
Published in Transactions on Machine Learning Research (08/2024)

Path Development Network with Finite-dimensional Lie
Group

Hang Lou louhang39@gmail.com
Department of Mathematics
University College London

Siran Li sl4025@nyu.edu
Department of Mathematics
Shanghai Jiao Tong University

Hao Ni h.ni@ucl.ac.uk
Department of Mathematics
University College London

Reviewed on OpenReview: https: // openreview. net/ forum? id= YoWBLu74TL

Abstract

Signature, lying at the heart of rough path theory, is a central tool for analysing controlled
differential equations driven by irregular paths. Recently it has also found extensive ap-
plications in machine learning and data science as a mathematically principled, universal
feature that boosts the performance of deep learning-based models in sequential data tasks.
It, nevertheless, suffers from the curse of dimensionality when paths are high-dimensional.
We propose a novel, trainable path development layer, which exploits representations of
sequential data through finite-dimensional Lie groups, thus resulting in dimension reduction.
Its backpropagation algorithm is designed via optimization on manifolds. Our proposed
layer, analogous to recurrent neural networks (RNN), possesses an explicit, simple recurrent
unit that alleviates the gradient issues.
Our layer demonstrates its strength in irregular time series modelling. Empirical results on a
range of datasets show that the development layer consistently and significantly outperforms
signature features on accuracy and dimensionality. The compact hybrid model (stacking one-
layer LSTM with the development layer) achieves state-of-the-art against various RNN and
continuous time series models. Our layer also enhances the performance of modelling dynamics
constrained to Lie groups. Code is available at https://github.com/PDevNet/DevNet.git.

1 Introduction

Signature-based methods are an emerging tool for the modelling of time series data. The signature of a path,
originated from rough path theory in stochastic analysis (cf. Lyons et al. (2007); Coutin & Qian (2002) and
the many references cited therein), has shown its promise as an efficient feature representation of time series
data, facilitating prediction performance when combined with suitable machine learning models, e.g., deep
learning and tree-based models (Xie et al. (2017); Arribas et al. (2018); Morrill et al. (2019)).

The signature of a path X : [0, T] → Rd is the central concept in the theory of rough paths, which aims
at providing rigorous mathematical tools for defining and analysing solutions to the controlled differential
equations (CDE) driven by oscillatory paths rougher than semimartingales. Such solutions are of very low
regularity in general, hence have remained impenetrable via classical analytical tools for CDE. The celebrated
theory of regularity structure (Hairer (2014)) underpins the theoretical contribution of the rough path theory
in pure mathematics. Roughly speaking, the signature of a path serves as a principled feature that offers

1

https://openreview.net/forum?id=YoWBLu74TL
https://github.com/PDevNet/DevNet.git

Published in Transactions on Machine Learning Research (08/2024)

a top-down description of the path. Just as the monomial basis of Rd, the signature — viewed as their
noncommutative analogue — constitutes a basis for the path space. More specifically, the signature of X is
defined as an infinite sequence

(
1,X(1)

[0,T], · · · ,X
(k)
[0,T], · · ·

)
where, providing that the integrals are well defined,

Xk
[0,T] =

∫
0<t1<···tk<T

dXt1 ⊗ · · · ⊗ dXtk .

We refer the reader to Section 2.1 and Appendix A for the precise definition of signature of paths of bounded
variation (BV-paths). See e.g., Lyons (2014) and the many references cited therein for the general case of
paths of finite p-variation; p ≥ 1.

In applications to time series analysis, the signature is a mathematically principled feature representation, in
contrast to certain deep learning-based models that are computationally expensive and difficult to interpret.
The signature is universal and enjoys desirable analytic-geometric properties (cf. Lyons (2014); Levin et al.
(2013)), hence can be used as a deterministic, pluggable layer in neural networks (Kidger et al. (2019)).
Nevertheless, the signature encompasses three major challenges in practice:

• It suffers from the curse of dimensionality — dimension of the truncated signature up to the kth

term, i.e.,
∑k
i=0 d

i = dk+1−1
d−1 , grows geometrically in the path dimension d.

• It is not data-adaptive, and hence appears ineffective in certain learning tasks.

• It incurs potential information loss due to finite truncation of the signature feature.

The main objective of this paper is to address the above issues. We propose a novel trainable feature
representation of time series, termed as the path development layer, which is mathematically principled, data-
adaptive, and suitable for high-dimensional time series. The theoretical foundation of the path development
layer proposed in our paper is rooted in the concept of the development of a path (a.k.a. Cartan development;
see, e.g., Driver (1995)). It has recently been explored in theoretical studies of rough paths, especially for
signature inversion (Lyons & Xu (2017)) and uniqueness of signature (Boedihardjo & Geng (2020); Hambly
& Lyons (2010); Chevyrev & Lyons (2016)).

One way to introduce the development of a path X on Rd is as follows. Consider a matrix Lie group G. It
shall serve as the range for the development. Then let M be a linear transform from Rd to g, the Lie algebra
of G. The path development of X can be viewed as a generating function of the signature:

M 7−→
∑
k≥0

M⊗k(Xk
[0,T]

)
,

where M⊗k(v1 ⊗ v2 ⊗ · · · ⊗ vk) = M(v1) ·M(v2) · · · ·M(vk) with vi ∈ Rd for i ∈ {1, · · · , k}. The product · is
the matrix multiplication.

An important remark is in order. As we are working with specific matrix Lie groups G and the corresponding
Lie algebras g, it is natural to view both G and g as subsets of gl(m;R), the space of m×m real matrices,
i.e., the Lie algebra of the general linear group GL(m;R), which consists of invertible m×m matrices. This
viewpoint significantly simplifies our theories in practice.

The preservation of favourable geometric and analytic properties makes the path development a promising
feature representation of sequential data. Specifically, non-commutativity of the multiplication in M⊗k (Xk

0,T
)

reflects the irreversibility of the order of events. It has been established in Chevyrev & Lyons (2016) that,
with g suitably chosen, the path development constitutes universal and characteristic features. Moreover, in
contrast to the infinite dimensionality of the path signature, the development takes values in finite-dimensional
Lie groups with dimensions independent of the path dimension d.

Motivated by the discussions above, we construct the path development layer, which is the central objective of
this paper. This layer transforms any sequential data x = (x0, · · · , xN) ∈ Rd×(N+1) to the path development

2

Published in Transactions on Machine Learning Research (08/2024)

Figure 1: A high-level summary of the proposed development layer. Output and trainable weights take values
in the matrix Lie group G and Lie algebra g, respectively. (Left) It can be interpreted as a solution to the
linear controlled differential equation driven by a driving path (Definition 2.2), which is a continuous lift of
sequential data. (Right) It can be viewed as an analogy of the RNNs, but with a simpler form (Eq. (1)).

z = (z0, · · · , zN) under a trainable linear map Mθ : Rd → g, where each zi lies in the Lie group G. For each
n ∈ {0, · · · , N} we set

zn+1 := zn exp
(
Mθ(xn+1 − xn)

)
, z0 = Idm, (1)

where θ is the model parameter, Idm is the identity matrix, and exp is the matrix exponential. It possesses a
recurrence structure analogous to that of RNNs.

To optimise the model parameters of the development layer, we exploit the recurrence structure in Eq. (1)
and the Lie group-valued output to design an efficient gradient-based optimisation method. We combine
backpropagation through time of RNNs and “trivialisation”, an optimisation method on manifolds (Lezcano-
Casado (2019)). In particular, when g is the Lie algebra of the orthogonal group, we can establish boundedness
of the gradient. This alleviates the gradient vanishing/exploding problems of backpropagation through time,
thus leading to a more stable training process.

To the best of our knowledge, this paper is the first of the kind to

1. construct a trainable layer based on the path development; and

2. design, taking into account adequate Lie group structures, the backpropagation of the development
layer.

Key advantages of our proposed path development layer include the following:

1. it provides mathematically principled features that are characteristic and universal (Theorem 2.1
and Theorem B.1);

2. it is a data-adaptive, trainable layer pluggable into general neural network architectures;

3. it is applicable to high-dimensional time series;

4. it helps stabilise the training process; and

5. it can model the dynamics on non-Euclidean spaces by exploiting appropriate Lie group structure.

Numerical results reported in this paper validate the efficacy of the development layer in comparison to
the signature layer and several other continuous models. Moreover, the hybrid model obtained by stacking
together LSTM with the development layer consistently achieves outstanding performance with more stable
training processes and less need for hyper-parameter tuning. We also provide toy examples for simulated

3

Published in Transactions on Machine Learning Research (08/2024)

Brownian motions on S2 and N -body motions. They serve as evidence for the idea that equivariance structures
inherent to learning tasks can be effectively incorporated into the development model by properly choosing
Lie groups to result in performance boost. This may offer a novel, promising class of models based on
development modules for time series on manifolds or trajectories of moving data clouds.

1.1 Related works

Recurrent Neural Networks (RNNs) RNNs and their variants are popular models for sequential data,
which achieve superior empirical performance on various time series tasks (Hochreiter & Schmidhuber (1997);
Cho et al. (2014); Bai et al. (2018)). They show excellent capacity for capturing temporal dynamic behaviour,
thanks to the recurrence structure of hidden states. However, they are also prone to difficulty in capturing
long-term temporal dependency and issues of vanishing/exploding gradients (Bengio et al. (1994)). Restricting
weight matrices of RNNs to the unitary group U(n) may circumvent such issues, as shown in Arjovsky et al.
(2016); Lezcano-Casado (2019); Kiani et al. (2022). The development layer proposed in this work possesses
recurrence structures similar to those of the RNNs (see Eq. (1)), but in an explicit and much simpler form.
Furthermore, the outputs of our layer are in the suitably chosen Lie groups, which has positive effects on
modelling long-term temporal dependency and stabilising the training processes.

Geometric Deep Learning (GDL). Recent advances in GDL have gained enormous attention by extending
neural networks to handle complex, non-Euclidean (e.g., manifold-valued) data. See Monti et al. (2017);
Bronstein et al. (2017); Cao et al. (2020). A notable example is Riemannian ResNet in Katsman et al. (2024),
which extends the construction of Residual Neural Network (ResNet) to general Riemannian manifolds.
Our proposed development resembles Riemannian ResNet — both employ the exponential map and exhibit
recurrence structures. However, the recurrence of Riemannian ResNet lies in two consecutive layers, whereas
the recurrence occurs between two consecutive times in a single development layer. Also, in contrast
Riemannian ResNet, the development layer is designed specifically for times series input.

State space models (SSMs). State space models, originated from the approximation of linear dynamical
systems, serve as a sequence layer that can be stacked for various time series tasks (Rangapuram et al.
(2018)). More recently, the structured state space sequence (“S4”) layers and its simplified version “S5”
have been introduced by imposing new parameterisation of linear coefficient matrices in SSM and utilising
low-rank approximation. The S4 and S5 lead to significant improvement on computational efficiency and
state-of-the-art performance on long-range sequence modeling tasks. See Gu et al. (2021a); Smith et al.
(2022). Analogous to the SSM models, the development layer proposed in our work is also originated from
linear differential equations. Nonetheless, the output of our development layer takes values in matrix groups
at each time, while the output of SSMs are vector-valued. The geometric structure of the matrix Lie groups
prove to be crucial, from both theoretical and algorithmic perspectives, for the development layer proposed
in this paper.

Continuous time series modelling. Continuous time series models have attracted increasing attention
due to their strengths on treating irregular time series. Popular differential equation-inspired models include
Neural ODEs (Haber & Ruthotto (2017); Chen et al. (2018)), Neural SDEs (Liu et al. (2019)), and Neural
CDEs (controlled differential equations; Kidger et al. (2020); Morrill et al. (2021)). The model based on path
signature and development we propose here, similar in spirit to the above, takes a continuous perspective —
it embeds discrete time series to the path space and solves for linear CDEs driven by the path. We shall show
its advantages in coping with time series which are irregularly sampled, of variable length, and/or invariant
under time reparameterisation. Notably, recent work has also extended Neural ODEs to handle other data
types, such as graph data Gravina et al.; Eliasof et al. (2024).

1.2 Organisation of the paper

The remaining parts of the paper are organised as follows: In §2 we collect some background materials on
path signature, path development, and optimisation on manifolds. In §3 we propose our path development
layer. Algorithms for forward/backward pass are described in detail with rigorous mathematical justification.
Next, in §4, numerical experiments on sequential data imaging and dynamics on manifolds are reported. Brief

4

Published in Transactions on Machine Learning Research (08/2024)

concluding remarks are given in §6. The four appendices at the end of the paper present various mathematical
proofs and experimental details.

2 Preliminaries

2.1 Path Signature

We present here a self-contained, brief summary of the path signature, which can be used as a principled,
efficient feature of time series data. See Lyons et al. (2007); Levin et al. (2013); Chevyrev & Kormilitzin
(2016); Kidger et al. (2019) and the references cited therein.

Denote by V1
(
[0, T],Rd

)
the space of continuous paths on Rd of finite length. Write T

((
Rd
))

:=
⊕

k≥0
(
Rd
)⊗k

for the tensor algebra equipped with tensor product and component-wise addition. Signature takes values in
T
((
Rd
))

, and its zeroth component is always 1.
Definition 2.1 (Path Signature). Let J ⊂ [0, T] be a compact interval and X ∈ V1

(
[0, T],Rd

)
. The signature

of X over J is defined as
S(X)J =

(
1,X1

J ,X2
J , · · ·

)
,

where Xk
J =

∫
u1<···<uk
u1,...,uk∈J

dXu1 ⊗ · · · ⊗ dXuk
for each k ≥ 1 as Riemann-Stieltjes integrals.

The truncated signature ofX of order k is Sk(X)J :=
(
1,X1

J ,X2
J , · · · ,Xk

J

)
. Its dimension is

∑k
i=0 d

i = dk+1−1
d−1 ,

which grows exponentially in k. The signature can be regarded as a non-commutative version of the exponential
map defined on the space of paths. Indeed, consider exp : R→ R, exp(t) = et =

∑∞
k=0

tk

k! ; it is the unique C1-
solution to the linear differential equation d exp(t) = exp(t)dt. Analogously, the signature map t 7→ S(X)0,t
solves the following linear differential equation:

dS(X)0,t = S(X)0,t ⊗ dXt, S(X)0,0 = 1 := (1, 0, 0, . . .). (2)

The range of signature of all paths in V1
(
[0, T],Rd

)
is denoted as S

(
V1
(
[0, T],Rd

))
.

The signature of a path is a faithful and universal feature representation and enjoys favourable algebraic and
analytic properties, e.g., multiplicative property, characteristic property, and time invariance, etc. These
properties distinguish the signature as a useful feature set for time series (cf. Lyons et al. (2007); Levin et al.
(2013); Chevyrev & Kormilitzin (2016); Kidger et al. (2019); see also Appendix A).

2.2 Path Development on matrix Lie groups

Let G be a finite-dimensional Lie group with Lie algebra g. Assume throughout this paper that g is a matrix
Lie algebra, namely that a Lie subalgebra of gl(m;F), such as the following:

gl(m;F) := {m×m matrices over F} ∼= Fm×m,

so(m,R) = o(m,R) :=
{
A ∈ Rm×m : A⊤ +A = 0

}
,

sp(2m,C) :=
{
A ∈ C2m×2m : A⊤Jm + JmA = 0

}
,

su(m,C) :=
{
A ∈ Cm×m : tr(A) = 0, A∗ +A = 0

}
.

Here and hereafter, F = R or C, and Jm :=
(

0 Im
−Im 0

)
. In addition, for vector spaces V1, V2, we denote

by L(V1, V2) the space of linear transforms V1 → V2. For gl(m;F) (hence its subsets) we always take the
Hilbert–Schmidt norm:

∥A∥ :=
√

tr(AA∗) =

√√√√ m∑
i,j=1

∣∣Aij∣∣2.

5

Published in Transactions on Machine Learning Research (08/2024)

Remark 2.1. The Lie group Sp(2m,C) corresponding to the algebra of symplectic matrices sp(2m,C) is not
compact. In this work we shall sometimes work with

Sp(2m,R) := Sp(2m,C) ∩ U(2m,C),

known as the compact symplectic group. It is a compact real form of Sp(2m,C), namely that Sp(2m,R) is a
compact real Lie group whose Lie algebra k satisfies kC := k⊗R C = sp(2m,C).

Definition 2.2 (Path Development). Fix an integer m ≥ 1. Let M : Rd → g ⊂ gl(m;F) be a linear map and
let X ∈ V1

(
[0, T],Rd

)
be a path. The path development (a.k.a. the Cartan development) of X on G under

M is the solution to the equation

dZt = Zt ·M(dXt) for all t ∈ [0, T] with Z0 = e, (3)

where e ∈ G is the group identity and · is the matrix multiplication.

Write DM (X) for the endpoint ZT of the path development of X under M .
Example 2.1. For a linear path X ∈ V1

(
[0, T],Rd

)
, its development on a matrix Lie group G under

M ∈ L(Rd, g) is
DM (X)0,t = exp

(
M(Xt −X0)

)
.

This is because t 7→ exp(M(Xt −X0)) is the unique solution to (3).
Lemma 2.1 (Multiplicative property of path development). Let X ∈ V1

(
[0, s],Rd

)
and Y ∈ V1

(
[s, t],Rd

)
.

Denote by X ∗ Y their concatenation: (X ∗ Y)(v) = X(v) for v ∈ [0, s] and Y (v)− Y (s) +X(s) for v ∈ [s, t].
Then DM (X ∗ Y) = DM (X)DM (Y) for all M ∈ L

(
Rd, g

)
.

By Lemma 2.1 and Example 2.1, the development of piecewise linear paths can be analytically computed. In
the example below, the development takes value in the (isometry group of the) hyperboloid. It is a useful
tool for studying uniqueness of signature and expected signature (Hambly & Lyons (2010); Boedihardjo et al.
(2021); Li & Ni (2022)):

Definition 2.3 (Hyperbolic Development). Let M : R2 → so(1, 2) be the map M : (x, y) 7→

0 0 x
0 0 y
x y 0

 ,

where so(1, 2) is the Lie algebra of the group of orientation-preserving isometries of the hyperbolic plane H2

in the hyperboloid model:

H2 :=
{
x ∈ R3 : (x1)2 + (x2)2 − (x3)2 = −1, x3 > 0

}
.

Set p = (0, 0, 1)T ∈ H2. The hyperbolic development of X is the path

t 7−→ DM (X)0,t p.

The path development shares several properties with signature (summarised below), which are relevant
and useful to applications in machine learning. Proofs for Lemma 2.2 and Lemma 2.3 will be provided in
Appendix B. The comparison between signature and development will be given at the end of this subsection.

For M ∈ L
(
Rd, gl(m;F)

)
, we have the canonical extension:

M̃ ∈ L
(
T
((
Rd
))
, gl(m;F)

)
, M̃ (ei1 ⊗ ei2 ⊗ · · · ⊗ eik) := M(ei1) ·M(ei2) · · · · ·M(eik). (4)

Here (ei)di=1 is the standard Cartesian basis for Rd and · is the matrix multiplication.
Lemma 2.2 (Link with signature). Let X ∈ V1

(
[0, T],Rd

)
be a path and M ∈ L

(
Rd, g

)
be a linear transform.

Then DM (X) = M̃(S(X)).

The development of X can be thought of as M 7→
∑
k≥0 M̃

(
πk
(
S(X)

))
, the “generating function” of S(X).

Here πk is the projection onto the kth level of a tensor algebra element.

6

Published in Transactions on Machine Learning Research (08/2024)

Figure 2: Left panel: A 2-dimensional piecewise linear path X; Right panel: the hyperbolic development
DM (X).

Lemma 2.3 (Invariance under time-reparametrisation). Let X ∈ V1
(
[0, T],Rd

)
and λ be a non-decreasing

C1-diffeomorphism from [0, T] onto [0, S]. Define Xλ
t := Xλt for t ∈ [0, T]. Then for all M ∈ L

(
Rd, g

)
and

s, t ∈ [0, T] we have DM (X[λs,λt]) = DM

(
Xλ

[s,t]

)
, where X[s,t] denotes X restricted to the interval [s, t].

Remark 2.2. Lemma 2.3 shows that path development, similar to path signature, is invariant under time re-
parameterisation. Thus, the development feature can remove the redundancy caused by the speed of traversing
the path, hence bringing about massive dimension reduction and robustness effects to online handwritten
character recognition and human action recognition, among other tasks. If, however, the speed information is
relevant to the prediction task, one may simply add the time dimension to the input data.

When choosing adequate Lie algebras, the space of path developments constitutes a rich enough model space
to approximate continuous functionals on the signature space.
Theorem 2.1 (Characteristic property of path development, Theorem 4.8 in Chevyrev & Lyons (2016)).
Let x = (x0, x1, · · ·) ∈ T

((
Rd
))

such that xk ̸= 0 for some k ≥ 0. For any m ≥ max{2, k/3}, there exists
M ∈ L

(
Rd, sp(m,C)

)
such that M̃(x) ̸= 0. In particular,

Dsp

(
S
(
V1
(
[0, T],Rd

)))
:=

∞⋃
m=1

{
M̃ : M ∈ L

(
Rd, sp(m,C)

)}
separates points over S

(
V1
(
[0, T],Rd

))
.

Remark 2.3. Theorem 2.1 shows that if two signatures differ at kth level, one can find M̃ : T
((
Rd
))
→ G

that separates the two signatures, whose resulting development has dimension ≤
(
max(2, k3)

)2. This number
is typically much smaller than the dimension of the truncated signature up to degree k, namely dk+1−1

d−1 .

Chevyrev & Lyons (2016) also proved that the unitary representation of path development is universal to
approximate continuous functionals on the signature space. One may refer to Theorem B.1 in the Appendix.

2.3 Optimisation on Lie Group

Now we briefly discuss a gradient-based optimisation method on Riemannian manifolds introduced in
Lezcano-Casado (2019); Lezcano-Casado & Martınez-Rubio (2019). We shall focus on matrix Lie groups; see
Lezcano-Casado (2019) for general manifolds.
Definition 2.4 (Trivialisation). Let G be a matrix Lie group. A surjection ϕ : Rd → G is said to be a
trivialisation.

Trivialisations allow us to reduce an optimisation problem constrained on a manifold to an unconstrained
problem on a vector space, namely that

min
x∈G

f(x)⇝ min
a∈Rd

f(ϕ(a)).

7

Published in Transactions on Machine Learning Research (08/2024)

The right-hand side can be solved numerically by gradient descent once ∇(f ◦ ϕ) is computed.

For a compact connected matrix group G with Lie algebra g, the matrix exponential exp serves as the
“canonical” trivialisation. For the noncompact case where exp is not surjective, it can still be used as a “local
trivialisation”. See Theorem 4.7 in Lezcano-Casado (2019).

The formulae in Theorem 2.2 below enable fast numerical implementation of the gradient ∇(f ◦ exp) over
matrix groups.
Theorem 2.2. Let f : gl(m;C) = Cm×m → R be a scalar function, let exp be the matrix exponential, and let
A be any matrix in gl(m;C). We have the following

• formula for gradient (Lezcano-Casado (2019)):

∇(f ◦ exp)(A) = (d exp)A⊤

(
∇f
(

exp(A)
))

;

• formula for the differential of exponential (Rossmann (2002)):

(d exp)A(X) =
∞∑
k=0

(
− ad(A)

)k
(k + 1)!

(
exp(A)X

)
,

where ad is the adjoint action ad(X)Y := XY − Y X.

A variant of the first formula in Theorem 2.2 is particularly useful for our numerical experiments in §4. Here
and hereafter, denote the nearest point projection from gl(m,C) to a given Lie subalgebra g as

Proj : gl(m,C) −→ g. (5)

For instance, Proj(M) = 1
2
(
M −M⊤) for g = so(m,R). We then have

Lemma 2.4 (Gradient on matrix Lie algebra). Let f : gl(m,C) → R be a smooth scalar field and Proj :
gl(m,C)→ g be the projection as before. Then

∇(f ◦ exp ◦Proj)(A) = Proj
{

dM⊤ exp
(
∇
(
f ◦ exp(M)

))}
,

where A ∈ gl(m;C) and M = Proj(A). Here we use exp to denote both the exponential maps g → G and
gl(m,C)→ GL(m,C).

Proof. For each A ∈ gl(m,C) it holds that

∇A(f ◦ exp ◦Proj) = Proj
(
∇M (f ◦ exp)

)
,

where M = Proj(A) ∈ g ⊂ gl(m,C). Moreover,

∇M (f ◦ exp) = dM⊤ exp
(
∇
(
f ◦ exp(M)

))
due to Proposition 6.1 in Lezcano-Casado (2019).

3 Path Development Layer

The main objective of this paper is to propose a novel neural network layer, termed as the path development
layer. It is a generic, trainable module for time series data.

8

Published in Transactions on Machine Learning Research (08/2024)

3.1 Network architecture

In practice, one often observes discrete time series. Let x = (x0, · · · , xN) ∈ Rd×(N+1) be a d-dimensional
time series. Once the Lie algebra g and M ∈ L(Rd, g) are specified, one can define the development of x
under M via the continuous linear interpolation of x. We parameterise the linear map M ∈ L(Rd, g) of the
development DM by its linear coefficients θ ∈ gd. That is, given θ = (θ1, · · · , θd) ∈ gd, define

Mθ : Rd ∋ x =
(
x(1), · · · , x(d)

)
7−→

d∑
j=1

x(j)θj ∈ g.

The path development layer will be constructed below in a recursive fashion.
Definition 3.1 (Path development layer). Fix a matrix group G with Lie algebra g. The path development
layer is defined as a map Dθ : Rd×(N+1) → GN+1[or G, resp.] : x = (x0, · · · , xN) 7→ z = (z0, · · · , zN)
[or zN , resp.] such that for each n ∈ {0, · · · , N − 1},

zn+1 = zn exp
(
Mθ(xn+1 − xn)

)
, z0 = Idm. (6)

Here exp is the matrix exponential, GN+1 is the (N + 1)-fold Cartesian product of G, and θ ∈ gd constitutes
trainable model weights.

The path development layer is designed to take the form of Eq. (6) mainly for two reasons: (1), the
multiplicative property of development (Lemma 2.1); (2) the explicit solution for linear paths (Example 2.1).
Notice too that the output of development at step n admits an analytic formula:

zn = exp(Mθ(x1 − x0)) exp(Mθ(x2 − x1)) · · · exp(Mθ(xn − xn−1)) ∈ G.
Remark 3.1 (Connection with RNN). The recurrence structure of the development in Eq. (6) resembles
that of the recurrent neural network (RNN); the development output zn plays the role as the hidden neuron
of RNNs hn. In contrast, our path development layer does not require a fully connected neural network to
construct the hidden neurons.

ExpRNN (Lezcano-Casado (2019)), a geometric variant of RNN model, also possesses the built-in Lie
group structure and restricts the model parameters θ to the orthogonal Lie group in the recurrence relation
hn+1 = σ(θhn + Txn+1). The hidden neurons of ExpRNNs, as opposed to the path development layer, may
fail to live in the Lie group.
Remark 3.2 (Comparison with path signature layer). The signature layer of the path maps time series
x = (x0, · · · , xN) to s = (s0, · · · , sN) according to the following equation, which is of a similar form to
Eq. (6):

sn = sn−1 ⊗ exp(xn+1 − xn) for all n ∈ {1, · · · , N}; s0 = 1.

In comparison with the deterministic signature layer, the path development has trainable weights. When
choosing the matrix Lie algebra g ⊂ gl(m,F), the resulting development feature lies in GL(m,F). Note that
dimFGL(m,F) = m2, independently of the path dimension d. This is in stark contrast with the signature,
whose range (at truncated order n) has dimension depending geometrically on d.

The development layer allows for both sequential output z = (zi)Ni=0 ∈ GN+1 and static output zN ∈ G. Its
forward evaluation is summarised in Algorithm 1 below.

Algorithm 1 Forward Pass of Path Development Layer
1: Input: θ ∈ gd ⊂ Rm×m×d (model parameters), x = (x0, · · · , xN) ∈ Rd×(N+1) (input time series), m ∈ N

(order of the matrix Lie algebra), (d,N) are the feature and time dimensions of x, respectively.
2: z0 ← Idm
3: for n ∈ {1, · · · N} do
4: zn ← zn−1 exp(Mθ(xn − xn−1))
5: end for
6: Output: z = (z0, · · · , zN) ∈ GN+1 ⊂ Rm×m×(N+1) (sequential output) or zN ∈ G ⊂ Rm×m (static

output).

9

Published in Transactions on Machine Learning Research (08/2024)

3.2 Model parameter optimisation

We shall utilise a method introduced in Lezcano-Casado (2019); Lezcano-Casado & Martınez-Rubio (2019) to
optimise model parameters of the development layer, which effectively leverages the Lie group-valued outputs
and facilitates efficient gradient computation by exploring the recurrence structure via backpropagation
through time.

More specifically, consider a scalar field ψ : GN+1 → R and an input x := (xn)Nn=0 ∈
(
Rd
)N+1. The goal is to

seek optimal parameters θ∗ minimising ψ(Dθ(x)); in formula,

θ∗ = argminθ∈gd ψ(Dθ(x)),

where Dθ is the development layer in Eq. (6).

Due to the Lie group structure of the output, the gradient descent in Euclidean spaces is not directly applicable
here. We adapt the method of trivialisation (Lezcano-Casado (2019); Lezcano-Casado & Martınez-Rubio
(2019)) to do gradient computations. Taking into account the recurrence structure of the development, we
express the gradients of the development layer in a form similar to the Recurrent Neural network, and thus
implement the corresponding backpropagation through time algorithm for parameter optimisation.

To describe the optimisation method on Lie groups in full detail, first let us fix some notations. Recall that
z := (zn)Nn=0 ∈ GN+1 denotes the output of the development layer Dθ, whose input is x = (xn)Nn=0 ∈ Rd×(N+1).
The variables zn have the recursive structure zn = zn−1 · exp(Mθ(∆xn)); see Eq. (6). We introduce the Step-i
update function:

Si : G× gd −→ G, (z, θ) 7−→ z exp(Mθ(∆xi)).
The output of development layer (zi)Ni=0 can be expressed by the update function:

zi = Si(zi−1, θ) for each i ∈ {1, · · · , N}; z0 = Idm.

When there is no ambiguity, we simply write Si(zi−1) for Si(zi−1, θ).

Denote by pri the projection of GN+1 onto the ith coordinate. This notation is selected to distinguish it
from πk, the kth-level truncation of the signature (Eq. (8)), or the projection Proj from square matrices to g
(Eq. (5)). For a scalar field ψ : GN+1 → R, the correct definition for its “ith partial derivative” is (pri)# dψ,
the pushforward of dψ via pri:

(pri)# dψ
∣∣∣
z

: Tpri(z)G→ Tψ(z)R ∼= R for each z ∈ GN+1.

For each n ∈ {0, 1, . . . , N − 1} we also introduce the function ψ̃n : G→ R as follows:

ψ̃n(zn) := ψ
(
z0, . . . , zn, Sn+1(zn), Sn+2 ◦Sn+1(zn), . . . , SN ◦ · · · ◦Sn+1(zn)

)
. (7)

Recall from (6) that zn, the output of development layer, is defined recursively with respect to n. As a
consequence, the exterior differential of ψ̃n also has a recursive structure.
Theorem 3.1 (Recursive structure of the differential at zn). Let x = (x0, · · · , xN) ∈

(
Rd
)N+1 and z =

(z0, · · · , zN) ∈ GN+1 be the input and output of the development layer as before, where G is a matrix Lie
group. Let ψ : GN+1 → R be a smooth scalar field and ψ̃n be as in Eq. (7). For each n ∈ {1, · · · , N} we can
express the 1-form dψ̃n on G as follows:

dzn ψ̃n(ξ · zn) = (prn)# dψ
∣∣∣
z
(zn · ξ) + dzn+1 ψ̃n+1

(
ξ · zn+1

)
for each ξ ∈ g.

Here ∆xn+1 := xn+1 − xn and · is the matrix multiplication.

In the above dψ̃n : Tzn
G → T

ψ̃n(zn)R
∼= R. A generic element of the domain Tzn

G takes the form
zn · ξ ≡ dLzn(ξ) for ξ ∈ g = TIdG, where Lzn : G → G is the left multiplication. One may view dψ̃n as a
1-form on G or, equivalently, as an element of g∗.

10

Published in Transactions on Machine Learning Research (08/2024)

By virtue of Theorem 3.1 and the duality between gradient and differential, we are able to determine the
gradient of ψ̃n, which is the main ingredient of the Riemannian gradient descent algorithm of the development
layer (i.e., Algorithm 2 below). Before further developments, let us first comment on the Riemannian gradient
on matrix Lie groups.
Remark 3.3. Given a scalar field f : (M, g) → R, recall that its gradient ∇f is the vector field on M
determined by

g(∇f, V) = df(V)

for any vector field V .

Throughout this paper, when M = gl(m,F) for F = R or C, we always take the Riemannian metric given by
the Hilbert–Schmidt norm of matrices.
Proposition 3.1 (Gradient with respect to model parameter θ). Let x ∈

(
Rd
)N+1, z ∈ GN+1, and θ ∈ gd

be the input, output, and model parameter of the development layer Dθ :
(
Rd
)N+1 → GN+1, respectively. The

gradient of θ 7→ ψ ◦ Dθ(x) for any scalar field ψ : GN+1 → R is determined by the expression

∇
(
ψ ◦ Dθ(x)

)
=

N∑
n=1
∇θ
(
ψ̃n ◦Sn(zn−1, θ)

)
,

where Sn is the Step-n update function and ψ̃n is the updated version of as in Eq. (7). Furthermore, the
right-hand side can be computed via

∇θ
(
ψ̃n ◦Sn(zn−1, θ)

)
= Proj

(
d[Mθ(∆xn)]⊤ exp

{[
∇zn ψ̃n

] (
Mθ(∆xn)

)
· zn−1

})
.

With the gradient computation at hand (in particular, Theorem 3.1 and Proposition 3.1), we are now ready
to describe the backpropagation of development layer in Algorithm 2.

Algorithm 2 Backward Pass of Path Development Layer
1: Input: x = (x0, · · · , xN) ∈ R(N+1)×d (input time series), z = (z0, · · · , zN) ∈ GN+1 (output series

by the forward pass), θ = (θ1, · · · , θd) ∈ gd ⊂ Rm×m×d (model parameters), η ∈ R (learning rate),
ψ : GN+1 → R (loss function).

2: Initialize a← 0 ▷ a represents dzn ψ̃n
3: Initialize ω ← 0 ▷ ω represents ∇θ (ψ ◦ Dθ(x))
4: for n ∈ {N, · · · , 1} do
5: Compute m← exp

(
Mθ(∆xn)

)
6: Compute a← (prn)#dψ

∣∣
y=z + a ·m ▷ by Theorem 3.1.

7: Compute ω ← ω + dm⊤ exp(a)⊗∆xn ▷ by Proposition 3.1 and Theorem 2.2.
8: end for
9: θ ← θ − η · ω.

10: for i ∈ {1, · · · , d} do
θi ← Proj (θi) ∈ g. ▷ by Equation (5).

11: end for
12: Output: return θ (updated model parameter).

One crucial remark is in order here. In view of Theorem 3.1 and Proposition 3.1, the development layer
proposed in this paper possesses a recurrence structure analogous to that of the RNNs. This is the key
structural feature of Algorithm 2. However, it is well known that the RNNs are, in general, prone to
problems of vanishing and/or exploding gradients (see Bengio et al. (1994)). We emphasise that when G is
the orthogonal or unitary group, the gradient issues are naturally alleviated for the development layer.
Remark 3.4. The differential of the update function is an isometry when G = SO(m) or U(m). That is,
when the matrix group G is equipped with the Hilbert–Schmidt norm, dSi : TG → TG has operator norm

11

Published in Transactions on Machine Learning Research (08/2024)

1 for any i ∈ {0, 1, . . . , N − 1} and z ∈ GN+1. (Here dSi is understood as dSi(•, θi) for fixed θi ∈ gd; we
suppress the dependence on θi for simplicity.) This is because

dzi
Si

(
(Lzi

)#η
)

= zi · η · exp
(
Mθi+1∆xi+1

)
for any η ∈ g

and, on the right-hand side, both the left multiplication by zi and the right multiplication by exp
(
Mθi+1∆xi+1

)
∈

G are isometries for G = O(m) or U(m). More concretely,∥∥dziSi

(
(Lzi)#η

)∥∥ = ∥η∥ for any η ∈ g.

The implementation of the development layer can be flexibly adapted to general matrix Lie algebras via Proj
in Eq. (5). The corresponding Lie groups used in our implementation include the special orthogonal, unitary,
real symplectic, and special Euclidean groups, as well as the group of orientation-preserving isometries of the
hyperbolic space.

We adopt https://github.com/Lezcano/expRNN for the PyTorch implementation of matrix exponential
and its differential as in Al-Mohy & Higham (2009; 2010) to efficiently evaluate and train the development
layer. A scaling-and-square trick for matrix exponential computation (Higham (2005)) is used to facilitate
stabilisation of model optimisation. To sum up, the computation of Algorithms 1 and 2 requires O(N) time
and O(N) storage complexity (N = the length of time series). The complexity of Algorithm 1 may be
optimised by pre-computing the Lie group-valued path increments in parallel and then computing the path
development output iteratively.

4 Numerical experiments

We begin this section with validating the model performance of the proposed development layer (DEV) and
the hybrid model, constructed by stacking LSTM with the development layer (LSTM+DEV), for general
sequential data tasks in Section 4.1. We then proceed with two examples of simulated data to articulate its
capability of modelling trajectories on non-Euclidean spaces in Section 4.2, which may fail to be accomplished
by RNN or its existing geometric variants (e.g., ExpRNN).

In the subsequent experiments, we consider the development with special orthogonal, real symplectic, and
special Euclidean groups, denoted as DEV(SO), DEV(Sp), and DEV(SE) respectively. The standard loss
functions are chosen: cross entropy for the time series classification tasks in Section 4.1 and mean squared
error (MSE) for the regression tasks in Section 4.2. Full implementation details of the experiments can be
found in Appendix D. Additionally, we have included the relevant codes in the supplementary material to
ensure reproducibility.

4.1 Time series and sequential image modelling

The path development network with suitably chosen matrix Lie group has a broad range of capabilities (e.g.,
capturing long-term dependencies, handling irregular time series, improving training stability and convergence
rate) for a wide range of applications (e.g. character trajectories, audio, images). This is demonstrated using
the following datasets. (1) Character Trajectories (Bagnall et al. (2018)). (2) Speech Commands dataset
(Warden (2018)). (3) Sequential MNIST(Le et al. (2015)), permuted sequential MNIST (Le et al. (2015)),
and sequential CIFAR-10 (Chang et al. (2017)).

We benchmark the proposed development models with various models, including RNN-based and/or continuous
time series models (e.g., LSTM, NCDE, GRU-ODE) as baselines and state-of-the-art (SOTA) models for
each task.

4.1.1 Speech Command dataset

We first demonstrate the performance of the path development network on the Speech Commands dataset
(Warden (2018)) as an example of high-dimensional long time series. We follow Kidger et al. (2020) to
precompute mel-frequency cepstrum coefficients of the audio recording and consider a balanced classification

12

https://github.com/Lezcano/expRNN

Published in Transactions on Machine Learning Research (08/2024)

task of predicting a spoken word. This processed dataset consists of 34975 samples of secondly audio
recordings, represented in a regularly spaced time series of length 169 and path dimension 20.

Table 1: Test accuracies (%) of the linear models using multiple orthogonal path developments on the Speech
Commands dataset w.r.t. the different matrix sizes m and number of path development layers N .

Matrix size Number of developments
1 2 4 8

5 70.0 77.3 81.5 83.4
10 81.4 83.8 84.3 85.2
20 84.4 86.0 86.5 85.6

Path development as a universal representation with dimension reduction. We apply linear
models on both path signature and path development to Speech Command and Character trajectories datasets.
Both features achieve high performance on their own, thus validating universality (see Theorem B.1). As
shown in Table 1, increasing the number of developments or the matrix size leads to an improvement in
classification accuracy in general. The only exception is that for matrix size 20, the accuracy is reduced by
0.9% if we increase the number of developments from 4 to 8, which may result from overfitting. In Figure 3,
the curve of test accuracy against feature dimension of the single development (Red) is consistently above
that of the signature (Blue), demonstrating that development is a more compact feature than signature. The
development layer with the matrix group of order 30 achieves an accuracy about 86% of that of the signature,
but with dimension reduced by a factor of 9 (900 v.s. 8420).

Figure 3: Test accuracy v.s. the feature dimension curves of the linear models using the development and
signature representation on Speech Commands dataset. See full results in Table 6.

State-of-the-art performance. We first compare the proposed development model with other continuous
time series model baselines, including GRU-ODE (De Brouwer et al. (2019)), ODE-RNN (Rubanova et al.
(2019)), and NCDE (Kidger et al. (2020)). Our model significantly outperforms GRU-ODE and ODE-RNN on
this task, whilst achieve comparable test accuracy with NCDE. The average accuracy of NCDE is 1.9% higher
than our development model. However, the standard deviation of the NCDE model is 2.5%, higher than
that of the development model (0.1%), thus making the accuracy difference of these two models insignificant.
Note that NCDEs fully parameterize the vector field of the controlled differential equations (CDEs) by a
neural network, while our proposed development satisfies linear CDEs with trainable weights constrained in
the matrix Lie algebra. The difference in complexities of the relevant CDEs may contribute to the higher
average test accuracy and higher variation of the prediction by NCDE.

13

Published in Transactions on Machine Learning Research (08/2024)

Compared with the strong baseline LSTM, development layer alone has a lower accuracy by 7.8%. However,
our hybrid model (LSTM+DEV) further improves the LSTM performance by 0.9%. The LSTM+DEV model
achieves 96.8% test accuracy, which is slightly lower than that of the state-of-the-art FLEXTCN (Romero
et al. (2021a)). But, involving only a quarter of parameters of the latter, our model is significantly more
compact.

Table 2: Test accuracies (%) (mean ± std, computed across 5 runs) on Speech Commands dataset

Model Test accuracy(%) # Params(K)
ODE-RNN Rubanova et al. (2019) 65.9 ±35.6 89
NCDEKidger et al. (2020) 89.8 ±2.5 89
LSTM 95.7 ±0.2 88
EXPRNN Lezcano-Casado & Martınez-Rubio (2019) 82.1 270
LipschitzRNN Erichson et al. (2020) 88.38 270
CKConv Romero et al. (2021b) 95.3 100
FlexTCNRomero et al. (2021a) 97.7 373
S4 Gu et al. (2021a) 95.3 % 260
LSSLGu et al. (2021b) 93.58 330
Signature 85.7±0.1 84
DEV(SO) 87.9±0.1 87
LSTM+DEV(SO) 96.8±0.1 86

4.1.2 Character Trajectories data

Next we investigate the performance of the development network on irregular time series in terms of
accuracy, robustness and training stability. We consider the Character Trajectories from the UEA time
series classification archive (Bagnall et al. (2018)). This dataset consists of Latin alphabet characters written
in a single stroke with their 2-dimensional positions and pen tip force. There are 2858 time series with a
constant length of 182 and 20 unique characters to classify. Following the approach in Kidger et al. (2020),
we randomly drop 30%, 50%, or 70% of the data in the same way for every model and every repeat, which
results in irregular sampled time series. In addition, we validate the robustness of model to timescale change
following Gu et al. (2020).

State-of-the-art accuracy. Similar to Speech Commands dataset, the development layer itself outperforms
the signature layer, although still underperforms NCDE and LSTM in terms of test accuracy. However, the
proposed hybrid model (LSTM+DEV) with special orthogonal group achieves the state-of-the-art accuracy,
with around 0.6-0.7% and 0-1.1% performance gain in comparison to the best NCDE and CKCNN models,
respectively.

Robustness. The path development layer exhibits robustness and improves the robustness of LSTM in the
following two settings: (1) data dropping; (2) timescale distribution shift.
Robustness to dropping data. Table 3 demonstrates that, as observed for other continuous time series
models, the accuracy of DEV and LSTM+DEV remains similar across different drop rates, thus exhibiting
robustness against data dropping and irregular sampling of time series. LSTM achieves competitive accuracy
of ∼94% when the drop rate is relatively low, with a drastic performance decrease (6%) for the high drop
rate (70%). However, by adding the development layer, especially the one with the special orthogonal group,
one significantly improves the test accuracy of LSTM by 11.4% to a high drop rate (70%).
Robustness to timescale distribution shift. We follow the approach in Gu et al. (2020), where the train
and test character trajectories are sampled at different timescales. Table 3 shows that, while all the baselines
suffer from severe deterioration in test accuracy in this setting, the path development layer retains high
performance, similar to HIPPO (Gu et al. (2020)) and improves the accuracy of LSTM by ∼60%. This is
because the path development is invariant under time-reparameterisation (Lemma 2.3).

14

Published in Transactions on Machine Learning Research (08/2024)

Table 3: Test accuracies(%) on the Character Trajectories dataset for different data dropping rate and time
scale distribution shifts. ∗ means taken from our reproduced baseline models.

Model Test accuracy(%)
Task Drop rate Sampling rate

30% 50% 70% 1→ 1 1/2 → 1 1 → 1/2
GRU-ODE De Brouwer et al. (2019) 92.6 ±1.6 87.6 ±3.9 89.9 ±3.7 96.2 23.1 25.5
NCDE Kidger et al. (2020) 98.7 ±0.8 98.8 ±0.2 98.6 ±0.4 98.8 44.7 11.3
LSTM 94.0 ± 3.9 94.6 ± 2.0 87.8 ± 6.3 91.3 31.9 28.2
ExpRNN Lezcano-Casado & Martınez-Rubio (2019) 95.8 ± 0.7 96.6 ± 0.9 95.6±0.7 97.2∗ 17.3∗ 11.0∗
CKConv Romero et al. (2021b) 99.3 98.8 98.1 - - -
HIPPO Gu et al. (2020) - - - - 88.8 90.1
Signature 92.1 ±0.2 92.3 ± 0.5 90.2±0.4 92.9 92.3 91.5
DEV (SO) 92.7± 0.6 92.6±0.9 91.9 ±0.9 93.2 91.6 92.3
LSTM+DEV (SO) 99.3± 0.3 99.3 ± 0.1 99.2± 0.3 99.5 94.6 91.3
LSTM+DEV (Sp) 97.7± 0.2 97.7 ± 0.2 97.4± 0.4 97.9 94.2 89.3

Figure 4: The comparison plot of LSTM and LSTM+DEV on Character Trajectories with 30% drop rate.
(Left) The evolution of validation loss against training time. (Middle) The evolution of validation accuracy
against training time. The mean curve with ± std indicated by the shaded area is computed over 5 runs.
(Right) The boxplot of the validation accuracy for varying learning rate.

Improvement of training LSTMs by Development Layer (LSTM+DEV). Apart from model
robustness and compactness, the additional development layer improves the LSTM in terms of (1), training
stability and convergence; and (2), less need for hyper-parameter tuning. This has led to better model
performances with faster training.
Training stability and convergence. The left and middle subplots of Figure 4 show the oscillatory
evolution of the loss and accuracy of the LSTM model during training, which can be significantly stabilised by
adding DEV(SO) and DEV(Sp). In particular, the performance of DEV(SO) is better than that of DEV(Sp)
in terms of both training stability and prediction accuracy. It suggests that the development layer may
facilitate the saturation of hidden states of LSTMs and resolving the gradient vanishing/exploding issues, by
virtue of the boundedness of gradients resulting from |∂zn−1zn| = 1 of DEV(SO) (Remark 3.4). It can thus
serve as an effective means for alleviating long temporal dependency issues of LSTM. Moreover, our hybrid
model has a much faster training convergence rate than LSTM.
Sensitivity of learning rate. Figure 4 (Right) shows that the LSTM performance is highly sensitive to the
learning rate. So, extensive, time-consuming hyper-parameter tuning is a must to ensure high performance of
LSTM. However, the LSTM+DEV model training is much more robust to the learning rate, leading to less
hyper-parameter tuning and consistently superior performance over LSTM.

15

Published in Transactions on Machine Learning Research (08/2024)

4.1.3 Sequential image classification

We consider three time series datasets of large scale for the sequential image classification: sequential
MNIST(Le et al. (2015)), permuted sequential MNIST (Le et al. (2015)), and sequential CIFAR-10 (Chang
et al. (2017)), consisting of sequences of pixel-by-pixel with lengths 784 and 1024, respectively. Each has
50000 training samples and 10000 test samples.

Accuracy comparison and model compactness. On the sequential MNIST and CIFAR-10 datasets,
stacking a path development layer of a 10× 10 matrix to the LSTM significantly increases the performance of
the baseline LSTM by 7–11% . Among RNN-based models, the hybrid model achieves similar results as the
state-of-the-art Lipschitz RNN model, but with only 1/5 model parameters.

In comparison with the state-of-the-art models FlexTCN (Romero et al. (2021a)), S4 (Gu et al. (2021a)), and
LSSL (Gu et al. (2021b)), the proposed LSTM+DEV model slightly underperforms on the sequential MINST
and permuted MNIST data by 0.7% and 2.6% respectively. However, note it only uses 72k model parameters
compared with a larger number of model parameters required for sota models, i.e., 375k (FlexTCN), 6000k
(S4) and 200k (LSSL). However, there is still a significant gap between LSTM+DEV and the stoa models on
the Cifar10 dataset, which merits further investigation in future.

Table 4: Test accuracies (%) of the sequential image classification, ∗ indicates the results from our reproduced
baseline models

Model Test accuracy (%) Time (s/epoch) Memory(Mb) Params(k)
Dataset sMNIST pMNIST sCIFAR-10 sMNIST/sCIFAR-10
LSTMBai et al. (2018) 87.2 85.7 57.6∗ 25/29∗ 1638/1798∗ 70
r-LSTM Trinh et al. (2018) 98.4 95.2 72.2 - - 500
DTRIVLezcano-Casado (2019) 98.9 96.5 30.0∗ 120/131∗ 1887/2183∗ 130
EXPRNNLezcano-Casado & Martınez-Rubio (2019) 98.4 96.2 35.9∗ 119/125∗ 1887/2183∗ 130
LipschitzRNN Erichson et al. (2020) 99.4 96.3 64.2 - - 260
CKConv Romero et al. (2021b) 99.3 98.0 62.3 - - 98
FlexTCN Romero et al. (2021a) 99.6 98.6 80.8 - - 375
S4 Gu et al. (2021a) 99.6 98.7 91.1 - - 6000
LSSLGu et al. (2021b) 99.5 98.8 84.7 - - 200/2000
LSTM+DEV(SO) 98.9± 0.2 96.2 ± 0.3 64.3± 0.9 62/63 1957/2207 72

Training time & Memory. The training time of the development layer is comparable to that of LSTM
due to the similar recurrent structure. The DEV layer training is ≥ 5 times faster than the continuous-time
series baseline NCDE (Kidger et al. (2020)). The training time and memory consumption of LSTM+DEV(SO)
on sequential image data are reported in Table 4. The memory of LSTM+DEV(SO) only increases roughly
25% compared to the plain LSTM, with about doubled training time. In comparison to ExpRNN, a geometric
RNN model to alleviate gradient issues of RNNs, LSTM+DEV has only half of the model parameters but
outperforms consistently, especially in sequential CIFAR-10 data.

4.2 Modelling dynamics on non-Euclidean spaces

Brownian motion on S2 and N -body motions are simulated to demonstrate the efficacy of the development
network, taking into account the group structure. Our LSTM+DEV model, with Lie groups appropriately
chosen, can constrain the prediction to prescribed non-Euclidean space and significantly boost the performance
over baseline LSTM models.

4.2.1 Brownian motion on S2

We simulated 20000 samples of the discretised Brownian motion B on the unit 2-sphere S2 with time length
L = 500 and equal time spacing ∆t = 2e−3 by the random walk approach (Novikov et al. (2020)). The
driving path for simulating B is a random walk X of length L in R2. The task of predicting the Brownian
motion from the given driving random walk is formulated as a sequence-to-sequence supervised learning
problem with input X and output B. We benchmark our LSTM+DEV model with SO(3)-representation

16

Published in Transactions on Machine Learning Research (08/2024)

Figure 5: True and predicted sample trajectories of the Brownian motion on S2 on the test set. The test
MSE of LSTM+DEV(SO(3)), LSTM and ExpRNN are 0.0184, 0.109 and 0.11 respectively.

against the baselines LSTM and ExpRNN. Essentially, the DEV(SO(3)) layer is used as a final pooling layer
to map the output trajectories to the constrained Lie group. See Appendix D.5 for details on data simulation
and model architecture.

As illustrated in Figure 5, the proposed LSTM+DEV(SO(3)) reduces the test MSE of both baselines by
around 83% . Its predicted trajectories always stay on the sphere thanks to the built-in Lie group structure of
the development output. It is highlighted that ExpRNN enforces model weights to the orthogonal group, but
it can not constrain the output to live in the desired Lie group (see the red sample leaves from the sphere).

Table 5: Test MSE (mean ± std, computed across 5 runs) on the N -body simulation dataset

Test MSE (1e-3)
Prediction steps 100 300 500
Static 7.79 61.1 157
LSTM 3.54± 0.22 22.1 ± 1.5 63.2 ±1.4
LSTM+DEV(SO(2)) 5.50 ± 0.01 47.5±0.19 128±0.58
LSTM+DEV(SE(2)) 0.505±0.01 6.94± 0.16 25.6± 1.5

4.2.2 N-body simulations

Following Kipf et al. (2018), we use the simulated dataset of 5 charged particles and consider a regression
task of predicting the future k-step location of the particles. The input sequence consists of the location
and velocity of particles in the past 500 steps. As coordinate transforms from the current location xt to the
future location xt+k lie in SE(2) (the special Euclidean group), we propose to use the LSTM+DEV with
SE(2)-representation to model such transforms. Details of data simulation and model architecture can be
found in Appendix D.6. To benchmark our proposed method, we consider two other baselines: (1) the current
location (static) and (2) the LSTM model. To justify the choice of the Lie algebra here, we compare our
method with LSTM+DEV(SO(2)).

17

Published in Transactions on Machine Learning Research (08/2024)

Figure 6: Prediction comparison between LSTM (left) and LSTM+DEV (SE(2)) (right) in the 5-body
simulations.

As shown in Table 5, the proposed LSTM+DEV(SE(2)) consistently and significantly outperforms both
baselines and LSTM+DEV(SO(2)) in terms of MSE for varying k ∈ {100, 300, 500}. Figure 6 provides a visual
demonstration to show the superior performance of the estimator of future location by our LSTM+DEV(SE(2))
in comparison to the strongest baseline LSTM, thus manifesting the efficacy of incorporating development
layers with inherited group structures in learning tasks.

5 Discussions and future work

5.1 Vector field

The development layer has a linear driving vector field (in terms of controlled differential equations, CDE),
which enables us to derive an explicit, analytic solution and use it for fast computation of the development
layer. However, this may impose limitation on the development layer as an efficient standalone model
for modelling complex time series. In this regard, one may consider extending the development layer by
parameterising the vector field via a neural network taking values in the Lie algebra, and computing it by
solving a nonlinear CDE in analogy with NCDE (Kidger et al. (2020)).

5.2 Lie group representation

Although our exposition focuses on matrix groups, our methodology and implementation of the development
layer can be naturally extended to general Lie groups. In view of recent works on incorporating Lie group
representations to neural networks (Fuchs et al. (2020); Thomas et al. (2018)), we expect that techniques
developed therein may be utilised to increase the expressiveness of the development layer and further enhance
its performance.

5.3 Hybrid model architecture

This work focuses on the proposed hybrid LSTM+Dev model, showing superior performance on various
time series learning tasks. However, there is scope to design hybrid models combining the path development
layer with other types of neural networks for modelling complex spatio-temporal data, such as video or
skeleton-based action sequences. The selection of a suitable hybrid model architecture could potentially
enhance performance by leveraging appropriate neural networks (e.g., Convolutional Neural Networks and
Graph Neural Networks) to capture spatial dependencies, while utilizing the path development layer to
extract temporal dynamics information.

18

Published in Transactions on Machine Learning Research (08/2024)

6 Conclusion

In this paper, we propose for sequential data tasks a novel, trainable path development layer with finite-
dimensional matrix Lie groups built in. Empirical experiments demonstrate that the path development
layer, by virtue of its algebraic/geometric structures and recurrent nature, proves advantageous in improving
the accuracy and training stability of LSTM models. Based on the path development layer, a compact
hybrid LSTM+DEV has been designed, which exhibits competitive performance and superior robustness. It
may open up doors to efficient, accurate modelling and prediction of a wide range of time series data with
equivariance structures arising from the particular geometries of the underlying domains, such as Hamiltonian
dynamical systems, rigid body motion, and molecular dynamics, on various non-Euclidean spaces with
nontrivial symmetry groups.

Acknowledgments

HN is supported by the EPSRC under the program grant EP/S026347/1 and the Alan Turing Institute under
the EPSRC grant EP/N510129/1. The research of SL is supported by NSFC Project #12201399, National
Natural Science Foundation of China, and Shanghai Frontier Research Institute for Modern Analysis. SL
and HN are both supported by the SJTU-UCL joint seed fund WH610160507/067 and the Royal Society
International Exchanges 2023 grant (IEC/NSFC/233077). LH is supported by University College London
and the China Scholarship Council under the UCL-CSC scholarship (No. 201908060002). The authors
extend their gratitude to Terry Lyons for insightful discussions. HN thanks Kevin Schlegel and Jiajie Tao for
proofreading the paper. Moreover, HN is grateful to Jing Liu for her help with Figure 1.

References
Awad H Al-Mohy and Nicholas J Higham. Computing the Fréchet derivative of the matrix exponential, with

an application to condition number estimation. SIAM Journal on Matrix Analysis and Applications, 30(4):
1639–1657, 2009.

Awad H Al-Mohy and Nicholas J Higham. A new scaling and squaring algorithm for the matrix exponential.
SIAM Journal on Matrix Analysis and Applications, 31(3):970–989, 2010.

Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks. In
International Conference on Machine Learning, pp. 1120–1128, 2016.

Imanol Perez Arribas, Guy M Goodwin, John R Geddes, Terry Lyons, and Kate EA Saunders. A signature-
based machine learning model for distinguishing bipolar disorder and borderline personality disorder.
Translational psychiatry, 8(1):1–7, 2018.

Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron Bostrom, Paul Southam,
and Eamonn Keogh. The UEA multivariate time series classification archive, 2018. arXiv preprint
arXiv:1811.00075, 2018.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional and recurrent
networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient descent
is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.

Lukas Biewald. Experiment tracking with weights and biases, 2020. URL https://www.wandb.com/. Software
available from wandb.com.

Horatio Boedihardjo and Xi Geng. SL2(R)-developments and Signature Asymptotics for Planar Paths with
Bounded Variation. arXiv preprint arXiv:2009.13082, 2020.

Horatio Boedihardjo, Joscha Diehl, Marc Mezzarobba, and Hao Ni. The expected signature of brownian
motion stopped on the boundary of a circle has finite radius of convergence. Bulletin of the London
Mathematical Society, 53(1):285–299, 2021.

19

https://www.wandb.com/

Published in Transactions on Machine Learning Research (08/2024)

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric deep
learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42, 2017.

Wenming Cao, Zhiyue Yan, Zhiquan He, and Zhihai He. A comprehensive survey on geometric deep learning.
IEEE Access, 8:35929–35949, 2020.

Shiyu Chang, Yang Zhang, Wei Han, Mo Yu, Xiaoxiao Guo, Wei Tan, Xiaodong Cui, Michael Witbrock,
Mark A Hasegawa-Johnson, and Thomas S Huang. Dilated recurrent neural networks. Advances in neural
information processing systems, 30, 2017.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary differential
equations. In Proceedings of the 32nd International Conference on Neural Information Processing Systems,
pp. 6572–6583, 2018.

Ilya Chevyrev and Andrey Kormilitzin. A primer on the signature method in machine learning. arXiv preprint
arXiv:1603.03788, 2016.

Ilya Chevyrev and Terry Lyons. Characteristic functions of measures on geometric rough paths. The Annals
of Probability, 44(6):4049–4082, 2016.

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties of neural
machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259, 2014.

Laure Coutin and Zhongmin Qian. Stochastic analysis, rough path analysis and fractional brownian motions.
Probability theory and related fields, 122(1):108–140, 2002.

Edward De Brouwer, Jaak Simm, Adam Arany, and Yves Moreau. GRU-ODE-Bayes: Continuous modeling
of sporadically-observed time series. In Advances in Neural Information Processing Systems 32, 2019.

Bruce K Driver. A primer on Riemannian geometry and stochastic analysis on path spaces. University of
California, San Diego, 1995.

Moshe Eliasof, Eldad Haber, and Eran Treister. Feature transportation improves graph neural networks. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 11874–11882, 2024.

N Benjamin Erichson, Omri Azencot, Alejandro Queiruga, Liam Hodgkinson, and Michael W Mahoney.
Lipschitz recurrent neural networks. arXiv preprint arXiv:2006.12070, 2020.

Fabian B Fuchs, Daniel E Worrall, Volker Fischer, and Max Welling. SE(3)-transformers: 3d roto-translation
equivariant attention networks. arXiv preprint arXiv:2006.10503, 2020.

Alessio Gravina, Davide Bacciu, and Claudio Gallicchio. Anti-symmetric dgn: a stable architecture for deep
graph networks. In The Eleventh International Conference on Learning Representations.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory with
optimal polynomial projections. Advances in Neural Information Processing Systems, 33:1474–1487, 2020.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured state spaces.
arXiv preprint arXiv:2111.00396, 2021a.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré. Combining
recurrent, convolutional, and continuous-time models with linear state space layers. Advances in Neural
Information Processing Systems, 34, 2021b.

Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. Inverse problems, 34(1):
014004, 2017.

Martin Hairer. A theory of regularity structures. Invent. Math., 198:269–504, 2014.

Ben Hambly and Terry Lyons. Uniqueness for the signature of a path of bounded variation and the reduced
path group. Annals of Mathematics, pp. 109–167, 2010.

20

Published in Transactions on Machine Learning Research (08/2024)

Nicholas J Higham. The scaling and squaring method for the matrix exponential revisited. SIAM Journal on
Matrix Analysis and Applications, 26(4):1179–1193, 2005.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780,
1997.

Isay Katsman, Eric Chen, Sidhanth Holalkere, Anna Asch, Aaron Lou, Ser Nam Lim, and Christopher M
De Sa. Riemannian residual neural networks. Advances in Neural Information Processing Systems, 36,
2024.

Bobak Kiani, Randall Balestriero, Yann LeCun, and Seth Lloyd. projunn: efficient method for training deep
networks with unitary matrices. Advances in Neural Information Processing Systems, 35:14448–14463,
2022.

Patrick Kidger, Patric Bonnier, Imanol Perez Arribas, Cristopher Salvi, and Terry Lyons. Deep signature
transforms. Advances in Neural Information Processing Systems, 32, 2019.

Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential equations for
irregular time series. Thirty-fourth Conference on Neural Information Processing Systems, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural relational inference
for interacting systems. In International Conference on Machine Learning, pp. 2688–2697. PMLR, 2018.

Quoc V Le, Navdeep Jaitly, and Geoffrey E Hinton. A simple way to initialize recurrent networks of rectified
linear units. arXiv preprint arXiv:1504.00941, 2015.

Daniel Levin, Terry Lyons, and Hao Ni. Learning from the past, predicting the statistics for the future,
learning an evolving system. arXiv preprint arXiv:1309.0260, 2013.

Mario Lezcano-Casado. Trivializations for gradient-based optimization on manifolds. Advances in Neural
Information Processing Systems, 32:9157–9168, 2019.

Mario Lezcano-Casado and David Martınez-Rubio. Cheap orthogonal constraints in neural networks: A
simple parametrization of the orthogonal and unitary group. In International Conference on Machine
Learning, pp. 3794–3803. PMLR, 2019.

Siran Li and Hao Ni. Expected signature of stopped brownian motion on d-dimensional c2,α-domains has
finite radius of convergence everywhere: 2 ≤ d ≤ 8. Journal of Functional Analysis, 282(12):109447, 2022.

Xuanqing Liu, Si Si, Qin Cao, Sanjiv Kumar, and Cho-Jui Hsieh. Neural SDE: Stabilizing neural ODE
networks with stochastic noise. arXiv preprint arXiv:1906.02355, 2019.

Terry Lyons. Rough paths, signatures and the modelling of functions on streams. the Proceedings of the
International Congress of Mathematicians 2014, Korea, 2014.

Terry Lyons and Weijun Xu. Hyperbolic development and inversion of signature. Journal of Functional
Analysis, 272(7):2933–2955, 2017.

Terry J Lyons, Michael Caruana, and Thierry Lévy. Differential equations driven by rough paths. Springer,
2007.

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and Michael M Bronstein.
Geometric deep learning on graphs and manifolds using mixture model cnns. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 5115–5124, 2017.

James Morrill, Andrey Kormilitzin, Alejo Nevado-Holgado, Sumanth Swaminathan, Sam Howison, and Terry
Lyons. The signature-based model for early detection of sepsis from electronic health records in the intensive
care unit. In 2019 Computing in Cardiology (CinC), pp. Page–1. IEEE, 2019.

21

Published in Transactions on Machine Learning Research (08/2024)

James Morrill, Cristopher Salvi, Patrick Kidger, and James Foster. Neural rough differential equations for
long time series. In International Conference on Machine Learning, pp. 7829–7838. PMLR, 2021.

Alexei Novikov, Dmitri Kuzmin, and Omid Ahmadi. Random walk methods for monte carlo simulations of
brownian diffusion on a sphere. Applied Mathematics and Computation, 364:124670, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Advances
in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., 2019.

Syama Sundar Rangapuram, Matthias W Seeger, Jan Gasthaus, Lorenzo Stella, Yuyang Wang, and Tim
Januschowski. Deep state space models for time series forecasting. Advances in neural information
processing systems, 31, 2018.

David W Romero, Robert-Jan Bruintjes, Jakub M Tomczak, Erik J Bekkers, Mark Hoogendoorn, and Jan C
van Gemert. Flexconv: Continuous kernel convolutions with differentiable kernel sizes. arXiv preprint
arXiv:2110.08059, 2021a.

David W Romero, Anna Kuzina, Erik J Bekkers, Jakub M Tomczak, and Mark Hoogendoorn. Ckconv:
Continuous kernel convolution for sequential data. arXiv preprint arXiv:2102.02611, 2021b.

Wulf Rossmann. Lie Groups: An Introduction Through Linear Groups. Oxford graduate texts in mathematics;
5. Oxford University Press, 2002. ISBN 0198596839.

Yulia Rubanova, Ricky TQ Chen, and David Duvenaud. Latent ODEs for irregularly-sampled time series. In
Proceedings of the 33rd International Conference on Neural Information Processing Systems, pp. 5320–5330,
2019.

Jimmy TH Smith, Andrew Warrington, and Scott Linderman. Simplified state space layers for sequence
modeling. In The Eleventh International Conference on Learning Representations, 2022.

Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick Riley. Tensor
field networks: Rotation-and translation-equivariant neural networks for 3d point clouds. arXiv preprint
arXiv:1802.08219, 2018.

Trieu Trinh, Andrew Dai, Thang Luong, and Quoc Le. Learning longer-term dependencies in rnns with
auxiliary losses. In International Conference on Machine Learning, pp. 4965–4974. PMLR, 2018.

Pete Warden. Speech commands: A dataset for limited-vocabulary speech recognition. arXiv preprint
arXiv:1804.03209, 2018.

Zecheng Xie, Zenghui Sun, Lianwen Jin, Hao Ni, and Terry Lyons. Learning spatial-semantic context with
fully convolutional recurrent network for online handwritten chinese text recognition. IEEE transactions
on pattern analysis and machine intelligence, 40(8):1903–1917, 2017.

22

Published in Transactions on Machine Learning Research (08/2024)

A The signature of a path

In this section, we briefly introduce the signature of a path, which can be used as a principled and efficient
feature of time series data Lyons et al. (2007); Levin et al. (2013); Chevyrev & Kormilitzin (2016); Kidger
et al. (2019).

Denote by V1
(
[0, T],Rd

)
the space of continuous paths [0, T]→ Rd with finite length. Write T

((
Rd
))

for
tensor algebra space:

T
((
Rd
))

:=
⊕
k≥0

(
Rd
)⊗k

,

equipped with tensor product and component-wise addition. The signature takes values in T
((
Rd
))

, and its
zeroth component is always 1.
Definition A.1 (Path Signature). Let J ⊂ [0, T] be a compact interval and X ∈ V1

(
[0, T],Rd

)
. The signature

of X over J , denoted by S(X)J , is defined as follows:

S(X)J =
(
1,X1

J ,X2
J , · · ·

)
,

where for each k ≥ 1, Xk
J =

∫
u1<···<uk
u1,...,uk∈J

dXu1 ⊗ · · · ⊗ dXuk
.

The truncated signature of X of order k is

πk(S(X))J ≡ Sk(X)J :=
(
1,X1

J ,X2
J , · · · ,Xk

J

)
. (8)

Its dimension equals
∑k
i=0 d

i = dk+1−1
d−1 , which grows exponentially in k. The range of signature of all paths

in V1
(
[0, T],Rd

)
is denoted as S

(
(V1([0, T],Rd)

)
.

Example A.1 (Linear paths). For a linear path X : [0, T]→ Rd, its signature is given by

S(X)0,T = exp (XT −X0),

where exp is the tensor exponential. Equivalently, the kth level of the signature equals

Xk
[0,T] = 1

k! (XT −X0)⊗k.

Example A.2 (Piecewise linear paths). Let x := (x0, x1 · · · , xN) ∈ Rd×N be a discrete d-dimensional time
series. Embed it in the piecewise linear path X via linear interpolation. By the multiplicative property, the
signature of X is given by

S(X) = exp(x1 − x0)⊗ exp(x2 − x1)⊗ · · · exp(xN − xN−1).

For a general continuous path of bounded variation, its signature can be obtained by taking limits of signatures
of their piecewise linear approximations as the time mesh tends to 0. For the more general case of paths of
bounded p-variation (p ≥ 1), see Lyons et al. (2007).

The signature can be deemed as a non-commutative version of the exponential map defined on the space
of paths. Indeed, consider exp : R → R, exp(t) = et =

∑∞
k=0

tk

k! ; it is the unique C1-solution to the linear
differential equation d exp(t) = exp(t)dt. Analogously, the signature map t 7→ S(X0,t) solves the following
linear differential equation:

{
dS(X)0,t = S(X)0,t ⊗ dXt,

S(X)0,0 = 1 := (1, 0, 0, . . .)
(9)

The signature provides a top-down description of the path. It serves as an attractive tool for machine learning
in light of the properties manifested in the three results below.

23

Published in Transactions on Machine Learning Research (08/2024)

Lemma A.1 (Invariance under time reparameterization; Lyons et al. (2007)). Let X ∈ V1 ([0, T],Rd
)

and
λ : [0, T]→ [T1, T2] be a non decreasing surjection and define Xλ

t := Xλt for the representation of X under λ.
Then for every s, t ∈ [0, T],

S(X)λs,λt = S
(
Xλ
)
s,t

(10)

Theorem A.1 (Uniqueness of signature; Hambly & Lyons (2010)). Let X ∈ V1([0, T], E). Then S(X)
determines X up to the tree-like equivalence.
Theorem A.2 (Signature Universal Approximation; Lyons et al. (2007)). Suppose f : S1 → R is a continuous
function, where S1 is a compact subset of S

(
Vp(J,Rd)

)
and J ⊂ R is an interval. The topology on Vp

(
J,Rd

)
is chosen such that the signature map S is continuous. Then for any ϵ > 0 there is a linear functional
L ∈ T

((
Rd
))∗ such that

|f(a)− L(a)| ≤ ϵ for every a ∈ S1.

B The development of a path

B.1 Connection with signature

Recall that V1
(
[0, T],Rd

)
denote the space of continuous paths [0, T]→ Rd of bounded 1-variation and g is a

(matrix) Lie algebra.
Lemma B.1 (Lemma 2.2). Let X ∈ V1

(
[0, T],Rd

)
and M ∈ L

(
Rd, g

)
. The development of the path X

under M is given by
DM (X) = M̃

(
S(X)

)
.

Proof. By definition of the development, DM (X) is the endpoint of (Zt)t∈[0,T], which satisfies the linear
controlled differential equation

dZt = ZtM(dXt), Z0 = Id.

By Picard iteration, one obtains

DM (X) := ZT = Id +
∑
n≥1

∫
0<t1<···<tn<T

M(dXt1) · · ·M(dXtn).

Thus, by linearity of M , the right-hand side of the above equation coincides with M̃
(
S(X)

)
.

B.2 Dimension comparison with signature

The dimension of the signature of a d-dimensional path of depth k is dk+1−1
d−1 if d ≥ 2 and k if d = 1. When

specifying the Lie algebra g of the development as a matrix algebra, the dimension of development of order
m is m2 (independent of d). The dimension of trainable weights of the development layer with static output
is dm2, while the signature layer does not have any trainable parameter.

B.3 Invariance under time-reparameterisation

Lemma B.2 (Lemma 2.3). Let X ∈ V1
(
[0, T],Rd

)
and let λ be a non-decreasing C1-diffeomorphism from

[0, S] onto [0, T]. Define Xλ
t := Xλt for t ∈ [0, T]. Then for all M ∈ L

(
Rd, g

)
,

DM (Xλs,λt) = DM

(
Xλ
s,t

)
.

Proof. It follows directly from Lemma 2.2 and the invariance under time reparameterisation of the signature.
See Chevyrev & Kormilitzin (2016).

24

Published in Transactions on Machine Learning Research (08/2024)

B.4 Universality

Let W be a vector space. In the sequel, we denote by gl(W) the space of endomorphisms of W equipped
with the Lie bracket [σ1, σ2] := σ1 ◦ σ2 − σ2 ◦ σ1.
Definition B.1 (Lie algebra representation). Let g be a Lie algebra. A Lie algebra representation of
g on a vector space W is a Lie algebra homomorphism g → gl(W). That is, a linear map satisfying
ρ([X1, X2]) = [ρ(X1), ρ(X2)] for all X1, X2 ∈ g.

To fix the idea, endow with (Rd)⊗k for each k ∈ N the projective norm; see Chevyrev & Lyons (2016). Let E
be the space of tensor elements with infinite radius of convergence:

E :=
{
x := (x0, x1, · · ·) ∈ T ((Rd)) :

∞∑
k=0
∥xk∥λk <∞ for all λ ≥ 0

}
.

Theorem B.1 (Universality of path development). Let G be the space of group-like elements in E and K ⊂ G be
a compact subset. For any continuous function f : K → C and ϵ > 0, there exist M̃1, · · · , M̃N ∈ L(G, gl(m,C))
and L1, . . . , LN ∈ L (gl(m,C);C) such that

sup
x∈K

∣∣∣∣∣f(x)−
N∑
i=1

Li ◦ M̃i(x)
∣∣∣∣∣ < ϵ.

Here recall from Eq. (4) that M̃j ∈ L (G, gl(m,C)) is the algebra morphism extended from Mj ∈
L
(
Rd; gl(m,C)

)
by naturality. As per Definition 2.1 in Chevyrev & Lyons (2016), equip T ((Rd)) with

the coarsest topology such that all algebra morphisms M̃ ∈ L (G,A) which arise from M ∈ L
(
Rd;A

)
, with

A ranging through all normed algebras, are continuous.

Also, note that when the algebraic homeomorphisms M̃i have their domains restricted to G, they indeed take
values in the group GL(m,C) of invertible matrices.

Proof. Let us consider

A :=
{

finite-dimensional matrix representations of T ((Rd))

arising from extensions of all M ∈ L
(
Rd;

∞⊕
m=1

gl(m,C)
)}

.

By Chevyrev & Lyons (2016), Theorem 4.8, A separates points over T ((Rd)). Then define

B :=
{
λ ◦ M̃ : M̃ ∈ A and λ ∈ L

(∞⊕
m=1

gl(m,C);C
)}

⊂ L
(
Rd;C

)
. (11)

We claim that B is a complex unital ∗-algebra.

We first explain how to conclude the proof assuming the claim. Indeed, since A separates points over T ((Rd)),
we know that B separates points over T ((Rd)) too. By Corollary 2.4 in Chevyrev & Lyons (2016), we know
that G is Hausdorff, so K ⊂ G is a compact Hausdorff space. It thus follows from the Stone–Weierstrass
theorem — i.e., for a compact, Hausdorff topological space X , if S ⊂ C0(X ,C) separates points, then the
complex unital ∗-algebra generated by S is dense in C0(X ,C) — that for any f : K → C and ϵ > 0, there
exists S ∈ B (viewed as a function over the domain K) such that ∥f − S∥C0(K) < ϵ/2. In addition, as both
L
(
Rd;

⊕∞
m=1 gl(m,C)

)
and L (

⊕∞
m=1 gl(m,C);C) have countable bases, B is separable. Thus one may find

M̃1, · · · , M̃N ∈ L(G, gl(m,C)) and L1, . . . , LN ∈ L (gl(m,C);C) satisfying
∥∥∥S −∑N

i=1 Li ◦ M̃i

∥∥∥
C0(K)

< ϵ/2.
This concludes the proof.

Now let us prove the claim.

25

Published in Transactions on Machine Learning Research (08/2024)

• A contains the unit, which is the trivial representation. The unit of L (
⊕∞

m=1 gl(m,C)) is the constant
map 1. So B contains the unit too, which is also the constant map 1.

• The product onA is given by the tensor product, i.e., the Kronecker product for matrices: ρ1⊗ρ2(x) :=
ρ1(x) ⊗ ρ2(x) for ρ1, ρ2 ∈ A. The involution in A corresponds to the dual representation, namely
that ρ∗(x) := − [ρ(x)]∗ (the adjoint matrix) for ρ ∈ A. By the definition of M 7→ M̃ , we have(
M̃1 ⊗ M̃2

)
(x) = ˜(M1 ⊗ I + I ⊗M2)(x), where I is the constant map which maps x to the identity

of the group.

• Thus, for λ1, λ2 ∈ L (
⊕

m gl(m,C);C) and M1,M2 ∈ L
(
Rd;

⊕∞
m=1 gl(m,C)

)
, we may define the

natural product • and involution ⋆ in B as follows:[
λ1 ◦ M̃1

]⋆
= λ1 ◦ M̃1

∗
,(

λ1 ◦ M̃1

)
•
(
λ2 ◦ M̃2

)
= (λ1 ⊗ λ2) ◦

(
˜M1 ⊗M2

)
.

It is easy to check that they are well defined and satisfy the desired properties as algebraic operations
on unital ∗-algebra over C. In particular, their continuity follows from that of M 7→ M̃ , which is
part of the definition of the topology on T ((Rd)).

The claim is proved.

Two remarks are in order concerning the above theorem.
Remark B.1. 1. It may appear odd that the product in A has the structure of tensor product of group

representations instead of Lie algebra representations. This is intentionally designed to make A
(with domain restricted to G) a Hopf algbera representation of the space of group-like elements G.
Indeed, one characterisation of G is that

G =
{
x ∈ T ((Rd)) \ {0} : ▲(x) = x⊗ x

}
,

where ▲ is the Hopf algebra coproduct on the tensor algebra, extended from ▲(v) = v ⊗ 1 + 1 ⊗ v
on Rd. In this provision (ρ1 ⊗ ρ2)(x) ≡ (ρ1 ⊗ ρ2)[▲(x)]. On the other hand, the sign in the dual
representation corresponds to the antipode of the Hopf algebra.

2. Our version of A is taken only for convenience of exposition; it is larger than necessary. In fact,
we may adopt verbatim Chevyrev & Lyons (2016), Definition 4.1 for the definition of A, in which
only M taking values in unitary operators on finite-dimensional complex Hilbert spaces are taken
into account. In this way, we may replace gl(m,C) in Theorem B.1 by the unitary Lie algebra u(m).
The proof is essentially the same, as the Hopf algebra representations of G into

⊕
m u(m) remains a

complex unital ∗-algebra separating points over G.

C Backpropagation of the development layer

C.1 Backpropagation of the development

Consider a scalar field ψ : GN+1 → R and an input x := (xn)Nn=0 ∈ RN+1. We aim to find optimal parameters
θ∗ minimising ψ(Dθ(x)); in formula,

θ∗ = argminθ∈gd ψ(Dθ(x)),

where Dθ is the development layer defined in Eq. (6). Without loss of generality, we focus on the case where
the output is the full sequence of path development. Euclidean gradient descent is not directly applicable
here due to the Lie group structure of the output.

The following identity allows us to compute the gradient of Lie algebra-valued parameters in our development
layer by adapting the method of trivialisation in Lezcano-Casado (2019); Lezcano-Casado & Martınez-Rubio
(2019). Consider a smooth map Φ : N →M between Riemannian manifolds (M, g1) and (N , g2). Denote its
differential by dΦ : TN → TM, and let the adjoint of dΦ with respect to g1, g2 be dΦ∗ : TM→ TN .

26

Published in Transactions on Machine Learning Research (08/2024)

Corollary C.1. Let Φ : N →M be a smooth map between Riemannian manifolds and let f :M→ R. Then
∇(f ◦ Φ) = dΦ∗(∇f).

C.2 Proof of Theorem 3.1

Proof. We first consider a more general statement: let M and N be differentiable manifolds, let f :M→N
be a smooth function, and let ψ̃ :M→ R be a scalar field factors through the graph of f . That is, there is a
smooth function ψ :M×N → R such that ψ̃(x) = ψ(x, f(x)) for each x ∈M. Then we have the following
identity on T ∗M:

dψ̃ = (prI)# dψ +
[
(prII)# dψ

]
◦ df. (12)

Here we view (prI)# dψ ∈ T ∗M⊕{0} and
[
(prII)# dψ

]
◦ df ∈ {0}⊕T ∗M; the symbols prI and prII denote

the canonical projections from M×N onto M and N , respectively.

The demonstration for Eq. (12) is straightforward. For functions f1 : E → S1 and f2 : E → S2 where
E,S1, S2 are arbitrary sets, we denote f1 ⊕ f2 : E → (S1 × S2) as the function (f1 ⊕ f2)(x) := (f1(x), f2(x)).
In this notation one has

ψ̃ = ψ ◦ (IdM ⊕ f) .
Using the chain rule we then deduce that

dψ̃ = dψ
∣∣
range (IdM⊕f) ◦ d (IdM ⊕ f) = dψ

∣∣
graph f ◦ (IdTM ⊕ df) ,

with IdTM : TM → [TM ∼= TM⊕ {0}] and df : TM → [TN ∼= {0} ⊕ TN]. This is tantamount to the
right-hand side of Eq. (12) by the definition of prI and prII.

Let us now prove the lemma from the identity (12). Indeed, by taking prn in place of prI and f =
Sn+1 ⊕ (Sn+2 ◦Sn+1)⊕ . . .⊕ (SN ◦ . . . ◦Sn+2 ◦Sn+1), where M = G and N = GN−n, we deduce that

dψ̃n = (prn)# dψ +
{(

prn+1
)

dψ
}
· dSn+1 +

{(
prn+2

)
dψ

}
· d (Sn+2 ◦Sn+1)

+
{

(prN)# dψ
}
· d (SN ◦ · · · ◦Sn+2 ◦Sn+1)

= (prn)# dψ +
{(

prn+1
)

dψ
}
· dSn+1 +

{(
prn+2

)
dψ

}
· dSn+2 · dSn+1

+
{

(prN)# dψ
}
· d (SN ◦SN−1 ◦ · · · ◦Sn+2) · dSn+1.

Here we have used the fact that for Lg : G→ G, Lg(h) := gh, its differential dLg is also the left-multiplication
by g, which is given by matrix multiplication when g is a matrix algebra. The second equality follows from
the chain rule.

On the other hand, notice that the terms in the right-most expression above possess a recursive structure too:
by taking prn+1 in place of prI and f = Sn+2 ⊕ (Sn+3 ◦Sn+2) ⊕ . . . ⊕ (SN ◦ . . . ◦Sn+2) in Eq. (12), we
have (

prn+1
)

dψ +
{(

prn+2
)

dψ
}
· dSn+2 +

{
(prN)# dψ

}
· d (SN ◦SN−1 ◦ · · · ◦Sn+2) = dψ̃n+1.

The above computations establish the following equality on T ∗G:

dψ̃n = (prn)# dψ + dψ̃n+1 · dSn+1.

Thus, evaluating this identity at zn ∈ G, we infer from the definition of the update function Sn+1(zn) = zn+1
that

dzn
ψ̃n = (prn)# dψ

∣∣∣
zn

+ dzn+1 ψ̃n+1 · dzn
Sn+1.

We now conclude by the recurrence relation zn+1 = zn · exp(Mθn+1(∆xn+1)) in Eq. (6).

27

Published in Transactions on Machine Learning Research (08/2024)

A remark on notations is in order: In the last line of the proof above, we (formally) replaced dzn
Sn+1 with

exp(Mθn+1(∆xn+1)). The reason is that

Sn+1(zn) = zn+1 = zn · exp(Mθn+1(∆xn+1)),

where Sn+1 : G → G. Viewing G as a subset of vector space gl(m,C), we may regard Sn+1 as a linear
mapping in its argument. Thus, dzn

Sn+1 : Tzn
G → Tzn+1G equals the right multiplication by the matrix

exp
(
Mθn+1(∆xn+1)

)
.

C.3 Proof of Proposition 3.1

Before proceding to the proof of Proposition 3.1, we remark that the Riemannian metric taken here is the one
given by the Hilbert–Schmidt norm of matrices in M = gl(m,F) for F = R or C. Equivalently, we identify
gl(m,F) with the Euclidean space Fm×m via the diffeomorphism Ψ : gl(m,F)→ Fm×m,

Ψ
({
Aij
}

1≤i,j≤m

)
:=
[
A1

1, A
1
2, . . . , A

1
m, A

2
1, A

2
2, . . . , A

2
m, · · · · · · , Am1 , Am2 , . . . , Amm

]⊤
.

The pullback metric is precisely the Hilbert–Schmidt metric ⟨B,C⟩ = tr(BC∗) for any B,C ∈ TAgl(m,F) ∼=
gl(m,F) with arbitrary A ∈ gl(m,F).

The choice of Hilbert–Schmidt metric on matrix Lie groups is natural in our context. Indeed, for inclusions
SO(m) ⊂ gl(m,R) and U(m) ⊂ gl(m,C), pullback metrics of the Hilbert–Schmidt metric under the natural
inclusions are exactly the bi-invariant Riemannian metrics on SO(m) and U(m), respectively.

In provision of this remark, one can compute the gradient of ψ̃n in Eq. (7) by expressing ∇θψ̃n in terms of
the differential of exponential map exp : g→ G, which in turn is computed via Theorem 2.2 and Lemma 2.4.
Recall the projection Proj : gl(m,C)→ g from Eq. (5).

As usual, denote by Lg1 : G→ G for each g1 ∈ G the left regular action; i.e., Lg1(g2) := g1g2.

Proof. The expression

∇θ (ψ ◦ Dθ(x)) =
N∑
n=1
∇θ
(
ψ̃n ◦Sn(zn−1, θ)

)
follows directly from the definition of ψ̃n in Eq. (7).

To further compute the right-hand side, notice that ∇θ
(
ψ̃n ◦Sn(zn−1, θ)

)
is a vector field on the Euclidean

manifold gd (see Remark 3.3). Recall also that

zn = Sn(zn−1, θ) = Lzn−1

[
exp

(
Mθ(∆xn)

)]
,

where Mθ(∆xn) takes values in g = Proj(gl(m,C)). Moreover, set A : gd → g to be the mapping
A(θ) := Mθ(∆xn) and put f = ψ̃n ◦ Lzn−1 . We compute that

∇θ
(
ψ̃n ◦Sn(zn−1, θ)

)
= Proj

{
A#∇(f ◦ exp)

(
A(θ)

)}
= Proj

{
A#

{
dA(θ)⊤

[
∇f(exp

(
A(θ)

)]}}
.

The second line follows from Theorem 2.2, and the first line holds by the general rule — let M and N be
Riemannian manifolds and φ :M→N , h : N → R be smooth functions. Then ∇(h ◦ φ) = φ#(∇h) where
φ# is the pullback operator.

To proceed, let us compute ∇f . Since for any g ∈ G the left regular action Lg satisfies dLg = Lg whenever G
is a matrix group, we have that

∇f = ∇zn ψ̃n · zn−1,

28

Published in Transactions on Machine Learning Research (08/2024)

where · is the matrix multiplication. We put the subscript zn here only to emphasise that the gradient of ψ̃n
is taken with respect to this variable.

It remains to compute (A#V)(θ), where we write V := dA(θ)⊤

[
∇f(exp

(
A(θ)

)]
for abbreviation. Recall that

V and A#V are vector fields on g and gd, respectively. Elementary computations in differential geometry
then yield that

A#V (θ) = V (A#θ) = V
(
A(θ)

)
for each θ ∈ gd.

It is crucial here that A is a linear mapping from gd to g; thus, the pushforward A#(θ) coincides with A(θ).

We may now complete the proof.

D Experimental details

D.1 General remarks

Optimisers. All experiments used the ADAM optimiser as in Kingma & Ba (2014). Learning rates and
batch sizes vary along experiments and models. The learning rate in certain experiments may be applied
with a constant exponential decay rate, and the training process is terminated when the metric failed to
improve for some large number of epochs. See individual sections for details. We saved model checkpoints
after every epoch whenever the validation set performance (the performance metric varies from experiment
to experiment) gets improved and loaded the best performing model for evaluation on test set.

Architectures. In our numerical experiments, we consider the development models (DEVs) and the hybrid
model (LSTM+DEVs) by stacking the LSTM with the development layer together. To benchmark our
development-based models, we use the signature model and the LSTM model as two baselines.

For the Speech Commands and Character Trajectories experiments, all the above mentioned models (DEVs,
LSTM+DEVs, Signature, and LSTM) all include a linear output layer to predict the estimated probability of
each class. For a fair comparison, we keep the total number of parameters across different models comparable
and then compare the model performance in terms of accuracy and training stability.

Similarly, we also keep the model complexity of the baseline LSTM and our proposed hybrid model
(LSTM+DEVSE(2)) comparable in the N -body simulation task. See the specific architecture of each
individual model for those three datasets in Appendix D.2, Appendix D.3, and Appendix D.6, respectively.

Hyperparameter tunning. Once our model architecture is fixed for fair comparison, hyperparameter
tunning focuses mainly on learning rate and batch size. Specifically, the learning rate is first set to 0.003 and
reduces until the good performance is achieved. Then we search the batch size with a grid of [32, 64, 128]. The
decay factor of learning rate was applied to those models with severe overfitting observed on the validation set.
Throughout the experiments, we notice that the hyperparameters have minimal effects on the development
network model, while the RNN-based models are very sensitive to hyperparameters.

Loss. We used cross-entropy loss applied to the softmax function of the output of the model for the
multi-classes classification problem. We used mean squared error loss for the regression problem in the
N -Body simulation.

Computing infrastructure. All experiments were run on five Quadro RTX 8000 GPUs. We ran all models
with PyTorch 1.9.1 Paszke et al. (2019) and performed hyperparameter tunning with Wandb Biewald (2020).
Codes. The codes for reproducing all experiments are included in supplementary material.

D.2 Speech Commands

We follow the data generating procedure in Kidger et al. (2020) and took a 70%/15%/15% train/validation/test
split. The batch size was 128 for every model. Dev(SO), LSTM+Dev(SO) and signature models used a
constant learning rate 0.001 throughout. LSTM was trained with learning rate 0.001 and exponential decay
rate 0.997. Training terminates if the validation accuracy stops improving for 50 epochs. Set maximum
training epochs to 150.

29

Published in Transactions on Machine Learning Research (08/2024)

Signature. We apply the signature transform up to depth 3 on the input, which converts the input time
series to a vector of size 8420 before passing to a output linear layer. The model has 84210 parameters in
total.

LSTM. The input of the model is passed to a single layer of LSTM (135 hidden units). The output of the
LSTM (last time step) is passed to a output linear layer. It has 86140 parameters in total.

DEV(SO). The input of the model is passed to the special orthogonal development lyear (54 by 54 matrix
hidden units). Then the output of the development (final time step) is passed to a final linear output layer.
It has 87490 parameters in total.

LSTM-DEV(SO). The input of the model is passed to a single LSTM layer (56 hidden units). Then we
pass the output of the LSTM (full sequence) to the special orthogonal development layer (32 by 32 matrix
hidden units). Then the output of the development (final time step) is passed to a final linear output layer.
It has 85066 parameters in total.

D.3 Character Trajectories

We follow the approach in Kidger et al. (2020), in which we combined the train/test split of the original
dataset and then took a 70%/15%/15% train/validation/test split.

The batch size used was 32 for every model. Dev(SO), LSTM+Dev(SO) and signature model used a constant
learning rate of 0.001 throughout the training. LSTM was trained with a learning rate of 0.003, with an
exponential decay rate of 0.997. If the validation accuracy stops improving for 50 epochs, we terminate the
training process. The maximum training epochs is set to be 150.

Signature. We apply the signature transform up to depth 4 on the input, which converts the input time
series to a vector of size 340, then it is passed to a linear output layer. The model has 6820 parameters in
total.

LSTM. The input of the model is passed to a single layer of LSTM (40 hidden units). The output of the
LSTM (last time step) is passed to a linear output layer. The model has 8180 parameters in total.

ExpRNN. The input of the model is passed to a single layer of ExpRNN (78 hidden units). The output of
the ExpRNN (last time step) is passed to a linear output layer. The model has 8054 parameters in total.

DEV(SO). The model’s input is passed to the special orthogonal development layer (20 by 20 matrix hidden
units). Then the output of the development (final time step) is passed to a final linear output layer. The
model has 7760 parameters in total.

LSTM-DEV(SO). The model’s input is passed to a single LSTM layer(14 hidden units). Then we pass the
output of the LSTM (full sequence) to the special orthogonal development layer (14 by 14 matrix hidden
units). Then the output of the development (final time step) is passed to a final linear output layer. The
model has 8084 parameters in total.

D.4 Sequential MNIST and CIFAR10

The MNIST dataset is a large collection of handwritten digits, with a training set of 60,000 examples and a
test set of 10,000 examples. Each 28× 28 pixel valued image is flattened to a sequence of length 784. The
permuted task (p-MNIST) applies the same random permutation on the sequence of size 784. The CIFAR10
dataset consists of 60000 (50000 training + 10000 test samples) 32 by 32 colour images with 10 classes. Like
the sequential MNIST, the CIFAR10 task flattens the images to pixel by pixel sequences of length 1024.

The batch size used was 128 for both sequential MNIST and CIFAR10. LSTM+DEV(SO) was trained with
an inital learning rate of 0.002 and an exponential decay rate of 0.997. We terminate the training process if
the validation accuracy stops improving for 50 epochs. The maximum training epochs is set to be 200.

LSTM+DEV(SO). A common model architecture is used for both datasets. The input is passed to a single
LSTM layer (120 hidden units); the output of the LSTM (full sequence) is passed to the special orthogonal
development layer (10 by 10 matrix hidden units). Then, the output of the development (final time step) is

30

Published in Transactions on Machine Learning Research (08/2024)

passed to a final linear output layer. The model has 72050 and 73010 parameters for sequential MNIST and
CIFAR10, respectively.

D.5 Brownian motion on the unit 2-sphere S2

We simulated 20000 samples of discretised Brownian motion on S2 with time length L = 500 and equal time
spacing ∆t = 2e−3 by the random walk approach (Novikov et al. (2020)).

The discretised Brownian motion B = (Btn)L−1
n=0 with tn = n∆t on S2 is simulated by a driving random walk

X = (Xtn)L−1
n=0 on R2. Let Bt0 = (0, 0, 1)⊤. We first simulate a 2D random walk X by i.i.d. increments

∆Xn := Xn+1−Xn, uniformly distributed∼ U(−0.5, 0.5). Then rescaleX by the factor
√

12∆t to approximate
S2-valued Brownian motion over the time interval ∆t. For a generic point b =

(
b(1), b(2), b(3))⊤ ∈ S2 we use

the following basis for TbS2 ⊂ R3, the tangent plane of S2 at b:

e1
b = 1√

(b(1))2 + (b(3))2

 b3

0
−b1

 , e2
b = 1√

(b(1))2 + (b(3))2

 −b(1)b(2)

−
[(
b(1))2 +

(
b(3))2]

b(2)b(3)

 .

At each step n ∈ {1, · · · , L − 1}, we perform standard random walk on the tangent plane orthogonal to
the orientation vector of Btn and project Btn +

√
12∆t∆Xn to Btn as described in Novikov et al. (2020).

In this manner we simulate, by Monte-Carlo, independent samples of the pair of driving random walk and
corresponding Brownian motion on S2.

The simulated input/output trajectories are split into train/validation/test with ratio 80%/10%/10%. All
models were trained with learning rate 0.003 and exponential decay rate 0.998. The batch size was 64 for
every model. Training was terminated if the validation MSE stopped lowering for 100 epochs. The maximum
number of epochs was set to be 300.

For all models, we passed the input through two dense layers (32 hidden units), followed by a single
LSTM/orthogonalRNN layer (64 hidden units).

LSTM. For the LSTM model, we pass the LSTM output (full sequence) through one dense layer (64 hidden
units) and a single linear output layer.

ExpRNN. For the ExpRNN model, we pass the ExpRNN output (full sequence) through one dense layer
(64 hidden units) and a single linear output layer.

LSTM+DEV(SO(3)). we pass the LSTM output (full sequence) to a SO(3) development layers (each has
3 by 3 matrix hidden units). The output (full sequence) of the development layer is a sequence Lie group
element in SO(3). Then we take the last column of the SO(3) matrix as the final sequential output.

D.6 N-body simulations

We followed Kipf et al. (2018) to simulate 2-dimensional trajectories of the five charged, interacting particles.
The particles carry positive and negative charges, sampled with uniform probabilities, interacting according
to the relative location and charges. We simulated 1000 training trajectories, 500 validation trajectories
and 1000 test trajectories, each having 5000 time steps. Instead of inferring the dynamics of the complete
trajectories as in Kipf et al. (2018), we consider it a regression problem with sequential input: the input data
is a sequence of locations and velocities in the past 500 time steps (downsampled to the length of 50). The
output is the particle’s positions in the future k time steps for k ∈ {100, 300, 500}.

More specifically, let x(i)
t and v

(i)
t be the 2-D location and velocity of the ith particle at time t. The input

and output of the regression problem are xt =
((

(x(i)
s , v

(i)
s)
)t
s=t−500

)5

i=1
and

(
x

(i)
t+k

)5

i=1
, respectively. In

2-D the coordinate transform is described by the special Euclidean group SE(2), which consists of rotations

31

Published in Transactions on Machine Learning Research (08/2024)

and translations: x′

y′

1

 = T

xy
1

 :=

 R
tx
ty

0 0 1

xy
1

 , (13)

where T ∈ SE(2) and R is a 2-D rotation matrix.

The proposed LSTM+DEV(SE(2)) network architecture models the map x
(i)
t 7→ x

(i)
t+k, hence predicting the

future location by multiplying the output of the development layer with x(i)
t . The model weights change over

development layers for different particles.

The other three baselines include (1) the current location xt (static estimator, assuming no further movements
of the particle); (2) the LSTM; and (3) the SO(2) development layer.

All models are trained with a learning rate of 0.001 with a 0.997 exponential decay rate. The batch size used
was 128 for every model. The training was terminated if the validation MSE stopped lowering for 50 epochs.
The maximum number of epochs was set to be 200.

For all models, we passed the input through two dense layers (16 hidden units), followed by a single LSTM
layer (32 hidden units).

LSTM. For the LSTM model, we pass the LSTM output (last time step) through one dense layer (32 hidden
units) and a single linear output layer.

LSTM+DEV(SE(2)). We pass the LSTM output (full sequence) to the five independent SE(2) development
layers (each has 3 by 3 matrix hidden units). The output of each independent development layer (final time
step) is a Lie group element in SE(2). We apply the learned SE(2) element to the last observed location of
each particle to estimate the future locations of the five particles, according to Equation (13).

LSTM+DEV(SO(2)). We pass the LSTM output (full sequence) to the five independent SO(2) development
layers (each has 2 by 2 matrix hidden units). The output of each independent development layer (final time
step) is a Lie group element in SO(2). We multiply the learned SO(2) element with the last observed location
of each particle to estimate the future locations of the five particles.

32

Published in Transactions on Machine Learning Research (08/2024)

E Supplementary numerical results

Here we report the supplementary numerical results on speech Commands dataset (Table 6).

Table 6: Test accuracies of the linear model on development and signature baselines on Speech Commands
dataset.

Signature
depth (n) Test Accuracy # Feature

1 12.3% 20
2 75.4% 420
3 85.7% 8420
4 88.9% 168420

Development (SO)
order (m) Test Accuracy # Feature

5 70.5% 25
10 81.3% 100
20 84.6% 400
30 86.2% 900
50 87.5% 2500
100 89.0 % 10000

Development (Sp)
order (m) Test Accuracy # Feature

6 79.1% 36
10 83.7% 100
20 85.5% 400
30 87.1% 900
50 88.5% 2500
100 86.3% 10000

33

	Introduction
	Related works
	Organisation of the paper

	Preliminaries
	Path Signature
	Path Development on matrix Lie groups
	Optimisation on Lie Group

	Path Development Layer
	Network architecture
	Model parameter optimisation

	Numerical experiments
	Time series and sequential image modelling
	Speech Command dataset
	Character Trajectories data
	Sequential image classification

	Modelling dynamics on non-Euclidean spaces
	Brownian motion on S2
	N-body simulations

	Discussions and future work
	Vector field
	Lie group representation
	Hybrid model architecture

	Conclusion
	The signature of a path
	The development of a path
	Connection with signature
	Dimension comparison with signature
	Invariance under time-reparameterisation
	Universality

	Backpropagation of the development layer
	Backpropagation of the development
	Proof of Theorem 3.1
	Proof of propn: gradient computation

	Experimental details
	General remarks
	Speech Commands
	Character Trajectories
	Sequential MNIST and CIFAR10
	Brownian motion on the unit 2-sphere S2
	N-body simulations

	Supplementary numerical results

