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Tightly-coupled Magneto-Visual-Inertial Fusion for
Long Term Localization in Indoor Environment
Jade Coulin1,2, Richard Guillemard1, Vincent Gay-Bellile1, Cyril Joly2, and Arnaud de La Fortelle2

Abstract—We propose in this paper a tightly-coupled fusion of
visual, inertial and magnetic data for long-term localization in in-
door environment. Unlike state-of-the-art Visual-Inertial SLAM
(VISLAM) solutions that reuse visual map to prevent drift, we
present in this paper an extension of the Multi-State Constraint
Kalman Filter (MSCKF) that takes advantage of a magnetic
map. It makes our solution more robust to variations of the
environment appearance. The experimental results demonstrate
that the localization accuracy of the proposed approach is almost
the same over time periods longer than a year.

Index Terms—Localization, Sensor Fusion, Visual-Inertial
SLAM, Indoor magnetic field, MSCKF.

I. INTRODUCTION

V ISUAL-INERTIAL SLAM algorithms (VISLAM) pro-
vide accurate and robust localization that made them

state-of-the-art for indoor localization [1], [2]. The addition
of the IMU resolves the lack of robustness of visual-only
SLAM algorithms. It also helps to reduce drift over time
but does not completely eliminate it. To solve this issue a
prebuilt visual map of the environment is usually reused [1].
Its 3D points are matched with the key points of the images
through a viewpoint recognition algorithm [3]. This results
in a drift-free localization algorithm as long as a sufficient
number of 3D points are successfully recognized. However,
the performance of viewpoint recognition algorithms degrades
over time due to illumination variations and changes in the
environment appearance (moving furniture, decoration change,
etc).

Recently, different localization methods taking advantage of
magnetic field stability over time have been proposed. In [4],
magnetic data are loosely coupled with a VISLAM algorithm
through a particle filter. Their solution results in a localization
with limited drift but with an increase of local inaccuracy
(jitter). The magnetic data are also underused since they are
not involved in the estimation of the VISLAM state.

We propose in this paper a tightly coupled fusion of
magnetic, visual and inertial data that results in a locally
accurate and drift-free localization in indoor environment.
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Fig. 1. Overview of the proposed magneto-visual-inertial MSCKF framework.
Offline a magnetic map is built from magnetic data and ground truth positions.
Online, the magnetic map is reused in the MSCKF for drift-free localization
in the long term.

An extension of the Multi-State Constraint Kalman Filter
(MSCKF) used initially for visual-inertial fusion is presented.
Thus, the contributions of this paper are:
• A tightly-coupled magneto-visual-inertial MSCKF

reusing magnetic map (see Figure 1), whose localization
accuracy is not affected by appearance changes of
the environment.

• Online estimation of the magnetometer bias in the
MSCKF, avoiding recalibration of the magnetometer each
time it is used.

The proposed algorithm is evaluated on a data set we
created, including acquisitions of visual, inertial and magnetic
data covering a time span of more than one year. Results
demonstrate that the proposed solution keeps almost the same
localization accuracy over time contrary to state-of-the-art
VISLAM method [1] reusing visual map. Furthermore, the
addition of magnetic data may reduce computation time since
fewer images are required to achieve an accurate localization.

The paper is structured as follows. After a review of the
existing literature in Section II, Section III provides some
preliminaries on magnetic map building. Then, the proposed
magneto-visual-inertial MSCKF algorithm is described in
Section IV. In Section V, its performances in terms of local-
ization accuracy in the long term are evaluated and compared
to those of a state-of-the-art method that reuses a visual map.

II. RELATED WORK
A. Long-term localization

VISLAM algorithms, which reuse visual map for drift-free
localization such as [1], become less accurate over time due
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to variations of the visual appearance of the environment.
Some works try to improve their robustness to illumination
conditions by learning illumination invariant descriptors [5] or
recognition modules for different illumination conditions [6].
However, these approaches lead to an increase in computation
time without dealing with all kinds of appearance variations.

There exist other alternatives to limit VISLAM drift. In [7],
a dense LIDAR map is aligned with an online dense stereo
reconstruction. This approach has only been evaluated in
outdoor scenarios, as its performance may be degraded by
the lack of texture and geometric information of indoor
environments. In [8] Wi-Fi sensing signal and in [9] ultra-
wideband range measurements are tightly coupled with the
visual and inertial measurements. They require instrumentation
of the environment and can therefore not be applied in all
contexts.

B. Magnetic-Based Localization

Another approach is to exploit the magnetic field for indoor
localization. Existing solutions are based on a magnetic map
used in a sensor fusion framework with a magnetometer
calibration as preprocessing.

1) Magnetic map building: The stability over time of the
magnetic field is studied in [10]. Two sets of magnetic data are
recorded at same locations with an interval of three months.
The correlation of the measured values is high. Distortions
created by electronic objects produce only negligible changes
in the magnetic field over time: its variation at 30 cm of
a computer is less than 0.3 µT (inside a building, standard
norm of the magnetic field is above 30 µT). Only large
metal objects, such as lifts, cause significant variations of the
magnetic field over 2 or 3 meters.

Magnetic maps may be obtained by a complete explo-
ration of a zone [11] (i.e measuring the magnetic field at
each position of the map). Most of the time less magnetic
data are acquired and the complete map is built by linear
interpolation [12] or Gaussian Process regression [13]. These
approaches do not consider that the magnetic field verifies
Maxwell’s equations. In [14], a unique GP on the potential
of the magnetic field is learned rather than one GP for each
of its 3 axes. This approach improves the quality of the
magnetic map. More details on magnetic map building by a
Gaussian Process regression are given in Section III.

2) Localization in a magnetic map: Magnetometer data
are loosely-coupled with wheel odometry in 2D [13] and with
VISLAM algorithm in 3D [4] through particle filtering. In [4]
the magnetometer measures are compared with a magnetic
map built online by Gaussian Process regression. They present
accuracy improvement compared to VISLAM for trajectory
that regularly cross the same places. However, the localization
suffers from local deteriorations (jitter) due to the loosely-
coupled fusion. In [15], magnetometer and visual data are
combined to form a descriptor learned through a Neural Net-
work. The map is composed of a visual-magnetic descriptor
per cell of size 60×60 cm. A particle filter that compares the
current descriptor with those constituting the map performs
online localization. The accuracy reached by this approach is

limited to the size of a cell. Furthermore, their descriptors are
highly dependent to the line of sight.

3) Magnetometer calibration: Standard magnetometer cali-
bration methods require the local magnetic field to be constant.
In outdoor environments, this is typically a reasonable assump-
tion. Therefore, outdoor calibration of the magnetometer has
been widely studied [16], [17]. The most common approaches
are to rotate the magnetometer in all possible directions [16] or
to move a metal object around it [17]. Indoors, where magnetic
field perturbations occur, calibration of magnetometers is more
challenging. In [18], a Helmholtz coil is used to create a
uniform magnetic field. In [19], inertial sensors are used to
improve the magnetometer calibration. Although this approach
has been validated indoors, the calibration must be performed
relatively far away from any magnetic materials.

C. Tightly-coupled magneto-visual-inertial fusion

In [20], a tightly coupled localization algorithm with cam-
era, IMU and magnetometers is presented. However, this
approach is different than the one we propose since they
use a sensor composed of four magnetometers to estimate
the velocity by measuring locally the spatial gradient of
the magnetic field. The robustness of the algorithm without
visual information is improved but some localization drift still
remains. Moreover, their sensor composed of four magnetome-
ters is protected by a patent and is challenging to miniaturize.
Our solution uses a single magnetometer and a magnetic map
to constraint the position of a MSCKF-based algorithm for
drift-free localization in the long term.

III. PRELIMINARIES ON GAUSSIAN PROCESS
REGRESSION FOR MAGNETIC MAP BUILDING

The magnetic map used in the magneto-visual-inertial
MSCKF presented in Section IV is obtained by the
Gaussian Process (GP) regression algorithm described in [14].
We give a brief description of this algorithm below.

Usually, in GP regression, the model functions f (p) are as-
sumed to be realizations from a Gaussian random process prior
with zero mean and a covariance function κ(p,p′) following
the model:

f (p)∼ G P(0,κ(p,p′)),
yi = f (pi)+ εi , εi ∼N (0,σ2

m),
(1)

where the observations yi corrupted by a white Gaussian
noise are measured at points of space pi for i ∈ {1. . .n}. The
GP regression predicts the conditional mean and variance of f
at any point of the space of interest p∗ as follows:

E[ f (p∗)] = k>∗ (K+σ
2
mIn)

−1y,

V[ f (p∗)] = κ(p∗,p∗)−k>∗ (K+σ
2
mIn)

−1k∗,
(2)

where Ki, j = κ(pi,p j), k∗ is an n-dimensional vector with
the i-th entry being κ(pi,p∗), and y a vector concatenating
the n observations.

The magnetic map is a vector-field that associates at each
point of space p∗ its magnetic field B(p∗) with B : R3→ R3.
Applying Maxwell’s equations and under the assumption
that the free-current is negligible in most contexts [14],
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the magnetic-field is approximated as the gradient of a
scalar potential ϕ : R3→ R:

B =−∇ϕ. (3)

It is thus possible to write the magnetic GP regression with a
one-dimensional function by learning ϕ instead of B:

ϕ(p)∼ G P(0,κ(p,p′)),
mi =−∇ϕ(pi)+ εi,

κ(p,p∗) = σ
2
linp>p∗+σ

2
SE exp

(
−‖ p−p∗ ‖2

2l2
SE

)
,

(4)

where mi is the magnetometer data at point pi, σ2
SE is the

variance of the scalar potential at any points p and lSE rep-
resents the distance above which a magnetic data no longer
influences the predicted magnetic field. Since ϕ is not a zero-
mean function, σ2

linp>p∗ is added to model the linear part of
the potential (corresponding to the Earth magnetic field).

The size of the complete covariance matrix κ is three times
the number of data points. If their number is high (a few
hundreds or more), GP becomes intractable. To overcome this
problem, it is possible to approximate the expression of the
covariance matrix so that it is independent of the number of
data points:

κ(p,p∗)'Φ(p)ΛΦ(p∗)> (5)

with Λ a diagonal matrix (see [14] for its definition) and
Φ(p) =

[
p> φ1(p) φ2(p) ... φN(p)

]
. The functions φ j

are the eigenfunctions of the negative Laplace operator, while
verifying the Dirichlet boundary conditions:{

−∇
2
φ j(p) = λ

2
j φ j(p), p ∈Ω

φ j(p) = 0, p ∈ ∂Ω
(6)

where Ω is the domain over which the magnetic field is pre-
dicted and ∂Ω its boundaries (see [14] for the explicit expres-
sion of λ j). N corresponds to the number of functions chosen:
the greater N is, the more precise the approximation is.

From the approximated expression of κ (Equation 5), the
conditional mean and the variance of B, gradient of ϕ , for all
points p∗, are estimated:{

E[B(p∗)]≈ ∇Φ∗µµµ l

V[B(p∗)]≈ ∇Φ∗Σl∇Φ
>
∗

(7)

with µµµ l = ([∇Φ]>∇Φ+σ
2
mΛ
−1)−1[∇Φ]>vec(m),

Σl = σ
2
m([∇Φ]>∇Φ+σ

2
mΛ
−1)−1.

We denote above for simplification Φ∗ = Φ(p∗), Φ = Φ(p)
and vec(m) a vectorization of all the measures ordered by
their index. Equations 7 predict the value of B(p∗) and its
incertitude on the domain Ω.

IV. MAGNETO-VISUAL-INERTIAL MSCKF

In this section, the proposed magneto-visual-inertial
MSCKF is presented. The MSCKF [21] is a state-of-the-art
visual-inertial odometry algorithm. It is a variant of the clas-
sical Extended Kalman Filter (EKF) designed to insert visual
measurements inside the EKF framework. The EKF-based

framework is particularly adapted for the addition of new
sensors, such as the magnetometer.

First, the notations and the different coordinate frames are
defined, then the model of the magnetometer is introduced.
Finally, the modifications to add magnetic data in the visual-
inertial MSCKF i.e the state vector including the magnetome-
ter bias, its prediction and the magnetic measurement, are
presented.

A. Notations and frames

For 3D transformations to frame F from frame E, the fol-
lowing notations are used:

PFE =

[
RFE tFE
01×3 1

]
∈ SE(3)

where RFE ∈ SO(3) is the rotation matrix from frame E to
frame F , tFE ∈ R3 the 3D coordinates of frame F in E.

Hereafter, two referentials will be used: the IMU
referential I, and a global referential G. The magnetometer
referential is supposed to be confounded with I. This hypothe-
sis is often verified since many IMUs contain a magnetometer
with its axis aligned on the IMU referential. The magnetic
map is expressed in the Global referential G.

B. Model of the Magnetometer Sensor

The magnetometer measurements are corrupted by different
sources of error [16]. Some are due to the sensor itself:
a bias on the measures, bsensor, and a scale-misalignment
matrix Asensor that are directly linked to the physics of the
sensor and its factory calibration. Moreover, the magnetic
elements close to the sensor, such as ferromagnetic materials,
modify the measured magnetic field. They are referred to as
hard and soft iron effects. The former is due to permanent
magnetization resulting in an offset bHI whereas the latter
depends on the orientation of the system towards the magnetic
field and is modeled by a matrix ASI . Finally, the measures
are deteriorated by a random noise, as for most sensors. The
measurement of the magnetic field returned by the sensor is
thus given by:

m̂I = Asensor(ASImI +bHI)+bsensor +ηηηm

with ηηηm ∼N (0,σ2
mI3)

(8)

where m̂I is the sensor value, mI the real magnetic field and
ηηηm the sensor white Gaussian noise ([16]).

Without loss of generality, the model described in Eq. 8 can
be summed up by the following model:

m̂I = AmI +bm +ηηηm

with ηηηm ∼N (0,σ2
mI3)

(9)

where A is a scale-misalignment matrix and bm is the mag-
netometer bias.

Experiments on our dataset (see Section V-A) show that A
does not really change over long time spans while the bias bm
must be re-estimated regularly. A random walk appears to be
a suitable representation of its evolution over time. Thus, A is
calibrated once for all [22], [16], [17] and bm is added in the
MSCKF vector state (see Section IV-C).
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C. State vector of the magneto-visual-inertial MSCKF

The state X of the proposed MSCKF is composed of
two parts: one that corresponds to the current state of
the system, xC, and the second to the sliding window
of the W last body states, xW representing the W last images
captured.

X = (xC,xW ),

xC = (RGI , tGI ,vGI ,bg,ba,bm),

xW = (R1
GI , t

1
GI , ...,R

W
GI , t

W
GI),

(10)

with vGI ∈ R3 the velocity of frame I in frame G, bg, ba and
bm respectively the bias of the gyroscope, the accelerometer
and the magnetometer. The state definition is the same as the
classical visual-inertial MSCKF [21] with addition of bm. The
covariance of the state X is written as P.

D. Propagation of the magneto-visual-inertial MSCKF

The accelerometer and the gyroscope provide measurements
of the acceleration and angular velocity that are integrated
to predict the position and orientation and their covariance.
The IMU propagation equations are detailed in [21]. With the
magnetic data, a propagation equation on the magnetometer
bias is added in the MSCKF:

ḃm = ηηηwm

with ηηηwm ∼N (0,σ2
wmI3).

(11)

The propagation of bm during ∆t is done by updating its
covariance:

Pbm ← Pbm +∆tσ2
wmI3, (12)

where Pbm is the 3× 3 sub-matrix of P corresponding to the
covariance of the magnetic bias.

E. Measurements of the magneto-visual-inertial MSCKF

To apply the classical EKF update of the MSCKF, the
measurements function h, the Jacobian H and covariance Σ

of the sensors data must be defined. For the vision sensors,
the measurement function hvision is the same as the original
MSCKF. It is the 2D reprojection of the 3D points on the
current pose and on the W last poses. As in [21] the depen-
dency of hvision on the 3D points is marginalized with the left-
nullspace transformation.

For the magnetometer, hmag is the prediction of the
magnetometer values from the magnetic map at the
current position tGI :

hmag(xC) = AR>GImG(tGI)+bm

with mG(tGI) = E[B(tGI)] = ∇Φ(tGI)µµµ l .
(13)

The Jacobian Hmag of hmag with regards to xC is decom-
posed in three parts: Ht the derivative with respect to transla-
tion, HR to rotation and Hb to bias (obviously equal to I3),

Hmag =
[
HR Ht 03×3 03×3 03×3 Hb

]
. (14)

For Ht , the derivative is straightforward since only
the derivative of ∇Φ is needed:

Ht = AR>GI∇
2
Φ(tGI)µµµ l , (15)

while for HR, the derivative is conducted with regards to SO(3)
and the approximation expSO(3)(δθ)' (I3 + bδθc×):

hmag
(

expSO(3)(δθ)RGI)−hmag(RGI)
)
' A

(
bδθc×RGI

)>mG

'−AR>GIbδθc×mG

' AR>GIbmGc×δθ .

Thus, HR is given by:

HR = AR>GIbmGc×. (16)

Finally, the Σmag covariance is composed of the covariance
of the magnetic sensor and the covariance of the GP predic-
tion to take into account the uncertainties of the magnetic
map. The uncertainty related to µµµ l is therefore added to the
magnetometer noise:

Σmag = σ
2
mI3 +AR>GIV[B(tGI)]RGIA> (17)

with V[B(tGI)] = ∇Φ(tGI)Σl∇Φ(tGI)
>.

V. EXPERIMENTS

In this section, the proposed magneto-visual-inertial
MSCKF is evaluated in terms of accuracy, robustness over
time and computation time. A comparison with a state-of-the-
art VISLAM localization algorithm [1] that reuses visual map
is also presented.

A. Experimental setup

To the best of our knowledge, there does not exist any data
set with magnetic, visual and inertial data acquired over long
periods of time (one year or more). Hence, we needed to
create one. Our acquisition platform, illustrated in Figure 2, is
composed of a helmet with 4 FLIR Blackfly S cameras and an
SBG-Ellipse-N sensor that contains an IMU, a magnetometer
(whose axes are aligned with those of the IMU) and a
GNSS. All the sensors are rigidly mounted and their data are
synchronized. The 4 cameras and the IMU were calibrated
using the software Kalibr [23]. The cameras are disposed in
two pairs: one stereo pair in front and another one in the rear of
the helmet. Several acquisitions of magnetic, visual and inertial
data have been captured between May 2020 and August 2021.
Online localization algorithms (i.e. the proposed magneto-
visual-inertial MSCKF and those used for comparison ([1],
[21]) operate on one camera of the helmet (the left front one).
The four cameras streams are only used to obtain ground truth
positions. They are achieved by a key-frame based VISLAM
algorithm with loop closure followed by a global bundle
adjustment. It is run on the 4 camera streams, IMU data and
GNSS data. The GNSS is used to georeference the ground
truth (the first data are acquired outdoor). Ground truth posi-
tions are required for magnetic map building (see Section V-B)
and for evaluating the localization accuracy reached online by
our magneto-visual-inertial MSCKF (Sections V-C and V-E).

Three criteria are used to evaluate the online local-
ization accuracy: the Absolute Translation Error (ATE)
and two rotational errors, on the azimuth and the lev-
eling. The ATE is defined as e =

√
1
n ∑

n
j=1 ||t

j
GI− t̂ j

GI ||2
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with n the total number of data. The rotational er-
rors are eazimuth =

√
1
n ∑

n
j=1 |(R

j
GI	 R̂ j

GI)z|2 and eleveling =√
1
n ∑

n
j=1 ||(R

j
GI	 R̂ j

GI)xy||2, with 	 : SO(3)× SO(3) → R3,
R1 	 R2 = logSO(3)(R1R>2 ) which results in a 3-dimensional
vector representing the rotation difference towards each axis.
tGI and RGI are the ground truth positions and rotations and
t̂GI and R̂GI their associated online estimation.

Fig. 2. The helmet used for the acquisitions. The IMU SBG-Ellipse-N sensor
that includes the magnetometer, the IMU and the GNSS is on top of the helmet
while the four cameras FLIR Blackfly S are on the sides.

B. Magnetic Map Building

The preliminary step to online localization by the magneto-
visual-inertial MSCKF described in Section IV is the of-
fline reconstruction of a magnetic map (see the up-
per part of Figure 1). It requires a collection of po-
sitions in space p1, ... pn and their respective magnetic
measurements m1, ... mn. Map accuracy depends on the qual-
ity of the input data. For accurate positions in space, we use the
ground truth positions obtained with the protocol described in
Section V-A. For the magnetic measurements, calibrating the
magnetometer before building a magnetic map is crucial.

The magnetic calibration is done outdoors with a classical
ellipsoid adjustment method on the whole helmet to estimate
accurately both the hard and soft iron effects that generates the
system [16]. The sources of soft iron distortions are the com-
ponents inside the IMU, the cameras and the electric cables.
For our acquisition system, their impact on the magnetic mea-
sures seems limited since during the calibration, the estimated
ellipsoid is always close to a perfect sphere, with differences
of dilatation of less than 5% between the three different axes.
This is the one and only time the magnetometer is calibrated.
During online localization, the bias of the magnetometer is
initialized to the value used during the magnetic map building
and then refined in the MSCKF.

Once accurate input data are collected, the first step
of magnetic map building through Gaussian Process regres-
sion is to estimate the hyperparameters σlin, σSE , lSE and
σm. They are optimized through the log marginal likeli-
hood function described in [14]. The following values are
obtained σlin = 25 µT, σSE = 15 µT.m−1, lSE = 1.3 m and
σm = 1.4 µT. The σm value is four times larger than the real
sensor noise to compensate for inaccuracies of positions pi.

In practice, a single GP regression cannot be applied to
all the data as the number N of eigenfunctions φ would be
too high. Thus 5×5×2 m parallelepipeds tiling the environ-
ment are created along the trajectory and a GP regression

with N = 512 eigenfunctions is learned on each of them.
Even though the GP regressions data are associated to
5×5×2 m parallelepipeds, their eigenfunctions φ j are com-
puted on larger parallelepipeds, which side sizes are increased
by 2lSE meter. This reduces the effects of Dirichlet boundary
conditions and smoothes the magnetic field transition at paral-
lelepipeds boundaries (as explained in [4]). The final magnetic
map is therefore the concatenation of the GP learned over all
the parallelepipeds.

A magnetic map built from data acquired in May 2020 with
the approach described above is shown in Figure 3. The length
of the multi-storey learning trajectory used to create this map
is 1150 meters. The memory size of the magnetic map is
116 MB (as a comparison the memory size of the visual map
built with 4 cameras is 240 MB).

Fig. 3. Norm of the predicted magnetic field (in µT). Only predictions
that are less than one meter away from the learning trajectory (in black)
are represented.

C. Online localization with the magneto-visual-inertial
MSCKF

The interest of adding magnetic data to the MSCKF is
evaluated in this Section. The magneto-visual-inertial MSCKF
proposed in Section IV is compared to the original visual-
inertial MSCKF [21], on a 515 meters sequence acquired in
July 2021 (i.e one year after the data acquisition to build the
magnetic map). The sequence starts outside, GNSS data are
then used in the MSCKF to georeference the localization
in the coordinate frame of the magnetic map. Once inside
the building, when the trajectory enters the domain of the
magnetic map, the proposed MSCKF begins to process the
magnetometer data. It results in a drift-free localization as
illustrated in Figure 4, contrary to the localization of the
MSCKF without magnetic data.

The magneto-visual-inertial MSCKF ATE on this sequence
is 32.6 cm whereas for the original MSCKF the ATE error
is 2.4 meters. In terms of rotation accuracy, the leveling error
worsens but not significantly (0.54◦ against 0.38◦) while the
azimuth estimation is greatly improved by the addition of
the magnetometer: the leveling error is only 0.19◦ with the
proposed algorithm whereas for the classical MSCKF it is
3.51◦. During the sequence, the trajectory goes through a
corridor that does not belong to the magnetic map domain.
In this corridor, the magnetic prediction (Eq. 13) is null and
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automatically ignored by the MSCKF: thus it runs as a visual-
inertial MSCKF. Magnetic data are used again when the tra-
jectory returns inside the magnetic map correcting localization
inaccuracies accumulated in the meantime. However, staying
for too long outside of areas covered by the magnetic map
results in large drift that magnetic data cannot correct. In those
cases, to use again the magnetic information, the drift must
be corrected beforehand. One possibility is to use magnetic
relocalization algorithms ([24], [25]). However, they require
to accumulate several seconds of magnetic data to recognize
a place without ambiguity. Another possibility is to use
visual relocalization, storing jointly in memory a visual map
with the magnetic one, but as demonstrated in this paper in
Section V-E, it is not robust to appearance changes over time.
Finally, visual-magnetic relocalization ([15]) seems promising
for robust relocalization over time with less delay than purely
magnetic-based solutions. However existing solutions are line-
of-sight dependent. Dealing with exits and returns in magnetic
maps is a research axis on its own that is outside the scope of
the paper.

Fig. 4. Localization results of the magneto-visual-inertial MSCKF
(Section IV) and the visual-inertial MSCKF [21] on a sequence acquired in
July 2021. The magnetic map used in the proposed approach is more than
one year old (May 29th, 2020) compared to the test data (July 2021). Top:
Google Earth View. Bottom: 3D View.

D. Magnetic bias estimation

The amplitudes of the white Gaussian noise σm and
the random walk σwm that are presented in Section IV-B
are evaluated from a 50 hour-long magnetic acquisition at
rest. On the Allan variance profile (explained in [26]) of
the magnetic data, acquired at fm = 50 Hz, we plotted two
asymptotic lines, as close as possible to the obtained curves
(see Figure 5). The white noise intensity corresponds to
the value of the decreasing tangent with a slope of −1

2 at
1s multiplied by the square root of the sensor frequency:
σm =

√
fm×0.047 µT.s1/2 = 0.33 µT. The second part of the

Allan variance, when it increases regularly, enables to evaluate

the random walk law. σwm is obtained reading the value
of the corresponding asymptotic line (of slope +1

2 ) at 3s:
σwm = 1.93×10−4 µT.s−1/2. The magnetic bias thus changes
significantly over time (0.56 µT per day on average) and needs
to be recalibrated or re-evaluated regularly.
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Fig. 5. Allan variance of the magnetometer. Results for a 50 hour-long
acquisition.

The proposed MSCKF re-estimates the bias of the mag-
netometer. For the sequence of Figure 4, the bias ini-
tial value is set to the calibration value of May 2020.
As shown in Figure 6, the magnetometer bias estimated
by the magneto-visual-inertial MSCKF converges after a
few seconds to a value close to the ground truth (ob-
tained by recalibrating the magnetometer just before the
acquisition with the method described in Section V-B).
In one year, the magnetometer bias has changed drasti-
cally: from an initial bias of (−9.07,−10.85,−24.17) µT,
the values estimated by the proposed MSCKF stabilizes
around (−2.99,10.03,17.30) µT which is similar to the re-
sults of the outdoor calibration (−2.57,10.18,17.39) µT.

The initial covariance of the MSCKF must be carefully
defined for the bias estimation to be successful. If σ0

yaw and
σ0

xy are set to zero as in the visual-inertial MSCKF, the
magnetic bias converges to a value that compensates yaw
error. For the sensors of the acquisition system presented
in Section V-A, σ0

yaw = 0.05 rad, σ0
xy = 1 m and σ0

bm
= 10 µT

are relevant values.
The evolution of the magnetic predictions (Eq. 13) through-

out the sequence of Figure 4 follows closely the variations of
the raw magnetic data as shown in Figure 7. This demonstrates
that the magnetic map built one year before, as well as the
magnetometer model and the bias estimation method described
in Section IV are all valid.

E. Comparison with VISLAM algorithm that reuses visual
map

In this section, the proposed magneto-visual-inertial
MSCKF is compared with a VISLAM algorithm that reuses a
visual map [1]. For that, both algorithms are executed with in-
creasingly older maps on sequences corresponding to different
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Fig. 6. Bias estimation on the sequence of Figure 4 (July 2021). The dotted
lines are the ground truth values from an outdoor calibration performed just
before the acquisition.

Fig. 7. Comparison of the predicted magnetic field and the raw magnetic data
along axis x, y and z for the sequence of Figure 4 (acquired in July 2021).
Outside of the magnetic map domain the prediction is null. The sequence
starts outdoor for the first 60 seconds. Then between the 120th and 130th
seconds the trajectory passes through a corridor which is outside the domain
of the magnetic map.

trajectories in the building. The visual maps are reconstructed
simultaneously (i.e. on the same sequences) with the magnetic
maps from the ground truth poses (see Section V-A). The
visual-inertial MSCKF is also run on these sequences. For
fair comparison, all the algorithms are initialized at ground
truth pose.

Results are reported in Table I. The visual-inertial MSCKF
that does not reuse any map is the less accurate algorithm.
VISLAM with prebuilt visual map performs slightly better
than the magneto-visual-inertial algorithm when the map is
recent with respect to the test sequence. Viewpoint recognition
used in [1] performs well since the appearance of the environ-
ment had not changed much. Moreover visual maps are more
locally discriminant than magnetic maps. On the other hand,
the average loss of position accuracy of the proposed approach
is only 10% over a few months and 14% after one year.

For VISLAM with visual map reuse, the position accuracy
degrades by an average factor of 2.6 (resp. 5.7) over a few
months (resp. over one year). The leveling is well estimated
by the classical MSCKF and only slightly deteriorated by
the addition of the magnetometer (13% on average and for
some sequences its estimation is slightly improved). On the
other hand, reusing a visual map worsens the estimation of
the leveling by 180% on average compared to the visual-
inertial MSCKF. On the contrary, the classical MSCKF lacks
of precision in the azimuth. Reusing a visual map in VISLAM
greatly improves the quality of its estimation. However, the
azimuth accuracy degrades when old maps are reused (4 times
less accurate when a visual map that is more than one year old
is reused). For the proposed magneto-visual-inertial MSCKF,
the azimuth estimation remains accurate no matter when the
magnetic map is created. The experimental results demonstrate
that the accuracy of the proposed algorithm is almost the same
over a year, unlike VISLAM methods reusing visual maps
whose localization accuracy is degrading.

The processing time of the magneto-visual-inertial MSCKF
and the MSCKF without magnetic data are quite close as
illustrated in Table II. The time required by the Kalman step
for the magnetometer is short since µµµ l and Σl , the matrices of
Equation 7, have been pre-computed. Processing one magnetic
data takes approximately 1.25 ms which is 15 times faster than
the rate of magnetic data acquisition (20 ms per data). The
computational overhead on an entire sequence with a frame
rate of 20 Hz is about 10%. Furthermore, the magneto-visual-
inertial MSCKF is more robust to image frequency reduction
than the original MSCKF as illustrated in Table II. The
proposed algorithm can process fewer images while remaining
accurate.

VI. CONCLUSION

This paper presents a MSCKF-based algorithm that tightly
couples magnetic, visual and inertial data for accurate long-
term localization. The proposed algorithm is evaluated and
compared on a data set with sequences acquired over a
time period of more than one year. The experimental results
demonstrate that the accuracy of the proposed algorithm is
almost the same over a year, unlike VISLAM methods reusing
visual maps whose localization accuracy is degrading.

The initialization of the magneto-visual-inertial MSCKF
in the magnetic map is currently obtained either outdoor
with GNSS data or indoor with a roughly accurate pose.
Moreover, getting outside the magnetic map can currently
be done only for a short period of time. As discussed in
the paper, it seems relevant for future work to combine our
approach with magnetic or visual-magnetic relocalization solu-
tions (e.g. [24], [25], [15]) to initialize the MSCKF anywhere
in the magnetic map and correct the accumulated drift when
getting outside the magnetic map. We also plan to extend the
use of magnetic data to other types of VISLAM algorithms
such as those based on factor graph optimization [1].

Finally, the magnetic map accuracy may be improved
by adding a covariance of the input positions pi in the
Gaussian Process regression.
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Date of online localization July 23rd, 2021 August 30th, 2021 August 31st, 2021
(2 min 23, 212 m) (3 min 8, 286 m) (1 min 57, 182 m)

Date of magnetic or visual map building 07/23/21 05/18/21 05/29/20 08/30/21 05/18/21 05/29/20 08/31/21 05/18/21 05/29/20

MSCKF 1cam/IMU [21]
ATE 4.417 m 4.417 m 4.417 m 1.888 m 1.888 m 1.888 m 3.001 m 3.001 m 3.001 m
Leveling err. 0.38◦ 0.38◦ 0.38◦ 0.40◦ 0.40◦ 0.40◦ 0.46◦ 0.46◦ 0.46◦

Azimuth err. 3.51◦ 3.51◦ 3.51◦ 2.28◦ 2.28◦ 2.28◦ 0.94◦ 0.94◦ 0.94◦

ATE 0.318 m 0.293 m 0.321 m 0.189 m 0.294 m 0.255 m 0.224 m 0.216 m 0.257 m
MSCKF 1cam/IMU/mag Leveling err. 0.62◦ 0.51◦ 0.54◦ 0.37◦ 0.37◦ 0.37◦ 0.46◦ 0.45◦ 0.46◦
with magnetic map Azimuth err. 0.29◦ 0.18◦ 0.19◦ 0.23◦ 0.34◦ 0.35◦ 0.36◦ 0.30◦ 0.49◦

ATE 0.262 m 0.788 m 0.771 m 0.108 m 0.582 m 2.317 m 0.435 m 0.775 m 1.576 m
VISLAM 1cam/IMU Leveling err. 1.04◦ 1.03◦ 1.75◦ 0.41◦ 0.32◦ 0.99◦ 1.68◦ 1.85◦ 1.43◦

with visual map [1] Azimuth err. 0.19◦ 0.40◦ 0.62◦ 0.13◦ 0.42◦ 0.89◦ 1.09◦ 1.15◦ 1.32◦

TABLE I
ATE, LEVELING AND AZIMUTH ERRORS OF MSCKF [21], MSCKF WITH MAGNETIC MAP REUSE (SECTION IV) AND VISLAM WITH VISUAL MAP REUSE [1] ALGORITHMS

ON THREE DIFFERENT SEQUENCES. THESE SEQUENCES ARE PROCESSED WITH INCREASINGLY OLDER MAPS (VISUAL MAP FOR [1] AND MAGNETIC MAP FOR THE PROPOSED

ALGORITHM). FOR THE MSCKF [21] THAT DOES NOT USE ANY MAP, THE SAME LOCALIZATION ERROR IS INDICATED ON THE TABLE FOR EACH DATE OF MAP BUILDING.

Execution
Time
(in s)

ATE Leveling
error

Azimuth
error

MSCKF [21], fcam 20 Hz 108.7 1.888 m 0.40◦ 2.28◦

MSCKF [21], fcam 5 Hz 19.5 diverges after 1 min 8 s
MSCKF [21], fcam 2 Hz 5.3 diverges after 50 s
MSCKF mag, fcam 20 Hz 120.0 0.255 m 0.37◦ 0.34◦

MSCKF mag, fcam 5 Hz 36.6 0.260 m 0.38◦ 0.53◦

MSCKF mag, fcam 2 Hz 18.5 0.351 m 0.40◦ 0.89◦

TABLE II
EXECUTION TIME AND LOCALIZATION ERROR OF THE MSCKF WITH AND WITHOUT

MAGNETIC DATA BY REDUCING THE NUMBER OF IMAGES PROCESSED.
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