (12) 309

≤ ∥x− y∥2 + df (y) +
1
n . (13) 310

Letting n → ∞ and exploiting symmetry yields 311

|df (x)− df (y)| ≤ ∥x− y∥2. 312

Case 2: f(x) ̸= f(y). Assume w.l.o.g. f(x) = 1, 313

f(y) = −1. Consider the line segment L = {(1 − 314

t)x+ ty : t ∈ [0, 1]} ⊂ X and define 315

w1 = (1− t1)x+ t1y, (14) 316

t1 := inf{t : f((1− t)x+ ty) = −1}, (15) 317

w2 = (1− t2)x+ t2y, (16) 318

t2 := sup{t : f((1− t)x+ ty) = 1}. (17) 319

Path-connectedness ensures t1 ≤ t2, since otherwise 320

the midpoint between w1 and w2 would be labeled 321

both 1 and −1, a contradiction. 322

Thus, 323

|df (x)− df (y)| = d(x, f−1({−1})) + d(y, f−1({1}))
(18)

324

≤ ∥x− w1∥2 + ∥y − w2∥2 (19) 325

≤ ∥x− y∥2. (20) 326

327

Lemma 2. Let X ⊂ Rd and f : X → {−1, 1} with 328

f−1({1}) closed. Then f can be represented as 329

f(x) = sgn(df (x)), (21) 330

where we adopt the convention sgn(0) = 1. 331

Proof. If df (x) ̸= 0, the claim follows directly from 332

the definition of df . If df (x) = 0, then x ∈ f−1({1}) 333

by closedness, so f(x) = 1 = sgn(0). 334

Remark 3. Lemma 2 justifies the representation 335

f = sgn ◦df used in the proof of Theorem 4. This 336

link between classifiers and their signed distance 337

functions is what allows stability arguments to be 338

combined with smoothness-based tools. 339

A.2 Proofs of the Rademacher 340

Bounds 341

We now provide proofs for the Rademacher bounds 342

for finite and infinite function classes. 343
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Finite Rademacher Bound. We begin by re-344

stating the assumptions.345

(H1) (X , µ) is a probability space with bounded sam-346

ple space X and c-isoperimetric measure µ;347

(H2) the considered hypothesis class F of classifiers348

f : X → {−1, 1} is finite, that is |F| < ∞.349

Theorem 4 (Finite Rademacher Bound). Sup-350

pose Assumptions (H1) and (H2) hold, and that351

minf∈F S(f) > S > 0 with log |F| ≥ n. Let us fur-352

thermore assume that f−1({1}) is closed and X path353

connected, then the empirical Rademacher complex-354

ity satisfies355

Rn,µ(F) ≤ K2 max
{

1√
n
,

√
c

S

√
log |F|
nd ,356

2 exp
(
−dS2

8c

)}
. (22)357

for an absolute constant K2 > 0.358

Proof. By Lemma 2, every f admits the represen-359

tation f = sgn ◦df . This allows us to follow the360

infinite-class analysis (see the proof of Theorem 5)361

without requiring the ε-net construction in Equa-362

tion 30. By Lemma 1, the signed distance function363

df is 1-Lipschitz, i.e., L(df ) = 1 under the stated364

conditions. Moreover, recalling the definition of365

co-stability, we obtain366

S∗(df ) = E[|df |] = E[hf ] = S(f). (23)367

Plugging this into the general bound in Equation 25368

gives the result.369

Infinite Rademacher bound We extend the370

finite-class result to infinite function classes via a371

covering-number argument, for which the Lipschitz372

continuity of the parameterization plays a crucial373

role. To this end, we introduce a new regularity374

assumption that replaces the finiteness condition375

(H2).376

(H3) The hypothesis class F is of the form F =377

sgn ◦ G, where G = {gw : X → [−1, 1] : w ∈ W}378

is a parameterized class of Lipschitz continuous379

functions. The parameter space W ⊂ Rp is380

bounded with diam(W) ≤ W , and the parame-381

terization is Lipschitz continuous, i.e.,382

∥gw1
− gw2

∥∞ ≤ J ∥w1 − w2∥. (24)383

Theorem 5 (Infinite Rademacher Bound). Under384

assumptions (H1) and (H3), suppose that S∗(g) >385

S∗ > 0 and L(g) ≤ L for all g ∈ G. Furthermore,386

assume that p ≥ n. Then, for any covering precision387

ε̃ > 0,388

Rn,µ(F) 389

≤ Kmax
{√

1
n ,

L

S∗

√
c p
nd

√
log

(
1 + 60WJε̃−1

)
, 390

2 exp
(
−dS∗2

8cL2

)
, J

S∗ ε̃
}
. (25) 391

where K > 0 is an absolute constant independent 392

of p, n, d, S∗, c, L, J, ε̃,W . 393

Proof. Given any discontinuous classifier fw = 394

sgn ◦gw for gw ∈ G, define its Lipschitz continuous 395

approximation for γ > 0 as 396

Ffw = sgnγ ◦gw, (26) 397

where 398

sgnγ(t) :=


−1, t ≤ −γ,
t
γ , t ∈ [−γ, γ],

1, t ≥ γ.

(27) 399

This approximation satisfies the useful property that 400

both Ffw and the absolute difference |fw − Ffw | are 401

Lipschitz continuous in both the input space X and 402

the weight space W, with 403

L(| sgnγ ◦gw − sgn ◦gw|) = L(sgnγ ◦gw) =
L(gw)

γ .

(28) 404

Using Lipschitz-continuous surrogates Ff , we de- 405

compose the Rademacher complexity into a smooth 406

component, to which the analysis of Bubeck and 407

Sellke [9] applies, and a residual term. 408

Rn,µ(F) = 1
nEσ,x

[
sup
f∈F

∣∣∣ n∑
i=1

σif(xi)
∣∣∣] 409

≤ 1
nEσ,x

[
sup
f∈F

∣∣∣ n∑
i=1

σiFf (xi)
∣∣∣] 410

+ 1
nEσ,x

[
sup
f∈F

∣∣∣ n∑
i=1

σi(f − Ff )(xi)
∣∣∣] 411

≤ C1
1√
n
+ C2

L
γ

√
c p
nd

√
log

(
1 + 60WJ/ε̃

)
412

+ 1
nEσ,x

[
sup
f∈F

∣∣∣ n∑
i=1

σi(f − Ff )(xi)
∣∣∣] . (29) 413

Here the parameter ε̃ > 0 is related to a ε̃-net 414

of W, which we denote by Wε̃. Note, that |Wε̃| ≤ 415

(1+60WJε̃−1)p (see e.g. [11] Corollary 4.2.13) so the 416

same holds true for the induced net Fε̃ = {sgn ◦gw : 417

w ∈ W˜̃ε}, which allows us to treat the remaining 418

expectation by subdividing the supremum: 419
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1

n
Eσ,x

[
sup
f∈F

∣∣∣ n∑
i=1

σi(f − Ff )(xi)
∣∣∣]420

=
1

n
Eσ,x

[
sup

wε̃∈Wε̃

∥w−wε̃∥≤ε̃

∣∣∣ n∑
i=1

σi

(
fw − Ffw

)
(xi)

∣∣∣]421

≤ 1

n
Ex

[
sup

wε̃∈Wε̃

n∑
i=1

∣∣fwε̃ − Ffwε̃

∣∣(xi)
]

422

+
1

n
Ex

[
sup

wε̃∈Wε̃

∥w−wε̃∥≤ε̃

n∑
i=1

∣∣ |fw − Ffw |423

− |fwε̃
− Ffwε̃

|
∣∣(xi)

]
. (30)424

By Lipschitz continuity of the parameterization425

and of |f − Ff | (Equation 28), we obtain426

∥ |fw − Ffw | − |fwε̃ − Ffwε̃
| ∥∞ ≤ J

γ ε̃ (31)427

for any wε̃ ∈ Wε̃ and w ∈ Bε̃(wε̃), so that428

1

n
Ex

[
sup

wε̃∈Wε̃

n∑
i=1

∣∣∣ |fw − Ffw |(xi)429

− |fwε̃ − Ffwε̃
|(xi)

∣∣∣] ≤ J

γ
ε̃. (32)430

Note, that the expectation of the maximum of431

N subgaussians X1, . . . , XN with variance proxy σ2
432

scales as433

E
[
max

1≤i≤N
|Xi|

]
≤ σ

√
2 log (2N), (33)434

see for instance [13]. The first expectation in Equa-435

tion 30 can be bounded using Equation 33, since it436

corresponds – up to centering – to a maximum of437

sub-Gaussian random variables with variance proxy438

σ2 = L2

γ2
cn
d . Therefore,439

1

n
Ex

[
sup

wε̃∈Wε̃

n∑
i=1

|fwε̃ − Ffwε̃
|(xi)

]
=440

1

n
Ex

[
sup

wε̃∈Wε̃

n∑
i=1

|fwε̃
−Ffwε̃

|(xi)−E[|fwε̃
−Ffwε̃

|]
]

441

+ sup
wε̃∈Wε̃

E[|fwε̃
− Ffwε̃

|]442

≤ C3
L

γ

√
c

nd

√
p log(1 + 60WJε̃−1)443

+ sup
wε̃∈Wε̃

Ex[|fwε̃ − Ffwε̃
|]. (34)444

Finally, for every f ∈ F ,445

Ex[|f − Ff |] =
∫
X
|f(x)− Ff (x)| dµ(x)446

≤ P(g(x) ∈ [−γ, γ]). (35)447

Choosing γ = S∗(g)
2 , we obtain by the definitions448

of co-margin, and once again isoperimetry (since449

the co-margin inherits the Lipschitzness from g by 450

design) 451

P (g(x) ∈ [−γ, γ]) = P
(
|g(x)| ≤ S∗(g)

2

)
452

≤ P
(
|h∗

g(x)− S∗(g)| ≥ S∗(g)

2

)
453

≤ 2 exp

(
−dS∗(g)2

8cL(g)2

)
≤ 2 exp

(
−dS∗2

8cL2

)
454

= 2 exp

(
−d S̄∗2

8c

)
. (36) 455

Putting it all together, we have 456

Rn,µ(F) 457

≤ C1
1√
n
+C ′

2
L
S∗

√
c
nd

√
p log(1 + 60WJε̃−1) +

2J

S∗ ε̃ 458

+ 2 exp

(
−dS∗2

8cL2

)
, (37) 459

for absolute constants C1, C
′
2, independent of 460

p, n, d, S∗, c, L, J, ε̃,W . 461

A.3 Proof of the Law of Robustness 462

Next, we provide the proof of the law of robustness 463

for classification problems. 464

Corollary 6 (Law of Robustness for Discontinuous 465

Functions). Assume we are in the setting of Theorem 466

4. Let p := log |F| ≥ n. Fix ε, δ ∈ (0, 1) and 467

consider the 0–1 loss ℓ0–1. There exists an absolute 468

constant K > 0 such that, if 469

1. the minimal risk σ2 := minf∈F R0–1(f) satisfies 470

σ2 ≥ ε, and 471

2. the sample size n is large enough to ensure (i) 472

K√
n
< ε

3 and (ii)
√

2 log(2/δ)
n < ε

2 , 473

then with probability at least 1− δ (over the sample), 474

the following holds uniformly for all f ∈ F : 475

R̂0–1(f) ≤ σ2 − ε =⇒ 476

S(f) < max

{
3K

ε

√
c log |F|

nd
,

√
8c

d
log

(
6K

ε

)}
.

(38)

477

Proof. Let K > 0 be an absolute constant such that 478

Equation 22 holds, and define the threshold stability 479

S∗ = S∗(p, n, d, ε) 480

:= max

{
3K

ε

√
c log |F|

nd
,

√
8c

d
log

(
6K

ε

)}
.

(39)

481
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Then, Theorem 4, together with condition 2(i), im-482

plies that483

Rn,µ(FS∗)484

≤ Kmax

{
1√
n
,

√
c

S∗

√
log |F|
nd

, 2 exp
(
− dS2

∗
8c

)}
485

≤ ε/3, (40)486

where FS∗ := {f ∈ F : S(f) ≥ S∗} is the subset487

of functions in F with stability at least S∗. Hence,488

applying the standard generalization inequality in489

terms of the Rademacher complexity [2], together490

with condition 2(ii), yields that with probability at491

least 1− δ:492

sup
f∈FS∗

(
R0 -1(f)− R̂0 -1(f)

)
493

≤ 2Rn,µ(ℓ0 -1 ◦ FS∗) +

√
2 log(2/δ)

n
494

≤ Rn,µ(FS∗) +
ε

2
< ε, (41)495

where we additionally used496

Rn,µ(ℓ0 -1 ◦ F) ≤ 1

2
Rn,µ(F), (42)497

in the second step. In particular, we can bound the498

probability499

P(∀f ∈ FS∗ : R̂0 -1(f) > σ2 − ε)500

≥ P(∀f ∈ FS∗ : R0 -1(f)− R̂0 -1(f) < ε) ≥ 1− δ,
(43)

501

where the first inequality follows from502

R0 -1(f)− R̂0 -1(f) < ε
condition 1.

=⇒503

σ2 − R̂0 -1(f) < ε =⇒ R̂0 -1(f) > σ2 − ε. (44)504

Decomposing this probability into two disjoint505

events506

1− δ ≤ P(∀f ∈ FS∗ : R̂0 -1(f) > σ2 − ε)507

= P(∀f ∈ F : R̂0 -1(f) > σ2 − ε)508

+ P(∃f ∈ Fc
S∗

: R̂0 -1(f) ≤ σ2 − ε), (45)509

enables us to easily recognize that the expression ex-510

actly characterizes the probability that the following511

implication, and thereby the result, holds uniformly512

for all f ∈ F :513

R̂0 -1(f) ≤ σ2 − ε =⇒ S(f) < S∗. (46)514

Indeed, the implication above holds if, for a given515

data sample (xi, yi)
n
i=1, either516

• no function f ∈ F satisfies R̂0 -1(f) ≤ σ2 − ε,517

or518

• any such f lies in Fc
S∗
, that is, S(f) < S∗, 519

which is the case with probability at least 1− δ due 520

to Equation 45. 521

With the same reasoning and Theorem 5, we ob- 522

tain a law of robustness for infinite classes. 523

Corollary 7 (Law of Robustness for Infinite Func- 524

tion Classes). Assume we are in the setting of The- 525

orem 5, and fix ε, δ ∈ (0, 1). Consider the 0–1 loss 526

ℓ0–1. There exists an absolute constant K > 0 such 527

that, if 528

1. the minimal risk σ2 := minf∈F R0–1(f) satisfies 529

σ2 ≥ ε, and 530

2. the sample size n is large enough so that (i) 531

K√
n
< ε

3 and (ii)
√

2 log(2/δ)
n < ε

2 , 532

then with probability at least 1 − δ, for all ε̃ > 0, 533

the following holds uniformly for all g ∈ G and 534

fg = sgn ◦ g: 535

R̂0–1(fg) ≤ σ2 − ε =⇒ 536

S∗(g)

L(g)
< max

{3K

ε

√
p

nd

√
c log(1 + 60WJε̃−1) 537

,

√
8c

d
log

(
6K

ε

)}
. (47) 538

A.4 Multi-Class Classification 539

In this section, we briefly outline how our results ex- 540

tend to categorical distributions with C ∈ N classes. 541

We assume that a classifier is given by 542

f : X → {0, 1}C , (48) 543

with exactly one non-zero entry for each x ∈ X . 544

The adaptations of the conditions in (H3) to the 545

multi-class setting can be formalized as follows. 546

(H3)’ The hypothesis class has the form F = 547

argmax ◦G, where G = {gw : X → [0, 1]C : w ∈ 548

W} is a parameterized family of Lipschitz func- 549

tions. The parameter space W ⊂ Rp is bounded 550

with diam(W) ≤ W , and the parameterization 551

is Lipschitz: 552

∥gw1
− gw2

∥∞ ≤ J ∥w1 − w2∥. (49) 553

Thus, we can interpret g ∈ G as representing the 554

class probabilities. 555

Remark 8. For binary classification, i.e. C = 2, the 556

classifiers are of the form f : X → {0, 1}2, instead 557

of f : X → {−1, 1}, as considered earlier. However, 558

one can translate between these representations by 559

post-composing with either 560

α(x1, x2) := x1 − x2 or β(x) :=
(

x+1
2 , 1−x

2

)
.

(50) 561
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By the contraction principle for Rademacher com-562

plexity, it is therefore sufficient to compute the com-563

plexity for one of these models.564

As in the binary case, our proofs start by consid-565

ering the Rademacher complexity of the function566

class F :567

Rn,µ(F) =
1

n
Eσij ,xi

sup
f∈F

∣∣∣ n∑
i=1

C∑
j=1

σijfj(xi)
∣∣∣

(51)

568

≤
C∑

j=1

1

n
Eσij ,xi

[
sup
f∈F

∣∣∣ n∑
i=1

σijfj(xi)
∣∣∣] .

(52)

569

Each summand corresponds to a binary classification570

problem with a one-vs-all classifier fj . Indeed, fj is571
2

S(f)−t -Lipschitz on At(f). Transforming via572

fj 7→ 2fj − 1 : X → {−1, 1}, (53)573

we can follow the same reasoning as in A.2, obtaining,574

up to a linear factor of C, the same result as the first575

part of Theorem 4, generalized to the multi-class576

setting.577

Similarly, under assumption (H3), we can write578

2fj − 1 = sgn
(
gj −max

i̸=j
gi(x)

)
, (54)579

which allows us to proceed as in Theorem 5 to obtain580

a multi-class generalization of Theorem 5 and Corol-581

lary 7. The only minor difference lies in bounding582

the term in Equation 35:583

E[|fj − Ffj |] ≤ P
[
|gj(x)−max

i̸=j
gi(x)| ≤ γ

]
. (55)584

Choosing γ = S∗(g)
2 , we use that for all j, |gj(x)−585

maxi̸=j gi(x)| > h∗
g(x), which yields586

P
[
|gj(x)−max

i̸=j
gi(x)| ≤ S∗(g)

2

]
(56)587

≤ P
[
|h∗

g(x)− S∗(f)| ≥ S∗(g)
2

]
(57)588

≤ 2 exp
(
− d S∗(g)2

8cL(g)2

)
(58)589

≤ 2 exp
(
− d S∗2

8cL2

)
(59)590

= 2 exp

(
−d S̄∗2

8c

)
. (60)591

We conclude that all results extend naturally to592

the multi-class case. The main concepts are summa-593

rized below.594

• Isoperimetry:595

P(∥f(x)− E[f ]∥∞ ≥ t) ≤ 2 exp
(
− dt2

2cL2

)
(61)596

• Rademacher complexity 597

Rn,µ(F) = 1
nE

σi,j ,xi

[
sup
f∈F

∣∣∣ n∑
i=1

C∑
j=1

σijfj(xi)
∣∣∣]

(62) 598

• Margin 599

hf (x) =

C∑
j=1

hj
f (x) (63) 600

601

hj
f (x) := inf{∥x− z∥2 : f(z) ̸= j, z ∈ Rd}

(64) 602

• Class stability 603

S(f) =

C∑
j=1

S(f)j , S(f)j := E[hj
f ] (65) 604

• Co-margin 605

h∗
g(x) =

C∑
j=1

h∗
g
j(x) (66) 606

607

h∗
g
j(x) := max

(
0, gj(x)−max

i̸=j
gi(x)

)
(67) 608

• Co-stability 609

S∗(g) =

C∑
j=1

S∗j(g), S∗j(g) := E[h∗
g
j ] (68) 610

A.5 Experimental Details for Stabil- 611

ity Measurement 612

Training setup. To empirically validate our ro- 613

bustness law, we trained fully connected MLPs on 614

MNIST and CIFAR-10 datasets. Each model has 4 615

hidden layers with widths w ∈ {128, 256, 512, 616

1024, 2048} for MNIST and up to w = 1024 for CI- 617

FAR10. All models use ReLU activations, batch 618

normalization, and were initialized with standard 619

parametrization. Training was conducted using the 620

Adam optimizer [14] for the embedding and output 621

layers, and the Muon optimizer [15] for the hidden 622

layers. Models were trained with a batch size of 256 623

and learning rate 10−3, until at least 99% training 624

accuracy was achieved, ensuring (near) interpolation. 625

We further used sharpness-aware optimization based 626

on [16, 17] to reduce variance of the normalized 627

co-stability on MNIST. 628

Parameter counts and normalization. For 629

each model, we recorded the total number of train- 630

able parameters p, input dimension d, and total 631

number of training samples n. 632
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Stability estimation. Class stability S(f) was633

computed using adversarial perturbation analysis.634

We performed a suite of ℓ2-based attacks (FGSM,635

PGD, DeepFool, and L2PGD [18–20]) using the636

Foolbox library [21]. For each input x, we recorded637

the minimum perturbation norm required to change638

the classifier’s prediction, over a grid of radii r =639

(0.002, 0.01, 0.05, 0.1). The final stability score S(f)640

was taken as the average ℓ2 distance across the641

dataset.642

Normalized Co-Stability estimation. The em-643

pirical co-stability S∗(g) is computed via the multi-644

class margin645

gj(x)−max
i̸=j

gi(x), j = argmax
i

gi(x), (69)646

averaged over the dataset. We estimate the Lipschitz647

constant L(g) using the efficient ECLipsE method648

[12], and report the normalized ratio S∗(g)/L(g) as649

a function of model size.650

Implementation. Training and evaluation code651

is implemented in PyTorch [22]. For MLPs, images652

were flattened to vectors. Attack evaluations were653

conducted over the full dataset (train and test).654

Reproducibility. All experiments were run with655

multiple random seeds {0, 1, 2, 3, 4}, and mean with656

standard deviation are reported. Our code is avail-657

able at anonymous GitHub.658

Results. Figure A.1 shows that, for MLPs, both659

class stability S(f) and normalized co-stability660

S∗(g)/L(g) increase consistently with model size.661

The observed saturation of (normalized co-) stability662

aligns with theoretical intuition: the Bayes classi-663

fier admits a finite (normalized co-) stability level,664

and pushing beyond this level necessarily reduces665

accuracy – an instance of the robustness/accuracy666

trade-off extensively discussed in the literature [23–667

25]. Accordingly, we expect stability to plateau once668

models approach the Bayes decision boundary. For669

CIFAR-10, although test accuracy remains far below670

the Bayes optimal (around 50%), the same reason-671

ing applies relative to the best classifier achievable672

within the restricted MLP architecture.673
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Figure A.1. Stability measures for 4- and 8-layer MLPs
trained on MNIST and CIFAR-10.
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