
SortedRL: Accelerating RL Training for LLMs through Online Length-Aware
Scheduling

Yiqi Zhang † * 1 Huiqiang Jiang † 2 Xufang Luo † 2 Zhihe Yang * 3 Chengruidong Zhang 2 Yifei Shen 2

Dongsheng Li 2 Yuqing Yang 2 Lili Qiu 2 Yang You 1

Abstract
Scaling reinforcement learning (RL) has shown
strong promise for enhancing the reasoning abili-
ties of LLMs, particularly in tasks requiring long
chain-of-thought generation. However, RL train-
ing efficiency is often bottlenecked by the rollout
phase, which can account for up to 70% of total
training time when generating long trajectories
(e.g., 16k tokens), due to slow autoregressive gen-
eration and synchronization overhead between
rollout and policy updates. We propose Sorte-
dRL, an online length-aware scheduling strategy
designed to address this bottleneck by improving
rollout efficiency and maintaining training stabil-
ity. SortedRL reorders rollout samples based on
output lengths, prioritizing short samples form-
ing groups for early updates. This enables large
rollout batches, flexible update batches, and near
on-policy micro-curriculum construction simulta-
neously. To further accelerate the pipeline, Sorte-
dRL incorporates a mechanism to control the de-
gree of off-policy training through a cache-based
mechanism, and is supported by a dedicated RL
infrastructure that manages rollout and updates
via a stateful controller and rollout buffer. Ex-
periments using LLaMA-3.1-8B and Qwen-2.5-
32B on diverse tasks, including AIME 24, Math
500, and GPQA, show that SortedRL reduces RL
both training steps and bubble ratios by over 50%,
while achieving equal or better performance.

1. Introduction
Large language models (LLMs) excel across a broad spec-
trum of tasks (Achiam et al., 2023; Yang et al., 2025;

† Equal contribution. *Work during internship at MSRA.
1National University of Singapore 2Microsoft Research
Asia 3CUHK. Correspondence to: Yiqi Zhang, Yang You
<yiqi.zhang@u.nus.edu, dcsyouy@nus.edu.sg>.

Work presented at the ES-FoMo Workshop at ICML 2025, Vancou-
ver, Canada. Copyright 2025 by the author(s).

Gemini; Liu et al., 2024). Reinforcement learning (RL)
has become a key tool for pushing those abilities fur-
ther—especially on reasoning-heavy benchmarks such as
complex maths (Hendrycks et al., 2021; He et al., 2024) and
competition-level coding (Jain et al., 2025). State-of-the-art
pipelines interleave two phases: (1) rollout, where the actor
produces chain-of-thought (CoT) traces and final answers;
(2) update, where rewards based on answer correctness drive
policy improvement (Jaech et al., 2024; Guo et al., 2025;
Seed et al., 2025).

We observe that better reasoning almost always comes
with longer responses, yet long auto-regressive generation
is painfully slow and hardware-inefficient. To reconcile
sample-efficiency with compute efficiency, we introduce
SortedRL. Its three pillars are:

1. Online length-aware scheduling: sort rollouts by pre-
dicted length and update on the short ones first, creating
a micro-curriculum at no extra cost.

2. Controlled off-policy radius: cache unfinished sam-
ples and reuse them only within a tunable freshness
window.

3. Length-aware infrastructure: a stateful controller
and buffer that pipe data through the RL stages while
squeezing bubbles out of the GPU timeline.

Across reasoning suites like OlympiadBench, AIME 2024,
AMC 2023—we cut input usage by 41-53 % and still outper-
form baselines by up to 12.8 points, while slashing bubble
ratio from 74% to < 6%.

2. Motivation and Preliminaries
2.1. Rollout as the Cost Sink

RL for LLMs generally has three stages: rollout, advan-
tage estimation, and parameter updates. With modern 8B
LLM and a 16 K-token cap, rollout alone can swallow
∼ 70% of total training time (Yu et al., 2025). The cul-
prit is the memory-bound, weight-and-KV-heavy nature of
auto-regressive decoding—an issue that will only worsen
for agentic or multi-turn setups (Wang et al., 2025).

1

SortedRL: Accelerating RL Training for LLMs through Online Length-Aware Scheduling

Fully On-policy

Partial

a b SortedRLVanilla

Figure 2: The SortedRL Scheme. a and b are imaginary timeline
of baseline and SortedRL strategy. Samples in same batch are
denoted in same color. Dotted lines and boxes indicates the harvest
timing. For fully on-policy mode, the gray bars are discarded
incomplete samples or non-scheduled prompts, while there is no
discarded trajectories in partial mode.

4096 8192 12288 16384

Max Response Length
0

200

400

600

800

1000

1200

Ti
m

e
(s

ec
on

ds
)

Rollout
Total

0.60

0.62

0.64

0.66

0.68

0.70

0.72

Ro
llo

ut
 R

at
io

0 1000 2000 3000 4000
Length

0

50

100

150

200

250

Fr
eq

ue
nc

y

Figure 1: (a) Latency breakdown of RL training for LLMs. (b)
Length distribution of sampled trajectories during rollout. Visual-
izations are based on DeepSeek-R1-Distill-Llama-8B (Guo et al.,
2025) with a 4K maximum generation length.

2.2. Long-Tail Lengths → GPU Bubbles

Generation lengths follow a heavy-tailed law (Fig. 1b): in a
batch of 512, 80 % finish within 3 K tokens but the slowest
20 % drag on to the limit. Because actor updates must wait
for all trajectories in an on-policy batch, those stragglers
force the rest of the GPU to idle—a phenomenon we mea-
sure as the bubble ratio (eq.1), where Q, T , rk, tk denote
running queue size, total elapsed time, running requests, and
duration, respectively. Prior tricks like continuous batch-
ing (Yu et al., 2022) shine in inference but break here, and
stage-fusion attempts (Zhong et al., 2025; Mei et al., 2025)
lose steam as sequences grow longer.

Bubble Ratio =

∑(
Q− rk

)
∆tk

T Q
, (1)

SortedRL tackles both pain points by front-loading short
samples and overlapping compute with generation progress,
turning the long-tail from a liability into free curriculum.

3. SortedRL
Following the analysis in §2, we propose SortedRL to re-
duce the bubble ratio in the rollout stage and accelerate RL
training for LLMs. SortedRL comprises three key compo-
nents: 1) Online Length-Aware Scheduling, a length-aware
batching mechanism is employed to minimize rollout bub-
bles by aligning samples with similar generation lengths
within a batch. 2) Controllable Off-Policy Sampling, sup-
ports both on-policy and partial off-policy modes, enabling
flexible trade-offs between stability and sample efficiency
during training. 3) Co-Designed RL Infrastructure, includes
a length-aware controller and a stateful rollout buffer, de-
signed to coordinate length scheduling, buffer management,
and model interaction efficiently.

3.1. Online Length-Aware Scheduling

To address the prolonged duration of the rollout stage and
the high bubble ratio in RL training, we propose an on-
line length-aware scheduling method. This approach dy-
namically batches samples with similar output lengths to
minimize idle computation and reduce bubble ratios dur-
ing rollout. To ensure token efficiency, we introduce the
following key designs:

Oversubscription and Early Termination. To maximize
hardware utilization, reduce bubble ratios during the rollout
stage, and enable online awareness of generation length, our
controller adopts an oversubscription strategy, feeding the
rollout engine with more prompts than its maximum queue
capacity in most iterations. This ensures that the rollout
engine consistently operates at its optimal batch size, as
captured by hardware runtime graphs (e.g., CUDA and HIP
graphs), which is essential for maximizing the efficiency of
JIT-compiled kernels.

In conjunction with oversubscription, the controller ap-
plies early termination based on batching-related thresholds.
Once the condition is met, both completed and partially
generated outputs are harvested. This mechanism effec-
tively reduces idle time and minimizes computation bubbles
during the rollout phase.

Grouped Rollout. While oversubscription and early ter-
mination improve hardware efficiency, they also introduce
a side effect: longer generations are more likely to be in-
terrupted during training, resulting in a bias toward shorter
responses in the collected data. Although partial generations
can be scavenged and resumed in the next rollout iteration,
the resumed segments are inevitably off-policy, potentially
affecting training stability.

To mitigate this, we organize prompts into groups of batches
and enforce a cache-aware loading policy: no new prompts
are loaded from the dataloader until all cached prompts have

2

SortedRL: Accelerating RL Training for LLMs through Online Length-Aware Scheduling

been consumed. This strategy ensures that all prompts are
fully processed within a bounded timespan, avoiding prompt
starvation and maintaining balanced training dynamics.

Selective Batching for Training. Unlike the canonical RL
pipeline, our controller can selectively batch ready trajecto-
ries and feed them to the trainer in a deterministic, ordered
fashion. This is particularly important for algorithms such
as Reinforce++, where batch-wise normalization can sub-
stantially impact training outcomes. For example, by sorting
ready trajectories based on their rewards, the controller can
form batches with similar reward distributions, enhancing
stability during training.

SortedRL supports two switchable modes of operation: fully
on-policy and partial mode. As illustrated in Fig. 2, the fully
on-policy mode discards all partial responses after collecting
a sufficient number of completed rollouts, only scavenging
prompts from the terminated queue. In contrast, the partial
mode caches incomplete responses and allows them to be
resumed in the next iteration. This mode offers a middle
ground between strict on-policy training and fully off-policy
training with large rollout batches.

As a result, SortedRL naturally batches responses of simi-
lar lengths together. Since shorter responses are typically
completed earlier, outputs within a time slice tend to be
temporally clustered, leading to length-sorted batching as
the rollout progresses. Additionally, shorter generations
often receive higher rewards, as they are less likely to be
penalized or clipped due to length constraints. Meanwhile,
prompts completed later indicates that the prompt requires
more intermediate reasoning to resolve. As a result, batches
in SortedRL groups naturally constructs a micro-curriculum
that has incremental difficulty. This sorting behavior can
also substantially affects batch normalization, together con-
tributing to improved token efficiency, which will be demon-
strated and discussed in §4.

3.2. Co-designed RL Infrastructure

For SortedRL, we co-design a compute-efficient rollout
controller and a stateful rollout buffer to maximize MFU,
support agile algorithmic experimentation, and maintain
intermediate stateful results across rollout iterations. The
underlying infrastructure provides the following key capa-
bilities:

Rollout State Manager. The controller maintains a set
of states, including: (1) unconsumed prompts from the dat-
aloader, (2) scavenged response segments obtained upon
rollout termination, and (3) the corresponding log proba-
bilities for these segments. Scavenged segments can be
concatenated with their original prompts to resume gener-
ation in subsequent iterations. Additionally, the stored log
probability segments can be reused for importance sampling

and serve as πold in Eq. 2 during policy updates.

Stateful Rollout Buffer. To support different modes in
controllable off-policy training, we implement a stateful
rollout buffer that stores intermediate results of partially
generated trajectories. Specifically, each entry in the buffer
includes: the prompt context, the current partial trajectory, a
completion flag indicating whether the trajectory is finished,
and a lifecycle indicator used to determine when the entry
should be cleared. This design ensures that partially gen-
erated trajectories can be efficiently resumed or discarded
based on training mode and resource constraints.

4. Results
4.1. Experiment Setup

4.2. Logical Reasoning Tasks

0 50 100 150 200 250 300
Training step

2

0

2

KK
-L

og
ic

sc
or

e
(v

al
/te

st
)

Baseline
SortedRL

(a) Evaluation metrics.

0 50 100 150 200 250 300
Training step

1

2

3

4

Re
sp

on
se

 L
en

gt
h

(k
) Baseline

SortedRL

(b) Mean response length.

Figure 3: LogicRL overall results.

200 300 400 500
Training step

0.20

0.25

0.30

AI
M

E
m

ea
n@

32

Baseline
SortedRL
Baseline Maxima

(a) Evaluation metrics.

200 300 400 500
Training step

2000

4000

6000

8000
AI

M
E

m
ea

n@
32

Baseline
SortedRL

(b) Mean response length.

Figure 4: Mathematical task overall results.

We first examine effects of our strategy on LogicRL dataset,
on which we can obtain a stable learning pattern using
vanilla methods. For better instruction following in logical
games, we choose LLaMA-3.1-8B as starting point. Both
baseline and SortedRL operates at a rollout batch size of
128 prompts (8 responses per prompt) and update batch size
of 128 trajectories per step. For SortedRL, we chose fully
on-policy mode to mitigate the off-policy update setting in
hyperparameters.

The result are shown in Fig.3a. For both trials, the valida-
tion score underwent an sudden increase at initial 25 steps,
where the model learnt to robustly capture the correct out-
put format and avoided points deduction for format. At
the same time, the mean response length also dropped to a
minima. Subsequently, SortedRL rapidly improved in evalu-
ation at around 80 steps, while baseline approach improves

3

SortedRL: Accelerating RL Training for LLMs through Online Length-Aware Scheduling

Table 1: Evaluation results at the 4th epoch. Untuned refers to
checkpoint at 200th step.

GSM8K
MATH

500 Minerva Olympiad
AIME

(mean@32)
AMC

(mean@32)

SortedRL 94.84 62.00 25.00 37.39 29.58 75.16
Baseline 94.09 62.20 29.78 36.65 26.46 72.11
Untuned 93.03 62.20 30.88 34.87 24.79 69.69

at a slower pace. Until achieving comparable evaluation
score (for instance, 2 points), baseline method lagged for
around 3 epochs. Interestingly, the leading behavior is also
exhibited in the response length pattern. In SortedRL, the
model started to explore lengthy responses 150 steps earlier
than baseline.

4.3. Math Reasoning Tasks

To explore the effects of SortedRL in more challenging tasks,
we finetuned Qwen2.5-32B on DAPO-Math-17k dataset.
This setting is substantially resource demanding than pre-
vious setting. Therefore, both our methods and baseline
method starts at a 200-step checkpoint to prevent redun-
dant computation, where the output format is consolidated.
Meanwhile, we also enabled partial mode for optimal com-
putational efficiency. Both methods operated at rollout and
update batch size of 512.

As a result, shown in Fig.4a, SortedRL achieved 30.73%
accuracy in AIME24 evaluation (average in 32 attempts per
question) within 4 epochs. Baseline methods took another
4.5 epochs to achieve a comparable result. Similar pattern
of early exploration on longer responses is also observed in
this trial.

We took the checkpoint at the 4th epoch to evaluate both
model’s performance on an ensemble of benchmarks. Re-
sults are shown in Tab.1. Compared to the training start point
(i.e., 200 step checkpoint), both methods achieved improved
score on majority of the benchmarks except MATH500
and Minerva Math. With same amount of input, SortedRL
attained higher results on GSM8K, AIME24, and AMC23
benchmark. Especially for competition problems, our check-
point largely outperforms baseline by 3.12% and 3.05% in
accuracy.

4.4. Analysis

4.4.1. ABLATION STUDY

We conducted a set of ablation study (Fig.5) to pinpoint our
key designs: In first experiment, we disabled grouped roll-
out, but preserved an oversubscription strategy, i.e., feeding
a lot prompts and harvest the first few ready responses. In
this way the rollout easily bias to shorter responses. Conse-
quently, the performance capped at less than 1 in validation
score and stopped improving.

Then, we investigated the effect of fully on-policy mode.
In ablation settings, we sort the batch post hoc, after all
responses are generated. Here, we set the rollout batch size
to 512 prompts, which is the number of prompts that will
be consumed within 1 group in fully on-policy SortedRL.
As a result, the oldest trajectory in this method is 4 times
farther away from policy in training than other strategies.
In contrast, in our approach, the prompts are consumed
in 4 separate iteration, and trainer gets freshly generated
responses in each step. The validation score shows that
even with batch sorting, the off-policiness is holding back
token-efficiency.

4.4.2. THROUGHPUTS

We examined the end-to-end rollout efficiency of our under-
lying infrastructure by testing throughput of the different
methods under the workload of 512 samples in 4 separate
batches with a maximum generation length of 8k. To avoid
non-deterministic behavior in generation, we set the sam-
pling parameters for each sample to let generation lengths
be exactly the same as baseline.

The results (Fig.6) are 3987, 4289, and 5559 output to-
kens per second respectively for baseline, fully on-policy
mode and partial mode. Equivalent to a speedup of 7.57%
and 39.48% for fully on-policy mode and partial model,
respectively. We define a bubble ratio in eq.1. Compared to
baseline bubble ratio of 74%, on-policy and partial mode
reduced the number to 5.81% and 3.37%.

0 50 100 150 200
Training step

2

0

2

KK
-L

og
ic

sc
or

e
(v

al
/te

st
)

Baseline
SortedRL
Post-hoc
w/o group

Figure 5: Ablation results.

Baseline OnPolicy Partial
0

1

2

3

4

5

6

Th
ro

ug
hp

ut
 (k

 to
ke

ns
 /

s)

Figure 6: Rollout throughput.

5. Conclusion
SortedRL is an online, length-aware scheduling strategy
that maximises hardware utilisation and boosts sample effi-
ciency. Leveraging cache-based rollout control, it dynami-
cally reorders training batches to form an on-the-fly micro-
curriculum. In our tests, SortedRL cut the optimisation
steps needed to match baseline performance by 40.7% on
logical-reasoning tasks and 53.0% on mathematical bench-
marks. With Qwen-2.5-32B, it pushed AIME24 accuracy
past 30% a full 4.5 epochs earlier than the baseline. The
sorted rollout also slashed computational bubbles from 74%
to 5.8%, yielding nearly a 40% jump in rollout throughput.
As a modular toolbox, SortedRL paves the way for richer
research into RL rollout scheduling.

4

SortedRL: Accelerating RL Training for LLMs through Online Length-Aware Scheduling

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Agrawal, A., Kedia, N., Panwar, A., Mohan, J., Kwatra, N.,
Gulavani, B. S., Tumanov, A., and Ramjee, R. Tam-
ing throughput-latency tradeoff in llm inference with
sarathi-serve, 2024. URL https://arxiv.org/
abs/2403.02310.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

Gemini. Context parallel api guide. https://blog.
google/technology/google-deepmind/
gemini-model-thinking-updates-march-2025/
#gemini-2-5-thinking. Accessed: May 9, 2025.

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R.,
Zhu, Q., Ma, S., Wang, P., Bi, X., et al. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

He, C., Luo, R., Bai, Y., Hu, S., Thai, Z. L., Shen, J., Hu, J.,
Han, X., Huang, Y., Zhang, Y., et al. Olympiadbench: A
challenging benchmark for promoting agi with olympiad-
level bilingual multimodal scientific problems. arXiv
preprint arXiv:2402.14008, 2024.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring math-
ematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Hu, J. Reinforce++: A simple and efficient approach
for aligning large language models. arXiv preprint
arXiv:2501.03262, 2025.

Hu, J., Wu, X., Zhu, Z., Xianyu, Wang, W., Zhang,
D., and Cao, Y. Openrlhf: An easy-to-use, scalable
and high-performance rlhf framework. arXiv preprint
arXiv:2405.11143, 2024.

Jaech, A., Kalai, A., Lerer, A., Richardson, A., El-Kishky,
A., Low, A., Helyar, A., Madry, A., Beutel, A., Car-
ney, A., et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Jain, N., Han, K., Gu, A., Li, W.-D., Yan, F., Zhang, T.,
Wang, S., Solar-Lezama, A., Sen, K., and Stoica, I. Live-
codebench: Holistic and contamination free evaluation
of large language models for code. In The Thirteenth
International Conference on Learning Representations,

2025. URL https://openreview.net/forum?
id=chfJJYC3iL.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J. E., Zhang, H., and Stoica, I. Ef-
ficient memory management for large language model
serving with pagedattention, 2023. URL https://
arxiv.org/abs/2309.06180.

Lewkowycz, A., Andreassen, A., Dohan, D., Dyer, E.,
Michalewski, H., Ramasesh, V., Slone, A., Anil, C.,
Schlag, I., Gutman-Solo, T., et al. Solving quantitative
reasoning problems with language models. Advances in
Neural Information Processing Systems, 35:3843–3857,
2022.

Li, S., Liu, H., Bian, Z., Fang, J., Huang, H., Liu, Y., Wang,
B., and You, Y. Colossal-ai: A unified deep learning sys-
tem for large-scale parallel training. In Proceedings of the
52nd International Conference on Parallel Processing,
ICPP ’23, pp. 766–775, New York, NY, USA, 2023. Asso-
ciation for Computing Machinery. ISBN 9798400708435.
doi: 10.1145/3605573.3605613. URL https://doi.
org/10.1145/3605573.3605613.

Liu, A., Feng, B., Xue, B., Wang, B., Wu, B., Lu, C., Zhao,
C., Deng, C., Zhang, C., Ruan, C., et al. Deepseek-v3
technical report. arXiv preprint arXiv:2412.19437, 2024.

Liu, Z., Chen, C., Li, W., Qi, P., Pang, T., Du, C., Lee,
W. S., and Lin, M. Understanding r1-zero-like training:
A critical perspective. arXiv preprint arXiv:2503.20783,
2025.

Mei, Z., Fu, W., Li, K., Wang, G., Zhang, H., and Wu, Y.
Real: Efficient rlhf training of large language models
with parameter reallocation. In Proceedings of the Eighth
Conference on Machine Learning and Systems, MLSys
2025, Santa Clara, CA, USA, May 12-15, 2025. mlsys.org,
2025.

Rajbhandari, S., Rasley, J., Ruwase, O., and He, Y. Zero:
Memory optimization towards training A trillion pa-
rameter models. CoRR, abs/1910.02054, 2019. URL
http://arxiv.org/abs/1910.02054.

Rajbhandari, S., Ruwase, O., Rasley, J., Smith, S., and He,
Y. Zero-infinity: Breaking the GPU memory wall for ex-
treme scale deep learning. CoRR, abs/2104.07857, 2021.
URL https://arxiv.org/abs/2104.07857.

Ramamurthy, R., Ammanabrolu, P., Brantley, K., Hessel,
J., Sifa, R., Bauckhage, C., Hajishirzi, H., and Choi,
Y. Is reinforcement learning (not) for natural language
processing?: Benchmarks, baselines, and building blocks
for natural language policy optimization. 2022. URL
https://arxiv.org/abs/2210.01241.

5

https://arxiv.org/abs/2403.02310
https://arxiv.org/abs/2403.02310
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/#gemini-2-5-thinking
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/#gemini-2-5-thinking
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/#gemini-2-5-thinking
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/#gemini-2-5-thinking
https://openreview.net/forum?id=chfJJYC3iL
https://openreview.net/forum?id=chfJJYC3iL
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://doi.org/10.1145/3605573.3605613
https://doi.org/10.1145/3605573.3605613
http://arxiv.org/abs/1910.02054
https://arxiv.org/abs/2104.07857
https://arxiv.org/abs/2210.01241

SortedRL: Accelerating RL Training for LLMs through Online Length-Aware Scheduling

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Seed, B., Yuan, Y., Yue, Y., Wang, M., Zuo, X., Chen,
J., Yan, L., Xu, W., Zhang, C., Liu, X., et al. Seed-
thinking-v1. 5: Advancing superb reasoning models with
reinforcement learning. arXiv preprint arXiv:2504.13914,
2025.

Shao, Z., Wang, P., Zhu, Q., Xu, R., Song, J., Bi, X., Zhang,
H., Zhang, M., Li, Y., Wu, Y., et al. Deepseekmath: Push-
ing the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300, 2024.

Shen, G., Wang, Z., Delalleau, O., Zeng, J., Dong, Y., Egert,
D., Sun, S., Zhang, J., Jain, S., Taghibakhshi, A., Ausin,
M. S., Aithal, A., and Kuchaiev, O. Nemo-aligner: Scal-
able toolkit for efficient model alignment, 2024. URL
https://arxiv.org/abs/2405.01481.

Sheng, G., Zhang, C., Ye, Z., Wu, X., Zhang, W., Zhang,
R., Peng, Y., Lin, H., and Wu, C. Hybridflow: A flexi-
ble and efficient rlhf framework. arXiv preprint arXiv:
2409.19256, 2024.

Shi, T., Wu, Y., Song, L., Zhou, T., and Zhao, J. Efficient
reinforcement finetuning via adaptive curriculum learning.
arXiv preprint arXiv:2504.05520, 2025.

von Werra, L., Belkada, Y., Tunstall, L., Beeching, E.,
Thrush, T., Lambert, N., Huang, S., Rasul, K., and
Gallouédec, Q. Trl: Transformer reinforcement learn-
ing. https://github.com/huggingface/trl,
2020.

Wang, Z., Wang, K., Wang, Q., Zhang, P., Li, L., Yang,
Z., Jin, X., Yu, K., Nguyen, M. N., Liu, L., Gottlieb, E.,
Lu, Y., Cho, K., Wu, J., Fei-Fei, L., Wang, L., Choi, Y.,
and Li, M. Ragen: Understanding self-evolution in llm
agents via multi-turn reinforcement learning, 2025. URL
https://arxiv.org/abs/2504.20073.

Xie, C., Huang, Y., Zhang, C., Yu, D., Chen, X., Lin, B. Y.,
Li, B., Ghazi, B., and Kumar, R. On memorization
of large language models in logical reasoning. arXiv
preprint arXiv:2410.23123, 2024.

Xie, T., Gao, Z., Ren, Q., Luo, H., Hong, Y., Dai, B., Zhou,
J., Qiu, K., Wu, Z., and Luo, C. Logic-rl: Unleashing llm

reasoning with rule-based reinforcement learning, 2025.
URL https://arxiv.org/abs/2502.14768.

Yang, A., Li, A., Yang, B., Zhang, B., Hui, B., Zheng, B.,
Yu, B., Gao, C., Huang, C., Lv, C., Zheng, C., Liu, D.,
Zhou, F., Huang, F., Hu, F., Ge, H., Wei, H., Lin, H., Tang,
J., Yang, J., Tu, J., Zhang, J., Yang, J., Yang, J., Zhou,
J., Zhou, J., Lin, J., Dang, K., Bao, K., Yang, K., Yu, L.,
Deng, L., Li, M., Xue, M., Li, M., Zhang, P., Wang, P.,
Zhu, Q., Men, R., Gao, R., Liu, S., Luo, S., Li, T., Tang,
T., Yin, W., Ren, X., Wang, X., Zhang, X., Ren, X., Fan,
Y., Su, Y., Zhang, Y., Zhang, Y., Wan, Y., Liu, Y., Wang,
Z., Cui, Z., Zhang, Z., Zhou, Z., and Qiu, Z. Qwen3
technical report. arXiv preprint arXiv:2407.10671, 2025.

Yu, G.-I., Jeong, J. S., Kim, G.-W., Kim, S., and Chun, B.-
G. Orca: A distributed serving system for {Transformer-
Based} generative models. In 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI
22), pp. 521–538, 2022.

Yu, Q., Zhang, Z., Zhu, R., Yuan, Y., Zuo, X., Yue, Y., Fan,
T., Liu, G., Liu, L., Liu, X., et al. Dapo: An open-source
llm reinforcement learning system at scale. arXiv preprint
arXiv:2503.14476, 2025.

Zeng, W., Huang, Y., Liu, Q., Liu, W., He, K., Ma, Z.,
and He, J. Simplerl-zoo: Investigating and taming
zero reinforcement learning for open base models in
the wild, 2025. URL https://arxiv.org/abs/
2503.18892.

Zheng, L., Yin, L., Xie, Z., Sun, C. L., Huang, J., Yu, C. H.,
Cao, S., Kozyrakis, C., Stoica, I., Gonzalez, J. E., et al.
Sglang: Efficient execution of structured language model
programs. Advances in Neural Information Processing
Systems, 37:62557–62583, 2024.

Zhong, Y., Zhang, Z., Wu, B., Liu, S., Chen, Y., Wan,
C., Hu, H., Xia, L., Ming, R., Zhu, Y., and Jin,
X. Optimizing RLHF training for large language
models with stage fusion. In 22nd USENIX Sympo-
sium on Networked Systems Design and Implementa-
tion (NSDI 25), pp. 489–503, Philadelphia, PA, April
2025. USENIX Association. ISBN 978-1-939133-46-5.
URL https://www.usenix.org/conference/
nsdi25/presentation/zhong.

6

https://arxiv.org/abs/2405.01481
https://github.com/huggingface/trl
https://arxiv.org/abs/2504.20073
https://arxiv.org/abs/2502.14768
https://arxiv.org/abs/2503.18892
https://arxiv.org/abs/2503.18892
https://www.usenix.org/conference/nsdi25/presentation/zhong
https://www.usenix.org/conference/nsdi25/presentation/zhong

SortedRL: Accelerating RL Training for LLMs through Online Length-Aware Scheduling

A. Backgrounds
A.1. RL for LLMs

RL training for LLMs is a compute-intensive, multi-stage process characterized by heterogeneous components, unlike the
uniformity in supervised finetuning. A typical RL pipeline consists of three key stages: (1) Rollout, where the actor model
generates responses from input prompts; (2) Inference, where inference is performed using critic, reward, and reference
models to compute values, rewards, and log-probabilities; and (3) Model update, where gradients are computed and applied.
Scaling this pipeline has been shown to enhance LLM reasoning capabilities, especially in generating longer and more
coherent Chain-of-Thoughts (CoTs).

A.2. Proximal Policy Optimization (PPO) and Reinforce++

PPO (Schulman et al., 2017) and Reinforce++ (Hu, 2025) are both REINFORCE-based policy optimization methods.
Specifically, they update the policy by maximizing the following objective:

J (θ) = E (q,a)∼D,
o∼πθold (·|q)

[
min

(
πθ(ot | q, o<t)
πθold(ot | q, o<t)

Ât, clip

(
πθ(ot | q, o<t)
πθold(ot | q, o<t)

, 1− ε, 1 + ε

)
Ât

)]
, (2)

where, (q, a) denotes a question–answer pair sampled from the data distribution D, ε is the clipping range for the importance
sampling ratio, and Ât represents an estimator of the advantage at time step t. The computation and normalization of Ât can
vary across algorithms (Schulman et al., 2017; Shao et al., 2024; Liu et al., 2025; Hu, 2025). For example, the advantage
functions used in PPO and Reinforce++ are shown in Eq.(3) and Eq.(4), respectively.

ÂPPO,t =

T−t−1∑
l=0

(γλ)l δt+l, δt = rt + γ Vψ(st+1)− Vψ(st) (3)

ÂReinforce++,t =
Ri − µbatch

σbatch
(4)

B. Limitations
Due to limited GPU resources, we conduct experiments on DAPO (Yu et al., 2025) with 4 epochs, and do not validate
SortedRL under longer RL training schedules.

C. Broader Impacts
SortedRL effectively accelerates RL training for LLMs, improving training efficiency in scenarios such as agentic reasoning,
mathematical problem solving, and complex code understanding. By reducing rollout latency, it enables stronger reasoning
capabilities under the same computational budget. Moreover, our length-aware scheduling is compatible with other rollout
acceleration techniques, such as parallel decoding and speculative decoding, making it a versatile component for scalable
RL training.

D. Experiment Details
D.1. Dataset

We evaluate our approach on two sets of data with distinct nature, and the ground truth data are suitable for rule-based
evaluation:

First, a logical puzzle dataset, LogicRL (Xie et al., 2025). This dataset is composed of 5000 synthetic The Knights and
Knaves game puzzles (Xie et al., 2024). An example can be checked in Fig.9, the game instructs players to deduce the roles
of the characters mentioned in the statement. The training dataset is a mixture of 3 to 7 characters (i.e., different difficulties),
with each difficulty accounting for 1000 samples. The samples are all shuffled during training. We spare 10% of data for
evaluation.

7

SortedRL: Accelerating RL Training for LLMs through Online Length-Aware Scheduling

Second is a mixed mathematical dataset, DAPO-Math-17k. This dataset contains a variety type of mathematical problems
from the AoPS website. For easy and precise verification, the problems are transformed to expect an integer solution.

To evaluate the model’s mathematical capability, we select 6 benchmarks following standard practice (Yu et al., 2025; Shi
et al., 2025; Zeng et al., 2025): GSM8k (Cobbe et al., 2021), MATH500 (Hendrycks et al., 2021), Minerva Math (Lewkowycz
et al., 2022), OlympiadBench (He et al., 2024), AIME 2024, and AMC 2023. For problems from competition, considering
its relatively small amount, we collect 32 responses for each question and record accuracy (mean@32).

D.2. Models

We select two scales of base model for two tasks. The model selection is determine by robust and reproducible baseline
performance on specific downstream task. For example, we have observed that small model (Qwen-2.5-7B) is very limited in
test-time scaling on math dataset, after an abrupt increment at the initial stage of RL training, which is possibly the process
of learning the suitable format for rule-based verification, the model performance stopped improving (Fig.7b). Instead,
Qwen-2.5-32B is free from such concern and exhibits robust and progressive improving pattern on training and evaluation
metrics. As a result, for lightweight exploration on LogicRL, we employed LLaMA-3.1-8B-Instruct as base model, and
Qwen-2.5-32B for mathematical problems.

D.3. Compared Baseline

For logical Reasoning, following the original practice (Xie et al., 2025), we train LLaMA-3.1-8B-Instruct on LogicRL
dataset with Reinforce++. We set the rollout prompt batch size to 128 and collect 8 responses from each prompt, then update
with a trajectory batch size of 128.For mathematical tasks, we finetuned Qwen-2.5-32B on the DAPO-Math-17k dataset with
PPO. The rollout prompt batch size, number of responses per prompt, update batch size are 512, 1, and 512, respectively. We
adopt training tricks from DAPO (Yu et al., 2025) in both tasks including clip-higher, removing KL divergence. Meanwhile,
we removed entropy loss for better stability.

D.4. Implementation and Settings

Our rollout scheme is implemented as a integrated component of VeRL, an open-source RL training framework (Sheng
et al., 2024). Experiments in this work are conducted with SGLang (Zheng et al., 2024) as rollout engine. Some patches
are applied to facilitate better control of the rollout states and increase stability, including but not limited to: Incomplete
request state retrieval, distributed communication timeout prevention, and platform-specific optimizations. Our training was
conducted on a 2×8 AMD MI300X GPU cluster, equipped with 96-core Intel Xeon Platinum 8480C CPUs.

E. Additional Analysis
E.1. Notes on math results

Interestingly, for Minerva Math benchmark, the accuracy drops as training progresses, regardless of training scheme.
And MATH500 basically unchanged. This behavior is presumably originated from the training dataset characteristic: A
notable characteristic of DAPO-Math-17k is that the solutions are all integers. This aligns with the robust improvements in
integer-solution benchmarks like GSM8K, AIME24, and AMC23. On the flip side, MATH500, Minerva Math, and Olympiad
all contains non-integer solutions that might be equations or fractions. Test-time scaling using integer-solution dataset might
help build the reasoning process that facilitate answering the question, but contribute less on solving out-of-distribution
tasks.

E.2. Sensitivity to Grouping Size

SortedRL introduced a new hyperparameter, group size n. This refers to the number of prompt batches to be loaded by the
SortedRL controller every time the prompt pool clears. Let rollout batch size be b, then the total number of prompts to be
loaded into rollout buffer is denoted as nb. The controller does not load new prompts until every sample in current buffer are
fed to the trainer.

Therefore, a large n causes the rollout engine to keep generate answers that are clustered in same length. An extreme case is
infinitely big n, at which the trainer only get short data. As shown in Fig.8, it fails to improve. Similar degradation is also
identified on n = 8. In contrast, n = 2 results in a data distribution near the baseline approach, and consequently lead to a

8

SortedRL: Accelerating RL Training for LLMs through Online Length-Aware Scheduling

Step

1.4

1.5

1.6

1.7

1.8

Cr
iti

c
Sc

or
e

0.0018

0.0019

0.0020

0.0021

0.0022

0.0023

0.0024

Re
sp

on
se

 L
en

gt
h

(k
)

(a) Response Length.

0 50 100 150 200 250
Training step

0.00

0.05

0.10

AI
M

E
m

ea
n@

32

Qwen-2.5-7B

(b) VAPO.

Figure 7: (a) A close-up look into mean scores and response lengths during training. (b)

0 50 100 150 200
Training step

2

0

2

KK
-L

og
ic

sc
or

e
(v

al
/te

st
)

2
4
8
inf

Figure 8: Result with different group size.

baseline-like curve.

E.3. Complex Length Behaviour

Length is highly associated with the model performance. Reportedly in recent discoveries, reasoning capaility increment
comes with increase response length. This aligns with the observations in our experiments (Fig.3b,4b). Given our length-
sorted training schedule, we can have more insights into the role of response length in training. Fig.7a is a close-up look into
two consecutive groups in SortedRL training. There is a clear short-short-short-long pattern in the rollout batches. This
pattern forms a micro-curriculum for the training. The prompt remained in the buffer until clearing are generally questions
require more reasoning steps to resolve.

Microscopically, longer responses tend to but not always have lower performance (Fig.7a). This can be partially explained
by the fact that answers in longer sequences are more prone to be clipped. However, this low-score iteration is not harmful.
Instead, the next iteration after long batch can achieve a higher score than previous short batches. Then the score keep drops
as length increases until the next long batch concludes.

Macroscopically, we have some interesting observation in mathematical tasks. Just like local patterns mentioned earlier, the
improvement of model performance are likely to show up on the falling edge of response length (310-330 steps, 340-350
steps of SortedRL; 480-550 in Baseline). Meanwhile, at comparable validation performance, SortedRL-tuned models has
longer response length in both tasks.

F. Related Work
F.1. RL Training Systems

RLHF training frameworks have progressed from algorithm-centric libraries such as TRL (von Werra et al., 2020) and
RL4LMs (Ramamurthy et al., 2022) to throughput-oriented systems like ColossalChat (Li et al., 2023), DeepSpeed-Chat

9

SortedRL: Accelerating RL Training for LLMs through Online Length-Aware Scheduling

with ZeRO (Rajbhandari et al., 2019; 2021), and NeMo-Aligner (Shen et al., 2024), which scale to thousands of GPUs. The
newest entrants—OpenRLHF (Hu et al., 2024) and VeRL/HybridFlow (Sheng et al., 2024)—simplify RLHF for non-experts
and offer “parallel-native” execution across heterogeneous hardware, supporting 3-D, ZeRO, and FSDP parallelism out
of the box. However, none of these frameworks yet provides online batch scheduling or fine-grained rollout control, two
capabilities that our work introduces.

F.2. LLM Generation Optimization

Modern RLHF rollouts piggy-back on high-throughput LLM-serving stacks: both OpenRLHF and VeRL use vLLM’s
PagedAttention for rapid KV-cache access (Kwon et al., 2023), while VeRL can switch to SGLang’s Radix Attention,
which pins shared cache segments to avoid recomputation (Zheng et al., 2024). These engines pair optimized CUDA/HIP
kernels with graph capture, speculative decoding, continuous batching from Orca (Yu et al., 2022), and chunked prefill
from Sarathi (Agrawal et al., 2024). Yet they still target low-latency, online inference with frozen weights, whereas RLHF
demands high-throughput, batched “semi-offline” generation whose weights shift after every policy update—changes that
invalidate cached kernels, disrupt KV-cache layouts, and create rollout-to-update “bubbles,” while magnifying sensitivity to
speed–accuracy trade-offs such as quantization. SortedRL closes this gap by shrinking those bubbles and markedly boosting
rollout throughput.

G. Dataset Example

Prompt

system
You are a helpful assistant. The assistant first thinks about the reasoning process
in the mind and then provides the user with the answer. The reasoning process and
answer are enclosed within <think> </think> and <answer> </answer> tags, respectively,
i.e., <think> reasoning process here </think><answer> answer here </answer>.
Now the user asks you to solve a logical reasoning problem. After thinking, when
you finally reach a conclusion, clearly state the identity of each character within
<answer> </answer> tags. i.e., <answer> (1) Zoey is a knight
(2)... </answer>.
<|im_end|>
<|im_start|>user
A very special island is inhabited only by knights and knaves. Knights always tell
the truth, and knaves always lie. You meet 3 inhabitants: Michael, Zoey, and Ethan.
Michael was heard saying, "Ethan is a knight if and only if Michael is a knight".
"Zoey is a knight or Ethan is a knight," Zoey mentioned. Ethan asserted:
"Michael is a knave if and only if Zoey is a knave".
So who is a knight and who is a knave?
<|im_end|>
<|im_start|>assistant
<think>assistant

Ground Truth

(1) Michael is a knight
(2) Zoey is a knight
(3) Ethan is a knight

Figure 9: Example (prompt, answer) pair for the LogicRL task.

10

SortedRL: Accelerating RL Training for LLMs through Online Length-Aware Scheduling

Prompt

Solve the following math problem step by step. The last line of your
response should be of the form

Answer: $Answer

(without quotes) where $Answer is the answer to the problem.

In triangle ABC, $\sin \angle A = \tfrac{4}{5}$ and $\angle A < 90ˆ\circ$.
Let D be a point outside triangle ABC such that
$\angle BAD = \angle DAC$ and $\angle BDC = 90ˆ\circ$.
Suppose that $AD = 1$ and that $\tfrac{BD}{CD} = \tfrac{3}{2}$.
If $AB + AC$ can be expressed in the form $\tfrac{a\sqrt{b}}{c}$ where
a, b, c are pairwise relatively prime integers, find $a + b + c$.

Remember to put your answer on its own line after "Answer:".

Ground Truth

34

Figure 10: Example (prompt, answer) pair for the mathematical reasoning task.

11

