Under review as a conference paper at ICLR 2026

ADVANCING THE UNDERSTANDING OF FIXED POINT
ITERATIONS IN LOOP NEURAL NETWORKS: A DE-
TAILED ANALYTICAL STUDY

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent empirical studies have identified fixed point iteration phenomena in deep
neural networks, where the hidden state tends to stabilize after several layers,
showing minimal change in subsequent layers. This observation has spurred the
development of practical methodologies, such as accelerating inference by bypass-
ing certain layers once the hidden state stabilizes, selectively fine-tuning layers to
modify the iteration process, and implementing loops of specific layers to main-
tain fixed point iterations. Despite these advancements, the understanding of fixed
point iterations remains superficial, particularly in high-dimensional spaces, due
to the inadequacy of current analytical tools. In this study, we conduct a detailed
analysis of fixed point iterations in a vector-valued function modeled by neural
networks. We establish a sufficient condition for the existence of multiple fixed
points in looped neural networks with varying input regions. Additionally, we
expand our examination to include a robust version of fixed point iterations. To
demonstrate the effectiveness and insights provided by our approach, we provide
case studies that in looped neural networks, there may exist 2¢ number of robust
fixed points under exponentiation or polynomial activation functions, where d is
the feature dimension. Furthermore, our preliminary empirical results support our
theoretical findings. Our methodology enriches the toolkit available for analyzing
fixed-point iterations of loop neural networks and may enhance our comprehen-
sion of neural network mechanisms.

1 INTRODUCTION

Deep neural networks have achieved remarkable success and are widely employed in various ap-
plications, including ChatGPT (OpenAl, 2023), face recognition (Wang & Deng} 2021), and per-
sonalized recommendation systems (Da’u & Salim} 2020), among others. These networks typically
consist of numerous hidden layers; for instance, Residual Networks (ResNets) (He et al.,[2016) can
contain over 1,000 layers. Recent empirical studies reveal that, despite the numerous layers in deep
neural networks, certain operational phases exist where adjacent layers may perform identical op-
erations (Meng et al. 2022} [Shi et al., |2024). Consequently, we can focus on modifying specific
associated layers during inference to enhance performance. Furthermore, the hidden states tend to
stabilize after several adjacent layers, resulting in minimal changes in subsequent layers, allowing
us to skip certain layers during inference (Elhoushi et al.|[2024)). Additional research indicates that a
looped transformer—where its output is fed back into itself iteratively—exhibits expressive capabil-
ities comparable to programmable computers (Giannou et al.,2023)) and is more effective at learning
algorithms (Yang et al., [2023). Other studies have also examined the convergence of deep neural
networks when the weights across different layers are nearly identical, with only minor perturbations
(Xu & Zhang] [2022; [2024). Collectively, these findings suggest the relevance of fixed-point itera-
tion (Definition [3.1). Employing fixed-point methods in deep or looped neural networks may offer
several advantages, such as reducing the number of parameters and dynamically adjusting runtime
based on the complexity of the problem.

Despite these advancements, our understanding of fixed-point iterations remains limited, especially
in high-dimensional spaces, due to the limitations of existing analytical tools. It remains challenging

Under review as a conference paper at ICLR 2026

to determine when a neural network can effectively approximate a fixed-point solution and how
many layers or iterations are required to ensure a good outcome.

Thus, it is natural to ask the following question:
How shall we analytically study fixed point iterations in deep neural networks?

In this study, we conduct a detailed analysis of fixed point iterations in a vector-valued function,
R? — R?, where d is the hidden feature size modeled by neural networks. We establish a general
theorem (Theorem to describe a sufficient condition for the existence of multiple fixed points
of looped neural networks (Definition [3.5]) based on varying input regions. Then, we expand our
examination by introducing noise during each fixed point iteration and show that the fixed point it-
eration process is robust under noise (Theorem[4.2)). It represents deep neural networks with residue
connection (He et al., 2016)), where after each layer, the hidden states are only perturbed slightly.
Finally, we demonstrate the effectiveness of our approach by studying looped neural networks un-
der polynomial and exponential activation functions (Theorem [5.1] and Theorem [5.2). We show
that in the looped neural networks, there may exist 2¢ number of robust fixed points. Recall that
the previous tools can only handle single fixed point analysis (Joudaki & Hofmann, 2025)), while
our analysis can be applied to more practical cases. Furthermore, our preliminary empirical results
support our theoretical findings (Section [6). Our methodology enriches the toolkit available for an-
alyzing fixed point iterations of vector-valued functions and may help us better understand neural
network mechanisms.

Our contributions:

* We study the fixed point iteration in looped neural networks and provide a general the-
orem (Theorem [A.1)) to describe a sufficient condition for the existence of multiple fixed
points. We also establish a robust version of fixed point iterations with noise perturbation
(Theorem |4.2)).

» We provide two case studies where looped neural networks may have 2¢ number of robust
fixed points, which demonstrates the effectiveness of our approach (Theorem[5.1]and The-
orem[5.2). Our preliminary empirical results validate our theoretical findings (Section [6).

Roadmap. Our paper is organized as follows. In Section 2| we review related literature. In Sec-
tion 3] we present the preliminary of our notations, Banach fixed point theorem, and our definition
of a Looped Neural Network. In Sectiond we outline the main results of this work. In Section [5}
we present case analysis results of fixed-point iterations for neural networks using two types of ac-
tivation functions. In Section[6] we present the experimental results of this work. In Section[7} we
conclude our paper.

2 RELATED WORK

In Section 2.1} we introduce fixed point theory with a focus on the Banach fixed point theorem.
In Section we present some work on incorporating looped structures into neural networks. In
Section we introduce some works that utilize the properties of fixed point iterations in neural
network computations.

2.1 FIXED POINT ITERATION METHODS

In numerical analysis, fixed point iteration methods (Agarwal et al., 2001} [Istratescu} [2001}; |Granas
& Dugundji, 2003} Khojasteh et al.l | 2015) use the concept of fixed points to compute the solution of
a given equation in a repetitive manner. Many works have focused on the convergence properties of
fixed-point iteration methods. For example, the Banach fixed point theorem (Atkinson & Han|[2009)
gives a sufficient condition under which a unique fixed point exists and is approachable via iterative
methods. Although there are other fixed-point theorems, Banach fixed-point theorem, in particular,
is useful because it provides a clear criterion for fixed points using contraction mappings. If a func-
tion is a contraction, the theorem guarantees the existence and uniqueness of a fixed point, making
it easier to work with than other fixed-point theorems that may have more complex conditions.

Under review as a conference paper at ICLR 2026

Recent works focus on employing various methods to accelerate the convergence of fixed-point it-
erations. For instance, (Zhou et al.,|2011) proposed a Quasi-Newton method for accelerating fixed-
point iterations by approximating the Jacobian in Newton’s method, enabling efficient root-finding
for the function g(z) = « — f(z). (Walker & Ni, 2011) presents Anderson acceleration, an under-
utilized method for enhancing fixed-point iterations. After this work, (Zhang et al.,[2020) introduces
a globally convergent variant of type-I Anderson acceleration for non-smooth fixed-point problems,
improving terminal convergence of first-order algorithms.

2.2 LOOPED NEURAL NETWORKS

Looped Neural Networks are a paradigm in deep learning that aims to address certain limitations of
traditional feedforward architectures. The addition of loopy structures to traditional neural networks
has already received extensive research. For example, (Caswell et al., 2016) introduces a looped
Convolutional Neural Network, which unrolls over multiple time steps and demonstrates that these
networks outperform deep feedforward networks on some image datasets.

Transformers (Vaswani et al.,|2017; Chu et al.,|2023}; |Liang et al.,|2024a)) have become the preferred
model of choice in natural language processing (NLP) and other domains that require sequence-to-
sequence modeling. To understand why Transformers excel at iterative inference while lacking an
iterative structure, (Giannou et al., 2023) proposes a Looped Transformer and has shown that trans-
former networks can be used as universal computers by programming them with specific weights
and placing them in a loop. (Gatmiry et al.| |2024) investigates the learnability of linear looped
Transformers for linear regression, showing they can converge to algorithmic solutions via multi-
step preconditioned gradient descent with adaptive preconditioners. (Gao et al., |2024; [Fan et al.
2024; Xu & Satol 2024; (Chen et al., 2024} [Liang et al., [2024b)) argued that the Looped Transformer
could achieve significantly higher algorithmic representation capabilities and good generalization
ability while using the same number of parameters compared to the standard Transformer.

2.3 NEURAL NETWORKS AS FIXED POINT ITERATIONS

To better understand the convergence property and stability of neural networks, many works investi-
gate neural networks as fixed-point iteration processes. The research in this area can be traced back
to (Hyvarinen & Oja, [1997). This work demonstrates how a neural network learning rule can be
converted into a fixed-point iteration, resulting in a simple, parameter-free algorithm that converges
quickly to the optimal solution allowed by the data. Recently, many researchers have found that
the hidden layers of many deep networks converge to a fixed point (a stable state). Based on this,
treating neural networks as fixed points has received extensive research. For instance, (Yang et al.,
2023)) introduces a training method for looped transformers that emulates iterative algorithms, opti-
mizing convergence with fewer parameters than standard transformers, which highlights that looped
Transformers excel in learning tasks like in-context learning. (Joudaki & Hofmannl| 2025) presents
a framework to analyze kernel sequence evolution in neural networks, showing how hidden repre-
sentations evolve and converge, with implications for activation functions and network design. (Bai
et al., |2019) proposes the Deep Equilibrium Model (DEQ), which solves sequential data tasks by
directly finding fixed points, bypassing iterative approximations.

3 PRELIMINARY

We introduce some definitions that will be used throughout the paper in Section Then, we
briefly review the fixed point method and Banach fixed-point theorem in Section [3.2] Finally, we
define the looped neural network in Section [3.3] which is the primary focus of our work.

3.1 NOTATIONS

For a vector v € RY, we use ||v||1, ||v]|2, and ||v]|o to denote the ¢1-norm, ¢2-norm, and /,.-norm
of v, respectively. For two vectors u,v € R®, we use (u, v) to denote the standard inner product of
u and v. We use 14 to denote a vector whose elements are all 1.

Under review as a conference paper at ICLR 2026

Polynomial Function Case Exponential Function Case

0.5 -0.25 \

> 0.0 > -0.50
o -0.75
_ _2,4,3,2
— y= —2x*+3x
ro y 5 2 -1.00 — y=exp(x3-2x2) -1
y=x -1.25 y=Xx
i e Fixed Point e Fixed Point
| -1.50 |
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 -1.50 -1.25 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50
x X

Figure 1: Example of polynomial (left) and exponential (right) functions contain at least two fixed
points (red dots), and points near these fixed points will converge to them under fixed-point iteration.

3.2 FIXED POINT METHODS

In this section, we introduce the concept of the fixed-point method and the well-known Banach
fixed-point theorem. Here, we only deal with the case where the space is R?. In Appendix @ we
state the original definitions and theorems in the context of Banach spaces.

We first introduce the fixed point iteration problem.

Definition 3.1 (Fixed point, (Atkinson & Han, 2009)). Let D be a subset of R%. We say a function
f: D — R has a fixed point p € D if f(p) = p.

Then, we introduce contractive mapping, which is a key concept in fixed point iteration convergence.

Definition 3.2 (Contractive mapping, Definition 5.1.2 of (Atkinson & Han| [2009)). Let || - || be a
norm on R%. Let D be a subset of R%. We say that a function f : D — R¥ is contractive with
contractivity constant K € [0, 1) if

1f(z) = f@)] < Kllx = 2'|], Va,2" € V.

Contractive mapping means that the function’s output space becomes ‘smaller’ than its input space.
This allows us to introduce the Banach fixed-point theorem, the key tool in this work.

Lemma 3.3 (Banach fixed-point theorem, Theorem 5.1.3 of (Atkinson & Han, 2009)). Let || - || be
a norm on R, Let D be a nonempty closed set of R%. Suppose that f : D — R% is a mapping
that satisfies the following: (1) f(x) € D whenever x € D. (2) [is contractive with contractivity
constant K € [0, 1).

Then, it holds that: (1) The function [has a unique fixed point p € D. (2) For any initial point
) € D, the fixed-point iteration) = f(x(t_l)), t > 1, converges to the fixed point p as
t — o0. (3) The following error bounds hold:

t

: K _ _
|+ — p| < min{ 2O, Tl = 2D K2l — |}

1 _
Tl
Lemma [3.3] told us the sufficient condition for a single unique fixed point. Although checking for
contractivity is usually difficult, for differentiable functions, it becomes easier by examining the
Jacobian matrix. The following lemma is a corollary of Lemma[3.3]

Lemma 3.4 (Banach fixed point theorem, vector case, informal version of Lemma. Let D C R?
be a nonempty closed set. Suppose that f : D — R% is differentiable and satisfies the following:
(1) f(x) € D whenever x € D. (2) There exists constant K < 1 such that for every i € [d],
H%@Hl < K, Yz € D. where f;(x) is the i-th entry of f(x). Then, it holds that (1) The function
f has a unique fixed point p € D. (2) For any initial point z(°) € D, the fixed point iteration
z® = f(x(t_l)), t > 1, converges to the fixed point p as t — oo. (3) The below error bounds hold:
Kt K

20 = 2O oo, = |a® — 2 oo, Kl — pllc}.

4 = plloc < min -

Under review as a conference paper at ICLR 2026

When d = 1, Lemma 3.4 boils down to the scalar case.

3.3 LOOPED NEURAL NETWORKS

In this section, we give the formal definition of a Looped Neural Network.

Definition 3.5 (Looped Neural Network). Let W = [wy, ..., wq]" € RY*? be a weight matrix and
b € R? be the bias parameter. Let g : R — R be a differentiable activation function. We consider
the one layer of neural network in the form

fla; W b) := g(Wz +b)
where g is applied entry-wise. The L-layer looped neural network is defined as
NN(x(O);I/V,b,L) =g 20 .= f(x(t_l);VV,b), Yt € [L).

Remark 3.6. Note that the Looped Neural Network (LNN) shares similarities with Recurrent Neural
Networks (RNN) but is slightly different. RNN maps sequence to sequence, which means in each
loop, RNN has new input data, while LNN does not. Furthermore, RNN generates output in each
loop, while LNN only outputs after all loops.

4 MAIN RESULTS

We first introduce our general theorem for looped neural networks in Sectiond.T]and then introduce
our robust version in Section 4.2

4.1 GENERAL THEOREM

We have the following general theorem, which provides a sufficient condition for the existence of
multiple fixed points for a Looped Neural Network.

Theorem 4.1 (General result). Consider the L-layer looped neural network NN(CU(O); W,b, L) de-
fined in Definition If the following conditions hold: (1) There exists disjoint D1, . .., D,, C R?
such that for every i € [m], and for every x € D;, NN(x; W,b,1) € D,. (2) The weight matrix W
and the activation function g satisfy: For every i € [m)], there exists K; € [0, 1) such that for every
x € D;, and for every j € [d], |g'((wj,z))| - ||w;||1 < K;. Then, the following statements hold:

* The single layer of the looped neural network, f(x;W), has at least m fixed-points
Dis- .., Pm satisfying : For every i € [m], there exists a constant €; > 0, for any initial
point 20 € D; with ||2(°) — p;||o < €, we have

lim NN(z©; W,b, L) = p;.
L—oo

* For every i € [m), there exists a constant ¢; > 0 such that for any L > 2,

INN(z©; W, b, L) — pil| oo < KF - cici.

Proof. Assume the conditions in the statement hold. Fix ¢ € [m]. Then we have f(z; W) =
NN(z; W,b,1) € D; for every x € D;. Next, for every j € [d], and for the j-th entry of f(a; W),
where we denoted by f;(z; W), we have

dfj(x; W,b) dg({w;,x))
l iz o= I

where the first step follows from the definition of f;(x; W), the second step uses the chain rule, the
third step is due to the property of norm, and the last step uses the condition in the lemma.

I = llg'(Cw;,) - wjlly = lg" ((wj,)] - [lw; [l < K,

Therefore, we can apply Lemma for each ¢ € [m], there exists a fixed point p; which can be
converged to by the fixed point iteration, and thus it can be found by the looped neural network with
initial point 2(®) when the number of layers goes to infinity. Next, for every i € [m], and for an
initial point 2(°) € D;, there exists ¢; := sup, .ep, 1Y = 2llco» €i = ﬁ such that we have

t

Kt
INN(z W, b, L) = pillos = [l2") = pillo < T K. lz®) — 20| < K - e,

Under review as a conference paper at ICLR 2026

where the first step follows Definition [3.5] and the second step uses the error bound in Lemma [3.3]
and the second steps follows the definition of ¢; and ¢;. O

Theorem [4.1] gives us a way how to find different fixed points of vector-valued functions such as
looped neural networks. Note that for different inputs, the fix point iteration behavior may be dif-
ferent, even when the model weights are fixed. We refer readers to Figure[T] and Figure [2| for more
intuition.

fi(x1, x2)
- y=x;

fa(x1, X2)

Figure 2: Example of a 2-d case of Theorem Left: The graph of fi(z1,22) (in green) and
y = z1 (in purple), with the red line indicating the intersection of two curves (1-th dimension fixed
point). Right: The graph of f5(x1, z2) (in green) and y = x4 (in purple), with the red line indicating
the intersection of two curves (2-th dimension fixed point).

4.2 PERTURBED FIXED POINT ITERATION

Next, we consider a variant of the fixed point method, where in each iteration, there is noise term
h(z).

Theorem 4.2 (Robust Banach fixed point theorem, informal version of Lemma @) Let D C R
be a nonempty closed set. Suppose that f : D — R is differentiable and satisfies the following: (1)
f(x) € Dwhenever x € D. (2) There exists constant K € [0,0.95] such that |f'(z)| < K, Vx € D.
(3) For any initial point z'©) € D, consider the perturbed fixed point iteration x*) = f(x(tfl)) +
h(z=V), for any t > 1, where the function h satisfies |h(z)| < 1/m for every x € D for some
sufficiently large m > 0. Then, it holds that (1) The function f has a unique fixed point p € D. (2)

The following error bounds hold:
_ 1 20
[0 = pl < K[27D = pl+ — and |¢1) = p| < K'|a —p|+ =

Theorem [.2] shows that each fix iteration process is robust and may not be hurt by the noise much.
It corresponds to the setting that deep neural networks with residual connections 2016
where after each layer, the hidden states are only slightly perturbed. Our experiments in Section [6]
support our theoretical analysis of robustness.

5 CASE STUDY
In this section, we provide case studies of the Looped Neural Networks with different activation
functions. We show that the Looped Neural Networks may have 2¢ number of different fixed points.

First, we consider the polynomial activation function. We have the following robust fixed points
statement.

Under review as a conference paper at ICLR 2026

Theorem 5.1 (A specific polynomial activation function with small perturbation). Consider the L-
layer looped neural networks NN (:r(o); W, b, L) defined in Deﬁnition If the following conditions

hold: (1) Let C := 1/ 55Y/%5 (2) Let g(x) := —2a* + 80 + (3 — 2C?)a? + (3C° —3C)z +1
denote the polynomial activation function used in this looped neural networks.

Then there exists a set of noisy parameters W and b such that) = NN(x(t’l); W,b, L) +
h(z®=1D) € RY, for any t € [L], where the function h satisfies |h(z)| < 1/m for every x € R for
some sufficiently large m > d. For this looped neural network, the following statements hold:

s The single layer of the looped neural network, f(x;W,b), has at least 2¢ robust fixed-
points py,- -+ , paa satisfying: For every i € [2%), there exists a vector ¢; € R%, for any
initial point £ with || 2% — p;l|so < ||€i]loo, We have

lim NN(a:(O);VV,b7 L) =p;.

L—oo

s Forevery i € [2%), there exists a constant ¢; > 0 and a constant K; € [0,0.9) such that for
any L > 2, we have

20
INN(z @ W, b, L) = pilloo < Kf - [|€]loo + —.

Proof. Let f(x; W, b) be a single layer version of NN(x; W, b, 1). Let m > d be a sufficiently large
constant. Let W = -1, -1 + (=15 + 1)diag(1s) € R?*? denote the weight matrix. Let

b=[C,---,C]" € R? denote the bias vector. Then it’s clear that for each j € [d], we have
2., 3,5, 1 1
g({wj,) +b;) = — 5% + 5% + Whj(x) = fi(x; W, b) + Whj(l”)

where hj(z) is a polynomial in x1, - - - , z4. For every j € [d], there exists a D1 = (1.302,1.502)
and Dy = (—0.3,0.3), it satisfies that f;(z; W,b) € Dy when z; € D, and f;(x; W,b) € Dy when
x; € Do. By the proof in Lemma|[B.T} there exists a K; = 0.92 such that for any 2; € D; U D3 we
have [f(z; W,b)| < K;.

It’s obvious that when m is sufficiently large and [|¢; || is small enough, we will have | -1z h;(z)| <

L, where we can see —;h;(z) as h(x) in statement of Theorem Then, by combing the result
of Theorem we have that for each dimension j € [d], we have 2 robust fixed points.

So we can get f(x; W, b) has 2¢ Robust Fixed Points trivially. The reason is that by our construction,
for each dimension j € [d], the value of the function f near the fixed point along the j-th dimension
is only affected little by other dimensions. Hence, if each dimension admits two fixed points, then
we have 2 fixed points by considering all configurations.

And for any i € [29], j € [d], we have

20 20
INN; (D W, b, L) — p, j| < Kf7j|NNj($(0);W, b,L) —pi ;| + - < K} jei;+ -

where the first step comes from the result of Theorem4.2] and the second step comes from the range
of values for the initial point. Then use the definition of || - ||, we have

20
INN(2(5 W0, L) = pilloc < K- [leilloo + —.

— (2

Then, we complete the proof. O

In Theorem [5.1, we can see that our Looped Neural Network has 27 different robust fixed points
solutions. Recall that the previous analysis tools can only handle single fixed point analysis. We can
show the existence of 2¢ different robust fixed points solutions when the Looped Neural Network
uses exponential activation as well.

Theorem 5.2 (A specific exponential activation function with small perturbation). Consider the L-
layer looped neural networks NN (x(o); W, b, L) defined in Deﬁnition If the following conditions

Under review as a conference paper at ICLR 2026

Loss Curve

Loss (||x - target]))

[5 10 15 20 25
iteration times

Figure 3: Empirical support for the Theorem |5.1|and Theorem Let d = 10. We randomly pick
29 = 1024 points, where each point is in one of 2¢ = 1024 fixed points’ neighborhoods with radius
1,ie., ||x — target|| < 1. The z-axis is the number of looped iterations. The y-axis is the distance

between the point at iteration ¢ and its corresponding fixed point. The results show that all points
converge to their fixed points, and all 2¢ = 1024 fixed points are robust.

hold: (1) Let C := —2.15. (2) Let g(z) := exp(z® + (=2 — 3C)z? + (3C? + 4C)z + In2) — 1
denote the exponential activation function used in this looped neural networks.

Then there exists a set of noisy parameters W and b such that) = NN(z(=V;W,b, L) +
h(z=V) € RY, for any t € [L), where the function h satisfies |h(x)| < 1/m for every x € RY for
some sufficiently large m > d. For this looped neural network, the following statements hold:

s The single layer of the looped neural network, f(x;W,b), has at least 2% robust fixed-
points p1,--- ,pga satisfying: For every i € [Qd], there exists a vector €; € R?, for any
initial point £ with ||2(©) — p;||o < ||€i]l0o, we have limp,_,oo NN(z(O); W, b, L) = p;.

s Forevery i € [2%), there exists a constant ¢; > 0 and a constant K; € [0,0.9) such that for
any L > 2, we have

20
INN(; W, b, L) = pilee < K7 - [|€slloo + pon

Proof. Let f(x; W, b) be a single layer version of NN(z; W, b, 1). Let m > d be a sufficiently large
constant. Let W = —51,- 1 + (—-15 + 1) diag(1q) € R%*? denote the weight matrix. Let

b=[C,---,C]" € R denote the bias vector. Then it’s clear that for each j € [d], we have

1
g((wj, z) +b;) = exp(a} — 2z;) — 1+ —2hi(@)

where the first step follows from exp(z) = 1 + O(z) when |z| < 1 and |z;| < 1. hj(z) is
an exponential function in xy,--- ,x4. For every j € [d], there exists a D; = (—0.1,0.1) and
Dy = (—1.01, —0.81), it satisfies that f;(z; W,b) € D1 when z; € Dy and f;(x; W, b) € Dy when
x; € Dy. By the proof in Lemma [C.T} there exists a K; = 0.85 such that for any 2; € Dy U D,
we have |f}(x; W, b)| < K,. Then, we finish the proof by following the same proof statement in
TheoremEﬁ] O

Furthermore, our empirical results in Figure 3] support our Theorem [5.1]and Theorem [5.2] showing
that there are 2¢ fixed points in our looped neural networks.

Under review as a conference paper at ICLR 2026

Iteration trajectory for different m

- m=100
—A— m=15
0.08- m=5

0.10

0.06

X2

0.04

% ‘Q‘

0.001

1.375 1.400 1.425 1.450 1.475
X1

Figure 4: Different iteration trajectory when taking different m in Theorem We consider the
2-d case, where the two axes are 1 and z5. The red square (M) in this figure is the initial point
2(9) € R2. The red star (%) in this figure is the robust fixed point without noise. The m represents
the inverse of the noise level, i.e., noise = 1/m. From the figure, we can see that even though the
noise changes the fixed point iteration process, different trajectories will eventually converge to the
robust fixed point.

6 EXPERIMENTS

6.1 SETUP

In our experiments, we used Python 3.8 for simulation and employed Matplotlib 3.4.3 library to
visualize the experimental results. We conduct three simulations in our work: (1) We are going to
verify the polynomial function in Lemma and the exponential function in Lemma actually
has 2 fixed point. (2) We are going to verify that the neural network in Theorem 5.1 has 2 fixed point
in each dimension. (3) Recall that m represents the inverse of the noise level in Theorem We
are going to verify that even the noise changes in the neural network of Theorem 5.1} different fixed
point iteration trajectories will eventually converge to the Robust Fixed Point.

6.2 RESULTS

In Figure we simulate the Banach fixed point iteration on a polynomial function f(x) = —%x‘l +
322 and an exponential function f(z) = exp(z® — 3z2) — 1. It shows that there are two fixed
points (7 = 0 and x5 ~ 1.403) of the polynomial function, and the points in the neighborhood
of a fixed point will iterate to the corresponding fixed point through fixed-point iteration. It also
shows that there are two fixed points (z; = 0 and z2 ~ —0.910) of the exponential function, and
the points in the neighborhood of a fixed point will iterate to the corresponding fixed point through
fixed-point iteration. In Figure 2} we simulate a 2-d neural network in Theorem[5.1] It shows that in
the first dimension of the neural network, we have two robust fixed points (z; = 0 and z; ~ 1.403),
and in the second dimension of the neural network, we have two robust fixed points (x5 = 0 and
xo ~ 1.403). In Figure] we simulate the effect of different values of m on the fixed-point iteration.
It shows that even though the noise changes the fixed point iteration process, different trajectories,
m =5, m = 15, and m = 100, when taking the same initial point (l), will eventually converge to

the robust fixed point ().

7 CONCLUSION

We provide an analytical framework for understanding fixed-point iterations in loop neural networks.
We established theorems for multiple fixed points and their robustness under noise. Case studies
with polynomial and exponential activation functions show the looped neural networks may have an
exponential number of robust fixed points, demonstrating our approach’s effectiveness. Our findings
offer new insights into loop neural networks, contributing to the analysis toolkit and potentially
enhancing loop neural network understanding and efficient algorithm design.

Under review as a conference paper at ICLR 2026

ETHIC STATEMENT

This paper does not involve human subjects, personally identifiable data, or sensitive applications.
We do not foresee direct ethical risks. We follow the ICLR Code of Ethics and affirm that all aspects
of this research comply with the principles of fairness, transparency, and integrity.

REPRODUCIBILITY STATEMENT

We ensure reproducibility on both theoretical and empirical fronts. For theory, we include all formal
assumptions, definitions, and complete proofs in the appendix. For experiments, we describe model
architectures and training details in the main text and appendix. Code and scripts are provided in the
supplementary materials to replicate the empirical results.

REFERENCES

Ravi P Agarwal, Maria Meehan, and Donal O’regan. Fixed point theory and applications, volume
141. Cambridge university press, 2001.

Kendall Atkinson and Weimin Han. Theoretical Numerical Analysis: A Functional Analysis Frame-
work, volume 39. Springer Science & Business Media, 2009.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equilibrium models. Advances in neural
information processing systems, 32, 2019.

Isaac Caswell, Chuangi Shen, and Lisa Wang. Loopy neural nets: Imitating feedback loops in the
human brain. Tech. Report, 2016.

Bo Chen, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Bypassing the exponential de-
pendency: Looped transformers efficiently learn in-context by multi-step gradient descent, 2024.

Timothy Chu, Zhao Song, and Chiwun Yang. Fine-tune language models to approximate unbiased
in-context learning. arXiv preprint arXiv:2310.03331,2023.

Aminu Da’u and Naomie Salim. Recommendation system based on deep learning methods: a
systematic review and new directions. Artificial Intelligence Review, 53(4):2709-2748, 2020.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen Lai,
Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, et al. Layer skip: Enabling early
exit inference and self-speculative decoding. arXiv preprint arXiv:2404.16710, 2024.

Ying Fan, Yilun Du, Kannan Ramchandran, and Kangwook Lee. Looped transformers for length
generalization. arXiv preprint arXiv:2409.15647, 2024.

Yihang Gao, Chuanyang Zheng, Enze Xie, Han Shi, Tianyang Hu, Yu Li, Michael K Ng, Zhenguo
Li, and Zhaogiang Liu. On the expressive power of a variant of the looped transformer. arXiv
preprint arXiv:2402.13572, 2024.

Khashayar Gatmiry, Nikunj Saunshi, Sashank J Reddi, Stefanie Jegelka, and Sanjiv Kumar. Can
looped transformers learn to implement multi-step gradient descent for in-context learning? In
Forty-first International Conference on Machine Learning, 2024.

Angeliki Giannou, Shashank Rajput, Jy-yong Sohn, Kangwook Lee, Jason D Lee, and Dimitris
Papailiopoulos. Looped transformers as programmable computers. In International Conference
on Machine Learning, pp. 11398-11442. PMLR, 2023.

Andrzej Granas and James Dugundji. Fixed point theory, volume 14. Springer, 2003.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016.

10

Under review as a conference paper at ICLR 2026

Aapo Hyvirinen and Erkki Oja. A fast fixed-point algorithm for independent component analysis.
Neural computation, 9(7):1483-1492, 1997.

Vasile I Istratescu. Fixed point theory: an introduction, volume 7. Springer Science & Business
Media, 2001.

Amir Joudaki and Thomas Hofmann. Emergence of globally attracting fixed points in deep neural
networks with nonlinear activations. In International Conference on Artificial Intelligence and
Statistics, 2025.

Farshid Khojasteh, Satish Shukla, and Stojan Radenovié. A new approach to the study of fixed point
theory for simulation functions. Filomat, 29(6):1189-1194, 2015.

Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, and Yufa Zhou. Multi-layer transformers
gradient can be approximated in almost linear time. arXiv preprint arXiv:2408.13233, 2024a.

Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, and Yufa Zhou. Looped relu mlps may be
all you need as practical programmable computers. arXiv preprint arXiv:2410.09375, 2024b.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. Advances in Neural Information Processing Systems, 35:17359-17372, 2022.

OpenAl. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Zhenmei Shi, Yifei Ming, Xuan-Phi Nguyen, Yingyu Liang, and Shafiq Joty. Discovering the gems
in early layers: Accelerating long-context llms with 1000x input token reduction. arXiv preprint
arXiv:2409.17422,2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 2017.

Homer F Walker and Peng Ni. Anderson acceleration for fixed-point iterations. SIAM Journal on
Numerical Analysis, 49(4):1715-1735, 2011.

Mei Wang and Weihong Deng. Deep face recognition: A survey. Neurocomputing, 429:215-244,
2021.

Kevin Xu and Issei Sato. On expressive power of looped transformers: Theoretical analysis and
enhancement via timestep encoding. arXiv preprint arXiv:2410.01405, 2024.

Yuesheng Xu and Haizhang Zhang. Convergence of deep convolutional neural networks. Neural
Networks, 153:553-563, 2022.

Yuesheng Xu and Haizhang Zhang. Uniform convergence of deep neural networks with lipschitz
continuous activation functions and variable widths. IEEE Transactions on Information Theory,
2024.

Liu Yang, Kangwook Lee, Robert Nowak, and Dimitris Papailiopoulos. Looped transformers are
better at learning learning algorithms. arXiv preprint arXiv:2311.12424, 2023.

Junzi Zhang, Brendan O’Donoghue, and Stephen Boyd. Globally convergent type-i anderson accel-
eration for nonsmooth fixed-point iterations. SIAM Journal on Optimization, 30(4):3170-3197,
2020.

Hua Zhou, David Alexander, and Kenneth Lange. A quasi-newton acceleration for high-dimensional
optimization algorithms. Statistics and computing, 21:261-273, 2011.

11

Under review as a conference paper at ICLR 2026

Appendix

Roadmap. In Section[A] we introduce the fixed point method and the well-known Banach fixed-
point theorem. In Section[B] we provide the analysis of fixed points under the polynomial activation
function. In Section [C| we provide the analysis of fixed points under the exponential activation
function.

A TooLs OF FIXED POINT METHODS

In this section, we present the tools of fixed point methods used in our work. In Section [A.] we
introduce the general case of Banach fixed point theorem. In Section[A.2] we present the scalar case
of Banach fixed point theorem. In Section we present the vector case of Banach fixed point
theorem. In Section[A.4] we present the matrix case of Banach fixed point theorem. In Section[A.5]
we present some calculation examples using Banach fixed point theorem.

A.1 BANACH FIXED POINT THEOREM

We firstly present the definition of fixed point.

Definition A.1 (Fixed point, (Atkinson & Han| [2009)). Let V be a Banach space with the norm
I - llv, and let D be a subset of V. We say a function f : D — V has a fixed point p € D if
fp)=p.

And we introduce the concept of contractive mapping which will be used later.

Definition A.2 (Contractive mapping, Definition 5.1.2 of (Atkinson & Han, |2009)). Let V be a
Banach space with the norm || - ||y, and let D be a subset of V. We say that a function f : D —V
is contractive with contractivity constant K € [0, 1) if

1f(z) = f@)lv < K|z —a'|lv, Va,2" € V.

Now, we can present the Banach fixed point theorem, which is crucial in guaranteeing the existence
and uniqueness of fixed points in metric spaces under contractive mappings, forming the foundation
of many applications in analysis and applied mathematics.

Lemma A.3 (Banach fixed point theorem, Theorem 5.1.3 of (Atkinson & Hanl [2009)). Let V' be
a Banach space V with the norm || - ||v. Let D be a nonempty closed set of V. Suppose that
f: D — V is a mapping that satisfies the following

* f(x) € D whenever x € D.

* [is contractive with contractivity constant K € [0,1).
Then it holds that

* The function f has a unique fixed point p € D.

* For any initial point (°) € D, the fixed-point iteration =) = f(x(tfl)), t > 1, converges
to the fixed point p as t — oc.

* The following error bounds hold:

Kt
12 = pllv < =l = 2P,
K _
||$(t) —plly < ﬁ||x(t) — 2t 1)||v,

l2® = plly < K[Ja* —pllv.

A.2 SCALAR CASE

In this section, we present the scalar case of Banach fixed point theorem.

12

Under review as a conference paper at ICLR 2026

Lemma A.4 (Banach fixed point theorem, scalar case). Let D C R be a nonempty closed set.
Suppose that f : D — R is differentiable and satisfies the following:

* f(z) € D whenever x € D.

e There exists constant K < 1 such that

|f'(z)| < K, Vz € D.
Then it holds that

* The function f has a unique fixed point p € D.

e For any initial point £°) € D, the fixed point iteration z*) = f(sc(t_l)), t > 1, converges
to the fixed point p as t — oo.

* The following error bounds hold:

Kt
2 —p| < == |o® =2,
K _
|x(t) —pl < — K|I(t) _ gt 1)|’

@ — p| < K[2*7D —p|.
Proof. Tt directly holds by Lemma[A.5|with d = 1. O

A.3 VECTOR CASE

In this section, we extend the Banach fixed point theorem to its vector version. Note that R% is a
Banach space with norm || - ||oc. The £o norm of € R? is defined as ||z o = max;e(q) |74].

Lemma A.5 (Banach fixed point theorem, vector case, formal version of Lemma . Let D C R4
be a nonempty closed set. Suppose that f : D — R is differentiable and satisfies the following:

* f(z) € D whenever x € D.

o There exists constant K < 1 such that for every i € [d],

dfi(x)

A < KVz e D.
[e 1 < KVzx

Then it holds that

* The function f has a unique fixed point p € D.

e For any initial point £°) € D, the fixed point iteration z*) = f(sc(t_l)), t > 1, converges
to the fixed point p as t — oo.

* The following error bounds hold:

Kt

||I(t) —Plloe < 11— KHx(l) - x(O)HOOa
K _

79~ plloe < 70— 2 ~ 2D,

”x(t) —plloo < K”x(t_l) — Plloo-

Proof. We only need to show that f is a contraction. For any y, y’ € R, for any i € [d], there exists
2z on the line segament between 3 and 3’ such that

dz

|fily) = fi(y")] < K o=z —)|

13

Under review as a conference paper at ICLR 2026

dfi(z)
< 1Dy - ol

<Ky —9]loo-

where the first step follows from mean value theorem, the second step uses the Holder’s inequality,
and the last step is due to the second condition.

Therefore, by definition of || - ||, we have

1) = fW)loe < Klly — 9|l oo-

Hence f is contractive with conctractivity constant K € [0,1). By Lemma the proof is com-
plete.

A.4 MATRIX CASE

In this section, we extend the Banach fixed point theorem to its matrix version. Note that R™*¢
is a Banach space with norm || - ||oo. The maximum norm of A € R"*4 is defined as || A/ =

maXe(n) jefd |Aijl-

Lemma A.6 (Banach fixed point theorem). Let D C R™*? be a nonempty closed set. Suppose that
f: D — R"*4 s differentiable and satisfies the following:

* f(X) € D whenever X € D.

o There exists constant K < 1 such that for every i, k € [n] and j,1 € [d]

| df(X)i s

K
<2 vxen.
X, | Sna TXE

Then it holds that

*» The function f has a unique fixed point p € D.

* For any initial point (°) € D, the fixed point iteration ") = f(x(t_l)), t > 1, converges
to the fixed point p as t — oc.

e The following error bounds hold:

Kt
2 —p| < ﬁlw(” — 2,
K _
|2 — p| < — Klm(t) — =1

2 —p| < KoY —p|.

Proof. Here we only need to show that f is a contraction. For any X, X’ € R™*?, for any i €
[n],7 € [d], there is a Z between the matrix X and X’ such that

df(X); ,
X — 151 <1 8o -)
K !
< (Lo (X - X7)
< KX = X

where the first step follows from mean value theorem, the second step uses the second condition in
the lemma, and the last step is due to basic algebra.

Therefore, by definition of || - ||, we have
1F(X) = F(X) oo < KX = X'
Hence f is contractive with contractivity constant K € [0, 1). By Lemma the proof is complete.
O

14

Under review as a conference paper at ICLR 2026

A.5 EXAMPLES USING FIXED POINT THEOREM

In this section, we present some calculation case by using Banach fixed point theorem.
Theorem A.7. Fixed Point Theorem:

e Ifg € Cla,bland a < g(x) < b forall x € [a,b], then g has least one fixed point in [a, b]

* If, in addition, ' exists in [a,b], and Ik < 1 such that |¢'(z)| < k < 1 for all x, then g has
a unique fixed point in [a, b).

Success Case: g(z) = % has a unique fixed point in [—1, 1].

1

Proof. First we need show g(z) € [~1,1], Vo € [~1,1]. Find the max and min values of g as —3

and 0. (Hint: find critical points of g first). So g(x) € [-%,0] C [-1,1].

Also |¢g'(z) = %| < 2 < 1,Vz € [~1,1], so g has unique fixed point in [—1,1] by Fixed Point
Theorem. 0

Failed Case 1: g(z) = "”23_ L has a unique fixed point in [3, 4]. But we can’t use FPT to show this.
Note that there is a unique fixed point in [3, 4)(p = 3+¥Y13) but g(4) = 5 ¢ [3,4],and ¢/(4) = 8 > 1
so we cannot apply FPT here.

From this example, we know FPT provides a sufficient but not necessary condition.

Failed Case 2: We can use FPT to show that g(z) = 3~ must have Fixed Point on [0, 1], but we
can’t use FPT to show if it’s unique (even though the FP on [0, 1] is unique in this example).

Solution. ¢'(z) = (37®) = —37"In3 < O,therefore g(z) is strictly decreasing on [0, 1]. Also
g(0) =3 =1and g(1) = 37}, s0 g(x) € [0,1], Vo € [0, 1]. So a FP exists by FPT.

However, ¢'(0) = —In3 ~ —1.098, so we don’t have |¢'(z)| < 1 over [0, 1]. Hence FPT does not
apply.

Nevertheless, the FP must be unique since g strictly decreases and intercepts with y = x line only
once.

Then We will present a lemma that proves a quadratic polynomial function cannot have two fixed
points that satisfy the conditions of the Banach fixed point theorem.

Lemma A.8. There doesn’t exist a quadratic function that contains two fixed points and simultane-
ously satisfies that points in the neighborhood of the fixed points can converge to the respective fixed
point through iteration.

Proof. ForVa,b,c € R, let f(z) = ax?® + bz + ¢ be a quadratic function. Then we have f’(z) =
2ax + b. Assuming that f(x) has two fixed points, then we have:
(1-=0)4++/(b—1)2—4ac (1-0)—+/(b—1)% —4ac

y L2

2a 2a

Then we have,

f(x1) =1+ (b—-1)2—4dac>1

flx2)=1—+/(b—1)2—dac< 1
So there is only one fixed point can satisfy the second condition of Lemma[A.3] O
A.6 ROBUST BANACH FIXED POINT THEORY
Theorem A.9 (Robust Banach fixed point theorem, scalar case, formal version of Lemma @ Let

D C R be a nonempty closed set. Suppose that f : D — R is differentiable and satisfies the
following: (1) f(x) € D whenever © € D. (2) There exists constant K € [0,0.95] such that

15

Under review as a conference paper at ICLR 2026

|f'(z)| < K, Yo € D. (3) For any initial point z(°) € D, consider the perturbed fixed point
iteration £ = f(x=1) 4 h(xt=1V), for any t > 1, where the function h satisfies |h(z)| < 1/m
for every x € D for some sufficiently large m > 0.

Then, it holds that (1) The function f has a unique fixed point p € D. (2) The following error bounds
hold:

2 — p| < KJo®D — p| + — and [o0 — p| < K'[a® - p| + .
m m
Proof. Clearly f has a fixed point p € D by Lemmal[A.4]
We first show the first error bound. We can show that
@ —p = f (@) = p+ h(V)]
= [£@Y) = f(p) + A7)
=1f(c) - ("7 = p) + h(z))
<|f'(e)- @7V = p)| + [n(aV)]
=1/ 271 = p| + [a(z""D)]
< Ko —p| + —
m
where the first step uses the perturbed fixed point iteration ") = f(2(*=1) 4 h(z(*~1), the second
step is due to the fact that p is a fixed point of f, the third step follows from the mean value theorem

where ¢ is a point between z(*~1) and p, the fourth step uses the triangle inequality, the fifth step
follows from basic algebra, and the last step follows from | f'(x)| < K and |h(x)| < 1/m.

Next, we show the second error bound. We can show that
1
2@ —p| < KoY —p| + —
m
(t—2) 1 1
< K(K|x —pl+ =)+ —
m m

t—1 KZ‘
< Kt|1'(0) —p\ + Z E
i=1

1—-K'!
< K20 _ -
S K =i+ 0,

20
< KYzx©® —p| 4+ =,

m

where the first four steps follow from recursively using the third error bound, the fifth step is due to
the sum of geometric series, and the last step follows from K € [0, 0.95]. O

B CASE STUDY: POLYNOMIAL ACTIVATION

In this section, we start with a simple example of a single variable function which has at least two
fixed points that can be found using the fixed point method. Then we use it to construct a specific
neural network with polynomial activation function. Finally, we show that this neural network has
at least two fixed points that can be found using the fixed point method.

B.1 POLYNOMIAL ACTIVATION

Firstly, we present a univariate polynomial function that has at least two fixed points, which can be
identified using the fixed point method.

Lemma B.1. Let f : R — R be a function defined as f(x) := —%x4 + %x2. Then the following
statements hold:

16

Under review as a conference paper at ICLR 2026

o The function [has at least two fixed points which can be found by the fixed-point iteration,
and we denoted them as p1, po.

» Fori € {1,2}, there exists a constant ¢; > 0, for any initial point 20 ¢ [pi — €i,pi + €,
the fixed-point iteration V) = f (x(t_l)) converges to the fixed point p;.

* Fori € {1,2}, there exists a constant ¢; > 0 and a constant K; € [0, 1) such that for any
t>2,

|2 — pi| < K!- e

Proof. Clearly, p1 = 0 and py ~ 1.4028 are two fixed points of f. We show that p; and p, can be
found by the fixed-point iteration and the error bounds hold.

For the fixed point p; = 0, let e = 0.3, K1 = 0.9, and C; = 2/(1 — K;). For any = €
[p1 — €1,p1 + €1] = [—0.3,0.3], we have f(z) € [0,0.132] C [—0.3,0.3]. Hence the first condition

of Lemmal[A.4]is satisfied. For any = € [p1 — €1, p1 + €1] we have | f/(z)| < Ky = 0.9 < 1. Hence
the second condition of Lemma [A.4]is satisfied. Thus by Lemma [A.4] if we pick the initial point

2 € [p; — €1,p1 + €1], we can find p; by the fixed point iteration () = f(z(*=1)), and it holds
that for any ¢ > 2,

Ki
- K,
< K{

- 1-K
= K{ . Clela

20— p| 20 - 5©)

IN

. 261

where the first step follows from Lemma , the second step follows from 2 2 ¢ [p1—e€1,p1+
€1], and the last step follows from ¢; = 2/(1 — K3).

For the fixed point xo = 1.4028, let ¢ = 0.1, K = 0.92, and Cy = 2/(1 — K3). For any
x € [p2 — €2,p2 + €2] = [1.3028,1.5028], we have f(z) € [1.347,1.397] C [1.3028,1.5028].
Hence the first condition of Lemma is satisfied. For any 2 € [ps — €3,p2 + €3], we have
|f'(z)] < K> = 0.92 < 1. Hence the second condition of Lemma [A.4]is satisfied. Thus by
Lemma|A.4} if we pick the initial point 2(°) € [py — €3, ps + €3], we can find p, by the fixed point
iteration () = f(2(*~1), and it holds that for any ¢ > 2,
t
1f(72K2|33(1) — 20|
K

—1-Ky
= Ké + C2€2,

IN

|$(t) — pa

. 262

where the first step follows from Lemma|A.4] the second step follows from z(?), (1) € [py—ez, po+
€2], and the last step follows from co = 2/(1 — K53).

Therefore, we complete the proof. O

Next, we prove two lemmas which are useful to construct a neural network with a polynomial
acitivation function.

Lemma B.2. Let

2 12
file) = = 2w)+ 5 Cua + (5 — 2O) + (FC° = 3C)) + 1,
where C' = w%m,u = [1,1,C — 1]. Let fo(z) := 1, f3(x) := 1. Then there exists a

polynomial g(z) := aszt 4 a3z’ + agz® + a1z + ag where ag, a1, a2, as, s € R such that for some
wi, W, w3 € R3, we have

g((w1, 7)) = fi(x),

17

Under review as a conference paper at ICLR 2026

9((wa,) = fo(x),
9({(ws,) = fa(x).

Moreover we have

2, 8 .4 3 12 , ., 8 .
= 442 5= 2o - 1
g(z) 5 +5Cz —l—(2 5C)z +(5C’ 3C)z+1,
and wy = [1,1,C — 1] T, wy = [0,0,0] T, w3 = [0,0,0] .
Proof. Let g(z) := —22* + 3C2% + (3 — 2C?)22 + (8C% - 30)z + 1. Letw; := [1,1,1 —

C)",wq :=10,0,0] ", w3 := [0,0,0] . Then it is clear that we have

g((w, z)) = f1(),
g((w2,2)) = fa(x),
g({ws, x)) = f3(z).

Thus we complete the proof. O

Lemma B.3. Let

where C := 4/ wﬂf\/ﬁ,u :=[1,1,C — 1]. It holds that

2 3
filzr,1,1)7) = *53711 + §~T%

Proof. Note that (u, [z1,1,1]T) = 2, + C. Hence

fl([xla 1, 1]T)
2 4 8 5 3 12 4 s 8 3
= — S(xl +CO)* + 30(301 +C)° + (5 — EC)z + C)* + (50 -3C) (1 +C)+1
2 3
where the first step follows from (u,[z1,1,1]T) = x; + C, and the second step follows from
expanding the higher-order terms and simplifying it. O

B.2 EXTEND TO NEURAL NETWORKS

We are now prepared to construct a neural network with polynomial activation functions. By care-
fully designing the weight matrix, we can ensure that the network converges to different fixed points
for different initilization.

Lemma B.4. Let W := [w1, wa, w3] € R3*3 be a weight matrix. Let C' = 15+78‘/675 be a constant.
Let a polynomial activation function g : R — R be defined as
2 8 3 12 8
g(z) = — 324 + ng?’ + (5 - 36’2),22 + (303 —-3C)z+1,

We define one layer of a neural network, denoted as f, as follows:

Fla; W) = [g((wr,), g((w2,), g((ws,)]

Then there exists a weight matrix W following statements hold:

* The function f(x; W) has at least two fixed points which can be found by the fixed-point
iteration, and we denoted them as p1, ps.

» Fori € {1,2}, there exists a constant €; > 0, for any initial point 20 e [p“ —€,Pi1+
€] x {1} x {1}, the fixed-point iteration) = f(x*=1); W) converges to the fixed point
pi.

18

Under review as a conference paper at ICLR 2026

» Fori € {1,2}, there exists a constant ¢; > 0 and a constant K; € [0, 1) such that for any

t>2,
2 — pilloo < K- cie.
Proof. The lemma holds by combining Lemma [B.T} Lemma|[B.2] and Lemma [B.3] O

Then we can further extend the Lemma to the version without dummy variables by carefully
designing the weight matrix.

Lemma B.5 (A specific setting without dummy variables). Let W := [wy,ws,w3] € R3*3 be a

weight matrix. Let b := [by, by, b3] € R3 be a bias matrix. Let C = 1/ % be a constant. Let a
polynomial activation function g : R — R be defined as

2, 8.5 /3 12

= — — —-C P —

g(2) g2 T 00+ (2 3

We define one layer of a neural network, denoted as f, as follows:

fas W) = [g((w1,) + b1), g((w2,) + ba), g((ws, z) + b3)] .

Then there exists a weight matrix W and a bias matrix b following statements hold:

8

CHz2? + (303 —3C)z+1.

* The function f(x; W) has at least two fixed points which can be found by the fixed-point
iteration, and we denoted them as p1, ps.

s Fori € {1,2}, there exists a constant ¢; > 0, for any initial point (%) € [pi1—€i1,0i1+
€.1] X [Di2 — €.2,Di2 + €2] X [Di3 — €.3,Di3 + €3], the fixed-point iteration z® =
f (=1, W) converges to the fixed point p;.

» Fori € {1,2}, there exists a constant ¢; > 0 and a constant K; € [0, 1) such that for any
t>2,

||I(t) —Dilloo < K- i€

Proof. Letw; := [1,0,0]7, wy :=[0,1,0] ", w3 := [0,0,1] T, b = [C,C,C]". Then it’s clear that
we have

o({wn, @) +by) = fux) = —2at + a2

5 2
2 4.3 9
9((w2, x) +b2) = fi(x) = —za3 + 523
2 3
({5, 3) +bs) = fi(x) = —a} + 203
Then combing Lemma B.T] we complete the proof. O

Then, through further analysis, we can construct a neural network with polynomial activation func-
tions that has a robust fixed point as described in Theorem Robust fixed points ensure that
small perturbations or changes in the initial conditions do not lead to significant deviations in the
convergence behavior of the network. We give a 3-d version of neural network.

Lemma B.6 (A specific setting with small perturbations). Let W := [w1,ws,w3] € R3*3 be a

weight matrix. Let b := [by, ba, b3] € R? be a bias matrix. Let C = 1/ % be a constant. Let a

polynomial activation function g : R — R be defined as
2 3 8

24,8 3 3 12 5 5 8 5
g(z) == 5 +5Cz +(2 50)z +(5C 3C)z + 1.

We define one layer of a neural network, denoted as f, as follows:

f@ W) == [g((wr,z) + by), g((w2,) + by), g((ws, x) + bs)] .

Then there exists a weight matrix W and a bias matrix b following statements hold:

19

Under review as a conference paper at ICLR 2026

* The function f(x; W) has at least two robust fixed point which can be found by the fixed-
point iteration, and we denote them as p1, ps,

s Fori € {1,2}, there exists ¢; € R3, for any initial point 2@ ¢ [pi1 — €1,Pin + €i1] X

[Dia—€i2, Dia+€in) X [Di3—€i 3, Dis+eis), the fixed-point iteration t) = f(z(*=1; W)
converges to the robust fixed point p;.

» Fori € {1,2}, there exists a constant K; € [0,0.9] and a sufficiently large constant m
such that for any t > 2,

10
12 = pillos < K- Jleillos +
Proof. Let m be a sufficiently large constant. Let wy; := [1,1/m? 1/m?]", wy, :=
[1/m?,1,1/m?]T, w3 := [1/m?,1/m? 1], b= [C,C,C]T. Then it’s clear that we have
2 3
g((wi,z) +b1) = — Zat + 52 ’i’+—h1()
2 3 1
g({wa,) +b1) = 5x2+ 2x§+ﬁh2(fﬂ)
2 3 1
g((ws,) +b1) = — gxé + §$§ + ﬁhd(x)
where for j € [3], h;(x)isa polynomial in 1, zg, x3. It is obvious that when m is sufficiently large
and ||¢;|| is small enough, |-137;(z)| < L forz € D and z® € D for every t € N. Then we can

show that for any ¢ € [2], j € [3]

0 10
2 20 — pi

7p1]|< j|

<Kt €t E

where the first comes from the result of Theorem [{.2], the second step comes from the range of
values for the initial point. Then use the definition of || - ||, we have

10
12 = pilloe < K7+ fleilloo + —

Then we complete the proof. O

C CASE STUDY: EXPONENTIAL ACTIVATION

In this section, we extend the discussion by constructing a neural network with exponential activation
functions that do not utilize dummy variables. Similar as before, through careful design, we can
ensure that the network converges to different fixed points for various initialization points.

C.1 EXPONENTIAL ACTIVATION

In this section, we present a univariate exponential function that has at least two fixed points, which
can be identified using the fixed point methods.

Lemma C.1. Let f : R — R be a function defined as f(z) = exp(x® — 22%) — 1. Then the
following statements hold:

e The function f has at least two fixed points which can be found by the fixed-point iteration,
and we denoted them as p1, ps.

s Fori € {1,2}, there exists a constant ¢; > 0, for any initial point 9 € [p; — €;,p; + €],
the fixed-point iteration z® = f(x(tfl)) converges to the fixed point p;.

» Fori € {1,2}, there exists a constant ¢; > 0 and a constant K; € [0, 1) such that for any
t>2,

2 —pi| < K} - cies.

20

Under review as a conference paper at ICLR 2026

Proof. Clearly, p; = 0 and py =~ —0.9104 are two fixed points of f. We show that p; and p, can be
found by the fixed-point iteration and the error bounds hold.

For the fixed point p; = 0, lete; = 0.1, K1 = 0.5, and C; = 2/(1 — K;). For any = € [p; —
€1,p1 + €1] = [-0.1,0.1], we have f(x) € [—0.021,0] C [—0.1,0.1]. Hence the first condition of
Lemmais satisfied. For any « € [p1 — €1,p1 + €1], we have |f/(z)| < K1 = 0.5 < 1. Hence
the second condition of Lemma [A4]is satisfied. Thus by Lemma E if we pick the initial point
20 e [p1 — €1,p1 + €1], we can find p; by the fixed point iteration x) = f(w(t’l)), and it holds
that for any ¢t > 2,

Ki
1-K;
Ki
- 1-K;
=K - cre,

|z(®

IN

~pl 2 - 2]

. 261

where the first step follows from Lemma|A.4} the second step follows from 2(*), (1) € [p; —ey, p1+
€1], and the last step follows from ¢; = 2/(1 — K).

For the fixed point 25 ~ —0.910, let e = 0.1, Ko = 0.85, and C, = 2/(1 — K5). For any
x € [p2 — €2, p2+€2] = [—1.010, —O.Eﬂ, we have f(z) € [—0.954, —0.842] C [—1.010, —0.810].
Hence the first condition of Lemma is satisfied. For any x € [py — €3,p2 + €3], we have
|f'(z)] < Ky = 0.85 < 1. Hence the second condition of Lemma [A.4]is satisfied. Thus by
Lemma , if we pick the initial point 20 ¢ [p2 — €2, p2 + €3], we can find po by the fixed point
iteration (") = f(z(*~1), and it holds that for any ¢ > 2,

K}

2 ® e — 2]
2

IN

—P2|

K}
S1-K,
= K} - coea,

. 262

where the first step follows from Lemma|A.4] the second step follows from z(?), (1) € [py—e2, po+
€2], and the last step follows from c2 = 2/(1 — K3).

Therefore, we complete the proof. O

Next, we prove two lemmas which are useful to construct a neural network with a exponential
activation function.

Lemma C.2. Let
fi(z) == exp((u, 2)® + (=2 — 3C)(u, x)* + (3C* +4C){(u,x) +1n2) — 1

where C ~ —2.15, u := [1,1,C — 1]. Ler fo(x) := 1, f3(x) := 1. Then there exists a function

g(2) = exp(azz®+asz? +a1z+ag) — 1, where ag, a1, az, a3 € R such that for some w1, ws, w3 €

R3, we have g({wy,) = fi(z), g((w2,2)) = fo(x) and g((w3z,) = f3(x). Moreover we have
g(2) := exp(2® + (=2 — 3C)2? + (3C* +40)z +1n2) — 1.

and wy = [1,1,C — 1] T, wy = [0,0,0] T, w3 = [0,0,0] .

Proof. Letg(z) = exp(23+(—2-3C)22+(3C%+4C)2+In2)—1. Letw; = [1,1,1-C] T, wy :=
=1[0,0,0]"

[0,0,0] T, w3 :=[0,0,0] ". Then it is clear that we have
g(<’w1, $>) = fl(x)7
9((w2, z)) = fa(z),
9((ws, x)) = fs().
Thus we complete the proof. [

21

Under review as a conference paper at ICLR 2026

Lemma C.3. Let
fi(z) == exp((u, 2)® + (=2 — 3C) (u, x)* + (3C* +4C){(u,x) +1n2) — 1
where C' = —2.15, u := [1,1,C — 1]. It holds that
fl([xla 15 1]T) = exp (I? - QI%) - L

Proof. Note that (u, [v1,1,1]T) = z; + C. Hence
fi(lzr, 1,1]7) = exp((z1 + €)% + (=2 — 3C) (21 + C)? + (3C* + 4C) (z1 + C) + In2) — 1
= exp(z? —22%) — 1

where the first step follows from (u,[z1,1,1]T) = x; + C, and the second step follows from
expanding the higher-order terms and simplifying them. O

C.2 EXTEND TO NEURAL NETWORKS

We are now prepared to construct a neural network with exponential activation functions. By care-
fully designing the weight matrix, we can ensure that the network converges to different fixed points
for different initialization. We give a 3-d neural network version.

Lemma C.4. Let W := [w1,ws, w3] € R**3 be a weight matrix. Let C' := —2.15 be a constant.
Let a exponential activation function g : R — R be defined as

g(2) := exp(2® + (=2 — 3C)22 + (3C* +40)z +1n2) — 1.
We define one layer of a neural network, denoted as f, as follows:

Fla; W) = [g({wr, 2)), g((wa,), g((ws, 2))] |

Then there exists a weight matrix W following statements hold:

o The function f(x; W) has at least two fixed points which can be found by the fixed-point
iteration, and we denoted them as p1, pa.

* Fori € {1,2}, there exists a constant ¢; > 0, for any initial point (°) € pi1 — €i,pi1 +
ei] x {1} x {1}, the fixed-point iteration £ = f(x(*=1); W) converges to the fixed point

Pi-
* Fori € {1,2}, there exists a constant ¢; > 0 and a constant K; € [0, 1) such that for any
t>2,
2 = pilloe < Kf - cie.
Proof. The lemma holds by combining Lemma C.I] Lemma[C.2] and Lemma[C.3] O

C.3 EXTENSION TO d-DIMENSIONAL CASE

Next, we extend Lemma[C.2]to d-dimensional case.
Lemma C.5. Let

fi(z) == exp((u, 2)® + (=2 — 3C) (u, x)* + (3C* +4C){u,x) +1n2) — 1
where C ~ =215, u:=[1, 75, ..., 74, 75 +C—1]T € R% Foralli € {2,...,d}, let fi(z) := 1.
Then there exists a function g(z) := exp(a3z® + a2z + a1z + ag) — 1, where ag, a1, as,a3 € R
such that for some w1, wa, ..., wq € RY, we have that for all i € [d]

g({wi, z)) = fi(x)
Moreover we have
g(2) = exp(z® + (=2 = 3C)22 + (3C? + 4C)z + n2) — 1

andwy = [1, 75, ..., 725, 725 + C =1 € RY, foralli € {2,...,d},w; = [0,...,0] € R%.

22

Under review as a conference paper at ICLR 2026

Proof. Let g(z) = exp(z® + (=2 — 3C)2? + (3C% + 4C)z + In2) — 1. Let wy =
1, g, 755 + C — 1] € R% Foralli € {2,...,d}, let w; = [0,...,0] € R% Then it
is clear that for all ¢ € [d] we have

g((wi, x)) = fi(x)

Thus we complete the proof. O

Then, we extend Lemma|C.3]to d-dimensional case.
Lemma C.6. Let

fi(z) == exp((u, 2)® + (=2 — 3C) (u, x)* + (3C* +4C){(u,x) +1n2) — 1
1,1

L 2+ C—1]T € R% It holds that

where C' =~ —2.15, u := [1, 729, ..., 777+ -1

fillen, 140]7) = exp(af - 227) — 1

Proof. Note that (u, [v1,1]_,]") = 21 + C. Hence
fillz1,10_1]") = exp((z1 + C)3 + (=2 — 3C)(x1 + C)% 4 (3C? + 4C)(z1 + C) +1n2) — 1
= exp(z? — 22%) — 1

where the first step follows from (u, [#1,1, ,]") = #1 + C, and the second step follows from
expanding the higher-order terms and simplifying it. O

Then, we extend Lemma|C.4]to d-dimensional case.

Lemma C.7. Let W := [wy, wa, ..., wq] € R¥*? be aweight matrix. Let C' := —2.15 be a constant.
Let a exponential activation function g : R — R be defined as

g(2) := exp(2® + (=2 — 3C)2? + (3C? +40)z +1n2) — 1.
We define one layer of a neural network, denoted as f, as follows:

Fla; W) = [g((wr,), g((w2, 2)), ..., g((wa,)] T

Then there exists a weight matrix W following statements hold:

o The function f(x; W) has at least two fixed points which can be found by the fixed-point
iteration, and we denoted them as p1, ps.

* Fori € {1,2}, there exists a constant ¢; > 0, for any initial point (®) € pi1 — €i,pi1 +
ei] x {1} x {1}, the fixed-point iteration £ = f(x(*=1); W) converges to the fixed point

p;.
* Fori € {1,2}, there exists a constant ¢; > 0 and a constant K; € [0, 1) such that for any
t>2,
20 = pilloo < K- cies.
Proof. The lemma holds by combining Lemma[C.T} Lemma|[C.5] and Lemma|[C.6] O

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.

23

	Introduction
	Related Work
	Fixed Point Iteration Methods
	Looped Neural Networks
	Neural Networks as Fixed Point Iterations

	Preliminary
	Notations
	Fixed Point Methods
	Looped Neural Networks

	Main Results
	General Theorem
	Perturbed Fixed Point Iteration

	Case Study
	Experiments
	Setup
	Results

	Conclusion
	Tools of Fixed Point Methods
	Banach Fixed Point Theorem
	Scalar Case
	Vector Case
	Matrix Case
	Examples Using Fixed Point Theorem
	Robust Banach fixed point theory

	Case Study: Polynomial Activation
	Polynomial Activation
	Extend to Neural Networks

	Case Study: Exponential Activation
	Exponential Activation
	Extend to Neural Networks
	Extension to -dimensional Case

