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ABSTRACT

Forming a molecular candidate set that contains a wide range of potentially effective
compounds is crucial to the success of drug discovery. While most databases and
machine-learning-based generation models aim to optimize particular chemical
properties, there is limited literature on how to properly measure the coverage
of the chemical space by those candidates included or generated. This problem
is challenging due to the lack of formal criteria to select good measures of the
chemical space. In this paper, we propose a novel evaluation framework for
measures of the chemical space based on two analyses: an axiomatic analysis
with three intuitive axioms that a good measure should obey, and an empirical
analysis on the correlation between a measure and a proxy gold standard. Using
this framework, we are able to identify #Circles, a new measure of chemical space
coverage, which is superior to existing measures both analytically and empirically.
We further evaluate how well the existing databases and generation models cover
the chemical space in terms of #Circles. The results suggest that many generation
models fail to explore a larger space over existing databases, which leads to new
opportunities for improving generation models by encouraging exploration.

1 INTRODUCTION

To efficiently navigate through the huge chemical space for drug discovery, machine learning (ML)
based approaches have been broadly designed and deployed, especially de novo molecular generation
methods (Elton et al.,|2019; |Schwalbe-Koda & Gomez-Bombarelli, 2020; Bian & Xiel 20215 |Deng
et al.,[2022). Such generation models learn to generate candidate drug designs by optimizing various
molecular property scores, such as the binding affinity scores. In practice, these scores can be
computationally obtained using biological activity prediction models (Olivecrona et al., [2017; |L1
et al., |2018)), which is the key to obtaining massive labeled training data for machine learning.
However, high in silico property scores are far from sufficient, as there is usually a considerable
misalignment between these scores and the in vivo behaviors. Costly wet-lab experiments are still
needed to verify potential drug hits, where only a limited number of drug candidates can be tested.

In light of this cost constraint, it is critical to select or generate drug candidates not only with high
in silico scores, but also covering a large portion of the chemical space. As functional difference
between molecules is closely related to their structural difference (Huggins et al., 2011} Wawer
et al., 2014), a better coverage of the chemical space will likely lead to a higher chance of hits in
wet experiments. For this purpose, quantitative coverage measures of the chemical space become
crucial. Such measures can both be used to evaluate and compare the candidate libraried'} and be
incorporated into training objectives to encourage ML models better explore the chemical space.

In this paper, we investigate the problem of quantitatively measuring the coverage of the chemical
space by a candidate library. There have been a few such coverage measures of chemical space.
For example, richness counts the number of unique compounds in a molecular set, and it has been
used to describe how well a model is able to generate unique structures (Shi & von Itzstein, 2019
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Polykovskiy et al.,|2020). In addition, molecular fingerprints have been used to calculate pairwise
similarity or distance between two compounds, and the average of these pairwise distances has been
used to describe the overall internal diversity of a molecular set (Brown et al., 2019} |Polykovskiy:
et al.l [2020).

However, most existing coverage measures are heuristically proposed and the validity of these
measures is rarely justified. In fact, defining the “right” measure for the coverage of chemical space
coverage is challenging. Unlike the molecular property scores, there is no obvious “ground truth”
about the coverage of chemical space. Moreover, the chemical space is complex and combinatorial,
making the design of a good measure even more difficult.

To address the fundamental problem of properly measuring the coverage of chemical space for drug
discovery, we propose a novel evaluation framework with two complementary criteria for evaluating
the validity of coverage measures. We first formally define the concept of coverage measures on the
chemical space (referred to as chemical space measures), where many existing heuristic measures
fall into our definition (Section[3). Then we introduce the two criteria and compare various (existing
and new) chemical space measures based on the criteria (Sectiond)). Specifically, the first criterion
(Section.T)) is based on an axiomatic analysis with three intuitive axioms that a good chemical space
measure should satisfy. Surprisingly, most heuristic measures that are commonly used in literature,
such as internal diversity, fail to satisfy these intuitive axioms. The second criterion (Section@
compares the chemical space measures with a proxy of the gold standard: the number of unique
biological functionalities covered by the set of molecules. We find that #Circles, a new chemical space
coverage measure (defined in Section[3.2.3) that has a strong basis in the mathematical literature, not
only satisfies both axioms but also better correlates with the gold standard.

Finally, we apply the #Circles measure to evaluate how well the existing databases and ML models
cover the chemical space (Section [5). Interestingly, the evaluation results suggest that many ML
models fail to explore a larger portion of chemical space compared to drug candidates obtained from
virtual screening over existing databases. We believe these findings lead to a new direction to improve
ML-based drug candidate generation models on better exploring the chemical space.

2 RELATED WORK

Molecular databases and machine-generated compounds are rich sources of drug candidates for
forming a candidate library in drug discovery. To evaluate the quality of molecular databases
and molecular generation methods, a variety of metrics are proposed. In general, four categories
of evaluation metrics can be identified in the literature, which are related to: (1) bioactivities,
(2) molecular properties, (3) data likelihood, or (4) the coverage of the chemical space, respectively.

In this paper, we mainly focus on the fourth category of metrics, the metrics that are more or less
related to the degree of coverage (or exploration) in the chemical space (other metrics are discussed
in Appendix [A). In this category, commonly used measures include richness, uniqueness, internal
diversity, external diversity, KL divergence, and Fréchet ChemNet Distance (FCD) (Olivecrona et al.|
2017;|You et al., 2018};|De Cao & Kipf} 2018 |[Elton et al.,|2019; Brown et al., [2019; |Popova et al.,
2019; |Polykovskiy et al., 2020; Shi et al., 2020; Jin et al., [2020; [Xie et al., [2021). Besides,|Zhang
et al.| (2021) propose to use the number of unique functional groups or ring systems to estimate the
chemical space coverage and to compare several recent generative models. Similarly in |Blaschke
et al.[(2020), the number of unique Bemis-Murcko scaffolds is used to measure the variety of drug
candidates. [Koutsoukas et al.|(2014) study the effect of molecular fingerprinting schemes on the
internal diversity of compound selection. These measures usually mix the concepts of diversity,
coverage, or novelty, and their validity as a measure of exploration is not justified.

To the best of our knowledge, this is the first work that formally investigates the validity of molecular
chemical space measures. In particular, axiomatic approaches are used to analytically evaluate
various designs of a measurement, such as utility functions (Herstein & Milnor, [1953)), cohesiveness
(Alcalde-Unzu & Vorsatz, [2013), or document relevance (Fang et al.||2004). While one study applies
axiomatic analysis to the design of diversity measures, with a particular focus on the domain of
science of science (Yan, [2021)), the analysis of chemical space measurements remains novel. Using
axiomatic analysis to evaluate the chemical space measures in the chemical space is novel. With
an empirical analysis in addition to the axiomatic analysis, we make practical recommendations on
effective chemical space measures, including two novel measures.
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3 DEFINING CHEMICAL SPACE MEASURES

3.1 DEFINITION OF CHEMICAL SPACE MEASURES

To define a chemical space measure, we first formalize the notion of chemical space by assuming a
distance metric exists. This assumption is widely adopted in cheminformatics, using distance metrics
such as the Tanimoto distance (Tanimoto,|1968}|Bajusz et al.,[2015)).

Assumption 3.1 (Chemical space). The chemical space I/ contains all possible molecules and is a
metric space with a distance metric function d : U x U — [0, +00).

Definition 3.2 (Tanimoto distance). For two molecules =1, z2 € U, whose binary molecular finger-
print vectors are &1, x2 € {0,1}" where n is the dimensionality of the fingerprint, their Tanimoto
distance is defined as n

D1 T1j - Taj

>y max(1y, Toj)

d(l’l,xg) =1 (1)

The Tanimoto distance is also referred to as the Jaccard distance (Jaccard, [1912)) in other domains.
Its range is [0, 1]. For finite sets (e.g., molecular fingerprints), the Tanimoto distance is a metric
function (Kosub, 2019} |[Lipkus) [1999).

Our definition and following analysis are generic to all distance functions and are not limited to
the Tanimoto distance. One can also use the distance of latent hidden vectors (Preuer et al., [2018;
Samanta et al., 2020) or the root-mean-square deviation (RMSD) of three-dimensional molecular
conformers (Fukutani et al., [2021)).

We then define a chemical space measure as the following.

Definition 3.3 (chemical space measure). Given the universal chemical space U/, a chemical space
measure is a function that maps a set of molecules to a non-negative real number that reflects to what
extent the set spans the chemical space, i.e., i : P(U) — [0, 00), where P(-) is the notation of power
set. In particular, 1(0) = 0.

3.2 EXAMPLES OF CHEMICAL SPACE MEASURES

Definition[3.3]is intentionally left general. Many measures related to the coverage, diversity, or novelty
of a molecular set fall into this definition. We summarize these various measures used in literature
into three categories: reference-based measures, aggregation-based measures, and locality-based
measures. We are also able to define new chemical space measures under this formulation.

3.2.1 REFERENCE-BASED MEASURES

The first broad category of chemical space measures compare the generated molecules S with a
reference set R. In such context, a reference-based measure can be defined as the coverage of
references:

Coverage(S,R) := Z (ma‘;( cover(x,y)) , 2)

€
yER
where cover(z, y) indicates how molecule x can cover the reference y.

When the reference set R is taken as a collection of molecular fragments, the coverage function can
be written as cover(x, y) := I[molecule x contains fragment y], where I[] is the indication function.
A large body of drug discovery literature uses the number of distinct functional groups (FG), ring
systems (RS), or Bemis-Murcko scaffolds (BM) in S to gauge the size of explored chemical space
(Zhang et al., [2021; Blaschke et al.,|2020)), corresponding to the cases where R is the collection of all
possible FG, RS, or BM fragments. We denote these specific reference-based measures as #FG, #RS,
and #BM respectively. Another example is the Richness of the molecular set, i.e., Richness := |S|
(Shi & von Itzstein, 2019; [Polykovskiy et al.l[2020), where cover(x,y) := I[x = y] and R = U.

3.2.2 AGGREGATION-BASED MEASURES

Though reference-based measures estimate chemical space coverage in an intuitive way, such
measures highly rely on the characteristics of the reference set and do not consider the relations
between the compounds. In contrast, the aggregation-based measures utilize the pair-wise distances
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among molecules and reflect the extent of chemical space coverage by aggregating the distances. For
a set S with n molecules, several aggregation-based measures can be defined as follow:

. . 2
Diversity(S; d) := wn=1) Z d(z,y), (3a) SumDiversity(S;d) :== —— Z d(z,y), (3d)
z,y€S z,y€S
TFyY y#r

Diameter(S; d) := max d(z,y), (3b) SumDiameter(S; d) Z max d(z,y), (3e)

ey z€S y?ﬁz
Bottleneck(S;d) := min_ d(z,y), (3c)  SumBottleneck(S; d) Z m1n d(z,y), (3f)

z Yy x

where z, y are molecules in S, d is a distance metric as defined previously.

Among these measures, Diversity (also referred to as the internal diversity), the average distance
between the molecules, is widely used in the literature (You et al., 2018}, [De Cao & Kipf, |2018; |Popova
et al., 2019; |Polykovskiy et al.,2020; |Shi et al., 2020; |Xie et al.,[2021). We follow the topology theory
and also introduce Diameter and Bottleneck as the maximum and minimum distance between any pair
of molecules, respectively (Edelsbrunner & Harer, [2010), since they can also reflect the dissimilarity
between molecules in S. We further introduce three Sum- variants for the above measures. The
Sum- Variant will tend to increase when new molecules are added into the set. In addition, the
determinant of the similarity matrix of molecules is also a measure of dissimilarity, which is often
employed in diverse subset selection as a key concept of the determinantal point processes (DPP)
(Kulesza & Taskar, 201 1; [Kulesza et al., 2012). The DPP measures is defined as DPP(S) := det(.S),
where S is the Tanimoto similarity matrix of candidate molecules (i.e., 1 — d(z, y) for Tanimoto
distance).

3.2.3 LOCALITY-BASED MEASURES

Inspired by the sphere exclusion algorithm used in compound selection (Snarey et al.l [1997} |Gobbi
& Leel 2003), we introduce a new chemical space coverage measure that highlights the local
neighborhoods covered by a set of molecules:

#Circles(S; d, t) := max IC] st d(z,y)>t, Vx#yeCl, @)

where ¢ € [0, 1) is a distance threshold that corresponds to the diameter of a circle.

Intuitively, #Circles counts the maximum number of mutually exclusive circles that can fit into
S as neighborhoods, with a subset of its members C as the circle centers. When the threshold
t = 0, #Circles becomes the richness measure Richness(S) := |S|, which is the number of unique
molecules (Shi & von Itzstein, |2019; |[Polykovskiy et al., [2020)). Interestingly, #Circles has a close
relation to the concepts of covering and packing in mathematics, which is in particular related to the
definition of packing number in topology (Vershynin, 2018). We discuss their detailed connections in

Appendix [B]
4 SELECTING THE RIGHT MEASURE

While all the aforementioned measures can heuristically reflect the degree of exploration, they do
not always agree with each other. We need a principled way to select the most suitable measures
from a variety of possible choices. Ideally, the selection criteria should not depend on the particular
molecule properties of the target or the algorithm used to generate the candidates. We achieve this
through a qualitative axiomatic analysis and a quantitative correlation comparison.

4.1 CRITERION #1: AN AXIOMATIC ANALYSIS OF CHEMICAL SPACE MEASURES

We propose three simple and intuitive principles that a good chemical space measure should satisfy.
First, including more molecules should not decrease the degree of chemical space coverage. As
it is easy to filter large candidate libraries into smaller subsets, including more molecules (even
similar ones) is not harmful, and can render a higher probability of containing drug hits. Second,
when adding new molecules, the coverage should increase properly, instead of inflating too much.
Third, molecular sets with more dissimilar molecules should have a higher degree of chemical space
coverage. These three principles are formalized below as three axioms and can be tested analytically.

The SumBottleneck measure is sometimes abbreviated as “SumBot” in the main paper.
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Axiom 4.1 (Monotonicity). A good chemical space measure i should be monotonic, i.e., for any two
molecular sets S1,Sa C U, it holds that

(81U 82) = max(u(S1), u(Sz2))- ©)

A monotonic measure tends to increase when more molecules are included. This tendency is intuitive
in drug discovery as testing more molecules means having a higher probability to discover a drug hit.

Axiom 4.2 (Subadditivity). A good chemical space measure i should be subadditive, i.e., for any
two molecular sets S1,So C U, it holds that

w(S1US2) < pu(St) + p(S2). (6)

Note that the coverage of chemical space spanned by a molecular set may correlate with the probability
of containing drug hits. So correspondingly, the coverage 11(S; U S2) should not exceed the sum
of 11(S1) and p(Sz). Some direct corollaries and discussions on how the first and second axioms
connect to mathematical measures are in Appendix [C]

Axiom 4.3 (Dissimilarity). A good chemical space measure should have a preference to dissimilar
elements, i.e., for any three molecules xo,x1,x2 € U, if d(xg, 1) > d(zo, x2), it holds

p({zo, z1}) > p({zo, z2}), @)
where d is the distance metric.

Intuitively, considering adding a new  Monotonicity Subadditivity
molecule into an existing molecular Rference-batkd

set S = {zo}, where there are two Eg., #FG, #RS, #BM

choices, namely x; and x5, the more

dissimilar one z; will be preferred. #Circles
SumDiversity

. Bottleneck
Depending on whether each chemical ] Sumbottleneck
space measure satisfies monotocinicy, SumDiameter
subadditivity and/or dissimilarity, we

can put it into a Venn diagram as

shown in Figure[I] The formal proofs Dissimilarity

are provided in Appendix [D] Despite

that the three axioms are simple and Figure 1: Chemical space measures, categorized by whether
intuitive, surprisingly, the proposed they satisfy monotonicity, subadditivity, and/or dissimilarity.
#Circles is the only measure that sat- #Circles is the only measure that satisfies all simultaneously.
isfies all these three axioms.

Diversity

4.2 CRITERION #2: CORRELATION WITH BIOLOGICAL FUNCTIONALITY

While only one measure stands out in the axiomatic analysis, it does not guarantee its empirical
performance. Meanwhile, there are still multiple measures that satisfy one or two of the three axioms.

In this subsection, we further investigate the validity of the chemical space measures by testing their
correlations with the biological functionality variety of molecules. Such functionalities can provide
valuable information in distinguishing molecules and implicating chemical space coverage. We
correlate the chemical space measures to the number of unique biological functionality labels covered
by a molecular set. A better chemical space measure should have a higher correlation to the variety
of biological functionalities, even though it is a proxy gold standard.

4.2.1 EXPERIMENT SETUP

We base the analysis on the BioActivity dataset that is also used to compare different compound
selection algorithms (Koutsoukas et al., [2014). This dataset contains 10,000 compound samples
extracted from the ChEMBL database (Gaulton et al.| [2017) with bio-activity labels, which annotate
50 activity classes with 200 samples each. Following |Koutsoukas et al.|(2014), for a subset of this
dataset S, we take the number of unique class labels as a proxy “gold standard” of the variety of
the molecules in S, i.e., GS(S) := #unique labels in S, which represents the number of biological
functionality types covered by S. We then compare the behavior of the gold standard and the chemical
space measures in two settings to find out which measures have the highest correlations with the
coverage (or variety) of biological functionalities: (1) a fixed-size setting where random subsets
of the dataset with fixed sizes are measured, and (2) a growing-size setting where we sequentially
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Diversity - Diversity _——
SumD_lver5|ty - SumbDiversity -
Diameter - Diameter —
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Bottleneck = Bottleneck -
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D i DPP _——
#FG - #FG -
#RS - #RS E-
#BM = #BM E-
#Circles F #Circles -
Richness == Richness _ud
-0.2 0.0 0.2 0.4 0.6 0.8 1 2 3 5 10 50
Correlation DTW distance

(a) Spearman’s correlations between the gold standard  (b) DTW distances between the gold standard GS and
GS and chemical space measures in the fixed-size chemical space measures in the growing-size setting,
setting. A higher correlation is better. the smaller the better. A smaller distance is better.

Figure 2: Correlation between each chemical space measure and biological functionality coverage.
The chemical space measure with the highest correlation is highlighted in green. Results are
aggregated by running experiments independently ten times.

add molecules into a molecular set. We compare the measuring results of GS and chemical space
measures with Spearman’s correlation coefficient and dynamic time warping (DTW) distance. The
experiment details are listed in Appendix [E]

4.2.2 RESULTS AND DISCUSSION Table 1: Regarding the two suggested criteria, #Circles is
the most recommended chemical space measure. “Mono”,
“subadd”, and “dissim” are abbreviations for monotonicity,
subadditivity, and dissimilarity respectively.

Experiment results in Figure 2] suggest
that #Circles stands out for both empir-
ical experiment settings. For the fixed-

size setting, #Circles and SumBottleneck (C1) Axiomatic (C2) Correla
have notably higher correlations to the properties (Sec. -tions (Sec.
gold standard than other measures. This ~ Measures Axioms satisfied Fixed | Growing

indicates that the locality information

. e Diversity Dissimilarity Medium Low
is critical, as these two measures both SumBot Subadd. dissim High Medium
prefer new molecules that are at arm’s H#EG Mono. subadd Medium | Medium
length frqm th‘?lr near.est nelghbors. For Richness | Mono, subadd, dissim Low Medium
the growing-size setting, #Circles sur-  #Circles | Mono, subadd, dissim | High High

passes all other chemical space measures.
Reference-based measures such as #FG also perform prominently. Both #Circles and reference-based
measures satisfy subadditivity, making them suitable for a “growth” setting. The Sum- variants of
aggregation-based measures outperform their original forms, as they tend to increase when adding
new molecules.

More experiment results can be found in Appendix [E| where we also discuss the impact of the
distance metric d. We also study the sensitivity of the subset size n, the way of adding new molecules,
and the choice of the #Circles’s threshold ¢. Results suggest that ¢ = 0.75 is a good choice for both
two settings. Correlations between chemical space measures are visualized in Figure [8]and [TT}

4.3 WHICH MEASURE IS THE RIGHT CHOICE?

The empirical analysis shows that the locality-based #Circles measure is a robust choice for all tested
scenarios, which reconfirms the conclusion of the axiomatic analysis. Besides, SumBottleneck may
be an effective choice when a fixed number of candidates are the target. Reference-based measures
may be good alternatives if carefully-designed and comprehensive reference sets are available.
Surprisingly, the widely used Diversity measure is rendered inferior both analytically and empirically,
casting doubts on its efficiency in measuring and encouraging exploration for molecular generation.
Our analysis and comparison results are summarized in Table[I}

5 MEASURING CHEMICAL SPACE COVERAGE

In this section, we apply the chemical space measures to evaluate how well the existing databases
and ML-based molecular generation models cover the chemical space.
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Original Databases Filtered Databases
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Richness #Circles Richness #Circles

Figure 3: Richness and #Circles of molecular databases. Databases are listed vertically. The horizontal
axes are chemical space measures (plotted in logarithmic scales). #Circles has the threshold value
(t = 0.75). We find a discrepancy between Richness and #Circles, meaning that a larger database
does not necessarily span a wider range of the chemical space.

5.1 MEASURING CHEMICAL SPACE COVERED BY MOLECULAR DATABASES

Other than being a rich source for virtual screening for drug purposes, molecular databases are also
bonanzas of data for training ML models. In both scenarios, the coverage of chemical space is a
crucial descriptor for comparing various databases. With a higher coverage of the chemical space, we
are able to construct candidate libraries with better varieties. Also, the ML model would benefit from
the diverse training data, obtaining a better understanding of the overall chemical space. Here, we
compare five commonly used molecular databases with the selected measures.

5.1.1 EXPERIMENT SETUP

Databases and filtering rules. = We include five widely used drug and compound databases in
our measurement: (1) ZINC-250k (a random subset of the ZINC database) (Irwin & Shoichet,
2003)), (2) MOSES (Polykovskiy et al.,[2020), (3) ChAEMBL (Gaulton et al.,[2017)), (4) GDB-17
(Ruddigkeit et al.,[2012), and (5) the Enamine Hit Locator Library (ENAMINE). More details
about the databases are listed in Appendix [F.1]

We further apply two filtering rules to these databases to select potential drug candidates. In drug
discovery, drug-likeness and synthesizability of compounds are both important considerations. The

quantitative drug-likeness (QED) (Bickerton et all}[2012)) and the synthetic accessibility (SA) (Ertl &
Schuffenhauer, [2009) are computed. The molecules are filtered with QED > 0.6 and SA < 4.

5.1.2 RESULTS AND DISCUSSION

Figure [3] compares Richness and Circles of molecular databases. From the results, we conclude
the findings as follows. (1) A larger database does not necessarily span a wider range of the
chemical space: There is a discrepancy between Richness and #Circles, and the #Circles measuring
results suggest that, in terms of chemical space coverage, ZINC-250k covers a larger area than
ENAMINE and MOSES. (2) ZINC-250k and GDB-17 are recommended: With the smallest
amount of compounds, ZINC-250k renders a relatively high coverage of the chemical space, which
is highly recommended for model training with limited computation resources. Constructed by
enumeration, GDB-17 substantially expands the known chemical space to a great level, which is
suitable for training ML models for chemical space representations. More details and findings on
other chemical measures are provided in Appendix [F|

5.2 MEASURING CHEMICAL SPACE EXPLORED BY GENERATION MODELS

5.2.1 PROBLEM FORMULATION

In drug discovery, the search for active molecules towards a druggable target is often formulated as
the following unconstrained optimization problem (Olivecrona et al.,[2017;|[Gémez-Bombarelli et al.}
2018; [2018}, Jin et al., 2018; [De Cao & Kipf},[2018; [Popova et al.,[2019;
Shi et al., [2020; Xie et al.l 2021):

argmax s1(z) o sa(x) o sk (x), (8)
zeU

where z is a molecule in the chemical space U, si : U/ — R is a function scoring particular biological
properties, and the “o” operator indicates the combination of multiple scores (e.g., summation or
multiplication). This scoring function can be binding affinity to protein targets, drug-likeness, synthe-

sizability, efc. When wet-lab experiments are not available, these scores are obtained computationally.
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Table 2: Measuring results of the chemical space explored by molecular generation methods. In-
corporating chemical space measures into the objectives increases the exploration of the chemical
space measures, but none of the tested ML-based models surpasses the virtual screening baseline
(Databases) in terms of #Circles when ¢ = 0.75 (as suggested in Sec. highlighted in grey).
Numbers in the parentheses following #Circles are values for the threshold ¢. In each chemical space
measure, the larger value the better. Bold indicates the best performance in each measure.

Method | Richness | #Circles (0.70) | #Circles (0.75) | #Circles (0.80) | Diversity
Databases | 1,250 | 780+ 44% | 557+ 37% | 303+ 50% | 0.827
RationaleRL 526+ 1.7% 142+ 68% | 12.1 £ 6.5% 99+ 0.3% 0.762 + 0.3%
DST 29 20+ 0.0% 1.0+ 0.0% 1.0+ 0.0% 0.559
JANUS 261 15.0 £ 11.6% 6.7+ 87% 4.0 & 25.0% 0.759

MARS 134K + 10.2% 753+ 44% | 22.6 £13.3% 7.3 4+ 16.0% 0.736 + 0.8%
+Diversity 177K £+ 13.7% 938+ 7.6% | 244+ 9.8% 8.8 £ 13.9% 0.752 £ 0.2%
+SumBot 221K +13.4% | 1283+ 8.1% | 293+ 7.6% 8.8 £ 13.0% 0.752 £ 0.3%
+#Circles 179K +17.4% | 1299 £+ 19.1% | 30.2 + 18.0% 9.7 +162% 0.749 + 0.7%

Unfortunately, the majority of the computational scoring functions are merely approximations and
cannot accurately predict the wet-lab results. As pointed out in the chemistry literature, rather than
focusing on optimizing the estimated property scores, it is crucial to generate a variety of compounds
that span a wider range of the chemical space (Huggins et al.| 2011; Wawer et al., 2014} |Ashenden,
2018)). We therefore propose the following objective as the goal of molecular generation, and use this
new objective to compare models:

w(S) st sg(x)>Ck, Ve e [K], z €S, ©)

arg max
Scu

where S C U is a molecular candidate set, u(+) is a chemical space measure, s (z) > Cj means the
estimated property score of a molecule x is at or above a threshold Cj.

5.2.2 EXPERIMENT SETUP

Generation objective.  Following|Li et al.|(2018)) and Jin et al.| (2020), we consider the inhibition
against an Alzheimer-related target protein c-Jun N-terminal kinase-3 (JNK3) as the biological
objective. The JNK3 binding affinity score is predicted by a random forest model based on Morgan
fingerprint features of a molecule (Rogers & Hahn,|2010). We also consider drug likeness (QED) and
synthetic accessibility (SA) as they are important in practical drug discovery scenarios.

Models, variations, and the baseline. = We employ four recently proposed molecular generation
models to optimize the generation objective (JNK3, QED, and SA): (1) RationaleRL (Jin et al.|
2020) generates molecules by combining rationales with reinforcement learning (RL); (2) DST (Fu
et al.,[2022) supports a gradient-based optimization on chemical graphs; (3) JANUS (Nigam et al.,
2022) uses the genetic algorithm (GA) to design drugs inversely with parallel tempering; (4) MARS
(Xie et al., [2021)) generates fragment-based molecular structures based on Markov chain Monte Carlo
(MCMC) sampling. Due to MARS’ great ability to simultaneously optimize multiple drug discovery
objectives, we also consider three variants of it (MARS+Diversity, MARS+SumBottleneck, and
MARS+#Circles), where the chemical space measures are incorporated into Equation [8|to encourage
exploration. The virtual screening setting is introduced as a baseline, where the five aforementioned
molecular databases are combined, forming a candidate set of 11M compounds.

Evaluation. To validate the ability in exploring the chemical space, we compare the molecules
generated by models using Equation [0 with multiple chemical space measures. The molecules
(including molecules generated by models as well as compounds from databases) are filtered with
the constraints JNK3 > 0.5, QED > 0.6, and SA < 4, representing the positive candidates. We
examine seven different measures, and report #Circles, Richness, and Diversity here; the others are
listed in Appendix [G)). Note we cannot directly measure the biological functionality coverage as in
Section[d.2] as many of the generated molecules are not in the database. For RationaleRL and DST,
5000 molecules are generated as suggested in their papers. For JANUS and MARS, the population
size and the number of MCMC chains are set as 5000. JANUS evolves for 10 generations, and MARS
iterates 2000 steps. More implementation details are listed in Appendix [G]

5.2.3 RESULTS AND DISCUSSION
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Table [2]lists the chemical space mea-

sures estimated for the positive candi- . Method
date compounds (i.e., INK3 > 0.5, 1009 T :;‘ ‘F’(;"t‘il:n'j;fe”'”g
QED > 0.6, and SA < 4) gener- Sl ST
ated by models or from databases. TN, -#- JANUS
Based on these results, we conclude 10° 4 \'\--. DA

N\, MARS+#Circles

the following. (1) ML-based mod-
els fail to explore a larger effec-
tual area compared to databases:
Unexpectedly, we find the molecules
obtained by virtual screening over
databases span the largest area of the
chemical space in terms of #Circles
when ¢ = 0.75. The most compet-
itive model among the tested ones, i i i i i i
MARS+#Circles, explores only about 0.4 05 O.GThresholdt 07 08 09
half of the space compared to virtual

screening. (2) Chemical space mea- Figure 4: #Circles in the log scale and its threshold ¢ selection
sures can encourage the model to for various models. Curves of the #Circles measure reflects
explore: By incorporating chemical characteristics of molecular generation methods.

space measures into the optimization

objective of MARS, all measures are significantly improved during molecular generation. (3) Diver-
sity should be avoided as a descriptor for exploration: During sampling, MARS and its variants
all converge quickly in Diversity (Figure[I9), despite a large number of new molecules discovered.
Again, it suggests that the widely used Diversity is not suitable for measuring chemical space.

#Circles

We want to stress that the parameter ¢ of #Circles has an interpretable meaning. When ¢ is
smaller, #Circles tends to reflect the “spread” of molecules at a finer granularity. When ¢ is larger,
the measure focuses more on the global picture. Therefore, we can intuitively characterize different
molecular generation methods by examining #Circles values with different thresholds ¢ as displayed
in Figure[ From the results, we find MARS and JANUS present similar characteristics as they both
have a relatively sharp decrease around ¢ = 0.75. This might be because both two models are based
on sampling algorithms and tend to exploit locally in the chemical space. In contrast, RationaleRL
tends to explore globally because it is designed to combine active fragments (rationales). We can
also compare the models by adopting the concept of Pareto optimization. We find the DST, JANUS,
and the vanilla MARS model are completely dominated by the variant MARS+#Circles. Besides, the
RationaleRL method is dominated by the virtual screening approach.

A few limitations of the measurement with #Circles should be noted. For example the running time
of calculating #Circles is exponential in theory. We implement a fast approximation by sacrificing
accuracy (Appendix [H). More experiment details and findings are provided in Appendix

6 CONCLUSION AND FUTURE WORK

In this paper, we have presented a systematic study on the coverage measures of chemical space in
the context of drug discovery. The core contribution of this study is a novel evaluation framework
for selecting proper coverage measures. Using the proposed framework, we have identified a
new chemical space coverage measure, #Circles, which is superior to existing heuristic measures
commonly used in the drug discovery literature. We have also quantitatively compared molecular
databases and ML-based generation models in terms of #Circles. The results suggest that many
ML-based generation models fail to explore a larger chemical space compared to virtual screening,
since they tend to exploit locally instead of exploring widely.

Measuring the chemical space is a fundamental problem in drug discovery. Our work in this direction
opens even more research questions that are worth investigating in the future. For example, it would
be interesting to design and evaluate more chemical space measures under our framework. Moreover,
the newly suggested objective for molecular generation (Equation [J) inspires further study, since it is
computationally challenging as a combinatorial constrained optimization problem. In general, the
proposed chemical space measures and the generic measure selection framework are not restricted
to the application of drug discovery, but can also be used in other domains, such as material design,
science of science, and text or image generation.
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A EVALUATION METRICS FOR MOLECULAR DATABASES AND MOLECULAR
GENERATION METHODS

Molecular databases and machine-generated compounds are rich sources of drug candidates for
forming a candidate library in drug discovery. To evaluate the quality of molecular databases
and molecular generation methods, a variety of metrics are proposed. In general, four categories
of evaluation metrics can be identified in the literature, which are related to: (1) bioactivities,
(2) molecular properties, (3) data likelihood, or (4) the coverage of the chemical space, respectively.

The first category describes the biological activities of the included or generated molecules toward
certain protein targets. Using docking simulators, researchers can calculate docking scores to
determine the binding affinity between the given compound structure and the target (Trott & Olson,
2010). However, the simulation usually takes a long time to run. To obtain fast feedback and a
sufficient amount of data to train molecular generation models, machine learning (ML) methods are
also proposed to predict the bioactivity of molecules, including linear regression, supported vector
machines (SVMs), random forests, and neural networks (NNs) (Shoichet et al., [1992; |Olivecrona:
et al.| 2017; L1 et al.l 2018} |/Ahmadi et al., |2021}; Jiang et al.,|2022). The second category of metrics
evaluates the molecular properties of compounds. Some of them are calculated based on heuristic
rules, such as the validity of compounds, molecular weight, octanol-water partition coefficient (logP)
(Wildman & Crippen, [1999)), drug-likeness score (QED) (Bickerton et al.| [2012)), and synthetic
accessibility (SA) (Ertl & Schuffenhauer, [2009). With the advent of ML and deep learning, ML
(especially deep learning)-based prediction models like SVMs, random forests, recurrent neural
networks (RNNs), and graph neural networks (GNNs) are also employed to predict the properties of
compounds (Shen et al., [2010; |Wang et al., |2019; |Gilmer et al.,[2017). Another branch of metrics
uses data likelihood to evaluate the molecules output by generative models (Gomez-Bombarelli et al.|
2018; [Liu et al., 2018} Jin et al., 2018} |De Cao & Kipf}, 2018)). A few other metrics are particularly
related to the coverage of the chemical space or the extent of exploration in the chemical space. These
coverage-and-exploration-related metrics are introduced in Section 2}

B COVERING NUMBER AND PACKING NUMBER

In mathematics, given a metric space (7, d), where T is the universal set and d is the distance metric,
the coverage of a subset K C T’ can be described in terms of e-nets (Vershynin, 2018)) defined below.

Definition B.1 (¢-net). Given a metric space (T, d), for a subset K C 7" and a positive number £ > 0,
an e-net of K is a subset N' C K, where every point in K is within distance € of NV, i.e.,

Vo e K,3zg € N : d(z,z0) <e.

Two related concepts, covering number and the packing number, are then defined as follows.

Definition B.2 (Covering number). For a subset K of the metric space (T, d), its covering number,
denoted V(K d, €), is the smallest possible cardinality of an e-net of K.

Definition B.3 (Packing number). For a subset AV in the metric space (7T', d), it is called e-separated
ifd(x,y) > e for all points « # y € N. The packing number of a subset K C T, denoted P(K, d, ¢),
is the largest possible cardinality of an e-separated subset of K.

Our definition of #Circles is equivalent to the packing number when setting the distance threshold ¢ in
#Circles equal to the diameter of the balls ¢ in the packing number. To our best knowledge, however,
the use of this notion as a chemical space coverage measure is novel. In light of this connection,
further leveraging insights from topology to investigate the chemical space would be an interesting
future direction.

C AXioM COROLLARIES AND DISCUSSIONS

Some direct corollaries of monotonicity and subadditivity are as follows.

Corollary C.1 (Subtraction). If a chemical space measure i is subadditive, then for any two
molecular sets VS1,Ss C U, we have

w(S1) = (81 \ S2) > p(St) — p(Sz).
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Corollary C.2 (Monotonicity [Single Molecule). | If a chemical space measure p is subadditive,
then for any molecular set VS C U and a single molecule x € U, we have u(S U {z}) > p(S).

Corollary C.3 (Dominance). If a chemical space measure p is subadditive, then for any two
molecular sets VS1,S2 C U, if S1 C Sy, then pu(S1) < u(Ss).

A subadditive chemical space measure is a special case of outer measures in the context of mathemat-
ical measure theory. Quter measures are relaxations of measures, where the latter requires a stricter
additivity property, i.e., u(S1 U S2) = 1u(S1) + p(Sz) for any two disjoint sets S, Sz (Halmos,
2013)). We consider additivity to be too strong and can conflict with intuitions in drug discovery: an
additive measure defined on a discrete space must take the form of 1(S) = > . s w(x), in which
w(+) is a weight function that independently assigns a score to each element in the space, meaning
additive measures defined on the discrete chemical space cannot capture the interrelationship between
molecules in a candidate set, which counters the reality, thus can hardly tell the variety of compounds
and how much of the chemical space is been covered.

D PROOFS FOR MONOTONICITY, SUBADDITIVITY AND DISSIMILARITY

In Figure[I|we show the chemical space measures according to whether they will satisfy monotonicity,
subadditivity, and/or dissimilarity. In this section, we provide proofs to verify each measure’s
monotonicity, subadditivity, and dissimilarity.

Note that for aggregation-based measures, when |S| = 1, u(S) is not defined. So without loss of
generality, we assume p({z}) = w(z), * € U in such cases, where w : i/ — R is an importance
function.

Proposition D.1 (Monotonicity of chemical space measures.). Reference-based chemical space
measures, SumDiversity, Diameter, SumDiameter, and #Circles are monotonic. Diversity, Bottleneck,
SumBottleneck, and DPP are not monotonic.

Proof. In the proof, for two arbitrary molecular sets S; and Ss as stated in the monotonicity axiom,
we consider combining them into S := &1 U Ss.

For the reference-based chemical space measures, We prove the monotonicity and subadditivity
simultaneously for reference-based measures by first proving the monotonicity and subadditivity of
the maximum of cover(-, -).

To prove the monotonicity and subadditivity of the maximum of cover(-, -), we consider combining
any two molecular sets 51, So C U. For any reference y € R, we have

max (gé%}lc cover(z,y), max cover(z, y))

IN

max coverl\x,y
r€S1US2 ( ’ )

< .
< mex cover(z,y) + max cover(z,y)

Therefore,

max (Coverage(S; ), Coverage(Sz))
< Coverage(S; U S2)
< Coverage(S;) + Coverage(Sy),

thus proving the Coverage measure is monotonic and subadditive.

For the SumDiversity chemical space measure, note that the monotonicity corollary (Corollary [C.2)
can also entail the monotonicity property defined in Axiom[4.1] (by sequentially adding molecules
from S, to Sy or from S; to S2). So we prove the monotonicity (defined in Axiom[4.1]) by proving
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the monotonicity [single molecule] (defined in [C.2). For a molecule x € U and a molecular set
S C U with size n, using the fact that SumDiversity(S) = n - Diversity(S), we have

SumDiversity(S U {z}) — SumDiversity(S)

2
=(n — 1) - Diversity(S) + - Z d(x,y) — n - Diversity(S)
yeS

2
— _ Diversi z E )
iversity(S) + n 2 d(z,y)

Comparing Diversity(S) and 2 >_yes Az, y) is equivalent to comparing >, s d(y1,y2) and
(n—1)3,cs d(x,y). Consider each “triangle” tuple (y1, y2, z), due to the metric characteristics
of d, we have d(y1,y2) < d(x,y1) + d(z, y2), meaning that Zyﬁéyzes d(y1,y2) is less or equal to
(n—1)>,csd(z,y). When w(z) = 0, SumDiversity(S U {z}) — SumDiversity(S) > 0, proving
the monotonicity of SumDiversity.

For the Diameter chemical space measure, when the importance function satisfies w(x) = 0, Vz € U,
we have

Diameter(S) = max, d(z,y)
x,ye
TF£Y

>max | max d(x max d(x
B z,y€S1 ( ,y)7 z,yE€S2 ( 7y)
TFy z#y

= max(Diameter(S;), Diameter(Sz)),

proving the monotonicity of Diameter.

For the SumDiameter chemical space measure, when the importance function satisfies w(x) =
0, Yz € U, we have

SumDiameter(S) = d
umDiameter(S) Zgleaé( (z,9)

zeS y#T
> max max d(z,y), max d(x,y)
c €S
€S %;ﬁq«l €S, %;ﬁq«z

= max(SumDiameter(S; ), SumDiameter(Ss)),

proving the monotonicity of SumDiameter.

For the #Circles chemical space measure, we define C*(S) C S as an arbitrary set that satisfies
|C*(S)| = #Circles(S). For any two molecular sets Sy, So C U, since C*(S1) C S1 U S, according
to the definition of #Circles, we have

#Circles(S1) < #Circles(S; U Sz).

Similarly, we also have

#Circles(Ss) < #Circles(S1 U Sa),

proving the monotonicity of #Circles.

For the Diversity chemical space measure, we disprove its monotonicity by proving it violates the
monotonicity [single molecule] corollary (Corollary [C.2). For a molecule = € U/ and a molecular set
S CU withsizen > 1,if x € S, we have
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Diversity(S U {z})

:ﬁ Z d(yyyl)‘FZd(%y)

v,y €S yes
y#y’
n-l Diversity(S) + 2 Z d(z,y)
= - Diversi —_— z,7).
n+1 y (n+1)n = y

And the change in Diversity is

Diversity(S U {z}) — Diversity(S)

— (" —l _n+t 1> Diversity(S) + L)n > d(z,y)

n+1l n+1 (n+1 =

2
n+1

1
—Diversity(S) + — E d
iversity (S) + - 2 (z,9)

When the average distance of = and S, i.e., % Zy d(z,y), is less than Diversity(S) (e.g., adding a
molecule on the “segment” between two existing molecules), Diversity would decrease, thus violating
the monotonicity corollary and proving Diversity is not monotonic.

For the Bottleneck chemical space measure, we disprove its subadditivity by proving it violates
the monotonicity [single molecule] corollary (Corrolary [C.2). Consider adding a molecule x into a
molecular set S with size n > 1. If x € S, we have

Bottleneck(S U {z}) = min (Bottleneck(S), melg d(zx, y)) .
y

When z introduces a more restricting bottleneck, i.e., min, d(z,y) < Bottleneck(S), we will have
Bottleneck(SU{z}) < Bottleneck(S), violating the monotonicity corollary, thus proving Bottleneck
is not monotonic.

For the SumBottleneck chemical space measure, we disprove its monotonicity by proving it violates
the monotonicity [single molecule] corollary (Corrolory [C.2). Consider adding a molecule  into a
molecular set S with size n > 1. If x € S, we have

SumBottleneck(S U {x})

= Z min | min d(y,y'), d(z,y) | + mind(z,y),
cs y'eS yeS
Y y'#y

and

SumBottleneck(S) = Z min d(y,y’).
yeS viEs
y'#y

When z introduces some more restricting bottlenecks, i.e., for many y € S, d(z,y) is small (e.g.,
adding a molecule into a set whose size is two, and the new molecule is added near one of the two
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molecules), we will have SumBottleneck(SU{z}) < SumBottleneck(S), violating the monotonicity
corollary, thus proving SumBottleneck is not subadditive.

For the DPP chemical space measure, we disprove its monotonicity by proving it violates the
monotonicity [single molecule] corollary (Corrolory [C.2). Consider adding x into {z(} where
x # x9 1 —d(x,xz0) is denoted as b. We have

DPP({zg,z}) = ‘}) 11)‘ =1-b%

When b > 0 we will have DPP({x¢,z}) < DPP({zo}) = 1, violating the monotonicity corollary,
thus proving DPP is not monotonic.

O

Proposition D.2 (Subadditivity of chemical space measures.). Reference-based chemical space mea-
sures, Bottleneck, SumBottleneck, and #Circles are subadditive. Diversity, SumDiversity, Diameter,
and SumDiameter are not subadditive.

Proof. For the reference-based chemical space measures, the subadditivity is provided under Propo-

sition[D.11

For the Bottleneck chemical space measure, when the importance function satisfies w(x) > M, Va €
U, where M is the upper bound of Bottlenkeck (e.g., w(x) = 00), we have

Bottleneck(S) = miEnS d(z,y)

TFy

<mi in d in d
<min | min (. y), i (z,9)
zHY T#Y

<Bottleneck(S;) + Bottleneck(Sz)),

proving the subadditivity of Bottleneck.

For the SumBottleneck chemical space measure, when the importance function satisfies w(x) >
M, Yx € U, where M is the upper bound of SumBottleneck (e.g., w(z) = co), we have

SumBottleneck(S) = Z 6%1188 d(z,y)
x651U52y u;léac 2

= min  d(z,y) + min d(x
YES1US, (@,y) YES;USs (2.y)
TES1 T yty €S2 " ytg
<= min d(z,y) + g min d(z,y)
y681 yeSo
TESL YAy TESy Yy

=SumBottleneck (S ) + SumBottleneck(S»)),

proving the subadditivity of SumBottleneck.

For the #Circles chemical space measure, we prove its subadditivity by contradiction. For any two
molecular sets Sy, S2 C U, we assume #Circles(S; U Sy) > #Circles(S;) + #Circles(Sy). Use the
notations C; := C*(S1 US2) NSy and Cs := C*(S1 U Sy) N Sy. We have

|C1] + |C2| > #Circles(Sy U Sz) > #Circles(Sy) + #Circles(Sy).
Since all values are non-negative, we must have |C;| > #Circles(S;) or |Ca| > #Circles(Ss),

contradicting with the definition of #Circles(S;) or #Circles(Sy ), thus proving the subadditivity of
#Circles.
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For the Diversity and SumDiversity chemical space measures, we disprove their subadditivity by
providing a counter-example. For two disjoint molecular sets with two molecules in each, i.e.,
{z1, 22} and {z3, x4}, we denote d;; = d(z;, x;). Then we have

Diversity({z1, 22, X3, 24})
= Diversity({z1, 22, 3, 4})

2
= m(dlz + dis + dia + doz + daa + d3a),

and
Diversity({x1, z2}) + Diversity({z3, z4}) = d12 + d34.
Similarly,
SumbDiversity ({z1, T2, X3, Z4})
= 4 - Diversity({x1, 22, 3, Z4})
2

=4- m(du + dig + dia + doz + daa + d3a),

and

SumbDiversity({z1, 2}) + SumDiversity ({3, x4}) = 2 - d12 + 2 - d3a4.

When the inter-set distances are larger than the inner-set distances, i.e., d13+d14+daz+dag > 5-(d12+
d34), we will have Diversity ({1, 22, 3, 24}) > SumDiversity{x1, x2} + Diversity{x3, z4}. Simi-
larly, when dy3 + dy4 + dos + dog > 2 (d12 + d34), we will have SumDiversity ({x1, x2, X3, x4 }) >
SumDiversity{x1, x2} + SumDiversity{zs, x4}, thus proving both Diversity and SumDiversity mea-
sures are not subadditive.

For the Diameter chemical space measure, For two disjoint molecular sets Sy, So C U whose sizes
are larger than one, we have

Diameter(S; U Sp) = N yrglg)@s d(z,y),
3 1 2
TH#Y

and

Diameter(S;) + Diameter(Sy) = max d(z,2') + max d(y,y’).
z,x' €Sy Y,y €S2
z#z’ y#y

When the maximum inter-set distance is larger than the maximum inner-set distance, i.e.,
MaXy y c5,US, A(T,y) > maxy v cs, d(x,x') +max,  cs, d(y,y’), we will have Diameter(S; U
S3) > Diameter(S;) + Diameter(Ss), thus proving the Diameter measure is not subadditive.

For the SumDiameter chemical space measure, we disprove its subadditivity by providing a counter-
example. For two disjoint molecular sets with two molecules in each, i.e., {21, 22} and {x3, x4}, we
denote d;; = d(z;, ;). Then we have
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SumbDiversity ({z1, z2, T3, T4}) = Z max d(z;, xj),
i€’

and

SumbDiversity({z1, 2}) + SumDiversity ({3, x4}) = 2 - d12 + 2 - daa.
When the inter-set distances are larger than the inner-set distances, i.e., d13, d14, do3, d24 > dy2, d34,

we will have SumDiversity({z1, x2, 23, 24}) > SumDiversity{x1,z2} + SumDiversity{xs, x4},
thus proving the SumDiameter measure is not subadditive.

O

Proposition D.3 (Dissimilarity property of chemical space measures.). Diversity, SumDiversity,
Diameter, SumDiameter, Bottleneck, SumBottleneck, DPP, and #Circles have preferences to dissimi-
larity.

Proof. In the proof, for the three molecules xg, x1, s € U as stated in the dissimilarity axiom in
Section[4.1] we assume d(z¢, z1) > d(zo, z2).

For the Diversity chemical space measure, we have

Diversity({zg, z1}) = d(zo,21) > d(xo,x2) = Diversity({zo, z2}),

proving the dissimilarity property of Diversity.

For the SumDiversity chemical space measure, we have

SumDiversity({zo, z1}) = 2 - d(xo, z1) > 2 - d(x0, z2) = SumDiversity({zo, z2}),

proving the dissimilarity property of SumDiversity.

For the Diameter chemical space measure, we have

Diameter({xo, z1}) = d(xo,z1) > d(x0, z2) = Diameter({zq, z2}),

proving the dissimilarity property of Diameter.

For the SumDiameter chemical space measure, we have

SumDiameter({xo,z1}) = 2 - d(xg, 1) > 2 - d(xo, x2) = SumDiameter({zg, x2}),

proving the dissimilarity property of SumDiameter.

For the Bottleneck chemical space measure, we have

Bottleneck({zo, x1}) = d(zo, z1) > d(zo, x2) = Bottleneck({zg, z2}),

proving the dissimilarity property of Bottleneck.

For the SumBottleneck chemical space measure, we have
SumBottleneck({xg, z1}) = 2 - d(xg, 1) > 2 - d(xo, x2) = SumBottleneck({zq, z2}),
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proving the dissimilarity property of SumBottleneck.

For the DPP chemical space measure defined with the Tanimoto similarity, denoting d(zo, x1) and
d(xo,x2) as dy and ds respectively, when d;, dy € [0, 1] (Tanimoto distances),

we have

1 1—-d;
1—dy 1

1 1—ds

DPP({x0,21}) = ‘ a1

=2d1—d§>2d2—d§=‘

= DPP({$O7 [L‘Q}),

proving the dissimilarity property of DPP.

For the #Circles chemical space measure, we have

#Circles({zo, z1}) = 1 + [[d(zo, 1) > t] > 1 + I[d(x0, z2) > t] = #Circles({zo, x2}),

proving the dissimilarity property of #Circles.
O

Discussion on the dissimilarity property of reference-based measures. For a reference-based
measure, considering adding a new molecule x; or x5 to the existing moelculer set S = {z(}, we
have

Coverage({zo, 21}, R) = Z (max(cover(zg, y),cover(z1,y))),
YyER

Coverage({zo, 22}, R) = Z (max(cover(zg,y), cover(xa,y))) ,
yER

where the values of Coverage({x¢, z1}, R) and Coverage({zo, z2}, R) will depend on the particular
definition of cover(-, -) and the choice of the reference set R.

Generally, an arbitrary coverage function and an arbitrary reference set do not necessarily meet
the dissimilarity requirement. In our study, we define the cover function as cover(z,y) :=
I[molecule x contains fragment y], where I[-] is the indicator function, and y is a fragment con-
tained in the reference set R. Some counter-examples can be easily constructed, for instance, if z;
is far away from the reference set R while x5 is very close to R (even contained in R), then the
Coverage measure will prefer the molecule x5 instead of the more dissimilar molecule z; .

Therefore, the dissimilarity property does not hold for chemical space measures #FG, #RS, and #BM.

Discussion on a new definition of reference-based measure. In addition to counting the number
of fragments in the reference set R contained in the molecular set S, another way to define a
reference-based measure is to investigate the distance from S to R. Particularly, we could define
such a reference-based measure as below:

Coverage(S,R;d, t) := Z I[3z € S such that d(z,y) < t], (10)
YyER
where I[-] is the indicator function, d is the distance metric, and ¢ is the distance threshold.

Similar to the discussion on #FG, #RS, and #BM, the characteristics of the reference-based measure
defined by Eq. highly relies on the property of R, and an arbitrary reference set R can not
guarantee the dissimilarity property of this measure.

We now prove that the reference-based measure defined by Eq. [I0]satisfies both monotonicity and
subadditivity. In the proof, Coverage(-) refers to the definition in Eq.
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Proof. We first prove the monotonicity and subadditivity of the indicator function I[-], where we
consider combining any two molecular sets S1, So C U. For any reference y € R and a distance
threshold ¢, we have
max (I[3z € S such that d(x,y) < t], I[[Tx € So such that d(z,y) < t])
<I[3z € 8§ US, such that d(z, y) < {]
<I[3x € S; such that d(x,y) < t] + [[Tx € Sy such that d(z, y) < t].

Therefore,
max (Coverage(S; ), Coverage(Sz))
< Coverage(S1 U S2)
< Coverage(S1) + Coverage(S1),
thus proving the Coverage measure defined by Eq. [T0]is monotonic and subadditive. O

E RANDOM SUBSET EXPERIMENT DETAILS

E.1 BIO-ACTIVITY DATASET

The 10K BioActivity dataset (Koutsoukas et al.,[2014) contains 10,000 compound samples excerpted
from the ChEMBL database (Gaulton et al., [2017) with bio-activity labels. These labels are the 50
largest ChREMBL activity classes, including enzymes (e.g., proteases, lyases, reductases, hydrolases,
and kinases) and membrane receptors (e.g., GPCRs and non-GPCRs). The label distribution is shown
in Figure 5}

Distribution of 50 ChEMBL activity classes!|

Transcription factor Reductase
Hydrolases 4% 20
o
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Figure 5: Label distribution of the BioActivity dataset (Koutsoukas et al., 2014). 50 bio-activity
functionality classes are included.

We use UMAP (McInnes et all 2018) to visualize the molecules in this dataset based on their Morgan
fingerprints as displayed Figure|6| From the visualization, we can see that fingerprint similarity is
indeed correlated with bio-activity similarity.

22



Published as a conference paper at ICLR 2023

Figure 6: UMAP visualization of compounds in the BioActivity dataset. Different colors stand for
different bio-activity labels.

E.2 RANDOM SUBSETS WITH FIXED SIZES

We first consider randomly sampled molecular subsets of the BioActivity dataset with a fixed size
n. We randomly sample n molecules S from the dataset and compute the biological functionality
coverage GS(S) as well as each chemical space measure x(S). By repeating the randomization, we
can calculate Spearman’s correlation between the gold standard GS and each individual measure (.
We run the experiment for three different fixed sizes n = 50, n = 200, and n = 1000 to represent
different molecular distribution density. The pair-wise correlations between measures are displayed
in Figure[§]

Furthermore, when n = 50 and the molecules are distributed sparsely, all chemical space measures
are positively correlated with the gold standard. However, when the subset size increases to n = 200
and n = 1000, Bottleneck and DPP becomes negatively correlated, while other measure tend to
perform better. This is because these two measures will be bounded by the most similar molecular
pair, thus severely conflicting with the subadditivity axiom.

In this experiment, we repeat Algorithm [T]for ten times to obtain reliable correlations.

Algorithm 1 Calculating chemical space measures for random subsets with fixed sizes.

Input: The fixed subset size n; The bio-activity dataset {(x;, y;) } 12§ where y; € ) are bio-activity

labels and || = 50; K chemical space measures {s }5<_;.
repeat
Sample a number m uniformly from {1,...,50}.
Sample m labels )’ uniformly from ).
Sample n molecules S with labels in )’ uniformly.
Compute GS(S) and p(S) for k € [K].
until repeated for 1000 times
Calculate the correlations between GS and {4 | based on the 1000-times experiment results.

Experiment results. We show the experiment results for different fixed random set size n in
Figure[7] We find the #Circles and SumBottleneck measures perform constantly better than all other
measures.

When the fixed size n increases, most chemical space measures’ performances also increase, except
for Bottleneck and DPP, meaning they are not suitable for measuring the variety when the molecules
are distributed crowdedly.
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(b) Random subsets with a fixed size n = 200.

Diversity E-
SumbDiversity o
Diameter -
SumDiameter —
Bottleneck
SumBottleneck E
DPP —
#FG o
#RS -
#BM -
#Circles k
Richness —

—-0.2 0.0 0.2 0.4 0.6 0.8 1.0
Correlation

(c) Random subsets with a fixed size n = 1000.

Figure 7: Correlations between the gold standard GS and chemical space measures in the fixed-size
random subset setting. The fixed size is set as different values. A larger correlation indicates the
better. The average results are obtained by running experiments independently for ten times.

Correlation between chemical space measures.  We also visualize the pairwise correlation
between chemical space measures in Figure[8] From the figure we can see that, the gold standard GS,
#Circles, and SumBottleneck are most similar with each other in the fixed-size setting.

Threshold ¢ for #Circles. The #Circles threshold ¢ is selected to maximize the correlation to the
gold standard GS. Taking n = 200 as an example, we test different ¢ values as Figure[9]displays and
select £ = 0.70 as the threshold. We can see #Circles works well for a wide range of thresholds like
[0.40,0.70]. In|Olivecrona et al.[(2017), the authors suggest to use a threshold ¢ = 0.60 to decide
whether two molecules are dissimilar with each OthCIEf which aligns our results. For n = 50 and
n = 1000, the threshold is set as ¢ = 0.70 and ¢ = 0.65 respectively.

31n the original text, the authors suggest a similarity threshold of 0.40 that is equivalent to a distance threshold
of 0.60.
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Figure 8: Correlations between chemical space measures in the fixed-size random subset setting. The
fixed size is set as n = 200. A larger correlation indicates the better. The average results are obtained
by running experiments independently for ten times.
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Figure 9: Correlations between the gold standard GS and the #Circles measure in the fixed-size
setting with different threshold ¢. The fixed size is set as n = 200. A larger correlation indicates the
better. The average results are obtained by running experiments independently for ten times.

Distance metric d. ~ We also study the impact of distance metric d. In Table 3] we listed the
experiment results for both fingerprint-based Tanimoto distance and VAE-based latent space dissim-
ilarity (Samanta et al.|[2020). We find the experiment results obtained with the VAE dissimilarity
remain consistent with the results obtained with the Tanimoto distance.

E.3 RANDOM SUBSETS WITH GROWING SIZES

To mimic the molecular generation process, we also grow the size of the subsets. Specifically, for
a maximum size n, we sequentially sample n molecules without replacement to form n subsets
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Table 3: Correlations between the gold standard and chemical space measures in the fixed-size random
subset setting. The fixed size is set as n = 200. A larger correlation indicates the better. Results are
obtained by averaging ten independent experiments. [falic texts indicate molecular representation
and the distance metric. The top three measures are highlighted in green , and the best measure is

printed in bold.

Aggregation-based
Tanimoto distance  VAE dissimilarity
Diversity 0.478 £ 0.011 0.388 + 0.040
SumDiversity 0.478 £ 0.011 0.388 £ 0.040
Diameter 0.179 + 0.031 0.112 + 0.022
SumDiameter 0.228 £ 0.028 0.201 £ 0.029
Bottleneck -0.293 £ 0.015 -0.298 + 0.027
SumBottleneck 0.821 £ 0.010 0.527 £ 0.013
DPP -0.183 £ 0.021 -0.244 + 0.030
Reference-based
Fgragment
#FG 0.421 4+ 0.033
#RS 0.574 £ 0.025
#BM 0.610 4+ 0.028
Locality-based
Tanimoto distance  VAE dissimilarity
#Circles 0.831 + 0.008 0.745 £ 0.014
SMILES
Richness -0.207 £ 0.025

{Si ={z1,...,2;}},. For both the gold standard GS and a chemical space measure y, we record
their values as S grows into a time series. , e.g., {(i, u(S;))}",. Comparing the trajectory of a
chemical space measure with the trajectory of the gold standard, we can observe which measure
behaves more similarly to GS. We quantitatively estimate the similarity of their trajectories with the
dynamic time warping (DTW) distance of the two time series.

In this experiment, we repeat Algorithm 2] for ten times to obtain reliable DTW distances.

Algorithm 2 Calculating chemical space measures for random subsets with growing sizes.

Input: The maximum subset size n; The bio-activity dataset {(z;,y;)}12% where y; € Y are
bio-activity labels and || = 50; K chemical space measures {5} ;.
Sample a number m uniformly from {1,...,50}.
Sample m labels )’ from ).
foriin {1,...,n} do
Sample an unseen molecule x; whose label is in ).
Set S; := {xl, e ,J}i}
Compute GS(S;) and px(S;) for k € [K].
end for
Plot chemical space measure curves for GS and {uy, } <, where the x axes are i € {1,...,n} and
the y axes are chemical space measure values GS(S;) and p(S;).
Transform the cumulative curves into incremental ones.
Calculate DTW distances between incremental curves.

Experiment results. To mimic the way in which generation models propose new molecules,
in Algorithm [2} we require the newly sampled molecule x; to be similar to the already sampled
molecules {x1, ..., x;—1}. The specific implementation can be found in our codg’| Moreover, we
also test the following two cases: (1) All molecules are sampled uniformly; (2) The newly sampled
molecule x; have to be most similar to the already sampled molecules {1, ..., z;_1}. The results of
DTW distances for these two cases are shown in Figure [I0]

*The code will be released after publication.

26



Published as a conference paper at ICLR 2023

Diversity F
SumbDiversity .
Diameter F
SumDiameter J
Bottleneck -
SumBottleneck b
DPP —
#FG g
#RS o
#BM
#Circles =
Richness

1 2 3 5 10 50
DTW distance

(a) The new molecule z; is uniformly sampled from all unseen molecules.
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(b) The new molecule x; needs to be similar to the already sampled ones
L1yee-,T4i=1.
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(c) The new molecule x; needs to be most similar to the already sampled ones
T1yeeo,T4i=1.

Figure 10: DTW distances between the gold standard GS and chemical space measures in the
growing-size random subset setting. The maximum size is set as n = 1000. A smaller distance
indicates the better. The average results are obtained by running experiments independently for ten
times.

From Figure @l we can see that, #Circles performs the best. Also, as the new molecules to add
become more similar to the existing ones, the advantage of #Circles over other measures becomes
larger. This makes #Circles especially suitable for measuring molecular generation models.
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Figure 11: DTW distances between chemical space measures in the growing-size random subset
setting. The maximum size is set as n = 1000, and the new molecule needs to be similar to the
already samples ones. A smaller distance indicates the better. The average results are obtained by
running experiments independently for ten times.
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Figure 12: DTW distances between the gold standard GS and the #Circles measure in the growing-
size random subset setting with different threshold ¢. The maximum size is set as n = 1000, and the
new molecule needs to be similar to the already samples ones. A smaller distance indicates the better.
The average results are obtained by running experiments independently for ten times.

DTW distances between chemical space measures. We visualize the pairwise DTW distances
between chemical space measures in Figure[IT} From the figure we can see that, the gold standard
GS and the #Circles measure are most similar with each other in the growing-size setting.

In addition, we find the Richness, SumDiversity, SumDiameter, SumBottleneck, and #BM are
forming a large cluster, while #FG and #RS tend to be similar with each other.
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Threshold ¢ for #Circles. The #Circles threshold ¢ is selected to minimize the DTW distance
to the gold standard GS. Taking the second scenario as an example, we test different ¢ values as
Figure [12] displays and select ¢ = 0.76 as the threshold. For the first and the third scenarios, the
threshold is set as ¢ = 0.84 and ¢t = 0.78 respectively.

Distance metric d.  We also study the impact of distance metric d. In Table fi] we listed the
experiment results for both fingerprint-based Tanimoto distance and VAE-based latent space dissim-
ilarity (Samanta et al., [2020). We find the experiment results obtained with the VAE dissimilarity
remain consistent with the results obtained with the Tanimoto distance.

Table 4: DTW distances between the gold standard and chemical space measures in the growing-size
random subset setting. The maximum size is set as n = 1000, and the new molecule needs to be
similar to the already samples ones. A smaller distance indicates the better.

Aggregation-based
Tanimoto distance  VAE dissimilarity
Diversity 18.668 £+ 6.973 30.063 + 4.284

SumDiversity 5.425 + 0.404 5.484 £ 0.296
Diameter 17.299 + 4.801 28.071 £3.917
SumDiameter 5.328 + 0.396 5.472 £ 0.297
Bottleneck 38.668 + 5.769 37.168 £ 5.422
SumBottleneck 5.167 £+ 0.353 5.432 £ 0.293

DPP 18.845 £ 3.962 12.052 £ 2.176

Reference-based

Fgragment
#FG 3.797 £ 0.295
#RS 4.382 + 0.247
#BM 5.365 + 0.396

Locality-based
Tanimoto distance  VAE dissimilarity

#Circles 2.173 £ 0.910 2.470 £ 0.629
SMILES
Richness 5.454 £ 0.347

F MEASURING MOLECULAR DATABASES

F.1 MOLECULAR DATABASES

We measure the chemical space coverage for five molecular databases that are commonly used in
virtual screening and generative model training:

@) ZINC-250kE]is a random subset of the ZINC database (Irwin & Shoichet, [2005) and consists of
249K commercially-available compounds from different vendors for virtual screening;

(2) MOSES (Polykovskiy et al.| [2020) is another sub-collection of ZINC molecules. It contains
approximately 2M molecules in total, filtered by molecular weights (ranged range from 250
to 350 Daltons), the number of rotatable bonds (not greater than 7), water-octanol partition
coefficient (logP, less or equal than 3.5), atom types (C, N, S, O, F, Cl, Br, and H), ring cycle
sizes (no larger than 8), medicinal chemistry filters (MCFs), and PAINS filters.

(3) ChEMBL (Gaulton et al., [2017) is a manually curated database of 2M bioactive molecules
with known experimental data, especially with the inhibitory and binding properties against
macromolecule targets. This database contains not only drug and drug-like molecules, but also
natural products and biopolymers.

(4) GDB-17 (Ruddigkeit et al.,[2012)) enumerates chemical structures that contain up to 17 atoms
of C, N, O, S, and halogens, overlapping with the molecular weight range typical for lead

SZINC-250k: https://www.kaggle.com/datasets/1379f2461le75ef7al1d0c5f£3dd0c2
440a6bcf33531bc0d303e8eac8lal3adbl’.
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Database Richness #Circles (0.7)  #Circles (0.75) #Circles (0.8) Di ity #FG #RS #BM
zinc-2sok  [IINZ4G455) 10281 3683 1035 0.871 3490 s075 (136450
10210 3670 1033 0.671
10295 3653 1020 0.871
ENAMINE
MOSES 1936962 8095 2496 623 9316.20 5816 449026
8142 2496 644 9325.26
8178 2496 634 9264.65
ChEMBL 2304875 32583 10956 0.879 12003.99 17006 44814 716657
32656 1173 0.878 12076.51
32518 11082 0.879 12019.48
GDB-17

Figure 13: Measuring results on original databases.

Database Richness #Circles (0.75) Diversity SumBottleneck #FG #RS #BM

zinc2sox  [INTETET 2035 0.861 1952 2040

2084 0.861
2040

ENAMINE
MOSES 1846492 as13 [ 418521|
1698
1720
ChEMBL 967322 4570 14004 317255
4631 0.872 5464.92
4543 0.873 5368.94
GDB-17 1621490

Figure 14: Measuring results on filtered databases.

compounds. The lead-like subset filters 11M compounds with lead-like properties (100-350 MW
& 1-3 clogP).

(5) Enamine is a company that provides compound libraries for high-throughput screening (HTS).
The Enamine Hit Locator Libraryﬂ is their largest diversity library with high MedChem
tractability, and the compounds in the library are readily available for purchase and are guaranteed
synthesizable at a reasonable cost.

F.2 RESULTS ON CHEMICAL SPACE MEASURES
The measuring results are listed in Figure T3] and [T4]

G MOLECULAR GENERATION EXPERIMENT DETAILS

G.1 MODEL IMPLEMENTATION

We implement the models with the official repositoriesﬂ All hyperparameters are set as default.

®ENAMINE diversity libraries: ht tps://enamine.net/compound-libraries/diversity—1
RationaleRL: https://github.com/wengong-jin/multiobj-rationalel
DST: https://github.com/futianfan/DST.
JANUS: https://github.com/aspuru-guzik—-group/JANUS.
MARS: https://github.com/bytedance/markov-molecular-sampling.
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G.2 MARS VARIANTS

The terms incorporated into objectives are computed as follow

Noveltypyersity (5 S) | 3] Z d(z,y) (11
yeES
NoveltYSumBollleneck(m’ S) = Ejnelg d(l’, y) (12)
Noveltycires (2, S) == {melg d(z,y) > t} (13)
y

For the model variants, we test different o values from {0.1,0.3,1.0,3.0} and report the best
performance. Specifically, we use oo = 1.0 for MARS+Diversity, o = 0.3 for MARS+SumBottlenck,
and o = 0.1 for MARS+#Circles. The threshold we use for the #Circles measure is t = 0.60.

G.3 RESULTS ON OTHER MEASURES

Table 5: Measuring results of the chemical space explored by molecular generation methods. In each
chemical space measure, the larger value the better. Bold indicates the best performance in each
measure.

Method | SumBottleneck | #FG | #RS | #BM
Databases 280 58 132 502
RationaleRL | 9 + 0.3% 39 4+ 0.0% 207 £ 0.0% | 442 +£2.3%
DST 8 5 9 26

JANUS 76 + 93 + 73 + 133 £+

MARS 535 +7.9% 346 + 16.0% 67 +£3.5% 19.5K £+ 23.1%
+Diversity 715+ 12.9% 463 +17.2% | 67 +=1.9% 20.1K £ 25.2%
+SumBot 926 + 12.5% 868 + 15.3% | 66 +2.3% 14.0K £ 20.8%
+#Circles 742 + 12.9% 601 £35.0% | 69 £+ 5.5% 18.9K £+ 15.3%

The results on other chemical space measures are listed in Table [5]

G.4 MOLECULAR PROPERTY AND BINDING AFFINITY DISTRIBUTIONS

To investigate how incorporating chemical space measures into the objective as Eq. [TTHI3]can influ-
ence the optimization for molecular properties, we examine the property distributions of molecules
generated by MARS and its variants.

As shown in Figure [I5}{16] our resulting libraries from the joint optimizations with chemical space
measures (i.e., MARS+#Circles and MARS+Diversity) are not showing a significant downward shift
on JNK3 binding affinity as well as QED scores and SA scores. It is expected that compared with
vanilla MARS, the property scores of molecules generated by MARS variants would decrease slightly,
because instead of solely optimizing the property scores, the model needs to make sacrifices for a
more diverse library. However, this sacrifice would be insignificant compared to the diversity gain
in the resulting library. In practice, these molecules would pass the scoring threshold and would be
considered qualified in these regards. In Table 2, the experiment results show that by incorporating
chemical space measures into optimization objectives, the richness of discovered qualified molecules
(JNK3 > 0.5, QED > 0.6, and SA < 4) got significantly improved.

G.5 VISUALIZATION

To provide a more intuitive view of the effect that adding a joint objective of exploration can encourage
the molecular generation model to discover a wider space, we visualize the chemical space explored
by the baseline (MARS) and MARS+SumBottleneck as well as MARS+#Circles in Figure (17| where

8Equations are approximations of [u(S U {z})
computational efficiency.

— 1(8)] defined to avoid numerical issues and for
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Figure 15: Left: Distributions of JNK3 machine learning model predicted score. We observe a
downward trend in the MARS variant models, which are jointly optimized with a chemical space
measure. However, all generated molecules are above the score threshold, and in practice, due to the
limitation of the prediction model, they should be considered equally qualified candidates for further
analysis. Right: Distributions of interaction scores of the ligands and the receptor docking (lower
energy score indicates more favorable interactions). For the docking experiments, we randomly
sampled 30K molecules from each generated library and performed molecular docking on the JNK3
target (PDB: 7KSI) using rDock (Ruiz-Carmona et al.,[2014). The distributions of docking scores
show that the joint optimizations on chemical space measures do not affect the binding affinity
significantly when predicted by in silico docking.

we show the 2D layout of the Morgan fingerprints of the functional groups in the molecules generated
through principal component analysis (PCA). The larger number of unique functional groups and the
wider spread of the data points obtained by adding exploration-based novelty terms indicate more
diverse structures being explored.

We show the molecular clustering results in Figure [I8] Clusters are calculated based on Morgan
fingerprints of the generated molecules and their Tanimoto similarity. Compared to the baseline
model, a larger number of clusters can be obtained from MARS+SumBottleneck.

Figure[T9]shows the dynamics of measures for MARS and its variants.

H FAST APPROXIMATION OF #CIRCLES

The computation of #Circles is combinatorial and the running time is exponential in theory. We
implement two fast approximations by sacrificing accuracy as Algorithm [3]and Algorithm [{]

Algorithm 3 Approximation of #Circles (sequential).

Input: The molecular set S to be measured, the distance metric d, the distance threshold ¢.
Randomly reorder the molecular set S.
Initialize an empty set C.
Setn := |S].
foriin {1,...,n} do
Add S; to C if minyee d(z,y) > t.
end for
Return: |C| and C.
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Figure 16: Selected molecular property distributions. Except for SAS (normalized from O to 1, the
larger the better), all property distributions do not show significant changes across different models.
The downward shift of the SAS is likely due to the increased diversity in the molecular libraries.

« MARS

. « MARS
"‘- . » +#Circles

« +SumBottleneck

Figure 17: Optimizing chemical space measures encourages the molecular generation model to
explore a larger span of the chemical space. This figure shows principal component analysis (PCA)
of functional groups discovered by different models.

Algorithm 4 Approximation of #Circles (recursive).

Input: The molecular set S to be measured, the distance metric d, the distance threshold ¢,
maximum number of recursive layers L, number of processors m.

Call Algorithm 3| with arguments (S, d, t) if L = 0.

Randomly reorder the molecular set S.

Evenly split S into m subsets Sy, ..., Sp.

Call Algorlthmlé—_ll with arguments (S;,d,t,L — 1,m) fori = 1,...,m and collect the returns C;.
SetC:=CiU---UCy,

Return: Results obtained by calling Algorithmwith arguments (C, d, t).
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