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Abstract

Collections of probability distributions arise in a variety of statistical applications1

ranging from user activity pattern analysis to brain connectomics. In practice these2

distributions are represented by histograms over diverse domain types including3

finite intervals, circles, cylinders, spheres, other manifolds, and graphs. This4

paper introduces an approach for detecting differences between two collections of5

histograms over such general domains. We propose the intrinsic slicing construction6

that yields a novel class of Wasserstein distances on manifolds and graphs. These7

distances are Hilbert embeddable, allowing us to reduce the histogram collection8

comparison problem to a more familiar mean testing problem in a Hilbert space. We9

provide two testing procedures, one based on resampling and another on combining10

p-values from coordinate-wise tests. Our experiments in a variety of data settings11

show that the resulting tests are powerful and the p-values are well-calibrated.12

Example applications to user activity patterns and spatial data are provided.13

1 Introduction14

Distributional data arise in a variety of statistical applications. In practice these are not limited to15

distributions over real intervals, but are often defined over manifolds and graphs. For instance, even16

in the simplest case of analyzing 24-hour activity patterns by constructing histograms of activity17

counts by time, the resulting histograms are really supported on a circle rather than an interval on the18

real line. If in addition to the time of activity, the observations come with a real number such as the19

intensity of the activity, then we end up with a histogram over a cylindrical domain. Spatial datasets20

recorded at some geographic region level are another example: one can build a distribution over the21

region adjacency graph by capturing the normalized counts of events in each region. When analyzing22

distributions over such general domains it is desirable to rely on methods that take into account the23

connectivity and geometry of the underlying domain, respect the distributional nature of the data, and24

lead to efficient practical algorithms.25

In this paper we consider the problem of comparing two collections of distributions, namely testing26

for homogeneity—whether all of the distributions come from the same meta-distribution. While27

conceptually similar to two-sample testing, this is a higher order notion in the sense that our units28

of analysis are distributions/histograms. Letting P(X ) denote the set of Borel probability measures29

on a metric space X , consider the space P(P(X )). Let P,Q ∈ P(P(X )), and assume that we are30

given two collections of probability measures {µi}N1
i=1 and {νi}N2

i=1 that are drawn from P and Q,31

µi ∼ P and νi ∼ Q in an independent and identical manner. Our goal is to test whether P = Q and,32

moreover, to be able to conduct such tests for general X . Such a test would be useful in numerous33

practical situations. For instance, an online retailer may aggregate a customer’s monthly activity34
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Figure 1: Schematic of the proposed intrinsic slicing construction. Given two probability measures on
the sphere (here the darkest blue corresponds to zero mass), different aspects of their dissimilarities
become apparent after pushforward to the real line using the eigenfunctions of the Laplace-Beltrami
operator, {ϕi}, in this case spherical harmonics. As a particular example of our general construction,
the (squared) intrinsic sliced 2-Wasserstein distance ISW2

2 (·, ·) is the weighted sum of the dissimi-
larities of the corresponding pushforwards of µ and ν as measured by squared 2-Wasserstein distance
W2

2 (·, ·) on the real line.

into a histogram over a cylinder capturing the time of the day and amount of purchase for each35

transaction. By considering collections of histograms for various customer segments, one can conduct36

tests to determine if there are statistically significant differences between behavioral patterns of these37

segments.38

We attack this problem using insights from recent developments that utilize Hilbert embeddings for39

simplifying distributional data problems (see e.g. [18, 24] for particular examples). The simplification40

comes as a result of linearity of Hilbert spaces, which allows adapting existing statistical approaches41

such as functional data methodology to distributional data. A crucial requirement on the embedding42

is that the distance in the embedding space should give a meaningful distance between measures; it is43

this property that renders quantities computed in the embedding space such as means and variances44

meaningful. Thus, embedding constructions should be driven by specifying appropriate distances45

on the space of measures. Of course, not every distance can be embedded and Hilbert embeddable46

distances are called Hilbertian; see [19] for an overview of this notion.47

The focus in this paper will be on transportation based distances between distributions/histograms48

[25]. Other approaches such as bin-wise treatment of histograms may result in increased variability49

when horizontal variation is present, leading eventually to less powerful methods. Transportation50

based distances are more efficient at capturing this and other aspects of distributional data [3, 17,51

19]. However, adopting the transportation theoretic approaches to our problem immediately hits52

a roadblock beyond the real line case: while 2-Wasserstein distance on the real line is Hilbert53

embeddable, it fails to be so on general domains [19]. The general Hilbert embedding framework of54

[18] is not tied to a distance between probability distributions and so can be problematic for capturing55

the location and variability aspects of distribution collections. In addition, [18] has difficulties in56

higher dimensions and does not provide constructions suitable for manifolds or graphs.57

Inspired by the sliced 2-Wasserstein distances in high dimensional spaces [11, 12], we introduce58

a new slicing construction (Figure 1) that leverages the eigenvalues and eigenfunctions of the59

Laplace-Beltrami operator on manifolds and graph Laplacians to capture the intrinsic geometry and60

connectivity of the domain. We apply this slicing construction to obtain a novel class of intrinsic sliced61

2-Wasserstein distances on manifolds and graphs. The resulting distances are Hilbert embeddable,62

have a number of desirable properties, and can be truncated to obtain finite-dimensional embeddings.63

Using the corresponding embedding allows us to reduce the histogram collection comparison problem64

to the comparison of means in a high-dimensional Euclidean space. We provide two approaches65

for hypothesis testing and verify via extensive experiments on synthetic and real data examples in a66

variety of data settings that these tests are powerful, and the p-values are well-calibrated.67

2



Comparing with closely related work, while the Generalized Sliced Wasserstein (GSW) distance [11]68

sets up the idea of approximating Wasserstein distances using multiple nonlinear projections, it is69

presented in extrinsic terms (i.e. Euclidean space) and can suffer from the curse of dimensionality70

when a low dimensional data manifold lives in a high-dimensional space. Our choice of eigenfunctions71

for projection is very different from the one-parameter function families in GSW. Moreover, the GSW72

construction does not directly apply to graphs. While the tree-sliced variant of GSW [14] can be73

applied in an intrinsic manner (the clustering variant), it relies on a different type of distance, in the74

limit related to the euclidean/geodesic distance. This can be seen by comparing our lower bound to75

theirs: our lower bound for ISW is in terms of the MMD using the spectral distance (Proposition 5).76

Finally, the robust sliced Wasserstein distance of [13] does make use of the geometric properties of77

the underlying manifold. However, their goal is to compute a correspondence between two manifolds78

by mapping them into Rd using eigenmaps and treating the mapped manifolds as measures in Rd and79

minimizing some version of Euclidean slicing.80

2 Preliminaries81

Given a compact metric space X , let P(X ) denote the set of Borel probability measures on X . Our82

main interest is in the case where X is a graph or a manifold with the shortest/geodesic distance as83

the metric, and thus the compactness restriction. The 2-Wasserstein distance can be defined on P(X )84

using the metric of X as the ground distance [17, 19], giving WX
2 : P(X ) × P(X ) → R≥0; due85

to the repeated use of the real line case we use the shorthand W2 = WR
2 . Central to our study are86

distributions on the space of probability measures P(P(X )) = (P(X ),B(P(X ))), where B(P(X))87

is the Borel σ-algebra generated by the topology induced by WX
2 [3]. To avoid confusion, we will88

refer to the elements of P(P(X )) as meta-distributions.89

Let P,Q ∈ P(P(X )), and assume that we are given two collections of probability measures {µi}N1
i=190

and {νi}N2
i=1 that are drawn from P and Q: µi ∼ P and νi ∼ Q in an independent-and-identically-91

distributed (hereafter i.i.d.) manner. Our goal is to use this sample to test the null hypothesis92

of whether P = Q. While this is conceptually a two-sample test, note that our data points are93

distributions; in practice, the distributions µi or νi are given by histograms.94

Remark 1. Let us compare this with the usual two-sample testing. Consider P ∈ P(P(X )) con-95

structed as follows. Let µ∗ ∈ P(X ) be a fixed probability measure. Let x1, x2, ...xA ∼ µ∗ and96

construct the histogram summarizing this sample: 1
A

∑A
a=1 δxa

. Now, 1
A

∑A
a=1 δxa

∈ P(X ) is one97

sample drawn from P . In our testing scenario one gets the collection {µi}N1
i=1, where each histogram98

is obtained as above: µi ∼ P . Similarly, consider Q ∈ P(P(X )) of the same type based on some99

other fixed ν∗ ∈ P(X ), and let {νi}N2
i=1 the corresponding collection of histograms. Testing whether100

P = Q in the limit boils down to µ∗ = ν∗. When compared to the usual two-sample testing this may101

seem rather inefficient, requiring A times more samples (resp. N1A and N2A samples from µ∗ and102

ν∗). However, in our setup it is not assumed that the histograms in the collections come from meta-103

distributions of the above simple type (i.e. all µi are generated by drawing from the same underlying104

distribution µ∗). In fact, the target use-case for our approach is when these histograms are collected105

by observing different individuals who have their person-specific behaviors/distributions.106

Let D(·, ·) : P(X )×P(X ) → R≥0 be a distance between probability distributions. D(·, ·) is called107

Hilbertian (this is just a naming convention; no implication that the map is a Hilbert map) if there exist108

a Hilbert space H and a map η : P(X ) → H such that D(µ, ν) = ∥η(µ) − η(ν)∥H. For example,109

it is well-known that 2-Wasserstein distance on X = R is Hilbertian [19] (also see Section 3.2)110

and Maximum Mean Discrepancy (MMD) on any X is Hilbertian [8]; however, the 2-Wasserstein111

distance WX
2 on general X is not Hilbertian [19].112

Since the map η takes every measure on X to a point in H, we see that a process P ∈ P(P(X )) gives113

a rise to a measure on H given by pushforward operation, η#P = P ◦ η−1 ∈ P(H). In addition, if114

a finite dimensional approximation ηD : P(X ) → RD of η is available, then ηD#P is a measure115

on RD. This observation is enormously useful: problems about the elements of the rather abstract116

space P(P(X )) are reduced to problems about familiar measures on H or even RD. For example,117

the usual notions of mean and variance can be applied to the measure η#P to gain insights about the118

meta-distribution P . The validity of these insights hinges on the η-map coming from a Hilbertian119

distance, as distances are central to the statistical quantities of interest.120
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Testing for η#P = η#Q can serve as a proxy for our original testing problem of P = Q. As121

typical with two-sample tests, various aspects of the equality η#P = η#Q can be tested, such as the122

mean or variance equality; unspecific tests of equality can be applied as well. We will concentrate123

on testing certain aspects of the equality so that one can easily drill down on the results. This124

is similar to the regular two-sample testing where checking for equality of, say, means is often125

preferrable as it gives immediately interpretable insights, whereas a general test that only says there126

are unspecified differences between the distributions is less useful for interpretation. To obtain succint127

and interpretable tests we concentrate on the mean of the resulting pushforward measure in H.128

Definition 1. For a meta-distribution P ∈ P(P(X )), we define its Hilbert centroid with respect to129

the Hilbertian distance D as Cη#P = Eµ∼P [η(µ)] ∈ H, assuming it exists.130

Our testing procedure is based on checking the equality Cη#P = Cη#Q, or more explicitly:131

Eµ∼P [η(µ)] = Eν∼Q[η(ν)]. Intuitively, each “dimension” of the map η probes some aspect of132

the two involved meta-distributions and makes sure that they are in agreement in expectation. One of133

our testing approaches will use the statistic134

T(P,Q) = ∥Cη#P − Cη#Q∥2H. (2.1)

to capture the deviations from equality; this quantity can be written directly in terms of pairwise135

distances.136

Proposition 1. For P,Q ∈ P(P(X )), the following holds:137

T(P,Q) = Eµ∼P,ν∼Q[D2(µ, ν)]− 1

2
Eµ,µ′∼P [D2(µ, µ′)]− 1

2
Eν,ν′∼Q[D2(ν, ν′)].

Next we give an example of what Hilbert centroid equality means in an important special case.138

Example 1. Let X = [0, T ] ⊂ R with D being the 2-Wasserstein distance W2. Given a probability139

measure µ ∈ P([0, T ]), let Fµ be its cumulative distribution function: Fµ(x) = µ([0, x]) =
∫ x

0
dµ.140

The generalized inverse of cumulative distribution function (CDF) is defined by F−1
µ (s) := inf{x ∈141

[0, T ] : Fµ(x) > s}. The squared 2-Wasserstein distance has a rather simple expression in terms of142

the inverse CDF [19]:143

W2
2 (µ, ν) =

∫ 1

0

(F−1
µ (s)− F−1

ν (s))2ds. (2.2)

This formula immediately establishes the Hilbertianity of W2 through the map η : P([0, T ]) →144

L2([0, T ]) defined by η(µ) = F−1
µ . Note that η is invertible for increasing normalized functions145

in the embedding space. Using this insight, we see that the corresponding “average measure” of146

P ∈ P(P(X )) can be introduced via Pav = η−1(Eµ∼P [η(µ)]). It is easy to prove that Pav satisfies147

the following: Pav = argminρ∈P(X ) Eµ∼P [W2(µ, ρ)
2], which is the definition of the Fréchet mean,148

see for example [19]. In this setting, Cη#P = Cη#Q boils down to having the same Fréchet means,149

Pav = Qav.150

We will later see that the Hilbert embedding corresponding to the intrinsic sliced 2-Wasserstein151

distance is assembled of embeddings like in Example 1 applied after pushforwards (see Figure 1 for152

an intuition). This means that the resulting equality Cη#P = Cη#Q becomes more stringent, making153

it a better proxy for detecting the deviations from P = Q without losing the interpretability aspect.154

3 Intrinsic Sliced 2-Wasserstein Distance155

We introduce a Hilbertian version of W2 on manifolds and graphs via a construction we call intrinsic156

slicing due to its use of the domain’s intrinsic geometric properties. To focus our discussion we157

concentrate on the manifold case, as the graph case is simpler and is obtained by replacing the158

Laplace-Beltrami operator by the graph Laplacian.159

Let λℓ, ϕℓ; ℓ = 0, 1, .... be the eigenvalues and eigenfunctions of the Laplace-Beltrami operator on160

X with Neumann boundary conditions. The eigenfunctions are sorted by increasing eignevalue161

and assumed to be orthonormal with respect to some fixed (e.g. uniform) measure on X ; also162

ϕ0 = const and λ0 = 0. One can define the spectral kernel k(x, y) =
∑

ℓ α(λℓ)ϕℓ(x)ϕℓ(y) and163

the corresponding spectral distance on the manifold d(x, y) = k(x, x) + k(y, y) − 2k(x, y) =164 ∑
α(λℓ)(ϕℓ(x) − ϕℓ(y))

2, where α : R≥0 → R≥0 is a function that controls contribution from165
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each spectral band. By setting α(λ) = e−tλ for some t > 0, we get the heat/diffusion kernel and166

the corresponding diffusion distance [4]. Another important case is α(λ) = 1/λ2 if λ > 0 and167

α(0) = 0, which gives the biharmonic kernel and distance [15]. In both of these constructions α(·)168

is a decreasing function, allowing the smoother low-frequency (i.e. smaller λℓ) eigenfunctions to169

contribute more.170

3.1 Definition and properties171

A real-valued function ϕ : X → R can be used to map the manifold X onto the real line. Any172

probability measure µ ∈ P(X ) can likewise be projected onto the real line using the pushforward173

of ϕ, which we denote by ϕ♯µ = µ ◦ ϕ−1 ∈ P(R). While the pushforward notions used here174

and in previous sections are conceptually the same, for clarity we use ♯ for measures and # for175

meta-distributions. We define intrinsic slicing as follows.176

Definition 2. Given a function α : R≥0 → R≥0 and a probability distance D(·, ·) on P(R), we177

define the intrinsic sliced distance ISD(·, ·) on P(X ) by178

ISD2(µ, ν) =
∑
ℓ

α(λℓ)D2(ϕℓ♯µ, ϕℓ♯ν).

The choice of the Laplacian eigenfunctions in the definition can be justified by a number of their179

properties. Eigenfunctions are intrinsic quantities of a manifold and are ordered by smoothness. Thus,180

they allow capturing the intrinsic connectivity of the underlying domain. Furthermore, due to the181

orthogonality of eigenfunctions, their pushforwards can capture complementary aspects.182

While the definition is general, our focus in this paper is on the case when D = W2; we remind183

that we always use W2 to denote the 2-Wasserstein distance on P(R). We call the resulting distance184

Intrinsic Sliced 2-Wasserstein Distance, and denote it by ISW2. First, we discuss the convergence of185

the infinite sum in Definition 2.186

Proposition 2. If X is a smooth compact n-dimensional manifold and
∑

ℓ λ
(n−1)/2
ℓ α(λℓ) < ∞,187

then ISW2 is well-defined.188

Next, we prove a number of properties of ISD.189

Proposition 3. If D is a Hilbertian probability distance such that ISD is well-defined, then (i) ISD190

is Hilbertian, and (ii) ISD satisfies the following metric properties: non-negativity, symmetry, the191

triangle inequality, and ISD(µ, µ) = 0.192

Proof. By Hilbertian property of D, there exists a Hilbert space H0 and a map η0 : P(R) → H0193

such that D(ρ1, ρ2) = ∥η0(ρ1) − η0(ρ2)∥H′ for all ρ1, ρ2 ∈ P(R). Plugging this into Definition194

2 we have ISD(µ, ν) = ∥η(µ) − η(ν)∥H, where H = ⊕ℓH0 and the ℓ-th component of η(µ)195

is
√
α(λℓ)η0(ϕℓ♯µ) ∈ H. The second part of Proposition 3 directly follows from the Hilbert196

property.197

Since W2 is Hilbertian on P(R), the application of Proposition 3 yields that ISW2 is also Hilberitan,198

making it possible to use ISW2 for our hypothesis tests in Section 4.199

The following result shows that ISW2 inherits an important property of the Wasserstein distances,200

namely that the distance between two Dirac delta measures equals to a specific ground distance201

between their locations.202

Proposition 4. When µ = δx(·), ν = δy(·) for two points x, y ∈ X , we have ISW2(µ, ν) = d(x, y),203

where d(·, ·) is the spectral distance corresponding to the choice of α(·).204

For a simple choice of distance D on P(R), namely the absolute mean difference, the corresponding205

intrinsic sliced distance is the well-known MMD [8].206

Proposition 5. Let D(ρ1, ρ2) = |Ex∼ρ1
[x]− Ey∼ρ2

[y]| for ρ1, ρ2 ∈ P(R), then the corresponding207

ISD is equivalent to the MMD with the spectral kernel k(·, ·).208

When k(x, y) is the heat kernel, the sliced distance in Proposition 5 is very much like the MMD209

with the Gaussian kernel, with the parameter t in α(λ) = e−tλ controlling the kernel width. Indeed,210
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the two kernels coincide on Rd, and on general manifolds Varadhan’s formula gives asymptotic211

equivalence for small t [2].212

An interesting insight derived from the above result is that ISW2 is in a sense a “stronger” distance213

than MMD that uses the corresponding spectral kernel. The ISW2 compares the quantiles of214

pushforward distributions (Eq. (2.2)), whereas MMD compares their expectations only. We formalize215

this notion next, also providing a theoretical reason for preferring ISW2 for hypothesis testing.216

Proposition 6. MMD(µ, ν) ≤ ISW2(µ, ν) when the same α(·) is used in both constructions.217

Proof. This follows directly from the fact that for ρ1, ρ2 ∈ P(R) the inequality |Ex∼ρ1
[x] −218

Ey∼ρ2
[y]| ≤ W2(ρ1, ρ2) holds.219

We are now in a position to prove that ISW2 is a true metric.220

Theorem 1. If α(λ) > 0 for all λ > 0 , then ISW2 is a metric on P(X ).221

We remind that 2-Wasserstein distance can be defined directly on P(X ) using the geodesic distance222

as the ground metric; we denote this distance as WX
2 . Lipschitz properties of the eigenfunctions223

imply the following:224

Proposition 7. There exists a constant c depending only on X ⊆ Rn such that for all µ, ν ∈ P(X )225

the inequality ISW2(µ, ν) ≤ cWX
2 (µ, ν)

√∑
ℓ λ

(n+3)/2
ℓ α(λℓ) holds.226

Our final result looks at the quantity T defined using ISW2 by Eq. (2.1). We will be using T227

computed on finite collections of measures as a test statistic in the next section. We show that it228

enjoys robustness with respect to small perturbations of the measures in the collection.229

Proposition 8. Let {µi}Ni=1 and {νi}Ni=1 be two collections of probability measures on P(X ), such230

that ∀i,WX
2 (µi, νi) ≤ ϵ, then T({µi}Ni=1, {νi}Ni=1) ≤ C2ϵ2. Here C = c

√∑
ℓ λ

(n+3)/2
ℓ α(λℓ) from231

previous proposition and is assumed to be finite.232

This bound implies that if the distributions in a collection undergo horizontal shifts that are small as233

measured by the geodesic Wasserstein distance WX
2 , then T is small as well.234

3.2 Approximate Hilbert Embedding235

An important aspect of ISW2 is that its Hilbert map η : P(X ) → H can be approximated by a236

finite-dimensional embedding ηD : P(X ) → RD such that ISW2(µ, ν) ≈ ∥ηD(µ) − ηD(ν)∥RD .237

This is useful for practical computation and for one of our hypothesis testing approaches.238

Using the formula for ISW2 on P(R) in terms of the quantile function, Eq. (2.2), the Hilbert239

map is defined by η0(µ) = F−1
µ . We have W2(µ, ν) = ∥η0(µ) − η0(ν)∥L2(R), where the norm240

involves integration. We can discretize the integral using the Riemann sum for equidistant knots241

sk = k−1
D′ , k = 1, ..., D′, define the approximate embedding η0D′ : P(R) → RD′

as:242

η0D′ : µ → 1√
D′

[F−1
µ (s1), ..., F

−1
µ (sD′)]. (3.1)

Now, W2(µ, ν) ≈ ∥η0D′(µ)− η0D′(ν)∥RD′ with approximation quality depending on the embedding243

dimension D′.244

To approximate the Hilbert map for ISW2 we truncate the series defining ISW2 and use a finite245

number of eigenfunctions for pushforward: ϕℓ, ℓ = 1, ..., L, where ϕ0 is dropped since it is a constant.246

By inspecting the proof of Proposition 3 and using Eq. (3.1), we can define ηD : P(X ) → RD with247

D = LD′ as the concatenation of L maps:248

(ηD)ℓ : µ →
√

α(λℓ)

D′ [F−1
ϕℓ♯µ

(s1), ..., F
−1
ϕℓ♯µ

(sD′)].

Spectral decompositions of the Laplace-Beltrami operators for general manifolds [4, 20] or graph249

Laplacians can be computed numerically. For applications that involve simple manifolds, the250

eigenvalues and eigenfunctions can be computed analytically (see Appendix).251

6



4 Hypothesis Testing252

Let {µi}N1
i=1 and {νi}N2

i=1 be two i.i.d. collections of measures drawn from P,Q ∈ P(P(X ))253

respectively. Our goal is to use these samples to test the null hypothesis H0 : Cη#P = Cη#Q, where254

η is the Hilbert embedding of the sliced distance ISW2 on P(X ).255

4.1 Resampling Based Test256

We use the quantity T(·, ·) from Eq. (2.1) as the test statistic. Its sample version is computed by257

replacing the expectations by the empirical means, and excluding the diagonal terms to achieve258

unbiasedness259

T̂ ≡
∑

i,j:i ̸=j

ISW2
2 (µi, µj)

2N1(N1 − 1)
+

∑
i,j:i ̸=j

ISW2
2 (νi, νj)

2N2(N2 − 1)
−
∑
i,j

ISW2
2 (µi, νj)

N1N2
.

Note that ET̂ = T(P,Q). In practice, the ISW2 values are computed from the approximate260

embedding: ISW2(ρ1, ρ2) ≈ ∥ηD(ρ1)− ηD(ρ2)∥RD . We denote the resulting statistic by T̃L,D′ .261

The difference between T̃L,D′ and the population version (i.e. T − T̃L,D′) can be decomposed as262

(T− T̂)+(T̂− T̂L)+(T̂L− T̃L,D′), where the summands inside the terms T̂L and T̃L,D′ correspond263

to partial sums that approximate ISW2
2 (·, ·) by

∑L
l=1 α(λl)W2

2 (ϕl♯·, ϕl♯·), and W2
2 (ϕl♯·, ϕl♯·) by264

∥ηD′(ϕl♯·) − ηD′(ϕl♯·)∥2, respectively. We show in Appendix that a) summands in the second265

and third terms in the sum can be made infinitesmally small by choosing large enough L and D′,266

respectively; b) an asymptotic result for the first difference can be obtained by extending the tools267

from [8, 23]. These results are based on several assumptions detailed in the Appendix. Combining268

the two results, we establish asymptotic distributions of T̃L,D′ :269

Theorem 2. Assume relevant conditions (see Appendix) hold. Define N = N1 +N2, and suppose270

that as N1, N2 → ∞, we have N1/N → ρ1, N2/N → ρ2 = 1− ρ1, for some fixed 0 < ρ1 < 1.With271

L ≥ LN , D′ ≥ DN chosen in an appropriate way (see Appendix), under H0 : Cη#P = Cη#Q we272

have273

N T̃L,D′ ;
∞∑

m=1

γm(A2
m − 1),

where Am ∼ N(0, 1) for m = 1, 2, . . ., and γm are the eigenvalues of a certain operator that274

depends on P and Q. Further, under H1 : Cη#P ̸= Cη#Q ,
√
N

(
T̃L,D′ − T

)
is asymptotically275

Gaussian with mean 0 and finite variance.276

We evaluate the power performance of the testing procedure based on T̃L,D′ for the sequence of277

contiguous alternatives H1N = {(P,Q) : Cµ#P = Cµ#Q + δN , l = 1, 2, . . .}, where the deviation278

from null is quantified collectively by pushforward differences δℓN ∈ H, δN = ⊕ℓ(
√
αℓδℓN ) that279

are made to approach 0 as N → ∞. The following theorem establishes consistency of our testing280

procedure against a family of such local alternatives.281

Theorem 3. Assume conditions (i)-(iii) hold, and let L,D′ be chosen as in Theorem 2. Then for282

the sequence of contiguous alternatives H1N such that N∥δN∥2H∗ → ∞, the test based on T̃L,D′ is283

consistent for any α ∈ (0, 1), that is as N → ∞ the asymptotic power approaches 1.284

Testing Procedure In practice, to obtain the p-value for the T̃L,D′-statistic we use a bootstrap285

procedure. Remember that T̃L,D′ is computed via the approximate embedding ηD with D = LD′.286

The collection {µi}N1
i=1 is mapped to the collection {Xi = ηD(µi)}N1

i=1 of vectors in RD drawn in an287

i.i.d. manner from ηD#P = P ◦ η−1
D ∈ P(RD). Similarly, for the other collection we have a sample288

{Yi = ηD(νi)}N2
i=1 drawn from ηD#Q. Now, the null H0 : Cη#P = Cη#Q implies that the means289

of the distributions ηD#P and ηD#Q coincide in RD.290

The bootstrap null distribution for T̃L,D′ can be obtained as follows. Let X̄ and Ȳ be the sample291

means; construct the combined sample {Xi−X̄+ X̄+Ȳ
2 }N1

i=1

⋃
{Yi−Ȳ + X̄+Ȳ

2 }N2
i=1. This centers both292

samples at X̄+Ȳ
2 . Now, from the combined sample we select with replacement N1 (resp. N2) samples293
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to make bootstrap sample {Xb
i }

N1
i=1 (resp. {Y b

i }
N2
i=1). Repeat this process B times (we take B = 1000294

in our experiments), and collect the null test statistic values T̃b
L,D′ = T̃L,D′({Xb

i }
N1
i=1, {Y b

i }
N2
i=1) for295

b = 1, ..., B. The approximate p-value is then given by: p = 1
B+1

(
|{b : T̃b

L,D′ ≥ T̃L,D′}|+ 1
)

.296

4.2 Testing via p-value Combination297

The bootstrap test above incurs a high computational cost and the granularity of the p-values is298

determined by the number of resamples, which can be too coarse in massive multiple comparison299

settings often seen in industrial applications. Thus, we propose an approach that avoids resampling.300

As explained above, testing H0 : Cη#P = Cη#Q can be interpreted as testing whether the means301

of the distributions ηD#P and ηD#Q coincide in RD. To this end, we adopt the approach pro-302

posed by [22] in a spatial statistics context. First, we apply the Behrens-Fisher-Welch t-test (with-303

out assuming equality of variances) to each coordinate of the samples {Xi = ηD(µi)}N1
i=1 and304

{Yi = ηD(νi)}N2
i=1 to obtain the p-values pk, k = 1, 2, ..., D. Second, an overall p-value is com-305

puted via the harmonic mean p-value combination method which is robust to dependencies [6, 26]:306

pH = H
(
D/( 1

p1
+ 1

p2
+ · · ·+ 1

pD
)
)

, where the function H has a known form described in [26].307

Another approach for combining p-values is the Cauchy combination test [16], but in our numerical308

experiments we found that the Cauchy combination approach encounters problems when any of the309

p-values is very close to 1, which can happen in our setting due to the form of the embedding ηD.310

Therefore, in contrast to [22], for us the harmonic combination is the only appropriate choice.311

To guarantee size control, we establish a version of Theorem 1 from [16] for the harmonic mean312

p-value. Assume that a test statistic Z ∈ RD has null distribution with zero mean and every pair of313

coordinates of Z follows bivariate Gaussian distribution. Compute the coordinate-wise two-sided314

p-values pk = 2(1− Φ(|Zk|)) where Φ is the standard Gaussian CDF.315

Theorem 4. Let pk, k = 1, ..., D be the null p-values as above and pH computed via harmonic mean316

approach, then317

lim
α→0

Prob{pH ≤ α}
α

= 1.

In the Appendix we show that this theorem applies in our setting, so the proposed procedure318

asymptotically controls the size of the test for small α. Our experimental results show that the control319

is already achieved for moderate sample sizes and the commonly used α = 0.05.320

5 Experiments321

Synthetic Experiments We compare the performance of our tests on distributions over finite322

interval, circle, and cylinder with existing methods, and settings of the embedding parameters L,D′.323

For evaluation, we use empirical power at different degrees of departure from the null hypothesis324

(captured by δ); further details can be found in the Appendix. The summary results presented in325

Figure 2 show that all methods maintain nominal size (power at δ = 0 is close to α). On the inite326

interval: 1) from Figure 2 (a) our combination test (ISD comb) outperformed all the other tests,327

but the bootstrap test (ISD T boot) performs worse than others except Fmaxb; 2) from Figure 2 (b)328

combination test with sliced ISW2 improves over the unsliced version–with more eigenfunctions, the329

power first improves considerably, then become similar to the unsliced version. For circular domain,330

Figure 2 (c) shows that our tests maintain considerably higher power than existing methods for all δ.331

Figure 2 (d) shows that our combination test maintains nominal size on cylindrical domain.332

NHANES data on physical activity monitoring This data [10] contains physical activity pattern333

readings for 6839 individuals. Data for each individual corresponds to activity monitor intensity values334

for 7 days. Since the time dimension is periodic, we get person-specific probability distributions335

over the cylinder S1(T1) × [0, T2). We check if activity patterns vary across age groups. The336

p-value combination test results are shown below the diagonal in Table 1. Our method detects337

statistically significant differences between all pairs of groups, except the 36–45 and 46–55 groups.338

As expected, the control p-values—obtained by mixing samples between two age groups and splitting339

arbitrarily—do not concentrate near zero. More details are in the Appendix.340
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Figure 2: Performance on synthetic finite interval and manifold data. Finite interval: (a) comparison
with existing methods—a test based on basis function representation (FP) [7], a sum-type ℓ2 norm-
based test (L2b) [27], and a max-type test [28] that uses the maximum of coordinate-wise F statistic
(Fmaxb); (b) unsliced vs. different settings of (L,D′). Manifold data: (c) circular data, comparing
with Fréchet ANOVA [5], and the DISCO nonparametric test [21]; (d) harmonic combination tests on
cylindrical data for L = 4. Dotted lines indicates nominal size of all tests (α = 0.05).

Ages 6–15 16–25 26–35 36–45 46–55 56–65 66–75 76–85

6–15 0.394 0.098 0.555 0.882 0.985 0.919 0.997
16–25 1.2e-13 0.575 0.967 0.126 0.921 0.911 0.977
26–35 3.1e-21 2.7e-04 0.459 0.197 0.996 0.919 0.565
36–45 6.1e-22 7.9e-08 0.042 0.864 0.637 0.849 0.991
46–55 8.2e-22 4.7e-05 0.011 0.343 0.841 0.165 0.554
56–65 1.3e-25 0.001 0.001 5.6e-05 0.003 0.991 0.962
66–75 3.6e-35 7.8e-12 1.5e-11 4.6e-15 1.8e-13 0.001 0.989
76–85 3.8e-46 1.4e-26 1.7e-30 8.4e-37 2.1e-35 1.3e-17 6.5e-09

Table 1: Activity intensity comparison across age groups in
the NHANES data. Below diagonal: p-values for to the actual
data comparisons. Above diagonal: null p-values obtained by
combining and randomly splitting the two groups. Bold entries
correspond to rejected hypotheses with the BH procedure at FDR
level 0.1.

Crime Type Tue vs Thu Tue vs Sat

Theft 0.428 4.2e-06
Decept Pract 0.313 0.001
Battery 0.430 0.001
Robbery 0.119 0.003
Narcotics 0.854 0.004
Criminal Dam 0.855 0.02
Other Offense 0.931 0.052
Burglary 0.142 0.261
Assault 0.997 0.38
Mot Veh Theft 0.858 0.416

Table 2: Chicago Crime analy-
sis p-values. Bold entries cor-
respond to rejected hypotheses
with the BH procedure at FDR
level 0.1.

Chicago Crime We use the Chicago Crimes 2018 dataset [1] to demonstrate the use of our341

methodology on histograms over graphs. Each beat (geographic area subdivision used by police)342

corresponds to a vertex, and two vertices are connected by an edge if the corresponding beats share343

a geographic boundary. For each crime type and day, the normalized counts of that crime type for344

each beat gives a daily probability distribution over the graph. Our goal is compare the collection of345

distributions of, say, theft occurring on Tuesday to those of Thursday and Saturday. The Tuesday346

versus Thursday comparison is intended as a null case, as we do not expect to see any differences347

between them [22]. We detect statistically significant differences between Tuesday and Saturday348

patterns for six categories of crime, and as expected, no differences between Tuesday and Thursday349

patterns. See Appendix for more details and for another graph based application in the context of350

Brain Connectomics.351

6 Conclusion352

The construction of ISW2 provides a novel embedding of probability distributions into a Hilbert353

space. This can be used to adapt many inferential methods to general spaces where the existence of354

Fréchet means or higher moments are not guaranteed. The ISW2 can also be useful for machine355

learning applications where prediction targets live in a general domain. Given that rigorous Fréchet356

mean-based methodology for such problems has only been proposed recently [9], development of357

prediction models for manifold-valued data that are free of restrictive assumptions is an attractive358

future line of research.359
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