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Abstract
We show that the choice of pretraining lan-001
guages affects downstream cross-lingual trans-002
fer for BERT based models. We inspect zero-003
shot performance under balanced data condi-004
tions to mitigate data size confounds, classi-005
fying pretrain languages that increase down-006
stream performance as donors, and languages007
that are most improved in zero-shot perfor-008
mance as recipients. We develop a method009
of quadratic time complexity in the number of010
pretraining languages to estimate these inter-011
language relations, instead of an exponential012
exhaustive computation of all possible combi-013
nations. We find that our method is effective on014
a diverse set of languages spanning different lin-015
guistic features and two downstream tasks. Our016
findings can inform developers of future large-017
scale multilingual language models in choosing018
better pretraining configurations.019

1 Introduction020

Pretrained language models (PLMs; Peters et al.,021

2018; Devlin et al., 2019, inter alia) have been022

setting state-of-the-art results in most NLP tasks,023

thanks to their ability to leverage naturally occur-024

ring raw texts during pretraining. Interestingly,025

various recent works found that when pretraining026

on corpora composed of different languages, PLMs027

exhibit zero-shot cross-lingual abilities, i.e., they028

achieve non-trivial performance when tested on029

downstream examples for languages seen only dur-030

ing pretraining. For example, in Figure 1, a part-of-031

speech model finetuned only on English is capable032

of predicting correctly on an example in Russian,033

which was seen only during pretraining (Wu et al.,034

2019; Wang et al., 2019; Conneau et al., 2019;035

Lazar et al., 2021; Turc et al., 2021).036

Previous analyses have examined how several037

factors contribute to this emerging behavior. For038

example, parameter sharing and model depth seem039

important in certain configurations (Wang et al.,040

2019; Wu et al., 2019), and the choice of finetune041

Figure 1: Previous studies on cross-lingual transfer fo-
cus on choosing transfer languages for fine-tuning while
fixing the pretraining phase to e.g., to mBERT’s lan-
guage and data selection. We identify that pretraining
plays a major role in cross-lingual performance. In stage
1, we construct a pretraining-based language interaction
graph to identify good pretraining and downstream lan-
guages (termed “donors” and “recipients”) , Following,
in stages 2 and 3 we test various combinations of pre-
training and downstream configurations, and in stage
4 we show that donor languages indeed lead to better
zero-shot performance (indicated by the full beaker) in
recipient languages in two downstream tasks.

language can lead to varying results (Turc et al., 042

2021). 043

In this work, we focus on an important factor 044

which we find missing in prior work, namely the 045

effect that pretraining languages have on down- 046

stream zero-shot performance. In particular, we ask 047

three major research questions: (1) Does the choice 048

of pretraining languages affect downstream cross- 049
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lingual transfer, and if so, to what extent? (2) Is050

English the optimal pretraining language, when051

controlling for confounding factors such as data052

size and domain? And finally, (3) Can we choose053

pretraining languages to improve downstream zero-054

shot performance?055

These questions have implications for the next056

generation of PLMs, which can find better and057

more efficient choices for pretraining languages;058

for downstream model developers in low-resource059

setting, which can find specific pretraining config-060

urations best suited for their setting; and can help061

shed light on the inter-relations between languages062

and how they manifest in cross-lingual transfer.063

To answer these research questions, we decouple064

as much as possible the language from its corre-065

sponding dataset. To the best of our knowledge,066

prior work has conflated pretrain corpus size and its067

domain with other examined factors, thus skewing068

results towards over-represented languages, such069

as English or German (Joshi et al., 2020).1070

To achieve this, we first construct a linguistically-071

balanced pretraining corpus based on Wikipedia,072

composed of a diverse set of 22 languages. We073

carefully control for the amount of data and domain074

distribution in each of the languages (Section 3).075

Next, we note that the number of pre-training076

configurations grows exponentially with the num-077

ber of languages n represented in the dataset.2078

Therefore, it is infeasible to exhaustively test all079

possible configuration, much less extend it for more080

languages.081

To overcome this limitation, in Section 4 we pro-082

pose a novel pretraining-based approach which is083

quadratic in the number of languages and yields084

an estimation of how much a language is projected085

to contribute to zero shot performance, based only086

language modelling performance. Using this ap-087

proach, we identify four sets of languages. Two088

sets of pretrain languages: (1) top-donating – lan-089

guages which we expect would yield the best down-090

stream zero-shot performance, (2) least-donating –091

languages which we expect would lead to relatively092

worst zero-shot performance, and two sets of down-093

stream languages: (3) most recipient, languages094

which we expect would show best zero-shot perfor-095

mance, and (4) least recipient, languages which we096

expect would lead to worst zero-shot transfer.097

1For example, English was X100 more likely to be sampled
in mBERT’s pretraining data than Icelandic.

2There are 2n possible pretraining configurations taking
into account inclusion and omission of every language.

Finally, our evaluations on two multilingual 098

downstream tasks (part of speech tagging and 099

named entity recognition) lead to three main con- 100

clusions (Section 5): (1) the choice of pretraining 101

languages indeed leads to differences in zero-shot 102

performance; (2) controlling for the amount of data 103

allotted for each language during pretraining ques- 104

tions the primacy of English as the main pretrain- 105

ing language; and (3) our hypothesis regarding 106

the sets of most- and least- contributing languages 107

holds in both downstream tasks, and against two 108

additional control groups. 109

2 Metrics for Pretraining-Aware 110

Cross-Lingual Transfer 111

In this section, we extend existing metrics for zero- 112

shot cross-lingual transfer to account for pretrain- 113

ing languages. Intuitively, our metrics for a model 114

M and a given downstream task take into account 115

three factors: (1) P , the set of languages seen dur- 116

ing pretraining, (2) s ∈ P , the source language 117

which is used for finetuning, and (3) t ∈ P , the tar- 118

get language, which is only seen during inference. 119

Formally, we adapt the formulation of Hu et al. 120

(2020) to define a pretraining-aware bilingual zero- 121

shot transfer score Z as:3 122

Z(s → t|P ) := ε(MP,s, t) (1) 123

Where MP,l is a model pretrained on the set 124

of languages P and finetuned on downstream task 125

instances in the language l ∈ P , and ε(M, l) is an 126

evaluation of model M on instances in language l 127

in terms of the downstream metric, e.g., word label 128

accuracy for part of speech tagging. 129

Following, we extend the definition to a set of 130

downstream test languages D ⊆ P to measure 131

P ’s aggregated effect on zero-shot performance, by 132

averaging over all bilingual transfer combinations 133

in D: 134

ZP (D) =
∑

l1,l2∈D:l1 ̸=l2

Z(l1 → l2|P )

|D|2
(2) 135

In following sections, we will use these metrics 136

to evaluate how different choices for pretraining 137

languages influence downstream performance. 138

3We opt not to normalize the score by the monolingual per-
formance as done in Turc et al. (2021), as we do not want the
monolingual performance to affect the score. Rather, we are
interested in how the choice of pretraining languages directly
contributes to the performance.
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Language Code Family Size [M chars]
Wiki Sample

Piedmontese pms Indoeuropean 14 10
Irish ga Indoeuropean 38 10
Nepali ne Indoeuropean 78 10
Welsh cy Indoeuropean 85 10
Finnish fi Uralic 131 10
Armenian hy Indoeuropean 174 10
Burmese my Sino-Tibetian 229 10
Hindi hi Indoeuropean 473 10
Telugu te Dravidian 533 10
Tamil ta Dravidian 573 10
Korean ko Korean 756 10
Greek el Indoeuropean 906 10
Hungarian hu Uralic 962 10
Hebrew he Afroasiatic 1,261 10
Chinese zh Sino-Tibetian 1,546 10
Arabic ar Afroasiatic 1,695 10
Slovak sv Indoeuropean 1,744 10
Japanese ja Japonese 3,288 10
French fr Indoeuropean 4,958 10
German de Indoeuropean 6,141 10
Russian ru Indoeuropean 6,467 10
English en Indoeuropean 14,433 10

Table 1: The data size of the full wikipedia dump for the
different languages in our study (in millions of charac-
ters) versus our fixed sized sampling of it. This exempli-
fies both the linguistic diversity as well as the variance
in data sizes in the original Wikipedia corpus, often used
for pretraining PLMs. In contrast, we create a balanced
pretraining dataset by sampling 10M characters from
all languages such that they conform to the smallest
language portion in our set (Piedmontese).

3 Data Selection139

In order to test the effect of pretraining languages140

on cross-lingual transfer, we seek to collect a pre-141

training dataset which satisfies two requirements.142

First, we want the set of languages to be diverse143

to capture a wide range of linguistic features. To-144

wards that end, we collect a set of 22 diverse lan-145

guages from 9 language families, as listed in Ta-146

ble 1. These represent a wide variety of alphabets,147

linguistic and morphological features. We note148

that our approach can be readily extended to other149

languages beyond those present in this study.150

Most crucially, we aim to balance the amount of151

data and control for its domain across languages, so152

that these factors would not confound our findings.153

Below we outline design choices we made towards154

this goal.155

3.1 Data Balancing156

To achieve a balanced dataset across our lan-157

guages, we sample consecutive sentences from158

every language’s corresponding Wikipedia dump159

(cleaned and tokenized using wikiextractor (At- 160

tardi, 2015)),4 such that each language is repre- 161

sented by 10 million characters. This amount was 162

chosen to align all languages to the lower-resource 163

ones (e.g., Piedmontese or Irish) which comprise 164

approximately 10mb of data. We choose to sam- 165

ple texts from Wikipedia as it consists of roughly 166

similar encyclopedic domain across languages, and 167

is widely used for training PLMs (Devlin et al., 168

2019). 169

Can we balance the amount of information 170

across languages? We note that a possible con- 171

found in our study is that languages may encode 172

different amounts of information in texts of similar 173

character count. This may happen due to differ- 174

ences in the underlying texts, or in inherent lan- 175

guage properties.5 To estimate the amount of in- 176

formation in each our 107 character partitions, we 177

tokenize each language partition l with a word- 178

piece tokenizer, and look at the ratio between total 179

number of tokens in l and the number of unique 180

tokens in l, finding a good correlation across all our 181

languages (r = 0.73), which may indicate that our 182

dataset is indeed balanced in terms of information. 183

Our intuition is that an imbalanced amount of infor- 184

mation would lead the tokenizer to “invest” more 185

tokens in some of the languages while neglecting 186

the less informative ones. In our evaluation we 187

revisit outliers in this metric and ensure that they 188

do not correlate with better performance. 189

Is our sample representative of the full 190

Wikipedia corpus in each language? Another 191

concern may be that our sampled corpus per lan- 192

guage is not indicative of the full corpus for that 193

language, which may be much larger (see Table 1). 194

To test this, we created three discrete length distri- 195

butions. Two length distribution for sentences (in 196

terms of words and tokens, where we use the same 197

word-piece tokenizer as in our experiments from 198

Section 4.1), and word length distribution in terms 199

of characters. We then compared those three distri- 200

butions between our sample and the full data using 201

Earth Movers Distance. All means and standard 202

deviations scored below 0.001, indicating that in- 203

deed all samples are similarly distributed to their 204

respective full corpus in terms of these metrics. 205

4The latest version available on November 2021.
5For example logographic or abjad writing systems may be

more condensed than other alphabets (Perfetti and Liu, 2005)
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4 Pretrain Language Configuration206

In this section we describe a method for estimating207

the effect that different pretrain language combi-208

nations in our dataset would have have on down-209

stream zero-shot performance, by evaluating bilin-210

gual performance on the pretraining MLM task.211

This is required since exhaustively computing each212

of the possible language combinations is infeasi-213

ble and grows exponentially with the number of214

examined languages (2n combinations).215

We begin by describing our experimental setup,216

hyperparameters and hardware configuration (Sec-217

tion 4.1). Then, in Section 4.2, we outline our esti-218

mation method, that also yields a complete graph219

structure over our languages, which is amenable220

for future exploration and analyses (Section 4.3).221

Then, in Section 4.4, we use the graph to formu-222

late a set of downstream cross-lingual hypotheses223

regarding how different languages will affect zero-224

shot performance. In Section 5 we validate these225

hypotheses on two downstream tasks.226

4.1 Experimental Setup227

For all evaluations discussed below, we train a228

BERT model (Devlin et al., 2019) with 4 layers229

and 4 attention heads, an MLM task head, and an230

embedding space of size 512.6 We train a single231

wordpiece tokenizer (Wu et al., 2016) on 44 lan-232

guages consisting of the 22 languages elaborated233

above, and 22 additional languages listed in the234

Appendix, each with the same amount of data as235

described above. This was done so we can increase236

our analysis to more languages in the future. We237

train the models with a batch size of 8 samples,238

with sentences truncated to 128 tokens.239

Each language model was trained up to 4 epochs.240

This was determined by examining the training loss241

on 6 diverse languages in our set and observing242

that they converge around 4 epochs. Masks were243

applied to the masked language modeling task ac-244

cording to the default setting, generating 15% mask245

tokens and 10% random tokens for each input se-246

quence (Devlin et al., 2019).247

All of our models were trained on a single GPU248

core using nvidia tesla M60, nvidia gtx 980, and249

RTX 2080Ti. The training time varied from 80 to250

120 minutes, depending on the GPU and languages.251

6We use the implementation provided by
Hugging Face: https://huggingface.co/
bert-base-uncased.

4.2 Building a Pretraining Language Graph 252

Intuitively, we measure masked language mod- 253

elling (MLM) performance when pretraining on 254

a pair of languages (l1, l2) as a proxy to the ex- 255

tent of how l1 and l2 contribute to one another in 256

zero-shot cross-lingual transfer. 257

This methodology relies on two assumptions. 258

First, we assume that the cross-lingual zero-shot 259

performance as defined in Equation 2 is monotonic, 260

i.e., that adding pretrain languages will increase 261

the aggregated downstream performance. This is 262

defined formally as: 263

∀P ′ ⊆ P : ZP (D) ≥ ZP ′(D) (3) 264

Second, we assume that MLM performance cor- 265

relates with downstream task performance, which 266

is often the assumption made when training PLMs 267

to minimize perplexity (Peters et al., 2018; Devlin 268

et al., 2019). 269

Bilingual MLM finetune score. Formally, for 270

every language pair s, t ∈ P , we compute the fol- 271

lowing finetune score, F : 272

F(s → t) :=
ε(M s,t, t)− ε(M t, t)

ε(M t, t)
(4) 273

Where M s,t is a model pretrained on s, t, and 274

ε is an intrinsic evaluation metric for MLM.7 I.e., 275

F(s, t) estimates how much the target language t 276

“gains” in the MLM task from additional pretraining 277

on the source language s compared to monolingual 278

pretraining on t. 279

Figure 2 depicts a weighted adjacency matrix 280

where coordinate (i, j) corresponds to F(li → lj). 281

Furthermore, the same information can be con- 282

veyed in a complete directed weighted graph for- 283

mat, where each node represents a language, and 284

edge (l1, l2) is weighted by F(l1 → l2). 285

Language-Level Donation and Recipience. 286

Next, for each language l ∈ P we compute a Do- 287

nation score, D, as an aggregate over all of its fine- 288

tune scores as a source language (i.e., how much 289

it contributed to other languages), and similarly 290

an recipience score, R, by aggregating over all its 291

finetune scores as a target language, to measure 292

how much l is contributed to by other languages. 293

7We specifically use mean reciprocal rank (MRR), which
correlates with perplexity.
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Formally:294

D(l) :=
∑

t∈P,t̸=l

F(l → t) (5)295

R(l) :=
∑

s∈P,s̸=l

F(s → l) (6)296

We depict both donation and recipience scores297

as aggregate row and column vectors in Figure 2.298

Thus, based on the two assumptions above, our299

hypothesis is that the downstream cross-lingual300

transfer will be similar to the sum of recipience301

scores for all pretraining languages. Formally:302

ZP (D) ≈
∑
l∈P

R(l) (7)303

Moreover, higher donation scores for languages in304

the pretrain set will result in higher scores in the305

downstream task. Formally:306 ∑
l∈P

D(l) ≥
∑
l∈P ′

D(l) ⇒ ZP ≥ ZP ′ (8)307

4.3 Language Graph Analysis308

Below we outline several interesting observations309

which can be drawn based on the pretrain language310

weighted adjacency matrix shown in Figure 2.311

To allow further exploration of this data, we312

will make available a web-based extensible inter-313

active exploration interface (see Figure 4 in the314

Appendix), which can surface how different lin-315

guistic features interact with these scores through316

various filters and visualizations.317

Some language combinations are detrimental.318

Negative transfer scores are present in many of the319

target languages, e.g., between Korean (ko) and320

Arabic (ar), which means that initializing a lan-321

guage model for Arabic with weights learned for322

Korean hurts MLM performance on Arabic, com-323

pared with the Arabic monolingual baseline. This324

seems nontrivial as it may seem reasonable that ini-325

tializing a model with an existing language model326

would result in at least the same performance as327

random initialization.328

The bilingual relation is not symmetric. The329

finetune scores are not symmetric, i.e., there ex-330

ists l1, l2 for which F(l1 → l2) ̸= F(l2 → l1).331

For example, for German and Finnish we get332

0.51 = F(fi → de) ̸= F(de → fi) = −0.24,333

which means that Finnish initialization helps Ger-334

man MLM, while the opposite relation does not335

hold.336

Finetuning as transfusion: mapping the linguis- 337

tic blood-bank. Plotting the donation and recip- 338

ience scores defined in Equations 5, 6 of each 339

language l, as shown in Figure 3, gives rise to 340

three-way language classification, loosely reminis- 341

cent of human blood types. For example, O-type 342

languages (like Arabic or Finnish) generally con- 343

tribute in all training configurations as source but 344

do not get contributed to as target, while AB+ type 345

languages (like German or Hindi) are positively 346

influenced as target languages in all configurations 347

but do not contribute to other languages as much 348

when being the source language. 349

4.4 Choosing Pretrain Sets for Downstream 350

We use the donation scores to identify pretraining 351

languages projected to lead to better downstream 352

zero-shot performance, and the recipience score to 353

identify downstream languages which will perform 354

better as source languages for zero shot. This setup 355

is summarized in Table 2. 356

Pretrain languages. We define three sets of lan- 357

guages that will be used for pretraining, using the 358

donation score: (1) Top donating: Japanese, Tel- 359

ugu, Finnish, and Russian. This combination was 360

chosen out of the top donating languages, while try- 361

ing to keep the set linguistically diverse; (2) Least 362

donating: Nepali, Burmese, Armenian, and En- 363

glish. This combination was chosen out of the least 364

donating languages described above, while trying 365

to keep the set linguistically diverse. We also chose 366

to include English as it is a popular source language 367

thanks to its abundance of data; and Random:A ran- 368

domly selected set of 4 languages: Hebrew, Irish, 369

French, and Slovak. 370

Downstream languages. To validate that lower 371

recipience scores indeed means that languages are 372

harder to improve via cross lingual transfer, we 373

added 6 languages to all configurations described 374

above — 3 highly recipient languages: Hindi, Ger- 375

man, and Hungarian annotated Rh, and 3 rela- 376

tively least-recipient languages: Arabic, Greek, 377

and Tamil annotated Rl. 378

Hypotheses. We hypothesize that more donating 379

pretraining sets will increase cross-lingual transfer 380

in downstream tasks, and that mostly non-recipient 381

languages will have lesser cross-lingual perfor- 382

mance compared to recipient languages. These 383

can be formally articulated using defintions from 384

Equation 7 and 8: 385
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Figure 2: Bilingual finetune scores between each pair of languages in our balanced corpus. Coordinate (i, j)
represents F(li → lj), i.e., the performance in MRR[%] (which correlates with perplexity) of an LM pretrained on
a bilingual corpus over languages (li, lj) and tested intrinsically on lj . The last column (marked Don.) sums over
each line, i.e., index i in the column represents how much language i donated to all other languages. E.g., Japanese
donated substantially, while German did not. Similarly, the j’th index in the last row (marked Recp.) sums over
column j and represents how much language lj improved in all configurations. E.g., Nepali improved significantly,
while Arabic did not. We note that a dual representation of this heatmap is as a weighted adjacency matrix of a
complete directed graph, where coordinate (i, j) represents the weight of the edge (li, lj).

∀P : ZP (Rh) > ZP (Rl) (9)386

387

ZTop(C) > ZRandom(C) > ZBottom(C) (10)388

5 Evaluating Downstream Zero-Shot389

Performance390

All our pretrain configuration were trained in the391

same manner as in Section 4.1. We used the code392

and hyperparameter default values provided by393

XTREME to train the downstream tasks (Hu et al.,394

2020), adapted for multilinugal training and trans-395

fer.396

5.1 Tasks397

We evaluated all of the pretraining configurations398

detailed in Table 2 on two of XTREME’s tasks:399

part of speech tagging (POS) and named entity400

recognition (NER). We aim to balance the data 401

in both tasks across different finetune languages, 402

so as not to skew results towards higher-resource 403

languages. 404

For part-of-speech tagging, we use the data from 405

the XTREME dataset, which in turn uses Universal 406

Dependencies (Nivre et al., 2020). We truncated 407

the data to 1000 sentences. For NER, we applied 408

a similar procedure, where XTREME’s data was 409

taken from the Wikiann (panx) dataset (Rahimi 410

et al., 2019). 411

5.2 Results 412

Several key observations can be made based on 413

the results for both POS tagging and NER across 414

all training configurations, which are presented 415

in Tables 3 and 4. For each configuration P in 416

Top, Bottom, Random, Control we calculated ze- 417

roshot transfer scores on the recipient set C using 418
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Base pretrain set Shared pretrain set Total data Summary
(Donating languages) Most recipient (Rh) Least recipient (Rl)

Top {ja, te, fi, ru}

+

{hi, de, hu}

+

{ar, el, ta} 108 characters Most donating pretrain set.
Bottom {ne, my, hy, en} {hi, de, hu} {ar, el, ta} 108 characters Least donating pretrain set.
Random {he, ga, fr, sv} {hi, de, hu} {ar, el, ta} 108 characters Random donating pretrain set.
Control {} {hi, de, hu} {ar, el, ta} 108 characters No additional donating languages.

Table 2: Pretraining sets for for four language configuration. Each pretrain set is comprised of donating languages
and recipient languages. Notice that the control group has less languages but the same amount of data overall,
equally distributed among its pretraining languages.

NER [F1] POS [F1]
Avg. Monolingual Avg. Zeroshot Avg. Monolingual Avg. Zeroshot

Top 0.570 0.175 0.615 0.27
Random 0.291 0.123 0.611 0.26
Bottom 0.323 0.119 0.605 0.27

Control 0.331 0.119 0.623 0.27

Table 3: Donation results for named entity recognition and part of speech tagging. For each pretraining language
group (Top, Random, Bottom, and Control), we report their corresponding average monolingual and zero shot
performance. Top consistently outperforms other configuration on NER, while results are more similar in POS,
where all of the configurations are roughly on par for zero-shot performance.

NER [F1] POS [F1]
Avg. Monolingual Avg. Zeroshot Avg. Monolingual Avg. Zeroshot

Most recipient (Rh) 0.390 0.162 0.640 0.285
Least recipient (Rl) 0.387 0.106 0.588 0.253

Table 4: Recipience results. We report aggregate results across different training configurations for two groups of
downstream recipient languages. As we predict from intrinsic pretraining performance, the Most Recipient set
does better than the Least recipient set across both tasks in zero-shot and monolingual performance.

ZP (C) defined by Equation 2. Monolingual re-419

sults under each pretrain set P were calculated by420

the average F1 performance of each language in421

C: 1
|C|

∑
l∈C

ε(MP,l, l) where ε(MP,l, l) denotes the422

F1 score of model pretrained on P , finetuned on l423

and evaluated on l.424

Pretraining configuration affects downstream425

cross-lingual transfer results. In both tasks, we426

observe a variance of results when changing the427

pretraining configuration, despite all of the config-428

uration having similar amounts of data. This effect429

is more pronounced in NER, where the average430

monolingual performance varies by roughly 28%431

between the best and least performing configura-432

tion, and zero-shot performance varies by more433

than 5%. This shows that previous work in analyz-434

ing cross-lingual performance has indeed omitted435

an important interfering factor.436

Recipient score correlates with downstream437

cross-lingual performance. We evaluated zero-438

shot transfer scores for each recipient language set439

R ∈ {Rl, Rh} as the average zero-shot transfer440

scores over all pretrain configurations. Table 4 re- 441

veals that in all tasks and configurations the more 442

recipient set scored better zero-shot scores com- 443

pared to the least recipient set, i.e. exhibit better 444

cross lingual performance (+5% in NER, +3% in 445

POS tagging). 446

Multilingual pretraining can improve monolin- 447

gual performance. As seen in Table 3, the Top 448

pretrain configuration scored a monolimgual score 449

higher than the control group by 23%. This sug- 450

gests that multilingual pretraining datasets can ben- 451

efit monolingual downstream results even more 452

than datasets with the same amount of data spread 453

across less languages. 454

English might not be an optimal pretrain lan- 455

guage. Corresponding with our previous results, 456

if donation score is indicative to a languages con- 457

tribution in pretraining, English’s relative low do- 458

nation score might indicate that it is not the best 459

language to pretrain upon. English was also part 460

of the bottom pretrain configuration which scored 461

lower than top as seen in Table 3. Further research 462
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Figure 3: Our languages on a “donor” versus “recipient”
graph. A positive coordinate on the “donor” score (X
axis) represents a language which on average improved
other language’s performance in bilingual pretraining,
while a negative score indicates a language which hurt
other languages on average. Inversely, positive score on
the Y axis represents languages whose performance was
improved by bilingual pretraining, while negative scores
represent language whose performance was hurt by it.
The II quadrant represents O type languages (donating
but not receiving), languages on the IV ’s quadrant are
AB+ type languages (receiving but not donating).

and broader analysis are required to ascertain this463

finding.464

6 Limitations and Future Work465

As other works on cross-lingual transfer, our results466

are influenced by many hyperparameters. Below467

we explicitly define our design choices and how468

they can be explored in future work.469

First, data scarcity in low-resource languages470

restricted us to small data amounts. Although our471

experiments showed non-trivial signal for pretrain-472

ing and downstream tasks, future work may apply473

our framework to larger data sizes.474

Second, for efficiency sake, we trained relatively475

small models to enable us to train a large amount476

of language configurations, while ensuring conver-477

gence in 6 languages. Furthermore we did not do478

any hyper-parameter tuning and use only values479

reported in previous work. Moreover, we limit our-480

selves to BERTs architecture. Future work may481

revisit any of these design choices to shed more482

light on their effect.483

Finally, our downstream analysis focused on484

POS tagging and NER since they were available 485

for many languages. Further experimentation can 486

test if our results hold for more NLP tasks. 487

7 Related Work 488

To the best of our knowledge, we are the first work 489

to focus and control for the amount of data allo- 490

cated for each language during pretraining and fine- 491

tuning. Other works have explored cross-lingual 492

transfer from different angles. 493

Perhaps most related to our work, Turc et al. 494

(2021) challenge the primacy of English as a source 495

language for cross-lingual transfer in various down- 496

stream tasks. Their work shows that German and 497

Russian are often more effective sources. In all of 498

their experiments they use mBERT’s imbalanced 499

pretraining corpus. 500

Wu and Dredze (2020) evaluate how mBERT 501

performs on a wide set of languages, focusing on 502

the quality of representation for low-resource lan- 503

guages in various downstream tasks by defining 504

a scale from low to high resource. They show 505

that mBERT underperforms non BERT monolin- 506

gual baselines for low resource languages while 507

performing well for high resource ones. 508

Finally, Conneau et al. (2019) introduce the 509

transfer-interference trade-off where low resource 510

languages benefit from scaling to more languages, 511

until a given point where the overall performance 512

on monolingual and cross-lingual benchmarks de- 513

grades. 514

8 Conclusions 515

We explored the effect of pretraining language 516

selection on downstream zero-shot transfer. We 517

first curate a balanced set of pretraining languages. 518

Second, we devise a novel estimation technique, 519

quadratic in the number of languages, which 520

projects which pretraining languages will serve bet- 521

ter in cross-lingual downstream transfer and which 522

specific downstream languages will do best in that 523

setting. Finally, we test our hypothesis on two 524

downstream multilignual tasks, and show that pre- 525

training language selection choice indeed leads to 526

varying downstream cross lingual results, and that 527

our estimation is a good technique for projecting 528

performance. Taken together our results suggest 529

that pretraining language selection should be a fac- 530

tor in estimating cross-lingual transfer, and that 531

current practices which focus on high-resource lan- 532

guages may be sub-optimal. 533
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9 Broader Impact and Ethical534

Considerations535

Our work did not involve any new data or annota-536

tion collection, and as such did not require crowd-537

sourced or in-house workers, or introduced any538

new models and related risks. Instead, we examine539

different combinations of multilingual pretraining,540

which may lead to better multilingual models in a541

vast array of languages, especially in low-resource542

or zero-shot settings.543
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Figure 4: Our visualization tool, based on Streamlit
(https://streamlit.io)

A Appendix626

Full list of tokenized languages The full list of627

wikipedia language codes for languages used in our628

tokenizer training is: af, am, ar, ca, cs, cy, da, de,629

el, en, es, fa, fi, fr, ga, he, hi, hu, hy, id, is, it, ja, ko,630

mg, my, ne, nl, pl, pms, ro, ru, sk, sv, sw, ta, te, th,631

tr, ur, vi, yi, zh.632

Visualization tool Figure 4 presents our interac-633

tive visualization tool for the finetune experiments634

reported in Section 4. We allow visualizing MLM635

fine-tune score as a heatmap or as a dynamic di-636

rected graph. The graph is based on the adjacency637

matrix induced by our models as described in Sec-638

tion 4. The adjacency matrix can be manipulated639

using a controlled threshold to dilute edges. Each640

feature can be visualized on the graph in two ways.641

One way is to color all nodes (languages) w.r.t to642

their feature value, another way is to collapse all643

feature instances (languages) into a single averaged644

feature node whose out-coming edges are the aver-645

ages over all nodes tagged by this feature, as seen646

in the figure.647
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