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Abstract

We show that the choice of pretraining lan-
guages affects downstream cross-lingual trans-
fer for BERT based models. We inspect zero-
shot performance under balanced data condi-
tions to mitigate data size confounds, classi-
fying pretrain languages that increase down-
stream performance as donors, and languages
that are most improved in zero-shot perfor-
mance as recipients. We develop a method
of quadratic time complexity in the number of
pretraining languages to estimate these inter-
language relations, instead of an exponential
exhaustive computation of all possible combi-
nations. We find that our method is effective on
a diverse set of languages spanning different lin-
guistic features and two downstream tasks. Our
findings can inform developers of future large-
scale multilingual language models in choosing
better pretraining configurations.

1 Introduction

Pretrained language models (PLMs; Peters et al.,
2018; Devlin et al., 2019, inter alia) have been
setting state-of-the-art results in most NLP tasks,
thanks to their ability to leverage naturally occur-
ring raw texts during pretraining. Interestingly,
various recent works found that when pretraining
on corpora composed of different languages, PLMs
exhibit zero-shot cross-lingual abilities, i.e., they
achieve non-trivial performance when tested on
downstream examples for languages seen only dur-
ing pretraining. For example, in Figure 1, a part-of-
speech model finetuned only on English is capable
of predicting correctly on an example in Russian,
which was seen only during pretraining (Wu et al.,
2019; Wang et al., 2019; Conneau et al., 2019;
Lazar et al., 2021; Turc et al., 2021).

Previous analyses have examined how several
factors contribute to this emerging behavior. For
example, parameter sharing and model depth seem
important in certain configurations (Wang et al.,
2019; Wu et al., 2019), and the choice of finetune
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Figure 1: Previous studies on cross-lingual transfer fo-
cus on choosing transfer languages for fine-tuning while
fixing the pretraining phase to e.g., to mBERT’s lan-
guage and data selection. We identify that pretraining
plays a major role in cross-lingual performance. In stage
1, we construct a pretraining-based language interaction
graph to identify good pretraining and downstream lan-
guages (termed “donors” and “recipients”) , Following,
in stages 2 and 3 we test various combinations of pre-
training and downstream configurations, and in stage
4 we show that donor languages indeed lead to better
zero-shot performance (indicated by the full beaker) in
recipient languages in two downstream tasks.

language can lead to varying results (Turc et al.,
2021).

In this work, we focus on an important factor
which we find missing in prior work, namely the
effect that pretraining languages have on down-
stream zero-shot performance. In particular, we ask
three major research questions: (1) Does the choice
of pretraining languages affect downstream cross-



lingual transfer, and if so, to what extent? (2) Is
English the optimal pretraining language, when
controlling for confounding factors such as data
size and domain? And finally, (3) Can we choose
pretraining languages to improve downstream zero-
shot performance?

These questions have implications for the next
generation of PLMs, which can find better and
more efficient choices for pretraining languages;
for downstream model developers in low-resource
setting, which can find specific pretraining config-
urations best suited for their setting; and can help
shed light on the inter-relations between languages
and how they manifest in cross-lingual transfer.

To answer these research questions, we decouple
as much as possible the language from its corre-
sponding dataset. To the best of our knowledge,
prior work has conflated pretrain corpus size and its
domain with other examined factors, thus skewing
results towards over-represented languages, such
as English or German (Joshi et al., 2020).!

To achieve this, we first construct a linguistically-
balanced pretraining corpus based on Wikipedia,
composed of a diverse set of 22 languages. We
carefully control for the amount of data and domain
distribution in each of the languages (Section 3).

Next, we note that the number of pre-training
configurations grows exponentially with the num-
ber of languages n represented in the dataset.”
Therefore, it is infeasible to exhaustively test all
possible configuration, much less extend it for more
languages.

To overcome this limitation, in Section 4 we pro-
pose a novel pretraining-based approach which is
quadratic in the number of languages and yields
an estimation of how much a language is projected
to contribute to zero shot performance, based only
language modelling performance. Using this ap-
proach, we identify four sets of languages. Two
sets of pretrain languages: (1) top-donating — lan-
guages which we expect would yield the best down-
stream zero-shot performance, (2) least-donating —
languages which we expect would lead to relatively
worst zero-shot performance, and two sets of down-
stream languages: (3) most recipient, languages
which we expect would show best zero-shot perfor-
mance, and (4) least recipient, languages which we
expect would lead to worst zero-shot transfer.

"For example, English was X100 more likely to be sampled
in mBERT’s pretraining data than Icelandic.

2There are 2" possible pretraining configurations taking
into account inclusion and omission of every language.

Finally, our evaluations on two multilingual
downstream tasks (part of speech tagging and
named entity recognition) lead to three main con-
clusions (Section 5): (1) the choice of pretraining
languages indeed leads to differences in zero-shot
performance; (2) controlling for the amount of data
allotted for each language during pretraining ques-
tions the primacy of English as the main pretrain-
ing language; and (3) our hypothesis regarding
the sets of most- and least- contributing languages
holds in both downstream tasks, and against two
additional control groups.

2 Metrics for Pretraining-Aware
Cross-Lingual Transfer

In this section, we extend existing metrics for zero-
shot cross-lingual transfer to account for pretrain-
ing languages. Intuitively, our metrics for a model
M and a given downstream task take into account
three factors: (1) P, the set of languages seen dur-
ing pretraining, (2) s € P, the source language
which is used for finetuning, and (3) ¢t € P, the rar-
get language, which is only seen during inference.

Formally, we adapt the formulation of Hu et al.
(2020) to define a pretraining-aware bilingual zero-
shot transfer score Z as:’

Z(s — t|P) == e(MP* 1) (1)

Where M ! is a model pretrained on the set
of languages P and finetuned on downstream task
instances in the language [ € P, and (M, 1) is an
evaluation of model M on instances in language [
in terms of the downstream metric, e.g., word label
accuracy for part of speech tagging.

Following, we extend the definition to a set of
downstream test languages D C P to measure
P’s aggregated effect on zero-shot performance, by
averaging over all bilingual transfer combinations
in D:

Z(ll — lg’P)

pp @

Zp(D)= >

l1,l2€D:l1#l2

In following sections, we will use these metrics
to evaluate how different choices for pretraining
languages influence downstream performance.

3We opt not to normalize the score by the monolingual per-
formance as done in Turc et al. (2021), as we do not want the
monolingual performance to affect the score. Rather, we are
interested in how the choice of pretraining languages directly
contributes to the performance.



Size [M chars]

Language Code Family Wiki Sample
Piedmontese  pms Indoeuropean 14 10
Irish ga Indoeuropean 38 10
Nepali ne Indoeuropean 78 10
Welsh cy Indoeuropean 85 10
Finnish fi Uralic 131 10
Armenian hy Indoeuropean 174 10
Burmese my Sino-Tibetian 229 10
Hindi hi Indoeuropean 473 10
Telugu te Dravidian 533 10
Tamil ta Dravidian 573 10
Korean ko Korean 756 10
Greek el Indoeuropean 906 10
Hungarian hu Uralic 962 10
Hebrew he Afroasiatic 1,261 10
Chinese zh Sino-Tibetian 1,546 10
Arabic ar Afroasiatic 1,695 10
Slovak SV Indoeuropean 1,744 10
Japanese ja Japonese 3,288 10
French fr Indoeuropean 4,958 10
German de Indoeuropean 6,141 10
Russian ru Indoeuropean 6,467 10
English en Indoeuropean 14,433 10

Table 1: The data size of the full wikipedia dump for the
different languages in our study (in millions of charac-
ters) versus our fixed sized sampling of it. This exempli-
fies both the linguistic diversity as well as the variance
in data sizes in the original Wikipedia corpus, often used
for pretraining PLMs. In contrast, we create a balanced
pretraining dataset by sampling 10M characters from
all languages such that they conform to the smallest
language portion in our set (Piedmontese).

3 Data Selection

In order to test the effect of pretraining languages
on cross-lingual transfer, we seek to collect a pre-
training dataset which satisfies two requirements.

First, we want the set of languages to be diverse
to capture a wide range of linguistic features. To-
wards that end, we collect a set of 22 diverse lan-
guages from 9 language families, as listed in Ta-
ble 1. These represent a wide variety of alphabets,
linguistic and morphological features. We note
that our approach can be readily extended to other
languages beyond those present in this study.

Most crucially, we aim to balance the amount of
data and control for its domain across languages, so
that these factors would not confound our findings.
Below we outline design choices we made towards
this goal.

3.1 Data Balancing

To achieve a balanced dataset across our lan-
guages, we sample consecutive sentences from
every language’s corresponding Wikipedia dump

(cleaned and tokenized using wikiextractor (At-
tardi, 2015)),* such that each language is repre-
sented by 10 million characters. This amount was
chosen to align all languages to the lower-resource
ones (e.g., Piedmontese or Irish) which comprise
approximately 10mb of data. We choose to sam-
ple texts from Wikipedia as it consists of roughly
similar encyclopedic domain across languages, and
is widely used for training PLMs (Devlin et al.,
2019).

Can we balance the amount of information
across languages? We note that a possible con-
found in our study is that languages may encode
different amounts of information in texts of similar
character count. This may happen due to differ-
ences in the underlying texts, or in inherent lan-
guage properties.’ To estimate the amount of in-
formation in each our 107 character partitions, we
tokenize each language partition [ with a word-
piece tokenizer, and look at the ratio between total
number of tokens in [ and the number of unique
tokens in /, finding a good correlation across all our
languages (r = 0.73), which may indicate that our
dataset is indeed balanced in terms of information.
Our intuition is that an imbalanced amount of infor-
mation would lead the tokenizer to “invest” more
tokens in some of the languages while neglecting
the less informative ones. In our evaluation we
revisit outliers in this metric and ensure that they
do not correlate with better performance.

Is our sample representative of the full
Wikipedia corpus in each language? Another
concern may be that our sampled corpus per lan-
guage is not indicative of the full corpus for that
language, which may be much larger (see Table 1).
To test this, we created three discrete length distri-
butions. Two length distribution for sentences (in
terms of words and tokens, where we use the same
word-piece tokenizer as in our experiments from
Section 4.1), and word length distribution in terms
of characters. We then compared those three distri-
butions between our sample and the full data using
Earth Movers Distance. All means and standard
deviations scored below 0.001, indicating that in-
deed all samples are similarly distributed to their
respective full corpus in terms of these metrics.

“The latest version available on November 2021.
SFor example logographic or abjad writing systems may be
more condensed than other alphabets (Perfetti and Liu, 2005)



4 Pretrain Language Configuration

In this section we describe a method for estimating
the effect that different pretrain language combi-
nations in our dataset would have have on down-
stream zero-shot performance, by evaluating bilin-
gual performance on the pretraining MLM task.
This is required since exhaustively computing each
of the possible language combinations is infeasi-
ble and grows exponentially with the number of
examined languages (2" combinations).

We begin by describing our experimental setup,
hyperparameters and hardware configuration (Sec-
tion 4.1). Then, in Section 4.2, we outline our esti-
mation method, that also yields a complete graph
structure over our languages, which is amenable
for future exploration and analyses (Section 4.3).
Then, in Section 4.4, we use the graph to formu-
late a set of downstream cross-lingual hypotheses
regarding how different languages will affect zero-
shot performance. In Section 5 we validate these
hypotheses on two downstream tasks.

4.1 Experimental Setup

For all evaluations discussed below, we train a
BERT model (Devlin et al., 2019) with 4 layers
and 4 attention heads, an MLM task head, and an
embedding space of size 512.° We train a single
wordpiece tokenizer (Wu et al., 2016) on 44 lan-
guages consisting of the 22 languages elaborated
above, and 22 additional languages listed in the
Appendix, each with the same amount of data as
described above. This was done so we can increase
our analysis to more languages in the future. We
train the models with a batch size of 8 samples,
with sentences truncated to 128 tokens.

Each language model was trained up to 4 epochs.
This was determined by examining the training loss
on 6 diverse languages in our set and observing
that they converge around 4 epochs. Masks were
applied to the masked language modeling task ac-
cording to the default setting, generating 15% mask
tokens and 10% random tokens for each input se-
quence (Devlin et al., 2019).

All of our models were trained on a single GPU
core using nvidia tesla M60, nvidia gtx 980, and
RTX 2080Ti. The training time varied from 80 to
120 minutes, depending on the GPU and languages.

®We use the
Hugging  Face:
bert-base-uncased.

implementation  provided by
https://huggingface.co/

4.2 Building a Pretraining Language Graph

Intuitively, we measure masked language mod-
elling (MLM) performance when pretraining on
a pair of languages (l1,l2) as a proxy to the ex-
tent of how [y and [y contribute to one another in
zero-shot cross-lingual transfer.

This methodology relies on two assumptions.
First, we assume that the cross-lingual zero-shot
performance as defined in Equation 2 is monotonic,
i.e., that adding pretrain languages will increase
the aggregated downstream performance. This is
defined formally as:

¥P'CP:Zp(D)> Zp(D)  (3)

Second, we assume that MLM performance cor-
relates with downstream task performance, which
is often the assumption made when training PLMs
to minimize perplexity (Peters et al., 2018; Devlin
et al., 2019).

Bilingual MLM finetune score. Formally, for
every language pair s,t € P, we compute the fol-
lowing finetune score, F:

e(M*St t) — (Mt t)
e(Mt,t)

F(s—t):= “)

Where M is a model pretrained on s, ¢, and
¢ is an intrinsic evaluation metric for MLM.” Le.,
F(s,t) estimates how much the target language ¢
“gains” in the MLM task from additional pretraining
on the source language s compared to monolingual
pretraining on t.

Figure 2 depicts a weighted adjacency matrix
where coordinate (4, j) corresponds to F(l; — ;).
Furthermore, the same information can be con-
veyed in a complete directed weighted graph for-
mat, where each node represents a language, and
edge (11, l2) is weighted by F(l; — [2).

Language-Level Donation and Recipience.
Next, for each language | € P we compute a Do-
nation score, D, as an aggregate over all of its fine-
tune scores as a source language (i.e., how much
it contributed to other languages), and similarly
an recipience score, R, by aggregating over all its
finetune scores as a target language, to measure
how much [ is contributed to by other languages.

"We specifically use mean reciprocal rank (MRR), which
correlates with perplexity.


https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased

Formally:
D)= ) Fl—t) 5)
tePt#l
R = > F(s—1) (6)
s€P,s#l

We depict both donation and recipience scores
as aggregate row and column vectors in Figure 2.

Thus, based on the two assumptions above, our
hypothesis is that the downstream cross-lingual
transfer will be similar to the sum of recipience
scores for all pretraining languages. Formally:

Zp(D) ~ ) R(1) (M
lepP
Moreover, higher donation scores for languages in
the pretrain set will result in higher scores in the
downstream task. Formally:

Y. DW)>> D)= Zp>Zp (8

lep lepP’

4.3 Language Graph Analysis

Below we outline several interesting observations
which can be drawn based on the pretrain language
weighted adjacency matrix shown in Figure 2.

To allow further exploration of this data, we
will make available a web-based extensible inter-
active exploration interface (see Figure 4 in the
Appendix), which can surface how different lin-
guistic features interact with these scores through
various filters and visualizations.

Some language combinations are detrimental.
Negative transfer scores are present in many of the
target languages, e.g., between Korean (ko) and
Arabic (ar), which means that initializing a lan-
guage model for Arabic with weights learned for
Korean hurts MLM performance on Arabic, com-
pared with the Arabic monolingual baseline. This
seems nontrivial as it may seem reasonable that ini-
tializing a model with an existing language model
would result in at least the same performance as
random initialization.

The bilingual relation is not symmetric. The
finetune scores are not symmetric, i.e., there ex-
ists ll,l2 for which ./r(ll — lg) 7é ./r(lg — ll).
For example, for German and Finnish we get
0.51 = F(fi — de) # F(de — fi) = —0.24,
which means that Finnish initialization helps Ger-
man MLM, while the opposite relation does not
hold.

Finetuning as transfusion: mapping the linguis-
tic blood-bank. Plotting the donation and recip-
ience scores defined in Equations 5, 6 of each
language [, as shown in Figure 3, gives rise to
three-way language classification, loosely reminis-
cent of human blood types. For example, O-type
languages (like Arabic or Finnish) generally con-
tribute in all training configurations as source but
do not get contributed to as target, while AB+ type
languages (like German or Hindi) are positively
influenced as target languages in all configurations
but do not contribute to other languages as much
when being the source language.

4.4 Choosing Pretrain Sets for Downstream

We use the donation scores to identify pretraining
languages projected to lead to better downstream
zero-shot performance, and the recipience score to
identify downstream languages which will perform
better as source languages for zero shot. This setup
is summarized in Table 2.

Pretrain languages. We define three sets of lan-
guages that will be used for pretraining, using the
donation score: (1) Top donating: Japanese, Tel-
ugu, Finnish, and Russian. This combination was
chosen out of the top donating languages, while try-
ing to keep the set linguistically diverse; (2) Least
donating: Nepali, Burmese, Armenian, and En-
glish. This combination was chosen out of the least
donating languages described above, while trying
to keep the set linguistically diverse. We also chose
to include English as it is a popular source language
thanks to its abundance of data; and Random: A ran-
domly selected set of 4 languages: Hebrew, Irish,
French, and Slovak.

Downstream languages. To validate that lower
recipience scores indeed means that languages are
harder to improve via cross lingual transfer, we
added 6 languages to all configurations described
above — 3 highly recipient languages: Hindi, Ger-
man, and Hungarian annotated R}, and 3 rela-
tively least-recipient languages: Arabic, Greek,
and Tamil annotated R;.

Hypotheses. We hypothesize that more donating
pretraining sets will increase cross-lingual transfer
in downstream tasks, and that mostly non-recipient
languages will have lesser cross-lingual perfor-
mance compared to recipient languages. These
can be formally articulated using defintions from
Equation 7 and 8:
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Figure 2: Bilingual finetune scores between each pair of languages in our balanced corpus. Coordinate (i, j)
represents F(I; — 1;), i.e., the performance in MRR[%] (which correlates with perplexity) of an LM pretrained on

a bilingual corpus over languages (I;, ;) and tested intrinsically on [

;. The last column (marked Don.) sums over

each line, i.e., index ¢ in the column represents how much language ¢ donated to all other languages. E.g., Japanese
donated substantially, while German did not. Similarly, the j’th index in the last row (marked Recp.) sums over
column j and represents how much language [; improved in all configurations. E.g., Nepali improved significantly,
while Arabic did not. We note that a dual representation of this heatmap is as a weighted adjacency matrix of a
complete directed graph, where coordinate (4, j) represents the weight of the edge (I;, ;).

VP : Zp(Rh) > ZP(RI) 9

ZTop(C) > ZRandom(O) > ZBottom(C) (10)

5 Evaluating Downstream Zero-Shot
Performance

All our pretrain configuration were trained in the
same manner as in Section 4.1. We used the code
and hyperparameter default values provided by
XTREME to train the downstream tasks (Hu et al.,
2020), adapted for multilinugal training and trans-
fer.

5.1 Tasks

We evaluated all of the pretraining configurations
detailed in Table 2 on two of XTREME’s tasks:
part of speech tagging (POS) and named entity

recognition (NER). We aim to balance the data
in both tasks across different finetune languages,
so as not to skew results towards higher-resource
languages.

For part-of-speech tagging, we use the data from
the XTREME dataset, which in turn uses Universal
Dependencies (Nivre et al., 2020). We truncated
the data to 1000 sentences. For NER, we applied
a similar procedure, where XTREME’s data was
taken from the Wikiann (panx) dataset (Rahimi
et al., 2019).

5.2 Results

Several key observations can be made based on
the results for both POS tagging and NER across
all training configurations, which are presented
in Tables 3 and 4. For each configuration P in
Top, Bottom, Random, Control we calculated ze-
roshot transfer scores on the recipient set C using



Base pretrain set Shared pretrain set Total data Summary

(Donating languages)  Most recipient (Rp,) Least recipient (R;)
Top {ja, te, fi, ru} {hi, de, hu} {ar, el, ta} 10® characters  Most donating pretrain set.
Bottom {ne, my, hy, en} {hi, de, hu} . {ar, el, ta} 108 characters  Least donating pretrain set.
Random {he, ga, fr, sv} {hi, de, hu} {ar, el, ta} 10® characters Random donating pretrain set.
Control {} {hi, de, hu} {ar, el, ta} 108 characters  No additional donating languages.

Table 2: Pretraining sets for for four language configuration. Each pretrain set is comprised of donating languages
and recipient languages. Notice that the control group has less languages but the same amount of data overall,
equally distributed among its pretraining languages.

NER [F1] POS [F1]
Avg. Monolingual ~ Avg. Zeroshot ~ Avg. Monolingual  Avg. Zeroshot
Top 0.570 0.175 0.615 0.27
Random 0.291 0.123 0.611 0.26
Bottom 0.323 0.119 0.605 0.27
Control 0.331 0.119 0.623 0.27

Table 3: Donation results for named entity recognition and part of speech tagging. For each pretraining language
group (Top, Random, Bottom, and Control), we report their corresponding average monolingual and zero shot
performance. Top consistently outperforms other configuration on NER, while results are more similar in POS,
where all of the configurations are roughly on par for zero-shot performance.

NER [F1] POS [F1]
Avg. Monolingual ~ Avg. Zeroshot ~ Avg. Monolingual ~ Avg. Zeroshot
Most recipient (R) 0.390 0.162 0.640 0.285
Least recipient (R;) 0.387 0.106 0.588 0.253

Table 4: Recipience results. We report aggregate results across different training configurations for two groups of
downstream recipient languages. As we predict from intrinsic pretraining performance, the Most Recipient set
does better than the Least recipient set across both tasks in zero-shot and monolingual performance.

Zp(C) defined by Equation 2. Monolingual re-
sults under each pretrain set P were calculated by

the average F'1 performance of each language in
C: ﬁ S~ e(MPE 1) where e (M 1) denotes the
leC

F'1 score of model pretrained on P, finetuned on [
and evaluated on [.

Pretraining configuration affects downstream
cross-lingual transfer results. In both tasks, we
observe a variance of results when changing the
pretraining configuration, despite all of the config-
uration having similar amounts of data. This effect
is more pronounced in NER, where the average
monolingual performance varies by roughly 28%
between the best and least performing configura-
tion, and zero-shot performance varies by more
than 5%. This shows that previous work in analyz-
ing cross-lingual performance has indeed omitted
an important interfering factor.

Recipient score correlates with downstream
cross-lingual performance. We evaluated zero-
shot transfer scores for each recipient language set
R € {Ry;, Ry} as the average zero-shot transfer

scores over all pretrain configurations. Table 4 re-
veals that in all tasks and configurations the more
recipient set scored better zero-shot scores com-
pared to the least recipient set, i.e. exhibit better
cross lingual performance (+5% in NER, +3% in
POS tagging).

Multilingual pretraining can improve monolin-
gual performance. As seen in Table 3, the Top
pretrain configuration scored a monolimgual score
higher than the control group by 23%. This sug-
gests that multilingual pretraining datasets can ben-
efit monolingual downstream results even more
than datasets with the same amount of data spread
across less languages.

English might not be an optimal pretrain lan-
guage. Corresponding with our previous results,
if donation score is indicative to a languages con-
tribution in pretraining, English’s relative low do-
nation score might indicate that it is not the best
language to pretrain upon. English was also part
of the bottom pretrain configuration which scored
lower than fop as seen in Table 3. Further research
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Figure 3: Our languages on a “donor” versus “recipient
graph. A positive coordinate on the “donor” score (X
axis) represents a language which on average improved
other language’s performance in bilingual pretraining,
while a negative score indicates a language which hurt
other languages on average. Inversely, positive score on
the Y axis represents languages whose performance was
improved by bilingual pretraining, while negative scores
represent language whose performance was hurt by it.
The 11 quadrant represents O type languages (donating
but not receiving), languages on the I'V’s quadrant are
AB+ type languages (receiving but not donating).

and broader analysis are required to ascertain this
finding.

6 Limitations and Future Work

As other works on cross-lingual transfer, our results
are influenced by many hyperparameters. Below
we explicitly define our design choices and how
they can be explored in future work.

First, data scarcity in low-resource languages
restricted us to small data amounts. Although our
experiments showed non-trivial signal for pretrain-
ing and downstream tasks, future work may apply
our framework to larger data sizes.

Second, for efficiency sake, we trained relatively
small models to enable us to train a large amount
of language configurations, while ensuring conver-
gence in 6 languages. Furthermore we did not do
any hyper-parameter tuning and use only values
reported in previous work. Moreover, we limit our-
selves to BERTSs architecture. Future work may
revisit any of these design choices to shed more
light on their effect.

Finally, our downstream analysis focused on

POS tagging and NER since they were available
for many languages. Further experimentation can
test if our results hold for more NLP tasks.

7 Related Work

To the best of our knowledge, we are the first work
to focus and control for the amount of data allo-
cated for each language during pretraining and fine-
tuning. Other works have explored cross-lingual
transfer from different angles.

Perhaps most related to our work, Turc et al.
(2021) challenge the primacy of English as a source
language for cross-lingual transfer in various down-
stream tasks. Their work shows that German and
Russian are often more effective sources. In all of
their experiments they use mBERT’s imbalanced
pretraining corpus.

Wu and Dredze (2020) evaluate how mBERT
performs on a wide set of languages, focusing on
the quality of representation for low-resource lan-
guages in various downstream tasks by defining
a scale from low to high resource. They show
that mBERT underperforms non BERT monolin-
gual baselines for low resource languages while
performing well for high resource ones.

Finally, Conneau et al. (2019) introduce the
transfer-interference trade-off where low resource
languages benefit from scaling to more languages,
until a given point where the overall performance
on monolingual and cross-lingual benchmarks de-
grades.

8 Conclusions

We explored the effect of pretraining language
selection on downstream zero-shot transfer. We
first curate a balanced set of pretraining languages.
Second, we devise a novel estimation technique,
quadratic in the number of languages, which
projects which pretraining languages will serve bet-
ter in cross-lingual downstream transfer and which
specific downstream languages will do best in that
setting. Finally, we test our hypothesis on two
downstream multilignual tasks, and show that pre-
training language selection choice indeed leads to
varying downstream cross lingual results, and that
our estimation is a good technique for projecting
performance. Taken together our results suggest
that pretraining language selection should be a fac-
tor in estimating cross-lingual transfer, and that
current practices which focus on high-resource lan-
guages may be sub-optimal.



9 Broader Impact and Ethical
Considerations

Our work did not involve any new data or annota-
tion collection, and as such did not require crowd-
sourced or in-house workers, or introduced any
new models and related risks. Instead, we examine
different combinations of multilingual pretraining,
which may lead to better multilingual models in a
vast array of languages, especially in low-resource
or zero-shot settings.
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Network Graph Visualization of Lang-Lang Interactions
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Figure 4: Our visualization tool, based on Streamlit
(https://streamlit.io)

A Appendix

Full list of tokenized languages The full list of
wikipedia language codes for languages used in our
tokenizer training is: af, am, ar, ca, cs, cy, da, de,
el, en, es, fa, fi, fr, ga, he, hi, hu, hy, id, is, it, ja, ko,
mg, my, ne, nl, pl, pms, ro, ru, sk, sv, sw, ta, te, th,
tr, ur, vi, yi, zh.

Visualization tool Figure 4 presents our interac-
tive visualization tool for the finetune experiments
reported in Section 4. We allow visualizing MLM
fine-tune score as a heatmap or as a dynamic di-
rected graph. The graph is based on the adjacency
matrix induced by our models as described in Sec-
tion 4. The adjacency matrix can be manipulated
using a controlled threshold to dilute edges. Each
feature can be visualized on the graph in two ways.
One way is to color all nodes (languages) w.r.t to
their feature value, another way is to collapse all
feature instances (languages) into a single averaged
feature node whose out-coming edges are the aver-
ages over all nodes tagged by this feature, as seen
in the figure.
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