
Collaborating with language models for embodied
reasoning

Ishita Dasgupta∗
DeepMind

Christine Kaeser-Chen
DeepMind

Kenneth Marino
DeepMind

Arun Ahuja
DeepMind

Sheila Babayan
DeepMind

Felix Hill
DeepMind

Rob Fergus
DeepMind

Abstract

Reasoning in a complex and ambiguous environment is a key goal for Reinforce-
ment Learning (RL) agents. While some sophisticated RL agents can successfully
solve difficult tasks, they require a large amount of training data and often struggle
to generalize to new unseen environments and new tasks. On the other hand, Large
Scale Language Models (LSLMs) have exhibited strong reasoning ability and the
ability to to adapt to new tasks through in-context learning. However, LSLMs do
not inherently have the ability to interrogate or intervene on the environment. In
this work, we investigate how to combine these complementary abilities in a single
system consisting of three parts: a Planner, an Actor, and a Reporter. The Planner
is a pre-trained language model that can issue commands to a simple embodied
agent (the Actor), while the Reporter communicates with the Planner to inform its
next command. We present a set of tasks that require reasoning, test this system’s
ability to generalize zero-shot and investigate failure cases, and demonstrate how
components of this system can be trained with reinforcement-learning to improve
performance.

1 Introduction.
Achieving complex tasks in embodied environments often requires logical reasoning. Such logical
reasoning has been a challenge for machine learning [Russin et al., 2020, Mitchell, 2021] – even
more so with embodied agents, where the agent also has to perceive and control in its environment, in
addition to reasoning about how to accomplish a complex task. Recent large scale language models
(LSLMs), however, have shown great promise for reasoning [Radford et al., 2019, Brown et al., 2020].
Can this complex reasoning ability be used for embodied tasks?

One major issue is that LSLMs are not embodied or grounded. They do not have a way to directly
take actions in embodied environments, or of knowing what is happening in an environment. For
each of these, we rely on other components of an agent model. In this work, we investigate an
agent paradigm that we call Planner-Actor-Reporter. The Planner is the LSLM—it reads the task
description, does any required logical reasoning, and breaks the problem down into a sequence of
simple instructions. These instructions are passed to the Actor, which is an RL agent programmed to
complete a small set of simple instructions in the environment. Finally, to complete the feedback
loop, we have the Reporter, which observes the environment and reports information back to the
Planner so it can adjust the instructions it issues. See Figure 1A.

Other recent work has investigated forms of closed-loop feedback for LSLMs in embodied reasoning
tasks Huang et al. [2022], Ahn et al. [2022]. In this work, we generalize these approaches into a
three part Planner-Actor-Reporter paradigm. We highlight the separate and crucial roles played

∗corresponding author; idg@google.com

36th Conference on Neural Information Processing Systems (NeurIPS 2022), LaReL workshop.



Figure 1: Setup. A. Schematic of the Planner-Actor-Reporter paradigm and an example of the
interaction among them. B. Observation and action space of the PycoLab environment.

by these components by introducing and evaluating on a series of tasks which require the agent
to explore the world to gather information necessary for planning, break down complex tasks into
steps, and communicate visual properties of the world back to the Planner. Finally, we demonstrate
that the Reporter module can be trained with reinforcement learning (RL), reducing the need for
hand-specified sources of feedback.

2 Methods
Environment and Actor: Our environment is a 2D partially observable grid-world. The environ-
ment contains unique objects specified by color, shape and texture, and the Actor sees a top-down
egocentric pixel RGB view with visibility within 5 squares of the agent. In addition to movement
actions, the Actor can perform two special actions when on top of an object: examine which reveals a
hidden piece of text about the object, and pickup which adds the object to its inventory.

The Actor is pre-trained with RL to follow instructions of the form “Pick up the X” or “Examine the
X”. Figure 1B shows an example observation from the environment, details about Actor architecture
and environment can be found in App B.

Planner: We use pre-trained large language models with the same architecture: Chinchilla [Hoff-
mann et al., 2022], of two sizes: 7B and 70B parameters. To promote grounding with in-context
learning [Brown et al., 2020], we provide 5 randomly selected “few-shot examples” of each task
(assuming optimal Planner, Reporter, and Actor; see App E for full text), and directly use the model’s
sampled language as input to the Actor. At every timestep, the sampled language and information
generated by the Reporter are appended to the dialogue transcript, and used as the prompt to get a
new instruction from the Planner at the next timestep.

Reporter: We specify the role of the Reporter further by drawing parallels to hierarchical RL
[Sutton et al., 1999, Kulkarni et al., 2016], where a high-level ‘Planner’ issues temporally abstracted
instructions to a lower-level ‘Actor’. A key difference from these setups is that in our experiments,
the observation space of the Actor and Planner are different. In our setup, the Actor operates over
pixel observations and produces movement actions, while the Planner operates over a language
observation (the prompt) and produces language actions (the produced instruction). The Actor is
language conditional and can interpret the Planner’s instructions. But the Planner cannot parse the
results of the Actor’s actions (to produce an appropriate next action). The Reporter translates from
the Actor’s action+observation space to the Planner’s. In the most general case, a Reporter takes (a
sequence of) Actor actions and pixel observations and produces a text string that contains true and
relevant information about what the Actor did and how the environment responded.

There are several ways to implement a Reporter, varying what is reported and how much of it
is hard-coded, pre-trained, or learned from scratch. Previous work has used implicit Reporters
implemented as part of the Actor that only convey instruction-completion [Ahn et al., 2022], or
pre-trained perception models that answer natural language questions about the Actor’s observations
[Zeng et al., 2022, Huang et al., 2022]. In this work, we start with a hard-coded Reporter to first
explore the performance of the Planner-Actor interaction in our novel information gathering tasks
(Sec 3). We then pioneer learning this Reporter within the Planner-Actor-Learner loop to optimize
reward (Sec 4).

2



Tasks: We create a suite of tasks that examine the challenges of reasoning, generalization, and
exploration in embodied environments that LM Planners can help with (detailed in App C). We focus
on two types of tasks (conditional and search tasks) that require explicit information gathering such
that a) the Planner must issue an explicit information gathering instruction, b) the Actor must carry it
out, and c) the Reporter must relay the results before d) the Planner can issue the next instruction.

3 Language models as interactive planners
We examine the interaction between Planner, Actor and Reporter in tasks that require all three
components for success. Building on top of previous work [Ahn et al., 2022, Zeng et al., 2022] which
show that LSLMs can break down a complex real-world tasks into step-by-step instructions, we
focus on tasks where the Planner needs to also explicitly issue information gathering instructions
and incorporate the reported information for generating the next instructions. Further, our tasks are
realized over objects with abstract properties that are not grounded in the LM’s previous semantic
experiences and therefore require significant abstract logical reasoning. We analyze the performance
of different Planners and their robustness. All components are pre-trained.

The task setup is as follows: all the objects in the room have a ‘secret property’ (good / bad /
unknown). When the Actor ‘examines’ an object, a ground-truth Reporter relays a text string ‘I
examined {object}, its secret property is {value}’ to the Planner. The Planner can then issue the next
instruction to the Actor.

3.1 Secret property conditional task
We start with the simplest task which requires information gathering. The goal of the episode is to
pick up a correct object, based on another object’s secret property. The task description passed to the
Planner is as follows: ‘If {decider object} is good, pick up {object 1}, otherwise pick up {object 2}’.
A successful episode consists of 5 steps: a) the Planner instructs the Actor to examine the {decider
object}, b) the Actor examines the object, c) the Reporter relays the revealed information (always
done correctly in this setting), d) the Planner reasons which object needs to be picked up based on
the report, {object 1} or {object 2}, and instructs the Actor to pick up the correct object e) the Actor
picks up the correct object.

Explicit information gathering actions are classically challenging with pure RL. With a LSLM Planner
and 5 language traces of solved examples as prompt, and an Actor trained on only simple pick-up
and examine tasks, we can complete this complex multi-step task with good accuracy (Fig 2A). A
pure RL baseline performs poorly even after 100M learner frames (see App D, Fig 2A).

In our analysis, we identify two main failure cases: the LSLM Planner failing to infer the next
instruction given the environment feedback, and the Actor failing to follow the instruction provided
by the Planner. In the first case, we observe that smaller language models (7B parameters) are only
able to infer the correct object to pick up for reward 58% of the time given all information; larger
language models (70B parameters) are able to do so 96% of the time. This shows that even relatively
simple reasoning remains out of reach for smaller models without fine-tuning. In the second failure
case, we observe that the Actor might encounter distribution shift, for example in episode length or
instruction format, which makes it unable to Planner’s instruction.

3.2 Secret property search task
We extend the previous task by requiring additional steps of information gathering. Instead of
examining a single object, the agent needs to examine multiple objects, note their secret properties,
and pick up the correct object for reward. The task is specified as ‘The objects are {}, {}, {}, and {}.
Pick up the object with the good secret property’. A successful episode consists of the Planner asking
the Actor to examine each object in turn until it finds one with a ‘good’ property, at which point it
asks the Actor to pick up that object.

Although this task requires more information gathering steps, and the RL baseline performs worse
(see App D), the agent framework with Planner–Actor–Reporter is still able to complete the task
zero-shot (i.e. without any additional environment interaction; Fig 2A). Curiously, we observe that
our agents perform better in this task than in the previous task where only one object needs to be
examined (Fig 2A; and App D). We hypothesize that since the number of information gathering steps
varies, the Planner doesn’t use a rigid "one examine, one pick up" policy and can be more robust to
errors. For example, if the Actor examines the wrong object. We see that the Planner can indeed
recover from such errors (Sec A.1). Similar to the observations above, we note that larger language
models (70B) perform significantly better than smaller models (7B) (Fig 2A).

3



Figure 2: Results. A. Performance on secret property conditional and secret property search tasks
with different Planners and baseline RL. B. Robustness of the Planners under an imperfect Reporter
on the secret property search task. C. Improvement in performance as a Reporter is trained on the
Visual conditional task. All error-bars are CIs across multiple episodes.

3.3 Robustness to irrelevant reports
We saw in the search task from the previous section, that the 70B Planner is reasonably robust to
mistakes from the Actor (e.g. Section A.1). In this section, we examine if it can also be robust to
a noisy Reporter. We break the assumption that only task relevant actions in the environment are
reported, and irrelevant actions in the environment, e.g. "I have moved left" / "I have moved up and
right" etc. are reported 20% of the time.

We find that performance does reduce but not dramatically (Fig 2B). The smaller 7B model is less
robust than the 70B model, showing a more dramatic reduction in performance. We find that the
70B Planner uses strategies of repetition (where it repeats an instruction until it receives the relevant
report, e.g. Sec A.2) or cycling (where it cycles through examine instructions for all the objects, e.g.
Sec A.3), or some combination of the two, until it hits a ‘good object’.

The few shot prompts provide no examples of how to respond to irrelevant reports. When we do
provide guidance and demonstrate a ‘repeating’ strategy (e.g. Sec A.2) in the prompted examples,
this restores performance to that without the irrelevant reports for the 70B Planner (Fig 2B); the 7B
Planner improves but doesn’t fully recover. This robustness indicates promise that our approach
(particularly with large Planners) scales to imperfect Reporters. However, inference time through a
large Planner is expensive, so a Reporter that ignores irrelevant events is more efficient.

4 Training a truthful Reporter
In the previous section, we focused on studying the behaviors of the Planner in our agent framework
with a Reporter which always reports accurate information. However, such a Reporter does not exist
in most environments. In this section, we study how we can train a reporter from scratch with RL.

We consider a ‘visual conditional task’ where the "secret property" is not directly revealed in text
with a special ‘examine’ action, but rather must be decoded from visual observations. In particular,
the task is specified as ‘If {decider object} is close to the wall, pick up {object 1}, otherwise pick
up {object 2}’. The Reporter’s input is the same visual observations as the Actor and its output is a
binary classifier head that can choose between one of two reports (‘The object is {close to /far from}
the wall’). Note that when training first starts, the Reporter does not have any pre-existing grounding
mechanisms to report accurate information about the scene. As training continues, the Reporter can
use the final reward of the episode to learn what information is most helpful to the Planner, and
eventually converge to report only truthful and relevant information.

In contrast, recent work has used pretrained models with visual grounding (e.g. vision language
models Zeng et al. [2022], or handcrafted mechanisms Huang et al. [2022]) to act as the Reporter
module. We believe that building an effective Reporter module should combine both approaches:
using a pre-trained module to bootstrap perception and grounding, and then using RL to finetune the
pre-trained module to communicate with the Planner module. Our investigations show that Reporter
training with RL is indeed viable and beneficial.

5 Discussion and future work
We advocate for a three-part system (Planner-Actor-Reporter), using pre-trained language models as
a Planner that issues natural language commands to an embodied Actor, with a Reporter translating
information back to the Planner. We introduce a series of tasks that leverage a pre-trained language
model’s abstract reasoning capacities, showing impressive and robust zero-shot performance, and
analyse errors in different-sized models. We show the first proof of concept that the Reporter can

4



be trained to facilitate better collaboration between Planner and Actor. Exciting directions for
future work include incorporating pre-trained components into the Reporter, expanding to more
complex/realistic tasks, and improving training with a large model in the loop.

References
M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, K. Gopalakrishnan,

K. Hausman, A. Herzog, et al. Do as i can, not as i say: Grounding language in robotic affordances.
arXiv preprint arXiv:2204.01691, 2022.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. J. Henighan, R. Child, A. Ramesh,
D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess,
J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. Language models
are few-shot learners. ArXiv, abs/2005.14165, 2020.

L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron, V. Firoiu, T. Harley,
I. Dunning, S. Legg, and K. Kavukcuoglu. IMPALA: scalable distributed deep-rl with importance
weighted actor-learner architectures. CoRR, abs/1802.01561, 2018. URL http://arxiv.org/
abs/1802.01561.

J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford, D. de Las Casas,
L. A. Hendricks, J. Welbl, A. Clark, T. Hennigan, E. Noland, K. Millican, G. van den Driessche,
B. Damoc, A. Guy, S. Osindero, K. Simonyan, E. Elsen, J. W. Rae, O. Vinyals, and L. Sifre.
Training compute-optimal large language models. ArXiv, abs/2203.15556, 2022.

W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng, J. Tompson, I. Mordatch,
Y. Chebotar, et al. Inner monologue: Embodied reasoning through planning with language models.
arXiv preprint arXiv:2207.05608, 2022.

R. Kirk, A. Zhang, E. Grefenstette, and T. Rocktaschel. A survey of generalisation in deep reinforce-
ment learning. ArXiv, abs/2111.09794, 2021.

T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum. Hierarchical deep reinforcement
learning: Integrating temporal abstraction and intrinsic motivation. Advances in neural information
processing systems, 29, 2016.

M. Mitchell. Abstraction and analogy-making in artificial intelligence. Annals of the New York
Academy of Sciences, 1505(1):79–101, 2021.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language models are unsupervised
multitask learners. 2019.

J. W. Rae, S. Borgeaud, T. Cai, K. Millican, J. Hoffmann, F. Song, J. Aslanides, S. Henderson,
R. Ring, S. Young, E. Rutherford, T. Hennigan, J. Menick, A. Cassirer, R. Powell, G. van den
Driessche, L. A. Hendricks, M. Rauh, P.-S. Huang, A. Glaese, J. Welbl, S. Dathathri, S. Huang,
J. Uesato, J. F. J. Mellor, I. Higgins, A. Creswell, N. McAleese, A. Wu, E. Elsen, S. M. Jayakumar,
E. Buchatskaya, D. Budden, E. Sutherland, K. Simonyan, M. Paganini, L. Sifre, L. Martens,
X. L. Li, A. Kuncoro, A. Nematzadeh, E. Gribovskaya, D. Donato, A. Lazaridou, A. Mensch,
J.-B. Lespiau, M. Tsimpoukelli, N. K. Grigorev, D. Fritz, T. Sottiaux, M. Pajarskas, T. Pohlen,
Z. Gong, D. Toyama, C. de Masson d’Autume, Y. Li, T. Terzi, V. Mikulik, I. Babuschkin, A. Clark,
D. de Las Casas, A. Guy, C. Jones, J. Bradbury, M. G. Johnson, B. A. Hechtman, L. Weidinger,
I. Gabriel, W. S. Isaac, E. Lockhart, S. Osindero, L. Rimell, C. Dyer, O. Vinyals, K. W. Ayoub,
J. Stanway, L. L. Bennett, D. Hassabis, K. Kavukcuoglu, and G. Irving. Scaling language models:
Methods, analysis & insights from training gopher. ArXiv, abs/2112.11446, 2021.

J. Russin, R. C. O’Reilly, and Y. Bengio. Deep learning needs a prefrontal cortex. Work Bridging AI
Cogn Sci, 107:603–616, 2020.

R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for temporal
abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.

5

http://arxiv.org/abs/1802.01561
http://arxiv.org/abs/1802.01561


A. Zeng, A. Wong, S. Welker, K. Choromanski, F. Tombari, A. Purohit, M. Ryoo, V. Sindhwani,
J. Lee, V. Vanhoucke, et al. Socratic models: Composing zero-shot multimodal reasoning with
language. arXiv preprint arXiv:2204.00598, 2022.

A Examples of Planner-Reporter-Actor dialogue

In this section, we include examples of Planner-Actor-Reporter dialogue, in particular for the secret
property search tasks, demonstrating Planner robustness to Actor and Reporter errors.

A.1 A more robust search policy.

The red box shows where the Actor made a mistake, the green box highlights the Planner’s recovery.

A.2 Emergent strategies in response to irrelevant reports: Repeating strategy.

The Planner repeats commands until it is completed, even in response to irrelevant reports.

A.3 Emergent strategies in response to irrelevant reports: Cycling strategy.

The Planner cycles through examine commands until it receives a report of a good object.//

6



B Environment and agent architecture details

B.1 Grid-word environment

We implemented a grid-world environment with the PyColab library
(https://github.com/deepmind/pycolab). The grid-world is 11x11, with the outer border be-
ing impassable walls, and no internal obstacles. There are four objects and one agent in the
environment, each occupying one grid. Their start locations in each game are randomly assigned
when the episode starts.

We assign objects in the environment randomly selected color, texture, and shape attributes, from
pre-defined lists of allowed values. The exact object attribute combinations in evaluation tasks are
held out from the training tasks, though each individual attribute value has been observed in training.

The agent’s view on the environment is always a 11x11 crop of the scene from a top-down perspective,
with the agent at the center. As the agent moves around, the crop scrolls to keep the agent centered in
the visual observation.

B.2 Agent architecture

Our agent comprises three modules: a Planner, an Actor, and a Reporter. The Planner module is a
pretrained LSLM. In our experiments, we use two variants of the Chinchilla models [Hoffmann et al.,
2022], the one with 70 billion parameters (referred as the 70B model), and the one with 7 billion
parameters (referred a the 7B model).

The Actor module uses a pre-trained policy, trained on simple tasks in the same grid-world envi-
ronment. The policy uses a simple convolutional visual encoder with 3 layers to encode visual
observations, and a LSTM-based language encoder to encode action instructions. The agent also has
a LSTM-based memory module to help take previous actions and observations into account for policy
output. The policy head for the Actor outputs a distribution in the action space, which in our case
contains the discrete movement actions (e.g. move up or down in the grid-world), and the special
actions of pick up and examine. The actual agent action is then sampled from the policy output.

The Reporter module shares a lot of similarities with the Actor architecture: it also comprises visual
and instruction encoders, a memory module, and a policy head. In the experiments described in
Chapter 4, the policy head is simply a binary distribution over two pre-defined text reports. Though
in future work we do plan to allow direct language generation from the Reporter module.

7



B.3 Training procedures

Both the Actor and Reporter module are trained with standard VTrace loss [Espeholt et al., 2018].
The Actor training converged after about 100,000 frames, while the Reporter training converged after
500 frames.

We caution that despite the number of frames needed for Reporter training is not many, the training
time can be very long. This is because in each episode, the LSLM Planner may need to be queried
several times. Inference time of these models is quite slow still, which increases the amount of wall
time needed to collect enough trajectories to train the agent.

C All task descriptions

We frame the capabilities of our agent, and similarly, the requirements of our task suite around four
fundamental aspects of embodied intelligence:

1. Logical Reasoning: The ability to take complex instructions and do different kinds of
logical operations on them to determine the correct course of action.

2. Generalization: The ability to generalize beyond the agent’s previous experience.

3. Exploration: The ability to explore the world around the agent to uncover new information
that can inform its reasoning for what actions to take.

4. Perception: The ability to use the raw observation the agent has (usually vision) and process
the world and use what it sees to make decisions.

Logical Reasoning: The ability to take complex instructions and do different kinds of logical
operations on them to determine the correct course of action.

This ability applies mainly to an embodied agent’s ability to interpret the meaning of a goal spec-
ification (prompt) as well as integrate other information it has about the environment. This can
include if-else conditionals, choosing from among options by eliminating options, choosing objects
that match certain properties, etc. LSLMs are particularly adept at these kinds of logical language
tasks [Rae et al., 2021, Hoffmann et al., 2022].

Generalization: The ability to generalize beyond the agent’s previous experience.

The ability to generalize to new inputs has been well studied in RL [Kirk et al., 2021], but remains a
significant challenge. In the field of LSLMs, we have seen remarkable success in few-shot [Brown
et al., 2020] learning to new text tasks and inputs. These ‘few-shots’ are language traces of optimal
behavior provided in the prompt, the agent never receives new interaction data or demonstrations for
any of the generalization tasks. Language descriptions are much cheaper and easier to collect for
new tasks than demonstrations or interactions. We examine generalization from the ‘train’ examples
provided in the prompt to a new test prompt.

We study generalization of objects, where tasks have been seen in training with a specific set of
objects and tested with other objects. We study generalization in language prompts, where the same
task can be communicated in several different ways, but the structure of the task itself remains the
same. Finally, we study generalization in the task itself, e.g. collecting 3 objects when the train traces
only showed 2.

Exploration: The ability to explore the world around you to learn new information that can inform
your reasoning for what actions to take.

This definition is subtly different from the way exploration is often used in the RL literature. Here
we do not mean the ability during training to explore the policy space to find a more optimal policy
(versus exploiting a known policy). We mean the agent’s ability to actively discover information that
is not observable in its current state. In our tasks, agents must move to uncover textual clues about
objects using the “examine” action, or use perception to look at objects not currently in the agent’s
view.

Perception: The ability to use the raw observation the agent has (usually vision) and process the
world and use what it sees to make decisions.

8



This is ultimately the most fundamental agent ability, to observe its surroundings and to make sense
of them. It is fundamental to RL in such a way that it is often not even mentioned as a core capability.
This is however a core shortcoming of LSLMs, that operate purely over text and are not grounded. A
core contribution of this work is to show how we can combine these complementary capabilities.

C.1 Tasks

Finally, we present a series of tasks that exemplify the challenges discussed above.

Option Elimination: Here we look at logical reasoning and (object and prompt) generalization.
Consider the following motivating example:
I know the corkscrew is either in the cutlery drawer or on the wine cabinet.
I just checked the cutlery drawer, but it wasn’t there. Can you find me
the corkscrew?
The intended behavior from the agent is relatively simple, i.e. to “go to the wine cabinet”. However,
it is non-trivial to infer this simple instruction, and we examine if LSLMs can help. We design a task
in our PyColab environment to emulate this kind of task. At the beginning of every episode, we
select 4 unique objects and place them randomly. We then generate a templated instruction string
with the names of these objects. We use 10 different language formats, we choose the Nshot prompts
from 7 of them, and hold out 3 as test formats to examine generalization across prompts. In all of
these, 3 of the 4 objects are “eliminated” as the target object, and optimal behavior is for the agent to
go to the final object that was not eliminated. If the agent interacts with any other object, the episode
ends without reward.

Basic Step Tasks: We consider the simplest example of this where the task is to pick up two objects
in the room e.g. "Pick up object X and Y in that order." The hope is that the language model can
break this instruction down into its components, i.e. "Pick up X" and "Pick up Y" and issue them to
the low-level agent in that order. This is the first multi-step task and therefore needs a Reporter (to
tell the Planner when to issue the next instruction). We assume a truthful-and-relevant reporter that
produces a text string "I have picked up <object name>." whenever the agent picks up an object. We
examine generalization to different numbers of objects.

Conditional Secret Property: Consider the following example: Get me the coffee if it is
still warm, otherwise get me a soda. The language model has no way to know whether the
coffee is warm without the help of an embodied agent examining the coffee and reporting back on
its temperature, based on which the language model can then issue the next instruction. To emulate
this kind of information in our gridworld – like temperature or texture that can only be gathered by
an embodied agent with direct interaction with an object – we assume that each object has a list of
hidden properties. When the agent does a special “examine” action on an object, the environment
produces a text string listing all of these properties.

We start with 4 randomly placed unique objects in the room, and the agent’s goal is to pick up a single
target object. The challenge come from figuring out what the right target object is – this requires
information gathering interaction with the environment. In our task, the agent has to examine a single
arbitrarily assigned decider object that might have the property good, bad. Depending on which it is,
the agent has to pick up a different target object. Objects apart from the decider object are not good
or bad and instead of secret property unknown, examining an non-decider object X returns the string
‘I examined X. Its secret property has value unknown.’.

Search Secret Property:

Consider the following example: Can you bring me my water bottle? It’s either in
the fridge, in my gym bag, or in my backpack. The LM doesn’t know where the water
bottle is, the low-agent has to collect this information. The challenge in this task is to form and issue
sequences of information gathering actions, recognize when the agent has received the necessary
information to stop further information gathering, and issue a final instruction based on the results of
this information gathering.

We emulate this structure in a search task where one of the four objects in the room is the target, but
the agent does not know which one. This information is in the hidden properties of the objects: three
of the four objects have the property bad, the remaining object has the property good, and the agent
has to pick up the good object. Examining an object X returns the text string ‘I examined X. Its secret

9



property has value good/bad.’ The agent therefore has to sequentially examine each of the objects;
when it encounters a good object, it should pick it up.

Visual Color Conditional:

We start with a simple conditional task, where the target object changes depending on the color of the
agent. This agent color information is not available to the language model. A reporter much therefore
learn to decode it from visual observations, and report it back. The language model can then issue the
right next instruction, which leads to reward. This task doesn’t require information gathering actions
or commands, as the agent color is directly visible to the agent when it spawns.

Visual Location Conditional: The previous task was effectively a single step task – the information
relevant to knowing what the target is (this information being the color of the agent), is available right
from the first step of the task. To combine the challenges of multistep tasks examined in previous
section with learning to report, we consider a conditional task more similar to the one examined
previously, where the agent has to do an information gathering action in order to get the relevant
information. We consider a conditional task in which which object the agent must pick up depends
on whether a designated decider object is close to the wall. In order to gauge this, the agent has to
navigate to the object to examine its surroundings.

D RL Baselines

We also trained the Actor (pre-trained on the ‘pick up ’ and ‘examine’ tasks) directly on the secret
property conditional and search tasks (3). Note that we see a learning curve for the basic ‘pick up
’ and ‘examine’ tasks as well because of a slight distribution shift — the Actor here additionally
receives the event report as a separate observation (encoded with the same architecture used to encode
the instruction), this is necessary to enable to perform the information gathering tasks (i.e. to use the
information generated). For the the basic pick up and examine tasks, the agent just has to learn to
ignore this field (giving fast learning).

Figure 3: Pure RL baselines. See main text for details.

We find that after 5000 learner updates (140M learner frames), performance on the Search task is
around 25% (chance performance when picking up a random object, without first examining it to
determine if it is good), performance on the Conditional task is slightly higher, around 33% reflecting
that the RL agent can learn to pick up one of the three objects in the prompt (and ignore the fourth),
but doesn’t learn to first examine the decider object to figure out which one of the target objects to
pick up.

These baselines are not intended to convey that these tasks are impossible to learn with pure RL
– better architectures discounting, exploration strategies etc will no doubt significantly improve
performance. However, we demonstarte that even with several environment interactions, a pure RL
baseline does find these tasks difficult – while our Planner-Actor-Reporter agent can perform fairly
well with no additional environment interactions, and only 5 examples of optimal performance in the
Planner’s prompt.

10



E All prompt formats used

E.1 Conditional task prompt

QUESTION: If the solid dark blue h is good, pickup horizontal striped light
green inverse plus. Otherwise, pickup checker brown tee.
ANSWER:
LM:
Examine solid dark blue h.<EOS>
Agent:
I examined solid dark blue h. Its secret property has value bad.<EOS>
LM:
Pickup checker brown tee.<EOS>
Agent:
I picked up checker brown tee.<EOS>
DONE

QUESTION: If the noisy light green plus is good, pickup solid orange circle.
Otherwise, pickup vertical striped blue upside down u.
ANSWER:
LM:
Examine noisy light green plus.<EOS>
Agent:
I examined noisy light green plus. Its secret property has value bad.<EOS>
LM:
Pickup vertical striped blue upside down u.<EOS>
Agent:
I picked up vertical striped blue upside down u.<EOS>
DONE

QUESTION: If the vertical striped lavender upside down tee is good, pickup
solid purple inverse plus. Otherwise, pickup vertical striped green h.
ANSWER:
LM:
Examine vertical striped lavender upside down tee.<EOS>
Agent:
I examined vertical striped lavender upside down tee. Its secret property
has value bad.<EOS>
LM:
Pickup vertical striped green h.<EOS>
Agent:
I picked up vertical striped green h.<EOS>
DONE

QUESTION: If the vertical striped pink plus is good, pickup horizontal
striped blue tee. Otherwise, pickup vertical striped orange ex.
ANSWER:
LM:
Examine vertical striped pink plus.<EOS>
Agent:
I examined vertical striped pink plus. Its secret property has value
bad.<EOS>
LM:

11



Pickup vertical striped orange ex.<EOS>
Agent:
I picked up vertical striped orange ex.<EOS>
DONE

QUESTION: If the grid teal h is good, pickup vertical striped purple tee.
Otherwise, pickup vertical striped dark red upside down u.
ANSWER:
LM:
Examine grid teal h.<EOS>
Agent:
I examined grid teal h. Its secret property has value good.<EOS>
LM:
Pickup vertical striped purple tee.<EOS>
Agent:
I picked up vertical striped purple tee.<EOS>
DONE

E.2 Search task prompt

QUESTION: The objects in the room are checker brown tee, horizontal striped
light green inverse plus, solid dark blue h and vertical striped blue tee.
Get the object with a good secret property.
ANSWER:
LM:
Examine checker brown tee.<EOS>
Agent:
I examined checker brown tee. Its secret property has value bad.<EOS>
LM:
Examine horizontal striped light green inverse plus.<EOS>
Agent:
I examined horizontal striped light green inverse plus. Its secret property
has value bad.<EOS>
LM:
Examine solid dark blue h.<EOS>
Agent:
I examined solid dark blue h. Its secret property has value good.<EOS>
LM:
Pickup solid dark blue h.<EOS>
Agent:
I picked up solid dark blue h.<EOS>
DONE

QUESTION: The objects in the room are noisy green plus, horizontal striped
blue u, noisy green circle and solid light green upside down u. Get the
object with a good secret property.
ANSWER:
LM:
Examine noisy green plus.<EOS>
Agent:
I examined noisy green plus. Its secret property has value bad.<EOS>
LM:
Examine horizontal striped blue u.<EOS>
Agent:

12



I examined horizontal striped blue u. Its secret property has value
bad.<EOS>
LM:
Examine noisy green circle.<EOS>
Agent:
I examined noisy green circle. Its secret property has value good.<EOS>
LM:
Pickup noisy green circle.<EOS>
Agent:
I picked up noisy green circle.<EOS>
DONE

QUESTION: The objects in the room are solid green triangle, solid yellow h,
checker lavender plus and noisy blue tee. Get the object with a good secret
property.
ANSWER:
LM:
Examine solid green triangle.<EOS>
Agent:
I examined solid green triangle. Its secret property has value good.<EOS>
LM:
Pickup solid green triangle.<EOS>
Agent:
I picked up solid green triangle.<EOS>
DONE

QUESTION: The objects in the room are horizontal striped brown tee, grid
yellow ex, solid dark red plus and checker light yellow ex. Get the object
with a good secret property.
ANSWER:
LM:
Examine horizontal striped brown tee.<EOS>
Agent:
I examined horizontal striped brown tee. Its secret property has value
good.<EOS>
LM:
Pickup horizontal striped brown tee.<EOS>
Agent:
I picked up horizontal striped brown tee.<EOS>
DONE

QUESTION: The objects in the room are vertical striped yellow plus, checker
dark red u, checker blue plus and vertical striped peach upside down tee.
Get the object with a good secret property.
ANSWER:
LM:
Examine vertical striped yellow plus.<EOS>
Agent:
I examined vertical striped yellow plus. Its secret property has value
good.<EOS>
LM:
Pickup vertical striped yellow plus.<EOS>
Agent:

13



I picked up vertical striped yellow plus.<EOS>
DONE}

14


	Introduction.
	Methods
	Language models as interactive planners
	Secret property conditional task
	Secret property search task
	Robustness to irrelevant reports

	Training a truthful Reporter
	Discussion and future work
	Examples of Planner-Reporter-Actor dialogue
	A more robust search policy.
	Emergent strategies in response to irrelevant reports: Repeating strategy.
	Emergent strategies in response to irrelevant reports: Cycling strategy.

	Environment and agent architecture details
	Grid-word environment
	Agent architecture
	Training procedures

	All task descriptions
	Tasks

	RL Baselines
	All prompt formats used
	Conditional task prompt
	Search task prompt


