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Abstract

Tactics, Techniques and Procedures (TTPs) are001
standardized components in understanding cy-002
ber attack behaviours. Identifying TTPs in se-003
curity writings, often called TTP mapping, is004
an important task to analyze and defend cy-005
bercrime. To tackle challenges of automated006
TTP mapping, conventional approaches resort007
to multi-class or multi-label learning. This008
setting suffers from a large number and com-009
plex hierarchical structure of the TTPs label010
space, as well as from the label imbalance. We011
propose a different learning paradigm, where012
TTPs labels are represented in the same space013
as cybersecurity texts, and the TTP mapping014
becomes ranking TTPs labels with highest se-015
mantic similarity scores to the input text. To016
this end, we propose a neural matching archi-017
tecture with an effective sampling-based mech-018
anism. Our experiments show that our method019
outperforms existing approaches when learning020
to match TTPs labels in the long tail. Further-021
more, we make our annotated dataset public to022
foster further research in the field.023

1 Introduction and Background024

Cyber Threat Intelligence (CTI), an essential pil-025

lar of cybersecurity, involves collecting and an-026

alyzing information on cyber threats, including027

threat actors, their campaigns, and malware, help-028

ing timely counterintelligence and defending ef-029

forts. Textual threat reports or blogs are considered030

a crucial source of CTI, where security vendors031

diligently investigate and promptly detail intricate032

attacks. A key and intricate sub-task in extract-033

ing CTI from these textual sources involves the034

identification of Tactics, Techniques, and Proce-035

dures (TTP) of the threat actors, i.e. comprehend-036

ing descriptions of low-level, complex threat ac-037

tions and connecting them to standardized attack038

patterns. One of the popular standard knowledge039

frameworks widely adopted in the CTI community040

is MITRE ATT&CK (Storm et al., 2020). Within041

[...] We witnessed that the botnet was spread via mass
phishing, using a VB−scripted Excel attachment to
download the second stage from xx.warez22.info. The same
domain was used for C&C via HTTP. The botnet
distributed a file encryption module we named VBenc. [...]

Figure 1: A fictional attack described in typical cyberse-
curity threat report writing style.

this framework, a technique represents a specific 042

method used to achieve an objective, with its cor- 043

responding tactics and sub-techniques covering 044

broader strategies and variations. Figure 1 illus- 045

trates an example of a text in a threat report, of 046

which indicating two attack patterns, among others, 047

i.e., (1) the use of a malicious email attachment to 048

take control of a victim’s system (T1566 1), and (2) 049

encrypting data on the victim’s system for ransom 050

demands. (T1486 2). 051

As of 2023, there are over 600 techniques, 052

together with 14 high-level tactics described in 053

MITRE ATT&CK. In its ontology, a technique 054

is associated to at least one tactic (e.g., the tech- 055

nique “Hijack Execution Flow” is listed under 056

three distinct tactics: Persistence, Privilege Esca- 057

lation and Defense Evasion) and may have several 058

sub-techniques. Mining techniques from CTI re- 059

ports poses significant challenges due to several 060

factors. Firstly, the large number of techniques, 061

coupled with their diverse nature, intricate inter- 062

dependencies, and hierarchical structure, renders 063

the task complex and laborious. Secondly, the anal- 064

ysis of CTI reports necessitates the expertise of 065

security professionals. The reports focus on delin- 066

eating low-level threat actions rather than explic- 067

itly mentioning the associated techniques and tac- 068

tics. Consequently, extracting relevant techniques 069

and tactics from these reports requires diligent in- 070

ference by the reader. Employing an automated 071

1attack.mitre.org/techniques/T1566
2attack.mitre.org/techniques/T1486
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approach to TTP mapping presents inherent chal-072

lenges. One major hurdle is the low-resource nature073

of the task, due to the limited availability of labeled074

data and the extensive label space. Moreover, the075

presence of long-tail infrequent TTPs adds com-076

plexity to the learning process.077

Due to these challenges, TTP mapping has078

not been fully solved in related work. Most re-079

cent works use a classical document-level multi-080

label (Li et al., 2019) or sentence-level multi-class081

classification (Orbinato et al., 2022; You et al.,082

2022) learning setting. These granularity choices,083

however, either introduce unneeded complexity of084

long-form text representation (for document-level)085

or make the task inapplicable to mapping complex086

TTPs, which often require longer text (for sentence-087

level). Moreover, the main learning issues in these088

settings are: (i) the aforementioned problems of089

label scarcity and long-tailedness, and (ii) the learn-090

ing complexity costs of the softmax-based learning091

approaches grow proportionally to the number of092

classes. In the wider literature i.e., extreme multi-093

label text classification (XMTC), the problems are094

addressed by (i) capturing the label correlation095

and (ii) partitioning and handling the sub-label096

spaces separately. They are, however, most effec-097

tive in relatively resource-rich settings, and have098

drawbacks when applied to label-scarce scenarios,099

as the signal-to-noise ratio increases (Bamler and100

Mandt, 2020). In the multi-label context, learn-101

ing is greatly affected, additionally, by the frequent102

presence of missing labels, which is a common trait103

observed in human-curated datasets.104

In this work we propose an alternative learning105

setting which avoids the direct optimization for dis-106

criminating between data points in a large label107

space. Concretely, we transform the task into a text108

matching problem (Tay et al., 2018; Wang et al.,109

2017), allowing us to utilize the direct semantic110

similarity between the input-label pairs to derive a111

calibrated assignment score. The framework inher-112

ently incorporates an inductive bias, encouraging113

the capture of nuanced similarities even in the pres-114

ence of limited labeled data, enhancing its ability to115

generalize to long-tail TTPs. This transformation is116

achieved by leveraging the textual profile of a TTP117

(i.e., textual description 3 in ATT&CK), a resource118

that is often neglected in related work.119

Label-efficient text matching: Our approach -–120

3 A technique, its description and procedure examples:
attack.mitre.org/techniques/T1021/

dynamic label-informed text matching – exploits 121

the shared information between a pair of texts (sim- 122

ilar to text matching) in the learning phase, and 123

altogether attempts to discriminate between the pos- 124

itive labels versus the rest in the label space (similar 125

to classification). Powered by a sampling-based es- 126

timation method, i.e., Noise Contrastive Estimation 127

(NCE) (Gutmann and Hyvärinen, 2010), this ap- 128

proach exhibits notable efficacy, in the moderately 129

sized label space of TTPs, under data constraints. 130

To this end, we summarize our contributions: 131

• We formally redefine the challenging task of 132

TTP mapping as a paragraph-level hierarchi- 133

cal multi-label text classification problem and 134

propose a new learning paradigm that works 135

effectively on the nature of the task. 136

• We introduce robust ranking-based NCE 137

losses, designed not only to effectively handle 138

the large label space but also the scarce and 139

missing labels problem specific to this task. 140

Additionally, we present a multi-task learning 141

strategy that adeptly captures the intrinsic hier- 142

archical structure within the label semantics. 143

• We curate and publicize an expert-annotated 144

dataset that emphasizes on the multi-label na- 145

ture, with approximately two times more la- 146

bels per sample than existing datasets. 147

• Lastly, we conduct extensive experiments to 148

prove our learning methods outperform strong 149

baselines across real-world datasets. 150

2 Related Work 151

TTP Mapping and CTI Extraction Several 152

works target TTP mapping on the document level. 153

(Husari et al., 2017) used a probabilistic relevance 154

framework (Okapi BM25) to quantify the similarity 155

between bag-of-words representations of TTPs and 156

the target text. However, this approach is limited 157

to the oversimplified vocabulary of threat actions 158

within an ad-hoc ontology. Ayoade et al. (2018); 159

Niakanlahiji et al. (2018); Legoy et al. (2020) used 160

a TF-IDF-based document representation and lever- 161

aged classical (i.e., tree-based, margin-based) ML 162

for (multi-label) classification. Li et al. (2019) used 163

latent semantic analysis to extract topics from tar- 164

get articles, and compared the topic vectors with 165

the TF-IDF vectors of ATT&CK description pages 166

to obtain cosine similarity. They used the similar- 167

ity vectors with Naïve Bayes and decision trees to 168

classify TTPs. However, the choice of document- 169

level granularity introduces additional unneeded 170
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complexity of long-form text representation. Re-171

cent works leverage transformers for sentence-level172

text representation learning (Orbinato et al., 2022;173

You et al., 2022), using the encoded representation174

in the multi-class classification setting. However,175

with limited available data, they restrict the task to176

only a small number of TTPs.177

Extreme Multi-label Text Classification.178

XMTC, or generally extreme multi-label classi-179

fication is a line of research targeting extremely180

large label spaces, e.g., product categorization in181

e-commerce or web page categorization. The182

main challenges for XMTC are computational183

efficiency and data skewness. Common tech-184

niques for XMTC are tree-based (You et al., 2019;185

Jasinska-Kobus et al., 2020; Wydmuch et al., 2018),186

sampling-based (Jiang et al., 2021) and embedding-187

based (Chang et al., 2021) that attempt to partition188

the label space and thus reduce the computational189

complexity. However, generally, these methods as-190

sume the sufficient availability of supervision and191

still suffer in the long-tail performance.192

Matching Networks. Deep matching net-193

works have witnessed rapid progress recently, find-194

ing applications in various conventional (e.g., re-195

trieval (Wang et al., 2017)) or emerging tasks (e.g.,196

few-shot (Vinyals et al., 2016) and self-supervised197

learning (Chen et al., 2020)). They can be archi-198

tecturally categorized as cross- vs dual-encoder199

networks and can be optimized in tandem with200

the triplet (Schroff et al., 2015) or contrastive201

loss (Chopra et al., 2005). The former loss con-202

siders triplets of examples (anchor, positive, neg-203

ative) and is marginal-based, whereas the latter,204

broadly referred to as NCE (Gutmann and Hyväri-205

nen, 2010), utilizes a probabilistic interpretation.206

Despite demonstrating promising results across var-207

ious domains and datasets, matching networks ne-208

cessitate substantial training data. Although the209

NCE framework partially mitigates this concern,210

the well-adopted approach by Oord et al. (2018)211

remains somewhat limited, especially to the fully-212

supervised settings. Our approach overcomes the213

present constraints of training matching networks214

in settings where resources are limited, specifically215

when there is a scarcity of extensive training data.216

3 Preliminaries and Problem Setup217

In this section, we first provide a brief overview of218

the †classification settings with noise contrastive219

estimation (NCE). These definitions then subse-220

quently help us in formulating our matching prob- 221

lem. 222

Classification: Let X and Y denote the input 223

and label spaces, |Y| < ∞. We define a score 224

function gθ : X → Y. In this setting, the label 225

space Y is categorical. Specifically, X ∈ Rn×m, 226

whereas Y ∈ {0, 1}n×|L|, with n being the number 227

of samples and L being the label set. 228

Matching: In this setting, X and Y represent the 229

same input space. The matching function gθ : X × 230

Y → R, is differentiable in θ ∈ R|D|, where D is 231

the parameter space. In order to cast a classification 232

problem as a matching one, we assume there is an 233

invertible and smooth projection function π that 234

transforms the discrete categorical representation 235

Y into the same continuous space as X. 236

Cross-entropy Loss and NCE: In either classifi- 237

cation or matching settings, our goal is to estimate 238

whether θ : x 7→ maxy∈Y gθ(x, y) has optimal 0-1 239

loss. This can be reduced to conditional density 240

estimation. Let pθ(y|x) = exp(gθ(x,y)∑
ŷ∈Y exp(gθ(x,ŷ))

, the 241

cross-entropy loss is then defined as: 242

JCE(θ) = E(x,y)∼(X×Y )[− log pθ(y|x)] (1) 243

When Y is large, JCE(θ) is difficult to com- 244

pute as the computation of the normalization term 245

of pθ(y|x) becomes expensive. This issue is ad- 246

dressed by NCE through sub-sampling p(X,Y ), 247

and shifting the focus towards estimating the prob- 248

abilities of the true data samples. 249

Multi-label Classification. The vanilla classi- 250

fication problem can be defined as follows: Let 251

{X,Y } be the problem space, where the feature 252

space X ∈ Rn×|D|, and the label space Y ∈ 253

{0, 1}n×|L|, with |L| ≪ ∞ being the number of 254

TTPs in the KB. The goal is to learn a function 255

f : D 7→ R|L| that accurately predicts the multi- 256

label one-hot vector output y ∈ Y, given x ∈ X. 257

Problem Reformulation. Given the training 258

data X ∈ Rn×|D|, and Y ∈ R|L|×|D|, with y ∈ Y 259

derived from the TTP textual profile, and |L| ≪ ∞ 260

along with a set of supervisions {x 7→ y}n = 261

{0, 1}n, such as x ∈ X and y ∈ Y, our tar- 262

get is to learn matching-based scoring functions 263

gθ(x, y) that model the relationship between x 264

and y within the same feature space, aiming for 265

gθ(x, y) ≈ {x 7→ y}n. The use of the textual pro- 266

file inherently eliminates the need for an projection 267

function π, as it directly aligns the discrete cate- 268

gorical representation Y with the same continuous 269
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space as X. In the context of cross-entropy loss,270

pθ(y|x) is now linked to pθ(x 7→ y|x, y).271

4 Methodology272

Section describes our architectural choice for273

the matching function gθ(x, y), and our learning274

paradigm that approximates pθ(x 7→ y|x, y) to si-275

multaneously match and compare TTPs labels.276

4.1 Matching Network277

The architecture of our matching network is built278

upon the dual-encoder framework, which typically279

employs a Siamese network. This shared network280

is used for learning the representations of both the281

target text segment and the TTP textual profile. As282

depicted in Figure 2, at a high level, our network283

comprises an embedding component and an align-284

ment component. Each includes specific layers285

aimed at enhancing the connectivity between the286

two sub-network sides. Finally, the two sides are287

merged (by i.e., a dot product) to output a (proba-288

bilistic) matching score. We detail the architectural289

choice for our matching network below.

Figure 2: The dual-encoder matching network.

290
Encoder. The encoder has two modes: (1)291

scratch and (2) scratch with a pre-trained trans-292

former (i.e., SecBERT) combined. Scratch indi-293

cates that the token embedding are learnt (with the294

embedding layer). We then apply a simple CNN295

on top of the embedding layer. With scratch alone,296

a specialized tokenizer (that respect CTI entities,297

e.g., URL, vulnerability identifier..) is used. While298

using together with the transformer, the tokenizer299

of the transformer is used. For (2), we simply stack300

the encoded vectors from the 2 sources together.301

Alignment Network. Formally, given the in-302

put representation of the text-TTP pair as xt =303

(â1, . . . , âl) and yttp = (b̂1, . . . , b̂l), the unnor- 304

malized attention weights are decomposed into: 305

eij = W align(âi) ·W align(b̂j), whereas W align is 306

a trainable projection matrix, · is the dot product. 307

Then, we derive the normalized weights for each 308

token ai and bj , and achieve the corresponding 309

alignment features. 310

Similar to (Yang et al., 2019), we use the block- 311

based residual architecture with skip connections. 312

Our block consists of the encoder, alignment and 313

fusion layers. The fusion layer does various com- 314

parisons of local and aligned representations (i.e., 315

the Hadamard product) and finally fuses the inter- 316

action vectors together using the concatenation op- 317

erator. Then pooling, i.e., (non-) weighted average 318

or max-pooling, is applied to attain fixed-length 319

vector representations. 320

4.2 Learning 321

Our efficient learning method aims to circumvent 322

the computational complexities that arise in the 323

large label space, whether in the proper multi-label 324

setting or its reduced multi-class version. The new 325

learning paradigm is shifted from multi-label clas- 326

sification to the so-called dynamic label-informed 327

text matching, in which negative labels are drawn 328

dynamically at every step. The ranker, acting as a 329

simultaneous matcher, strategically assigns higher 330

probabilities to positive pairs and lower probabil- 331

ities to negative pairs. Finally, the top-k positive 332

pairs are selected based on a cut-off threshold. We 333

detail our learning mechanism below. 334

Partial-ranking-based NCE. The general idea 335

of NCE in our scenario is to avoid an exhaus- 336

tive ranking (or partitioning) in the large label 337

space, i.e., in the vanilla multi-label classifica- 338

tion setting. Instead, a matching-based classifier, 339

p((x 7→ y)|x, y), is trained to differentiate between 340

samples from the true distribution and a noise distri- 341

bution, q(y), and inherently approximate the under- 342

lying ranking function. By utilizing Monte Carlo 343

sampling, the NCE loss can be formulated as fol- 344

lows: 345

JNCE(θ) = E(x,y)∼(X×Y)(log p((x 7→ y) = 1|x, y)

+

k∑
i=1,yi∼q

log p((x 7→ y) = 0|x, yi))
. (2) 346

While the NCE loss in Equation 2 is calcu- 347

lated by learning p((x 7→ y)|x, y) for every data 348

point (so-called local), we opt for a ranking setting 349

where data points in the same batch compete in 350
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a contrastive setting. One way of achieving this351

is to use the mutual information, as utilized in In-352

foNCE (Oord et al., 2018), to quantify the distance353

between the prediction and (k-sized) label distribu-354

tions. The ranking NCE loss is then defined as:355

JglobalNCE = −E(x,y)[log
exp(gθ(xi, y))

γ
∑

j:(x 7→yj)=0 exp(gθ(x, yj))
] , (3)356

whereas, gθ(x, y) is the matching function. Con-357

sequently, minimizing the loss promotes simulta-358

neously a lower gθ for negative pairs and a higher359

gθ for positive pairs. The scaling factor γ, which is360

absent in InfoNCE, is introduced to account for the361

need to reduce the impact of the considerably larger362

portion of negative samples. This adjustment aims363

to emphasize the top-k partial ranking, where it is364

assumed that the positive samples are concentrated365

in the distribution. Subsequently, when γ presents,366

the loss is denoted as α-balanced NCE.367

Asymmetric Focusing. Given the limited avail-368

ability of reliable labels, our objective is to (i) re-369

duce the impact of straightforward negative sam-370

ples, and (ii) simultaneously mitigating the influ-371

ence of potentially mislabeled (due to missing or372

wrong labels) samples on the loss function. While373

(i) can be achieved by applying a (hard) cut-off on374

very low values of p(0|x, yi), (ii) is often attributed375

to the high p(1|x, yi), with yi ∼ q . Thus, we opt376

for an asymmetric approach for the design of the377

NCE loss, wherein we prioritize the challenging378

mislabeled samples. In doing so, we explicitly dif-379

ferentiate the focusing (scaling) levels between the380

positive and negative groups. The idea originated381

in Ridnik et al. (2021), for vanilla cross-entropy.382

In our case, the negative samples derived from our383

negative sampling strategy in the NCE context. Our384

hypothesis is that this asymmetric mechanism helps385

stabilize the learning towards the noisy4 sampled386

negative labels. Let γ+ and γ− be the positive387

and negative scaling parameters, respectively. The388

sample-level asymmetric loss is achieved as fol-389

lows:390
J(+) = (1− p)γ+ log(p);

J(−) = pγ− log(1− p),
(4)391

where γ− is often set larger than γ+ and p is short392

for p((x 7→ y)|x, y). The NCE loss is obtained by393

aggregating J over all samples.394

JNCE = J (+)(x, y) +
k∑

i=1,yi∼q

J(−)(x, yi). (5)395

4Which negative samples are not exclusively negative?

To this end, we show in Algorithm 1 our NCE- 396

based training procedure. The convergence analy- 397

sis can be further found in Appendix B. 398

Algorithm 1 NCE-based training procedure
Input: Parameters θ, learning rate ϵ.
Empirical data distribution p̂d = (xi, yi)

n
i=1

for each epoch do
for t=1,2.. do

Sample i, i′k ∼ [1, .., n], k ∈ [1, .., K]
g(+) = gθ(xi, yi)
g(−) = gθ(xi, yi′

k
)

logits = {g(+), g(−)}, labels = {0, 1}
# compute α-balanced or asymmetric loss
JNCE = log

∑
k(exp(gθ(xi, yi′

k
)− γ · gθ(xi, yi))

# use SGD optimizer
G(t) ← G(t) + 1

m∇θJNCE(gθ)

θ ← θ + ϵ cdotG(t)

end for
end for

4.3 Sampling Strategies 399

Corpus-level negative sampling. Due to mem- 400

ory constraints, the conventional negative sampling 401

method is often applied in-batch (Yih et al., 2011; 402

Gillick et al., 2019). However, as the sampling 403

scope is restricted to be at the batch level, the nega- 404

tive sampling (noise) distribution estimated from 405

in-batch sampling may be biased or incomplete. As 406

the size of our label collection is not as large as in 407

related tasks, the corpus-level sampling strategy is 408

more appropriate. In effect, we assume that a larger 409

part of the TTP corpus is irrelevant to the positive 410

paired sample. We also assume that noisy samples 411

will inherently be canceled out while learning sig- 412

nals remain in our training paradigm (Rolnick et al., 413

2017). While being simple, the policy augments 414

our dataset with a substantial supervision signal 415

stemming from negative samples. We explain the 416

details of our sampling policies below. 417

Random sampling. A simple uniform distribu- 418

tion q(y) = 1
∥L∥ or the population marginal distri- 419

bution q(y) = pX,Y(y), or an empirical approxima- 420

tion of it. We opt for the former when refering to 421

the technique henceforth. To increase the hardness 422

of negative samples, other sampling methods, i.e., 423

retrieval-based (e.g., candidates from a retrieval 424

model) or semantic structure-based (e.g., other sib- 425

ling TTPs of the same technique) can be applied. 426

However, due to the missing label nature of the 427

task, these hard techniques tend to introduce noisy 428

bias and thus are sub-optimal. 429

4.4 Hierarchical Multi-label Learning 430

In ATT&CK, TTPs have a hierarchical structure, 431

where different sub-techniques map many-to-1 to 432
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Figure 3: The distributions of the number of samples
per technique (TTP) for each dataset.

the same technique and techniques map many-to-433

many to tactics. To exploit and encode this struc-434

ture, we design an auxiliary task that predicts the435

tactics of the textual input, alongside our matching436

task. This auxiliary task is thus also a medium-437

sized multi-label classification task, and we use438

the binary cross-entropy loss for the optimization.439

The two tasks are jointly optimized in a multi-task440

learning manner, where the two losses are linearly441

combined: Jtotal = αJNCE + βJaux, where α and442

β are loss-weighting parameters.443

5 Experiments444

5.1 Datasets445

We list below the datasets used in our experiments.446

TRAM. Largest publicly available manual cu-447

rated dataset from CTID 5, commonly used in re-448

lated work. It comprises mostly short texts, covers449

only one-third of TTPs with relatively noisy labels,450

thus appears to have limited application value.451

Procedure+.6 Procedures: collected from452

ATT&CK, where techniques have associated man-453

ually curated procedure examples 3. Each exam-454

ple is a one-sentence expert-written summary of455

the implementation of a technique in real-world456

attacks. Derived Procedures: complements an ex-457

ample with a text that aligns to threat report writing458

style. We look for evidential paragraphs in the ref-459

erences where the summary example is assumedly460

derived from, using a per-document search engine.461

Expert.6 Our purposefully crafted dataset462

closely emulates real-world scenarios, providing463

an practical setting for TTP extraction. Unlike464

sentence-focused datasets, ours covers entire para-465

graphs, thus the annotations are inherently multi-466

label in nature. Annotated by 5 CTI experts using467

an in-house tool, our dataset triples text length and468

5CTID TRAM: github.com/CTID/TRAM
6 The datasets will be publicly shared at http://

anonymized-url to foster further research.

Table 1: Dataset statistics. S+T denotes the joint count
of techniques and sub-techniques.

Dataset Texts S+T Tech- Avg. # Avg. #
niques Labels Tokens

TRAM 4797 193 132 1.16 23
Procedures 11723 488 180 1.00 12
Derived Procedures 3519 374 167 1.22 65
Expert 695 290 151 1.84 72

increases average labels per sample by approxi- 469

mately 60-80% compared to TRAM (see Table1). 470

In our experiments, the two procedure examples 471

datasets serve as high-quality pseudo-datasets, pro- 472

viding additional training examples, as well as valu- 473

able benchmarking perspective. Further descrip- 474

tions of the overall dataset construction processes 475

can be found in Appendix C. 476

5.2 Metrics and Baselines 477

The following common metrics in literature are 478

used: the micro-averaged {P,R,F1}@k and mean 479

reciprocal rank (MRR)@k, which measures the 480

relative ordering of a ranked list. 481

The following baselines are targeted: Okapi 482

BM25, adjusted from Husari et al. (2017). The bag- 483

of-words model is enhanced by a security GloVe 484

LM and TTP textual profile are used. 485

Binary Relevance, the vanilla multi-label learn- 486

ing approach, similar to Li et al. (2019) for TTP 487

mapping. It has the one side of the text matching 488

architecture and learns a binary classifier for each 489

label separately in a one-vs-all manner. 490

Dynamic triplet-loss, a competitive baseline 491

with a similar network architecture to ours, em- 492

ploys a triplet-based loss (Schroff et al., 2015). 493

In contrast to the (empirically found) ineffective 494

vanilla setting, we dynamically generate k-negative 495

samples (akin to N-pairs loss (Sohn, 2016)) to 496

mimic the NCE mechanism. 497

In addition, we employ the following state-of- 498

the-art (SoTA) models in XMTC as competitive 499

baselines: NAPKINXC (Jasinska-Kobus et al., 500

2020), a method that generalized the Hierarchi- 501

cal Softmax, so-called Probabilistic Label Trees 502

(PLT), commonly used in XMTC literature. XR- 503

LINEAR (Yu et al., 2022), a model designed 504

for very large output spaces, with 3 phases: se- 505

mantic label indexing (label clustering), matching 506

(where the most relevant clusters are identified), 507

and ranking (of labels in the matched clusters). XR- 508

TRANSFORMER (Zhang et al., 2021), similar 509
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Table 2: Results of all models on 3 datasets. Procedures+ denotes the combined procedure examples datasets.
Bold denotes best while underscore signifies second-best performance. Indented (−) denotes training without the
specific option wrt. the preceding model. Ideal R@1 on the Expert dataset is 0.504. T uses pre-trained SecBERT.

Procedures+ TRAM Expert

Methods P@1 R@1 F1@3 MRR@3 P@1 R@1 F1@3 MRR@3 P@1 R@1 F1@3 MRR@3

B
as

el
in

e TTPDrill (BM25) .230 .227 .118 .232 .250 .212 .118 .205 .222 .037 .008 .139
Binary RelevanceT .206 .579 .193 .579 .236 .594 .209 .594 .189 .256 .085 .256
Dynamic Triplet-lossT .339 .336 .277 .432 .286 .253 .277 . 402 .449 .111 .252 .525

X
M

T
C

eXtremeText (Sigmoid) .557 .547 .371 .624 .632 .594 .425 .729 .407 .174 .279 .485
eXtremeText (PLT) .528 .519 .336 .582 .612 .578 .393 .671 .344 .146 .243 .411
NAPKINXC .578 .570 .383 .661 .662 .614 .453 .754 .497 .199 .365 .582
XR-LINEAR .604 .595 .393 .684 .674 .626 .445 .757 .529 .215 .363 .600
XR-TRANSFORMERT .502 .494 .304 .548 .540 .515 .334 .595 .389 .149 .239 .453

O
ur

s

InfoNCET .672 .639 .442 .758 .697 .577 .516 .799 .702 .175 .432 .768
@−balancedT .760 .720 .489 .837 .765 .646 .546 .856 .693 .169 .400 .762
(−) auxiliary .604 .584 .433 .719 .712 .601 .521 .816 .693 .177 .442 .773
(−) Transformers .646 .601 .357 .772 .642 .543 .547 .785 .700 .173 .430 .766

AsymmetricT .757 .718 .493 .838 .770 .658 .555 .864 .731 .182 .399 .789

to XR-LINEAR, but with a transformer encoder.510

exTremeText (Wydmuch et al., 2018), algorithm-511

wise relatively similar to NAPKINXC.512

5.3 Experimental Setup513

We use the common security LM SecBERT7 for514

the transformer-based models, and grid search de-515

termined the best hyperparameters for each model.516

The rich textual description 3 of a TTP is selected517

for the textual profile. Except for XMTCs and518

BM25, all models are with the auxiliary tasks.519

Data Settings. For the Procedure+ and TRAM520

datasets, each was stratified-shuffled and split into521

training, validation and test sets with ratios of522

72.5%, 12.5% and 15%, respectively. The test sets523

remained fixed for reporting purposes. For training524

and validation, two modes were considered: sepa-525

rate and combined. In the former, the datasets are526

kept distinct, while in the latter, they were merged527

according to their respective splits.528

For the Expert dataset, we utilize a dedicated529

held-out recall-focused test set, with 157 unique530

paragraph-level samples and 3.3 labels per sample531

on average. This carefully curated held-out set532

closely resembles paragraph-level text snippets in533

complete CTI reports, facilitating a comprehensive534

analysis of the entire report.535

5.4 Results and Analysis536

Table 2 presents the main experimental results.537

Overall, our proposed NCE-based models greatly538

outperform the baselines. Particularly, the asym-539

7https://github.com/jackaduma/SecBERT

metric loss-based model achieves the best perfor- 540

mance across most metrics and datasets. We also 541

observe the significant improvements of the two 542

loss variants (i.e., α-balanced and asymmetric) 543

over the vanilla InfoNCE. In addition, the mod- 544

els demonstrates a substantial improvement at the 545

cutoff threshold @1 (∼10%) in comparison to @3 546

(∼5%). This supports the effectiveness of our 547

matching network in classification settings. 548

The SoTA XMTC baselines perform consider- 549

ably robust across the three datasets, among these 550

XR-LINEAR perform best. Interestingly, XR- 551

LINEAR demonstrates consistently higher perfor- 552

mance than its related transformer-based counter- 553

part (XR-TRANSFORMER), suggesting the chal- 554

lenges of the larger models in our low-resource 555

settings. We also observe the subpar performance 556

of the triplet-loss approach, suggesting similar dis- 557

advantages in the low-resource settings. 558

Across the datasets, the overall model perfor- 559

mance declines from Procedure+ to TRAM and Ex- 560

pert, indicating varying complexities within each 561

dataset. Notably, our performance yields com- 562

pelling results in TRAM, well-surpassing methods 563

commonly reported in related work, i.e., BM25 and 564

Binary Relevance. 565

5.5 Ablation Studies 566

Hierarchical Labeling. We analyze the contribu- 567

tions of our hierarchical modeling to the ranking 568

performances. As shown in Table 2, in general, our 569

joint learning with the auxiliary task gives a no- 570

table performance boost in most scenarios. Further 571

analysis can be found in Appendix D.3. 572
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Table 3: Model performance on the head vs. tail parts of
the TRAM dataset. Head denotes more frequent TTPs
(> empirical 7 samples in the training split), whereas
tail are infrequent TTPs. All are trained in combined
mode. Bold denotes absolute best performers.

TRAM head (94.5%) TRAM tail (5.5%)

Methods F1@1 F1@3 MRR@3 F1@1 F1@3 MRR@3

BM25 .195 .112 .21 +118% +99.1% +108%
NAPKINXC .624 .458 .752 -36.9% -27.1% -30.2%
XR-LINEAR .62 .448 .743 -16.3% -25.4% -21.5%
@-balanced .668 .548 .841 -3.3% -12.2% -8%
Asymmetric .679 .547 .848 -4.9% -14.3% -10.4%

Table 4: Model performance on the head vs. tail parts
of the Expert dataset. Legend of Table 3 applies.

Expert head (56.5%) Expert tail (43.5%)

Methods F1@1 F1@3 MRR@3 F1@1 F1@3 MRR@3

BM25 .071 .107 .188 +26% +28% +18.6%
NAPKINXC .334 .381 .655 -40.7% -23.9% -16.6%
XR-LINEAR .335 .407 .676 -31.6% -22.9% -14.5%
@-balanced .302 .426 .819 -18.2% -11.3% -2.9%
Asymmetric .306 .416 .831 -18.9% -12% -2.9%

Transformers. We observe the positive contri-573

butions of SecBERT to the performance of all mod-574

els in most cases. Nevertheless, without SecBERT575

(i.e., (−) Transformers), our models still very much576

on par with the strong XMTC baselines at k = 1577

and outperform them at k = 3, indicating the better578

ranking capability, specially on the Expert dataset.579

Long Tail Analysis. Tables 3 and 4 provide580

an analysis on the models’ performances on the581

classes of head versus tail frequency distributions582

visualized in Fig. 3. Overall, matching-based ap-583

proaches, with the inductive bias, are relatively ro-584

bust, whereas the classification-based XMTC base-585

lines suffer in the long tail.586

Loss Analysis. In Figure 4, we present addi-587

tional analysis on the impact of the size of negative588

samples. The results indicate that as the size in-589

creases, the model tends to converge faster and590

exhibit better performance. However, it appears591

that there are no additional benefits beyond a size592

of 60, which corresponds to 10% of the label space.593

A further analysis on the score distribution of the594

ranked lists are reported in Figure 5. The details are595

provided in the caption for convenient reference.596

6 Conclusion597

We proposed a solution for the TTP mapping task598

that overcomes low-resource challenges in security599

domain. This new learning paradigm integrates the600

inductive bias into the classification task, resulting601

in significant out-performance of strong baselines.602
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Figure 4: InfoNCE loss and f1@1 performance wrt.
different number of negative samples. The network
is without transformers. OOM for larger number of
negative samples on an NVIDIA V100 32GB RAM.
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Figure 5: The aggregated probability distribution of the
top-50 ranking on different models on the test splits
of the TRAM (left) and Expert (right) datasets. While
InfoNCE tends to allocate probabilities to labels in the
long tail, @-balanced and asymmetric exhibit a more
pronounced skewness in their distribution, resembling
that of a pure classification model like NAPKINXC. The
NCE-based models display a broader distribution at the
head, indicating their inclination to assign comparable
probabilities to multiple labels.
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7 Limitations603

Despite its label efficiency, our learning approach604

is not particularly efficient in terms of training. On605

average, it requires 24 hours for training on a ma-606

chine equipped with a single NVIDIA-Tesla-V100607

32 GB. Nonetheless, its training time is nearly com-608

parable to the baselines employing Transformers.609

Although our expert dataset closely aligns with the610

multi-label nature of the task and exhibits higher611

quality, it remains relatively limited in size, cover-612

ing just one-third of the TTPs.613

8 Ethics Statement614

Our datasets are constructed from security threat615

reports published by security vendors, and copy-616

righted by their respective owners. We scraped617

and extracted textual contents from these public618

websites to build the datasets. The criteria for text619

selection was whether the text discusses TTPs.620

Some source reports contain Personally Identi-621

fiable Information (PII) of report authors, threat622

actors (i.e., persons suspected of involvement in623

cybercrime) or victims (i.e., persons suspected of624

being targeted by cybercrime). In the text selec-625

tion process, we screened for any PII and removed626

all uncovered instances. However, we cannot rule627

out the possibility that some PII might have been628

missed in that process. Thus, users wishing to use629

the data will need to accept our terms of use and630

report potential remaining instances of PII, which631

will be removed in a subsequent dataset update.632

Crucially, the potential remaining PII in the dataset633

has been originally published by the reports’ au-634

thors and may still remain public on the original635

websites even after our dataset updates.636

The datasets have been annotated by security637

experts in our organization as part of their regular638

work under full-time employment contracts.639

The language of the dataset is English, written640

by native and non-native speakers.641

We are not aware of any ethical implications642

stemming from the intended use of this dataset, i.e.,643

TTP mapping.644
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[...] We witnessed that the botnet was spread via mass
phishing, using a VB−scripted Excel attachment to
download the second stage from xx.warez22.info. The same
domain was used for C&C via HTTP. The botnet
distributed a file encryption module we named VBenc. [...]

Figure 6: A fictional attack described in typical cyberse-
curity threat report writing style.

An analog to military intelligence, CTI is tasked808

with collecting and organizing information on cy-809

ber threats such as threat actors, their threat cam-810

paigns, and malicious software, i.e., malware. It811

can be traced back to ancient military-theoretical812

observations that understanding one’s enemy is cru-813

cial to winning battles8.814

CTI describes cyber threats on three levels. The815

strategic level (e.g., periodicals on trends in the816

cyber risk landscape) describes high-level threat817

information and targets non-technical chief execu-818

tives. The tactical level (e.g., technical reports on819

individual threat actors) describes details on threat820

actors’ behavior, for use by security managers. The821

lowest, operational level (e.g., lists of malicious in-822

ternet domains) describes specific threat indicators823

which may be directly used for defense (e.g., by824

blocking the offending domains).825

While the value of CTI data is roughly propor-826

tional to its intelligence level, the difficulty of ob-827

taining it is the opposite. Automated production828

only exists for operational CTI data, and higher829

levels require costly manual expert work. However,830

leading CTI community members regularly publish831

tactical and strategic CTI information in form of832

cybersecurity threat reports – digital documents833

with unstructured natural language text along ta-834

bles and images, written using a domain-specific835

vocabulary, between hundreds and thousands of836

words long, and strongly interspersed with techni-837

cal tokens such as URLs, hashes and similar. Top-838

ically they cover profiles of major threat actors,839

summaries of threat campaigns, and malware anal-840

ysis reports. An illustrative excerpt is provided in841

Fig. 6. Thus an opportunity arose for a fruitful842

application of NLP: automated extraction of high-843

value CTI data from natural language documents.844

In recent years, the NLP and cybersecurity com-845

8“If you know the enemy and know yourself, you need not
fear the result of a hundred battles. If you know yourself but
not the enemy, for every victory gained you will also suffer a
defeat. If you know neither the enemy nor yourself, you will
succumb in every battle.” (Tzu)

munities have been engaged in exactly this direc- 846

tion. Early work targeted the operational level, 847

extracting Indicators of Compromise (IoCs), i.e., 848

threat actor controlled internet domains, IP ad- 849

dresses, file hashes and URLs, from security ar- 850

ticles, social media or forum posts. Subsequent 851

efforts targeted the tactical level, but the challenge 852

there remains unsolved. 853

The tactical level characterizes adversaries’ be- 854

havior, typically referred to as attack patterns. 855

Fig. 6 illustrates, among others, (1) the use of a 856

malicious email attachment to take control of a 857

victim’s system, and (2) encrypting data on the 858

victim’s system to extort money from the victim. 859

To facilitate reasoning about attack patterns, of 860

which hundreds are documented, the community 861

converged around a common framework called Tac- 862

tics, Techniques and Procedures (TTPs): 863

• A tactic describes the purpose of the actor’s 864

behavior – “why?”. For above examples, the 865

tactics are taking control of the system and 866

financial gain, respectively. Other typical ad- 867

versarial tactics include reconnaissance, es- 868

tablishing permanent presence, command and 869

control, data theft, etc. 870

• A technique describes the method used for the 871

given purpose – “how?”. In our case, those are 872

malicious email attachment and data encryp- 873

tion. A technique may be assigned to several 874

tactics if it achieves several purposes. Each 875

tactic can be achieved using any of a range of 876

different techniques. Other typical techniques 877

include collecting victim system information, 878

execution on system start, encrypted commu- 879

nication, password theft, etc. 880

• Some ontologies also define a subtechnique 881

as a specialized technique. A technique may 882

be specialized by zero or more subtechniques. 883

For example, the technique input capture 884

may have subtechniques keystroke capture and 885

screen capture. 886

• A procedure describes the implementation 887

details of a technique. For example, the email 888

attachment may be a malicious Excel file, and 889

the data encryption may be performed using a 890

custom encryption algorithm. Each technique 891

can be implemented using any of potentially 892

many different procedures. 893
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Although others exist, MITRE894

ATT&CK9 (Storm et al., 2020) is the preva-895

lent knowledge base and taxonomy of TTPs used896

in the literature. It currently comprises 14 tactics,897

196 techniques, 411 subtechniques and thousands898

of procedures, continually curated by community899

experts.900

Retrieval of TTPs from unstructured text is re-901

ferred to as TTP mapping in this work, although902

TTP mining/extraction also occur in the literature.903

Crucially for TTP mining, threat reports very rarely904

name actors’ TTPs explicitly. Instead, they estab-905

lish a chronological narrative in terms of threat906

actions, i.e., low-level actions taken by the threat907

actor. Some examples for threat actions from Fig. 6908

are botnet spreading, use of phishing emails, use of909

Visual Basic for malicious scripting, use of Excel910

macros, etc. Not all threat actions are explicitly911

expressed in the text. For example, although the912

term “email” is not mentioned, the use of phish-913

ing emails is inferred by domain experts because914

phishing means sending deceptive emails with ma-915

licious purposes, therefore sending emails is the916

technical implementation of phishing and it must917

have occurred.918

Thus, at a high level, TTP mapping from text is919

a 3-step process:920

1. Identification of individual threat actions from921

paragraphs or longer context922

2. Correlation of one or more identified threat923

actions into procedures924

3. Mapping of identified procedures into tech-925

niques and tactics.926

B Convergence Analysis927

Based on the stability of the NCE losses, we briefly928

discuss the convergence properties of our adjusted929

losses.930

Boundedness of Gradients. Proof : Let g(x, y)931

be the matching function such that 0 ≤ g(x, y) ≤932

1 for all (x, y). Consider the NCE loss, i.e., @-933

balanced with a scaling factor γ:934

JNCE(θ) = Ep(x,y)[log g(x, y)]− γEp(x)[log
∑

j g(x, yj)]935

We want to prove that the gradients of the NCE936

loss with respect to the model parameters are937

9https://attack.mitre.org/

bounded. Let ∇JNCE(θ) denote the gradient vec- 938

tor. Taking the partial derivative of JNCE(θ) with 939

respect to a parameter θi, we have: 940

∂JNCE(θ)
∂θi

= ∂
∂θi

(
Ep(x,y)[log g(x, y)]− γEp(x)[log

∑
j g(x, yj)]

)
941

Using the linearity of the derivative, we can 942

rewrite the above expression as: 943

∂JNCE(θ)

∂θi
= Ep(x,y)

[
∂

∂θi
log g(x, y)

]
944

−γEp(x)

 ∂

∂θi
log

∑
j

g(x, yj)

 945

Since 0 ≤ g(x, y) ≤ 1, the derivative of 946

log g(x, y) with respect to any parameter θi is 947

bounded between 0 and 1. Similarly, the deriva- 948

tive of log
∑

j g(x, yj) with respect to θi can be 949

bounded by considering the partial derivatives of 950

g(x, yj). 951

Therefore, we can conclude that: 952

∣∣∣∣∂JNCE(θ)

∂θi

∣∣∣∣ ≤ max{1, γmax
x,yj

|∂θig(x, yj)|} 953

The above inequality implies that the absolute 954

value of the partial derivative of the NCE loss with 955

respect to any model parameter is bounded by a 956

finite value, scaled by γ. Hence, we have shown 957

that the gradients of @-balanced with the scaling 958

factor γ are bounded. The proof for the asymmetric 959

loss can be derived in an analogous manner. 960

Lemma 1 The matching function g(zi, zj) is 961

Lipschitz-continuous with a constant C, mean- 962

ing that for any zi, z
′
i, zj , we have |g(zi, zj) − 963

g(z′i, zj)| ≤ C|zi − z′i|. 964

Informal proof. Our Siamese neural networks- 965

based matching function g(zi, zj) ∈ [0, 1]. □. 966

Lemma 2 The noise distribution q satisfies the 967

matching moment condition of the true distribution 968

p, which, in essence, indicates that the covariance 969

matrices of the two are similar. 970

Informal proof. Since the noise distribution is 971

sampled over the whole corpus, the lemma holds 972

true for the random sampling strategy. □. 973

Thus, our loss is also Lipschitz-continuous and 974

retains convergence properties of the original NCE 975

losses, when optimized using SGD together with 976

the random negative sampling. 977
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C Dataset Construction978

Derived Procedure Examples. The dataset is979

created as a contextualized version of the origi-980

nal Procedure examples. We search for eviden-981

tial paragraph-level text snippets in the references982

where the summary example is derived from. With983

this, the examples are contextualized and reflect984

the true reporting style present in the references.985

The pre-processing steps are as follows:986

• Each example-reference pair is indexed at the987

paragraph level. Any paragraphs that are988

deemed (1) too short (less than 20 tokens), (2)989

too long (more than 300 tokens), or (3) have a990

Jaccard index with the example exceeding 0.9991

(indicating near-duplicate) are discarded.992

• The remaining paragraphs are ranked based on993

their relevance to the example using a tailored994

BM25 retrieval model.995

• A maximum of two paragraphs that satisfy a996

carefully chosen global cut-off threshold are997

selected.998

• Additionally, we eliminate any potential near-999

duplicates to the TRAM and Expert datasets.1000

We further assessed the dataset quality on a1001

limited sample set consisting of 50 text snippets.1002

Through this qualitative evaluation, the overall im-1003

pression of the examined samples is largely posi-1004

tive.1005

Expert Dataset.1006

The Expert dataset comprises relevant text para-1007

graphs from articles of reputable cybersecurity1008

threat researchers, annotated by seasoned cyber-1009

security experts. The dataset was purposefully1010

designed to closely mimic real-world scenarios,1011

aiming to provide a practical and authentic setting1012

for TTP extraction. Unlike datasets that primar-1013

ily focus on individual sentences, our dataset en-1014

compasses entire paragraphs, and the annotations1015

are inherently multi-label in nature. Rather than1016

concentrating on isolated sentences, this dataset in-1017

cludes entire paragraphs that contain implicit men-1018

tions of TTPs, making the annotations inherently1019

multi-label in nature.1020

The dataset was collected as follows:1021

1. We scraped 30 thousand articles from the1022

feeds of leading cyber threat research organi-1023

zations, and heuristically filtered out irrelevant1024

articles, which do not describe attacks related 1025

to malware, advanced persistent threats, or 1026

cyber threat campaigns. 1027

2. Further heuristics were applied to remove ir- 1028

relevant paragraphs, i.e., we look for para- 1029

graphs which satisfy aforementioned length 1030

constraints, and contain at least 3 cybersecu- 1031

rity entities (e.g., malware, URL, etc.). The 1032

remaining relevant paragraphs were then ran- 1033

domly sub-sampled for annotation. 1034

3. The expert annotators were tasked with an- 1035

alyzing the paragraph and identifying TTPs. 1036

To assist them in this process, an in-house 1037

search engine, powered by the baseline re- 1038

trieval model BM25, was employed. This 1039

search engine allowed the annotators to for- 1040

mulate queries based on the paragraph and 1041

retrieve relevant information to aid in their 1042

TTP selection. 1043

4. The annotators were instructed to only anno- 1044

tate explicit tactics and techniques in the given 1045

paragraph10. 1046

Each annotated item, namely a text paragraph, 1047

undergoes evaluation by a single annotator. We 1048

refrained from implementing extra quality control 1049

procedures, such as reviews or reaching consensus 1050

among annotators. To ensure quality, we engaged 1051

seasoned cybersecurity experts as annotators, rather 1052

than relying on crowd-sourced workers. 1053

The choice of text paragraphs is biased by the 1054

described selection process towards high-quality 1055

writing from expert threat reports, and might not be 1056

representative of other writing styles, e.g., micro- 1057

blogging posts. 1058

Expert Dataset: Special Test Split. In the afore- 1059

mentioned process, it cannot be guaranteed that all 1060

annotations will be retrieved accurately due to the 1061

extensive task of re-formulating queries and review- 1062

ing the lengthy ranked list of TTPs generated by the 1063

relatively lower-performing BM25 model. There- 1064

fore, in order to enhance the recall of the test split, 1065

we substituted BM25 with our InfoNCE model, 1066

which was trained on the train splits of the Proce- 1067

dure+ and Tram datasets. For every sample, we 1068

utilize a deep cut-off approach by selecting the top 1069

10An expert may comprehend from the text that it would
be impossible to perform a discussed attack step without an-
other tactic or technique, even if those dependencies were not
explicitly written.

13



20 entries, which are then assigned to annotators1070

for further analysis. We continued to follow the1071

same procedures as before.1072

In rare cases, relevant labels were missing from1073

the top-20 predictions, but the annotators were not1074

explicitly instructed to manually include those la-1075

bels in the dataset. Thus the recall of the annota-1076

tions is inherently imperfect, and the labels tend to1077

be biased towards to the use of InfoNCE, Never-1078

theless, based on the annotators’ subjective assess-1079

ment, the estimated annotation recall ranged from1080

95-100%, indicating that this dataset deviates min-1081

imally from a perfect annotation. Consequently,1082

this split contains a significantly higher number of1083

labels per sample compared to competing datasets.,1084

e.g., TRAM.1085

In conclusion, our Expert dataset, and particu-1086

larly the test split, is of relatively small size, but is1087

comprised of fully representative text paragraphs1088

and has exemplary annotation precision and recall.1089

D Further Experimental Studies1090

D.1 Metrics1091

The definitions of the used metrics in our experi-1092

ments are reported below.1093

P@k. Given a ranked list of predicted labels1094

for each sample, the micro precision of the top-k1095

is defined as: P@k = 1/k
∑k

i=1 1y+i
(li), whereas1096

li is the i-th label in the ranking and 1y+i
is the1097

indicator function.1098

R@k. Similarly, the micro recall of the top-k is1099

defined as: R@k = 1/|Q|
∑k

i=1 1y+i
(li), whereas1100

|Q| is the number of positive labels in the sample.1101

F1@k. The metric maintains the harmony be-1102

tween P@k and R@k of a given ranked list, and is1103

calculated as 2·P@k·R@k
(P@k+R@k) .1104

MRR@k. The metric measures the relative or-1105

dering of a ranked list, with RR is the inverse1106

rank of the first relevant item in the top-k ranked1107

list. Accordingly, MRR@k is measured as follows.1108

MRR@k = 1/S
∑S

i=1 1/ranki, whereas S is the1109

number of samples.1110

D.2 Training Procedure and1111

Hyperparameters1112

While InfoNCE and @-balanced are with normal1113

training procedures, to leverage the effectiveness of1114

the asymmetric loss, which performs optimally un-1115

der stable gradient conditions, we adopt a two-step1116

training procedure in our experiments. Initially, the1117

model is trained using an @-balanced loss. Once1118

the training process reaches a stable state, we then 1119

introduce the asymmetric loss. 1120

We report the best hyperparameter sets for all 1121

models in Table 5. For the XMTC baselines, the 1122

parameter ranges for the probabilistic-based tree 1123

construction (i.e., with Huffman or K-Means) are 1124

designed to closely resemble the structure of the 1125

ATT&CK taxonomy. This resemblance is achiev- 1126

able thanks to its dot-separated naming convention, 1127

where the prefix represents the super technique. 1128

D.3 Analysis 1129

We report in Table 7 the models’ results in the 1130

technique-level of the label hierarchy, where a sub- 1131

technique label is resolved to its technique. This is 1132

also a common practice in literature to streamline 1133

the complexity of the task. Overall, all models 1134

present significant improvements and our proposed 1135

ones are also benefited in this setting. 1136

To further examine the difficulties posed by the 1137

Expert Dataset, we present the outcomes of models 1138

trained on the training splits of Procedure+ and 1139

TRAM, evaluated on the entire Expert dataset. The 1140

results are showcased in Tables 6 and 7. Overall, 1141

although all models exhibit reduced performance 1142

in this scenario, our models demonstrate superior 1143

generalization capability. Also, InfoNCE performs 1144

rather robustly in this setting, perhaps due to its sta- 1145

ble nature to noisy input representation stemming 1146

from long-form text. 1147

D.4 The Large Language Model (LLM) 1148

Dilemma. 1149

In this section, our aim is to explore the extent 1150

to which information extraction tasks, particularly 1151

TTP mapping, can be addressed by LLMs, e.g., 1152

GPT-4 or PaLM-2. 1153

In the pursuit of this target, we carefully crafted 1154

a setting to prompt ChatGPT (public version) for 1155

the a handful of samples in the Expert dataset. In 1156

general, the responses provided by Chat-GPT are 1157

remarkable and somewhat persuasive in certain in- 1158

stances. However, it is evident that the answers 1159

primarily consist of high-level information (some- 1160

times hallucinatory), with a lack of granularity that 1161

makes it useful, e.g., for accurate modeling of the 1162

attack steps. Our objectives are, on the other hand, 1163

to precisely map to (sub- ) techniques so that to 1164

reveal the actual capabilities of a threat group or a 1165

particular attack. 1166

Our findings are: 1167
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Table 5: The default hyperparameters used in the experiments for each model.

Models Hyperparams

O
ur

s @-balanced {cls-ratio: {γ: 0.11}}
InfoNCE {cls-ratio: {γ: 1.}}
asymmetric {γ_pos:1, γ_neg:3, cut-off: 0.1}

- base settings
{learning_rate: 1e-3, auxiliary_task: {α: 0.6, β: 0.4}, batch_size:[2,4,8],
negative_samples:[30,60] sampling_method: random}

- auxiliary {α: 0.6, β: 0.4}

Dynamic Triplet Loss
{cls-ratio: {γ: 0.11} learning_rate: 1e-3, auxiliary_task: {α: 0.6, β: 0.4}, batch_size:[2,4,8],
negative_samples:[30,60] sampling_method: random}

NAPKINXC
{model: PLT, tree_type: {“hierarchicalKmeans”, “huffman”},
arity:{2,10, 20}, max_leaves:{10, 20}, kmeans_eps=0.0001,
kmeans_balanced={True, False}}

XR-LINEAR {mode: “full-model”, ranker_level: 1, nr_splits: 16}

XR-TRANSFORMER
{mode: “full-model”, negative_sampling: [“tfn”, “man”],
, do_fine_tune: True, only_encoder: False}

ExtremeText + Sigmoid {loss: sigmoid, neg: [0, 100], tfidfWeights: True}
ExtremeText + PLT {loss: “plt”, neg: [0, 40], tree_type: {“hierarchicalKmeans”, “huffman”}, tfidfWeights: True}

Table 6: Results on the entire Expert dataset, trained
on the training splits of Procedure+ and Tram. Bold
denotes best-performer.

Methods P@1 R@1 F1@3 MMR@3 F1@5 MRR@5
TTPDrill (BM25) .311 .166 .226 .364 .207 .375

NAPKINXC .43 .186 .3 .51 .275 .519
XR-LINEAR .426 .198 .311 .517 .275 .529

InfoNCE .489 .208 .362 .564 .339 .576
@-balanced .443 .195 .328 .528 .324 .543
Asymmetric .484 .217 .348 .558 .333 .573

Table 7: Technique-level results on the entire Expert
dataset, trained on the training splits of Procedure+ and
Tram. Bold denotes best-performer.

Methods P@1 R@1 F1@3 MMR@3 F1@5 MRR@5
TTPDrill (BM25) .369 .202 .283 .437 .267 .449

NAPKINXC .51 .26 .344 .583 .375 .592
XR-LINEAR .526 .279 .378 .595 .332 .609

InfoNCE .556 .286 .447 .621 .432 .633
@-balanced .506 .273 .428 .594 .429 .604
Asymmetric .543 .287 .442 .615 .423 .626

• Chat-GPT: generate an answer that derives1168

from the problem description, so-called1169

prompt, which is rather non-deterministic,1170

with no fixed answer for the same problem.1171

This is partially due to the non-constrained1172

answer search space.1173

• What we need: generate best-matched TTPs1174

by comparing the given text to the ATT&CK1175

TTP collection (bounded, deterministic).1176

However, LLMs in general have the poten-1177

tial to alleviate this issue to some extent if1178

they undergo effective domain-specific train-1179

ing during the pre-training phase and are1180

subsequently fine-tuned using high-quality1181

datasets, such as an enhanced version of our1182

Expert, in the reinforcement-learning-from- 1183

human-feedback phase (Karpathy, 2023). 1184

• Currently, Chat-GPT (3.5) is not up to the 1185

task. 1186

Here are a couple of examples: 1187

Q1: What MITRE ATT&CK techniques
(TTPs) are mentioned in the following
text: “After the .NET PE file has been
run, we observed the same behavior as the
above QUADAGENT sample of dropping
a PowerShell script with the filename Sys-
temDiskClean.ps1 alongside a VBScript file
with the same name. The C2 techniques re-
mained identical, with the only change being
the server which became cpuproc[.]com.”

1188
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Table 8: Technique-level (wherein a sub-technique is resolved to its super-technique, a common practice in literature
to lower the task’s complexity) results of all models on 3 datasets. Bold denotes best while underscore signifies
second-best performance. Indented (−) denotes training without the specific option wrt. the preceding model. Ideal
R@1 on the Expert dataset is 0.504. T uses pre-trained SecBERT.

Procedures+ TRAM Expert

Methods P@1 R@1 F1@3 MRR@3 P@1 R@1 F1@3 MRR@3 P@1 R@1 F1@3 MRR@3

B
as

el
in

e TTPDrill (BM25) .294 .290 .152 .297 .281 .271 .161 .295 .197 .096 .096 .279
BRT .409 .655 .285 .655 .399 .647 .279 .647 .167 .295 .117 .295
Dynamic Triplet-lossT .449 .447 .408 .539 .404 .353 .382 .513 .559 .166 .344 .631

X
M

T
C

eXtremeText (Sigmoid) .659 .649 .426 .713 .742 .704 .494 .793 .439 .212 .333 .521
eXtremeText (PLT) .644 .636 .403 .689 .714 .679 .464 .756 .465 .206 .327 .532
NAPKINXC .698 .687 .426 .764 .800 .748 .495 .864 .548 .253 .409 .626
XR-LINEAR .705 .700 .429 .772 .817 .765 .494 .870 .586 .261 .439 .669
XR-TRANSFORMERT .683 .673 .416 .747 .801 .750 .488 .856 .554 .245 .405 .633

O
ur

s

InfoNCET .759 .727 .624 .823 .819 .696 .668 .876 .741 .228 .515 .871
@−balancedT .843 .806 .666 .892 .889 .778 .711 .927 .731 .224 .491 .789
(−) auxiliary .714 .689 .579 .791 .817 .697 .648 .88 .754 .233 .509 .816
(−) Transformers .777 .733 .664 .86 .791 .683 .713 .875 .718 .226 .497 .782

AsymmetricT .841 .806 .677 .892 .903 .789 .726 .938 .745 .236 .483 .802

A1: The text mentions the following MITRE
ATT&CK techniques:

• File and Directory Discovery: The
QUADAGENT sample drops a
PowerShell script and a VBScript file
with the filename SystemDiskClean.ps1.

• Command and Control (C2)
Communications: The text indicates that
there is a change in the C2 server from
appexsrv[.]net to cpuproc[.]com.

It’s important to note that there may be addi-
tional MITRE ATT&CK techniques employed
in this attack, but they are not mentioned in
this particular text. A more detailed analysis
would be required to confirm the full set of
techniques used in this attack.

1189

Implications: The answer from ChatGPT is1190

rather generic, while missing out the compelling1191

Masquerading technique.1192

Q2: What MITRE ATT&CK techniques
(TTPs) are mentioned in the following text:
“Russian state-sponsored APT actors have ex-
filtrated credentials and exported copies of the
Active Directory database ntds.dit.”

1193

A2: The following MITRE ATT&CK TTPs
are mentioned in the given text:

• Exfiltration: The adversaries have
exfiltrated credentials and data from the
victim’s network.

• Collection: The adversaries have
exported copies of the Active Directory
database ntds.dit, which is a technique
used for data collection. 1194

Implications: Chat-GPT gives a rather generic 1195

answer, and cannot point to specific TTPs (i.e., 1196

NTDS or OS Credential Dumping). 1197
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